1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
105 #include <trace/events/sched.h>
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
111 * Minimum number of threads to boot the kernel
113 #define MIN_THREADS 20
116 * Maximum number of threads
118 #define MAX_THREADS FUTEX_TID_MASK
121 * Protected counters by write_lock_irq(&tasklist_lock)
123 unsigned long total_forks
; /* Handle normal Linux uptimes. */
124 int nr_threads
; /* The idle threads do not count.. */
126 int max_threads
; /* tunable limit on nr_threads */
128 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
130 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
135 return lockdep_is_held(&tasklist_lock
);
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
140 int nr_processes(void)
145 for_each_possible_cpu(cpu
)
146 total
+= per_cpu(process_counts
, cpu
);
151 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache
*task_struct_cachep
;
158 static inline struct task_struct
*alloc_task_struct_node(int node
)
160 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
163 static inline void free_task_struct(struct task_struct
*tsk
)
165 kmem_cache_free(task_struct_cachep
, tsk
);
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 #ifdef CONFIG_VMAP_STACK
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
185 static int free_vm_stack_cache(unsigned int cpu
)
187 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
190 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
191 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
196 vfree(vm_stack
->addr
);
197 cached_vm_stacks
[i
] = NULL
;
204 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
206 #ifdef CONFIG_VMAP_STACK
210 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
213 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
218 /* Clear stale pointers from reused stack. */
219 memset(s
->addr
, 0, THREAD_SIZE
);
221 tsk
->stack_vm_area
= s
;
222 tsk
->stack
= s
->addr
;
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
231 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
232 VMALLOC_START
, VMALLOC_END
,
233 THREADINFO_GFP
& ~__GFP_ACCOUNT
,
235 0, node
, __builtin_return_address(0));
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
243 tsk
->stack_vm_area
= find_vm_area(stack
);
248 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
251 return page
? page_address(page
) : NULL
;
255 static inline void free_thread_stack(struct task_struct
*tsk
)
257 #ifdef CONFIG_VMAP_STACK
258 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
263 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
264 mod_memcg_page_state(vm
->pages
[i
],
265 MEMCG_KERNEL_STACK_KB
,
266 -(int)(PAGE_SIZE
/ 1024));
268 memcg_kmem_uncharge(vm
->pages
[i
], 0);
271 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
272 if (this_cpu_cmpxchg(cached_stacks
[i
],
273 NULL
, tsk
->stack_vm_area
) != NULL
)
279 vfree_atomic(tsk
->stack
);
284 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
287 static struct kmem_cache
*thread_stack_cache
;
289 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
292 unsigned long *stack
;
293 stack
= kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
298 static void free_thread_stack(struct task_struct
*tsk
)
300 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
303 void thread_stack_cache_init(void)
305 thread_stack_cache
= kmem_cache_create_usercopy("thread_stack",
306 THREAD_SIZE
, THREAD_SIZE
, 0, 0,
308 BUG_ON(thread_stack_cache
== NULL
);
313 /* SLAB cache for signal_struct structures (tsk->signal) */
314 static struct kmem_cache
*signal_cachep
;
316 /* SLAB cache for sighand_struct structures (tsk->sighand) */
317 struct kmem_cache
*sighand_cachep
;
319 /* SLAB cache for files_struct structures (tsk->files) */
320 struct kmem_cache
*files_cachep
;
322 /* SLAB cache for fs_struct structures (tsk->fs) */
323 struct kmem_cache
*fs_cachep
;
325 /* SLAB cache for vm_area_struct structures */
326 static struct kmem_cache
*vm_area_cachep
;
328 /* SLAB cache for mm_struct structures (tsk->mm) */
329 static struct kmem_cache
*mm_cachep
;
331 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*mm
)
333 struct vm_area_struct
*vma
;
335 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
341 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*orig
)
343 struct vm_area_struct
*new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
347 INIT_LIST_HEAD(&new->anon_vma_chain
);
352 void vm_area_free(struct vm_area_struct
*vma
)
354 kmem_cache_free(vm_area_cachep
, vma
);
357 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
359 void *stack
= task_stack_page(tsk
);
360 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
362 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
367 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
369 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
370 mod_zone_page_state(page_zone(vm
->pages
[i
]),
372 PAGE_SIZE
/ 1024 * account
);
376 * All stack pages are in the same zone and belong to the
379 struct page
*first_page
= virt_to_page(stack
);
381 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
382 THREAD_SIZE
/ 1024 * account
);
384 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
385 account
* (THREAD_SIZE
/ 1024));
389 static int memcg_charge_kernel_stack(struct task_struct
*tsk
)
391 #ifdef CONFIG_VMAP_STACK
392 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
398 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
400 * If memcg_kmem_charge() fails, page->mem_cgroup
401 * pointer is NULL, and both memcg_kmem_uncharge()
402 * and mod_memcg_page_state() in free_thread_stack()
403 * will ignore this page. So it's safe.
405 ret
= memcg_kmem_charge(vm
->pages
[i
], GFP_KERNEL
, 0);
409 mod_memcg_page_state(vm
->pages
[i
],
410 MEMCG_KERNEL_STACK_KB
,
418 static void release_task_stack(struct task_struct
*tsk
)
420 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
421 return; /* Better to leak the stack than to free prematurely */
423 account_kernel_stack(tsk
, -1);
424 free_thread_stack(tsk
);
426 #ifdef CONFIG_VMAP_STACK
427 tsk
->stack_vm_area
= NULL
;
431 #ifdef CONFIG_THREAD_INFO_IN_TASK
432 void put_task_stack(struct task_struct
*tsk
)
434 if (refcount_dec_and_test(&tsk
->stack_refcount
))
435 release_task_stack(tsk
);
439 void free_task(struct task_struct
*tsk
)
441 #ifndef CONFIG_THREAD_INFO_IN_TASK
443 * The task is finally done with both the stack and thread_info,
446 release_task_stack(tsk
);
449 * If the task had a separate stack allocation, it should be gone
452 WARN_ON_ONCE(refcount_read(&tsk
->stack_refcount
) != 0);
454 rt_mutex_debug_task_free(tsk
);
455 ftrace_graph_exit_task(tsk
);
456 put_seccomp_filter(tsk
);
457 arch_release_task_struct(tsk
);
458 if (tsk
->flags
& PF_KTHREAD
)
459 free_kthread_struct(tsk
);
460 free_task_struct(tsk
);
462 EXPORT_SYMBOL(free_task
);
465 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
466 struct mm_struct
*oldmm
)
468 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
469 struct rb_node
**rb_link
, *rb_parent
;
471 unsigned long charge
;
474 uprobe_start_dup_mmap();
475 if (down_write_killable(&oldmm
->mmap_sem
)) {
477 goto fail_uprobe_end
;
479 flush_cache_dup_mm(oldmm
);
480 uprobe_dup_mmap(oldmm
, mm
);
482 * Not linked in yet - no deadlock potential:
484 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
486 /* No ordering required: file already has been exposed. */
487 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
489 mm
->total_vm
= oldmm
->total_vm
;
490 mm
->data_vm
= oldmm
->data_vm
;
491 mm
->exec_vm
= oldmm
->exec_vm
;
492 mm
->stack_vm
= oldmm
->stack_vm
;
494 rb_link
= &mm
->mm_rb
.rb_node
;
497 retval
= ksm_fork(mm
, oldmm
);
500 retval
= khugepaged_fork(mm
, oldmm
);
505 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
508 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
509 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
514 * Don't duplicate many vmas if we've been oom-killed (for
517 if (fatal_signal_pending(current
)) {
521 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
522 unsigned long len
= vma_pages(mpnt
);
524 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
528 tmp
= vm_area_dup(mpnt
);
531 retval
= vma_dup_policy(mpnt
, tmp
);
533 goto fail_nomem_policy
;
535 retval
= dup_userfaultfd(tmp
, &uf
);
537 goto fail_nomem_anon_vma_fork
;
538 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
539 /* VM_WIPEONFORK gets a clean slate in the child. */
540 tmp
->anon_vma
= NULL
;
541 if (anon_vma_prepare(tmp
))
542 goto fail_nomem_anon_vma_fork
;
543 } else if (anon_vma_fork(tmp
, mpnt
))
544 goto fail_nomem_anon_vma_fork
;
545 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
546 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
549 struct inode
*inode
= file_inode(file
);
550 struct address_space
*mapping
= file
->f_mapping
;
553 if (tmp
->vm_flags
& VM_DENYWRITE
)
554 atomic_dec(&inode
->i_writecount
);
555 i_mmap_lock_write(mapping
);
556 if (tmp
->vm_flags
& VM_SHARED
)
557 atomic_inc(&mapping
->i_mmap_writable
);
558 flush_dcache_mmap_lock(mapping
);
559 /* insert tmp into the share list, just after mpnt */
560 vma_interval_tree_insert_after(tmp
, mpnt
,
562 flush_dcache_mmap_unlock(mapping
);
563 i_mmap_unlock_write(mapping
);
567 * Clear hugetlb-related page reserves for children. This only
568 * affects MAP_PRIVATE mappings. Faults generated by the child
569 * are not guaranteed to succeed, even if read-only
571 if (is_vm_hugetlb_page(tmp
))
572 reset_vma_resv_huge_pages(tmp
);
575 * Link in the new vma and copy the page table entries.
578 pprev
= &tmp
->vm_next
;
582 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
583 rb_link
= &tmp
->vm_rb
.rb_right
;
584 rb_parent
= &tmp
->vm_rb
;
587 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
588 retval
= copy_page_range(mm
, oldmm
, mpnt
);
590 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
591 tmp
->vm_ops
->open(tmp
);
596 /* a new mm has just been created */
597 retval
= arch_dup_mmap(oldmm
, mm
);
599 up_write(&mm
->mmap_sem
);
601 up_write(&oldmm
->mmap_sem
);
602 dup_userfaultfd_complete(&uf
);
604 uprobe_end_dup_mmap();
606 fail_nomem_anon_vma_fork
:
607 mpol_put(vma_policy(tmp
));
612 vm_unacct_memory(charge
);
616 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
618 mm
->pgd
= pgd_alloc(mm
);
619 if (unlikely(!mm
->pgd
))
624 static inline void mm_free_pgd(struct mm_struct
*mm
)
626 pgd_free(mm
, mm
->pgd
);
629 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
631 down_write(&oldmm
->mmap_sem
);
632 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
633 up_write(&oldmm
->mmap_sem
);
636 #define mm_alloc_pgd(mm) (0)
637 #define mm_free_pgd(mm)
638 #endif /* CONFIG_MMU */
640 static void check_mm(struct mm_struct
*mm
)
644 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
645 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
648 printk(KERN_ALERT
"BUG: Bad rss-counter state "
649 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
652 if (mm_pgtables_bytes(mm
))
653 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
654 mm_pgtables_bytes(mm
));
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
661 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
662 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
665 * Called when the last reference to the mm
666 * is dropped: either by a lazy thread or by
667 * mmput. Free the page directory and the mm.
669 void __mmdrop(struct mm_struct
*mm
)
671 BUG_ON(mm
== &init_mm
);
672 WARN_ON_ONCE(mm
== current
->mm
);
673 WARN_ON_ONCE(mm
== current
->active_mm
);
677 mmu_notifier_mm_destroy(mm
);
679 put_user_ns(mm
->user_ns
);
682 EXPORT_SYMBOL_GPL(__mmdrop
);
684 static void mmdrop_async_fn(struct work_struct
*work
)
686 struct mm_struct
*mm
;
688 mm
= container_of(work
, struct mm_struct
, async_put_work
);
692 static void mmdrop_async(struct mm_struct
*mm
)
694 if (unlikely(atomic_dec_and_test(&mm
->mm_count
))) {
695 INIT_WORK(&mm
->async_put_work
, mmdrop_async_fn
);
696 schedule_work(&mm
->async_put_work
);
700 static inline void free_signal_struct(struct signal_struct
*sig
)
702 taskstats_tgid_free(sig
);
703 sched_autogroup_exit(sig
);
705 * __mmdrop is not safe to call from softirq context on x86 due to
706 * pgd_dtor so postpone it to the async context
709 mmdrop_async(sig
->oom_mm
);
710 kmem_cache_free(signal_cachep
, sig
);
713 static inline void put_signal_struct(struct signal_struct
*sig
)
715 if (refcount_dec_and_test(&sig
->sigcnt
))
716 free_signal_struct(sig
);
719 void __put_task_struct(struct task_struct
*tsk
)
721 WARN_ON(!tsk
->exit_state
);
722 WARN_ON(refcount_read(&tsk
->usage
));
723 WARN_ON(tsk
== current
);
727 security_task_free(tsk
);
729 delayacct_tsk_free(tsk
);
730 put_signal_struct(tsk
->signal
);
732 if (!profile_handoff_task(tsk
))
735 EXPORT_SYMBOL_GPL(__put_task_struct
);
737 void __init __weak
arch_task_cache_init(void) { }
742 static void set_max_threads(unsigned int max_threads_suggested
)
745 unsigned long nr_pages
= totalram_pages();
748 * The number of threads shall be limited such that the thread
749 * structures may only consume a small part of the available memory.
751 if (fls64(nr_pages
) + fls64(PAGE_SIZE
) > 64)
752 threads
= MAX_THREADS
;
754 threads
= div64_u64((u64
) nr_pages
* (u64
) PAGE_SIZE
,
755 (u64
) THREAD_SIZE
* 8UL);
757 if (threads
> max_threads_suggested
)
758 threads
= max_threads_suggested
;
760 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
764 /* Initialized by the architecture: */
765 int arch_task_struct_size __read_mostly
;
768 static void task_struct_whitelist(unsigned long *offset
, unsigned long *size
)
770 /* Fetch thread_struct whitelist for the architecture. */
771 arch_thread_struct_whitelist(offset
, size
);
774 * Handle zero-sized whitelist or empty thread_struct, otherwise
775 * adjust offset to position of thread_struct in task_struct.
777 if (unlikely(*size
== 0))
780 *offset
+= offsetof(struct task_struct
, thread
);
783 void __init
fork_init(void)
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 #ifndef ARCH_MIN_TASKALIGN
788 #define ARCH_MIN_TASKALIGN 0
790 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
791 unsigned long useroffset
, usersize
;
793 /* create a slab on which task_structs can be allocated */
794 task_struct_whitelist(&useroffset
, &usersize
);
795 task_struct_cachep
= kmem_cache_create_usercopy("task_struct",
796 arch_task_struct_size
, align
,
797 SLAB_PANIC
|SLAB_ACCOUNT
,
798 useroffset
, usersize
, NULL
);
801 /* do the arch specific task caches init */
802 arch_task_cache_init();
804 set_max_threads(MAX_THREADS
);
806 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
807 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
808 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
809 init_task
.signal
->rlim
[RLIMIT_NPROC
];
811 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
812 init_user_ns
.ucount_max
[i
] = max_threads
/2;
815 #ifdef CONFIG_VMAP_STACK
816 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
817 NULL
, free_vm_stack_cache
);
820 lockdep_init_task(&init_task
);
824 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
825 struct task_struct
*src
)
831 void set_task_stack_end_magic(struct task_struct
*tsk
)
833 unsigned long *stackend
;
835 stackend
= end_of_stack(tsk
);
836 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
839 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
841 struct task_struct
*tsk
;
842 unsigned long *stack
;
843 struct vm_struct
*stack_vm_area __maybe_unused
;
846 if (node
== NUMA_NO_NODE
)
847 node
= tsk_fork_get_node(orig
);
848 tsk
= alloc_task_struct_node(node
);
852 stack
= alloc_thread_stack_node(tsk
, node
);
856 if (memcg_charge_kernel_stack(tsk
))
859 stack_vm_area
= task_stack_vm_area(tsk
);
861 err
= arch_dup_task_struct(tsk
, orig
);
864 * arch_dup_task_struct() clobbers the stack-related fields. Make
865 * sure they're properly initialized before using any stack-related
869 #ifdef CONFIG_VMAP_STACK
870 tsk
->stack_vm_area
= stack_vm_area
;
872 #ifdef CONFIG_THREAD_INFO_IN_TASK
873 refcount_set(&tsk
->stack_refcount
, 1);
879 #ifdef CONFIG_SECCOMP
881 * We must handle setting up seccomp filters once we're under
882 * the sighand lock in case orig has changed between now and
883 * then. Until then, filter must be NULL to avoid messing up
884 * the usage counts on the error path calling free_task.
886 tsk
->seccomp
.filter
= NULL
;
889 setup_thread_stack(tsk
, orig
);
890 clear_user_return_notifier(tsk
);
891 clear_tsk_need_resched(tsk
);
892 set_task_stack_end_magic(tsk
);
894 #ifdef CONFIG_STACKPROTECTOR
895 tsk
->stack_canary
= get_random_canary();
899 * One for us, one for whoever does the "release_task()" (usually
902 refcount_set(&tsk
->usage
, 2);
903 #ifdef CONFIG_BLK_DEV_IO_TRACE
906 tsk
->splice_pipe
= NULL
;
907 tsk
->task_frag
.page
= NULL
;
908 tsk
->wake_q
.next
= NULL
;
910 account_kernel_stack(tsk
, 1);
914 #ifdef CONFIG_FAULT_INJECTION
918 #ifdef CONFIG_BLK_CGROUP
919 tsk
->throttle_queue
= NULL
;
920 tsk
->use_memdelay
= 0;
924 tsk
->active_memcg
= NULL
;
929 free_thread_stack(tsk
);
931 free_task_struct(tsk
);
935 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
937 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
939 static int __init
coredump_filter_setup(char *s
)
941 default_dump_filter
=
942 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
943 MMF_DUMP_FILTER_MASK
;
947 __setup("coredump_filter=", coredump_filter_setup
);
949 #include <linux/init_task.h>
951 static void mm_init_aio(struct mm_struct
*mm
)
954 spin_lock_init(&mm
->ioctx_lock
);
955 mm
->ioctx_table
= NULL
;
959 static __always_inline
void mm_clear_owner(struct mm_struct
*mm
,
960 struct task_struct
*p
)
964 WRITE_ONCE(mm
->owner
, NULL
);
968 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
975 static void mm_init_uprobes_state(struct mm_struct
*mm
)
977 #ifdef CONFIG_UPROBES
978 mm
->uprobes_state
.xol_area
= NULL
;
982 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
983 struct user_namespace
*user_ns
)
987 mm
->vmacache_seqnum
= 0;
988 atomic_set(&mm
->mm_users
, 1);
989 atomic_set(&mm
->mm_count
, 1);
990 init_rwsem(&mm
->mmap_sem
);
991 INIT_LIST_HEAD(&mm
->mmlist
);
992 mm
->core_state
= NULL
;
993 mm_pgtables_bytes_init(mm
);
996 atomic64_set(&mm
->pinned_vm
, 0);
997 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
998 spin_lock_init(&mm
->page_table_lock
);
999 spin_lock_init(&mm
->arg_lock
);
1000 mm_init_cpumask(mm
);
1002 mm_init_owner(mm
, p
);
1003 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
1004 mmu_notifier_mm_init(mm
);
1006 init_tlb_flush_pending(mm
);
1007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1008 mm
->pmd_huge_pte
= NULL
;
1010 mm_init_uprobes_state(mm
);
1013 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
1014 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
1016 mm
->flags
= default_dump_filter
;
1020 if (mm_alloc_pgd(mm
))
1023 if (init_new_context(p
, mm
))
1024 goto fail_nocontext
;
1026 mm
->user_ns
= get_user_ns(user_ns
);
1037 * Allocate and initialize an mm_struct.
1039 struct mm_struct
*mm_alloc(void)
1041 struct mm_struct
*mm
;
1047 memset(mm
, 0, sizeof(*mm
));
1048 return mm_init(mm
, current
, current_user_ns());
1051 static inline void __mmput(struct mm_struct
*mm
)
1053 VM_BUG_ON(atomic_read(&mm
->mm_users
));
1055 uprobe_clear_state(mm
);
1058 khugepaged_exit(mm
); /* must run before exit_mmap */
1060 mm_put_huge_zero_page(mm
);
1061 set_mm_exe_file(mm
, NULL
);
1062 if (!list_empty(&mm
->mmlist
)) {
1063 spin_lock(&mmlist_lock
);
1064 list_del(&mm
->mmlist
);
1065 spin_unlock(&mmlist_lock
);
1068 module_put(mm
->binfmt
->module
);
1073 * Decrement the use count and release all resources for an mm.
1075 void mmput(struct mm_struct
*mm
)
1079 if (atomic_dec_and_test(&mm
->mm_users
))
1082 EXPORT_SYMBOL_GPL(mmput
);
1085 static void mmput_async_fn(struct work_struct
*work
)
1087 struct mm_struct
*mm
= container_of(work
, struct mm_struct
,
1093 void mmput_async(struct mm_struct
*mm
)
1095 if (atomic_dec_and_test(&mm
->mm_users
)) {
1096 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
1097 schedule_work(&mm
->async_put_work
);
1103 * set_mm_exe_file - change a reference to the mm's executable file
1105 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1107 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1108 * invocations: in mmput() nobody alive left, in execve task is single
1109 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1110 * mm->exe_file, but does so without using set_mm_exe_file() in order
1111 * to do avoid the need for any locks.
1113 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
1115 struct file
*old_exe_file
;
1118 * It is safe to dereference the exe_file without RCU as
1119 * this function is only called if nobody else can access
1120 * this mm -- see comment above for justification.
1122 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
1125 get_file(new_exe_file
);
1126 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
1132 * get_mm_exe_file - acquire a reference to the mm's executable file
1134 * Returns %NULL if mm has no associated executable file.
1135 * User must release file via fput().
1137 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
1139 struct file
*exe_file
;
1142 exe_file
= rcu_dereference(mm
->exe_file
);
1143 if (exe_file
&& !get_file_rcu(exe_file
))
1148 EXPORT_SYMBOL(get_mm_exe_file
);
1151 * get_task_exe_file - acquire a reference to the task's executable file
1153 * Returns %NULL if task's mm (if any) has no associated executable file or
1154 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1155 * User must release file via fput().
1157 struct file
*get_task_exe_file(struct task_struct
*task
)
1159 struct file
*exe_file
= NULL
;
1160 struct mm_struct
*mm
;
1165 if (!(task
->flags
& PF_KTHREAD
))
1166 exe_file
= get_mm_exe_file(mm
);
1171 EXPORT_SYMBOL(get_task_exe_file
);
1174 * get_task_mm - acquire a reference to the task's mm
1176 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1177 * this kernel workthread has transiently adopted a user mm with use_mm,
1178 * to do its AIO) is not set and if so returns a reference to it, after
1179 * bumping up the use count. User must release the mm via mmput()
1180 * after use. Typically used by /proc and ptrace.
1182 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1184 struct mm_struct
*mm
;
1189 if (task
->flags
& PF_KTHREAD
)
1197 EXPORT_SYMBOL_GPL(get_task_mm
);
1199 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1201 struct mm_struct
*mm
;
1204 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1206 return ERR_PTR(err
);
1208 mm
= get_task_mm(task
);
1209 if (mm
&& mm
!= current
->mm
&&
1210 !ptrace_may_access(task
, mode
)) {
1212 mm
= ERR_PTR(-EACCES
);
1214 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1219 static void complete_vfork_done(struct task_struct
*tsk
)
1221 struct completion
*vfork
;
1224 vfork
= tsk
->vfork_done
;
1225 if (likely(vfork
)) {
1226 tsk
->vfork_done
= NULL
;
1232 static int wait_for_vfork_done(struct task_struct
*child
,
1233 struct completion
*vfork
)
1237 freezer_do_not_count();
1238 cgroup_enter_frozen();
1239 killed
= wait_for_completion_killable(vfork
);
1240 cgroup_leave_frozen(false);
1245 child
->vfork_done
= NULL
;
1249 put_task_struct(child
);
1253 /* Please note the differences between mmput and mm_release.
1254 * mmput is called whenever we stop holding onto a mm_struct,
1255 * error success whatever.
1257 * mm_release is called after a mm_struct has been removed
1258 * from the current process.
1260 * This difference is important for error handling, when we
1261 * only half set up a mm_struct for a new process and need to restore
1262 * the old one. Because we mmput the new mm_struct before
1263 * restoring the old one. . .
1264 * Eric Biederman 10 January 1998
1266 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1268 /* Get rid of any futexes when releasing the mm */
1270 if (unlikely(tsk
->robust_list
)) {
1271 exit_robust_list(tsk
);
1272 tsk
->robust_list
= NULL
;
1274 #ifdef CONFIG_COMPAT
1275 if (unlikely(tsk
->compat_robust_list
)) {
1276 compat_exit_robust_list(tsk
);
1277 tsk
->compat_robust_list
= NULL
;
1280 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1281 exit_pi_state_list(tsk
);
1284 uprobe_free_utask(tsk
);
1286 /* Get rid of any cached register state */
1287 deactivate_mm(tsk
, mm
);
1290 * Signal userspace if we're not exiting with a core dump
1291 * because we want to leave the value intact for debugging
1294 if (tsk
->clear_child_tid
) {
1295 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1296 atomic_read(&mm
->mm_users
) > 1) {
1298 * We don't check the error code - if userspace has
1299 * not set up a proper pointer then tough luck.
1301 put_user(0, tsk
->clear_child_tid
);
1302 do_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1303 1, NULL
, NULL
, 0, 0);
1305 tsk
->clear_child_tid
= NULL
;
1309 * All done, finally we can wake up parent and return this mm to him.
1310 * Also kthread_stop() uses this completion for synchronization.
1312 if (tsk
->vfork_done
)
1313 complete_vfork_done(tsk
);
1317 * dup_mm() - duplicates an existing mm structure
1318 * @tsk: the task_struct with which the new mm will be associated.
1319 * @oldmm: the mm to duplicate.
1321 * Allocates a new mm structure and duplicates the provided @oldmm structure
1324 * Return: the duplicated mm or NULL on failure.
1326 static struct mm_struct
*dup_mm(struct task_struct
*tsk
,
1327 struct mm_struct
*oldmm
)
1329 struct mm_struct
*mm
;
1336 memcpy(mm
, oldmm
, sizeof(*mm
));
1338 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1341 err
= dup_mmap(mm
, oldmm
);
1345 mm
->hiwater_rss
= get_mm_rss(mm
);
1346 mm
->hiwater_vm
= mm
->total_vm
;
1348 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1354 /* don't put binfmt in mmput, we haven't got module yet */
1356 mm_init_owner(mm
, NULL
);
1363 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1365 struct mm_struct
*mm
, *oldmm
;
1368 tsk
->min_flt
= tsk
->maj_flt
= 0;
1369 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1370 #ifdef CONFIG_DETECT_HUNG_TASK
1371 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1372 tsk
->last_switch_time
= 0;
1376 tsk
->active_mm
= NULL
;
1379 * Are we cloning a kernel thread?
1381 * We need to steal a active VM for that..
1383 oldmm
= current
->mm
;
1387 /* initialize the new vmacache entries */
1388 vmacache_flush(tsk
);
1390 if (clone_flags
& CLONE_VM
) {
1397 mm
= dup_mm(tsk
, current
->mm
);
1403 tsk
->active_mm
= mm
;
1410 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1412 struct fs_struct
*fs
= current
->fs
;
1413 if (clone_flags
& CLONE_FS
) {
1414 /* tsk->fs is already what we want */
1415 spin_lock(&fs
->lock
);
1417 spin_unlock(&fs
->lock
);
1421 spin_unlock(&fs
->lock
);
1424 tsk
->fs
= copy_fs_struct(fs
);
1430 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1432 struct files_struct
*oldf
, *newf
;
1436 * A background process may not have any files ...
1438 oldf
= current
->files
;
1442 if (clone_flags
& CLONE_FILES
) {
1443 atomic_inc(&oldf
->count
);
1447 newf
= dup_fd(oldf
, &error
);
1457 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1460 struct io_context
*ioc
= current
->io_context
;
1461 struct io_context
*new_ioc
;
1466 * Share io context with parent, if CLONE_IO is set
1468 if (clone_flags
& CLONE_IO
) {
1470 tsk
->io_context
= ioc
;
1471 } else if (ioprio_valid(ioc
->ioprio
)) {
1472 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1473 if (unlikely(!new_ioc
))
1476 new_ioc
->ioprio
= ioc
->ioprio
;
1477 put_io_context(new_ioc
);
1483 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1485 struct sighand_struct
*sig
;
1487 if (clone_flags
& CLONE_SIGHAND
) {
1488 refcount_inc(¤t
->sighand
->count
);
1491 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1492 rcu_assign_pointer(tsk
->sighand
, sig
);
1496 refcount_set(&sig
->count
, 1);
1497 spin_lock_irq(¤t
->sighand
->siglock
);
1498 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1499 spin_unlock_irq(¤t
->sighand
->siglock
);
1503 void __cleanup_sighand(struct sighand_struct
*sighand
)
1505 if (refcount_dec_and_test(&sighand
->count
)) {
1506 signalfd_cleanup(sighand
);
1508 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1509 * without an RCU grace period, see __lock_task_sighand().
1511 kmem_cache_free(sighand_cachep
, sighand
);
1515 #ifdef CONFIG_POSIX_TIMERS
1517 * Initialize POSIX timer handling for a thread group.
1519 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1521 unsigned long cpu_limit
;
1523 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1524 if (cpu_limit
!= RLIM_INFINITY
) {
1525 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1526 sig
->cputimer
.running
= true;
1529 /* The timer lists. */
1530 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1531 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1532 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1535 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1538 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1540 struct signal_struct
*sig
;
1542 if (clone_flags
& CLONE_THREAD
)
1545 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1550 sig
->nr_threads
= 1;
1551 atomic_set(&sig
->live
, 1);
1552 refcount_set(&sig
->sigcnt
, 1);
1554 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1555 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1556 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1558 init_waitqueue_head(&sig
->wait_chldexit
);
1559 sig
->curr_target
= tsk
;
1560 init_sigpending(&sig
->shared_pending
);
1561 INIT_HLIST_HEAD(&sig
->multiprocess
);
1562 seqlock_init(&sig
->stats_lock
);
1563 prev_cputime_init(&sig
->prev_cputime
);
1565 #ifdef CONFIG_POSIX_TIMERS
1566 INIT_LIST_HEAD(&sig
->posix_timers
);
1567 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1568 sig
->real_timer
.function
= it_real_fn
;
1571 task_lock(current
->group_leader
);
1572 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1573 task_unlock(current
->group_leader
);
1575 posix_cpu_timers_init_group(sig
);
1577 tty_audit_fork(sig
);
1578 sched_autogroup_fork(sig
);
1580 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1581 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1583 mutex_init(&sig
->cred_guard_mutex
);
1588 static void copy_seccomp(struct task_struct
*p
)
1590 #ifdef CONFIG_SECCOMP
1592 * Must be called with sighand->lock held, which is common to
1593 * all threads in the group. Holding cred_guard_mutex is not
1594 * needed because this new task is not yet running and cannot
1597 assert_spin_locked(¤t
->sighand
->siglock
);
1599 /* Ref-count the new filter user, and assign it. */
1600 get_seccomp_filter(current
);
1601 p
->seccomp
= current
->seccomp
;
1604 * Explicitly enable no_new_privs here in case it got set
1605 * between the task_struct being duplicated and holding the
1606 * sighand lock. The seccomp state and nnp must be in sync.
1608 if (task_no_new_privs(current
))
1609 task_set_no_new_privs(p
);
1612 * If the parent gained a seccomp mode after copying thread
1613 * flags and between before we held the sighand lock, we have
1614 * to manually enable the seccomp thread flag here.
1616 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1617 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1621 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1623 current
->clear_child_tid
= tidptr
;
1625 return task_pid_vnr(current
);
1628 static void rt_mutex_init_task(struct task_struct
*p
)
1630 raw_spin_lock_init(&p
->pi_lock
);
1631 #ifdef CONFIG_RT_MUTEXES
1632 p
->pi_waiters
= RB_ROOT_CACHED
;
1633 p
->pi_top_task
= NULL
;
1634 p
->pi_blocked_on
= NULL
;
1638 #ifdef CONFIG_POSIX_TIMERS
1640 * Initialize POSIX timer handling for a single task.
1642 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1644 tsk
->cputime_expires
.prof_exp
= 0;
1645 tsk
->cputime_expires
.virt_exp
= 0;
1646 tsk
->cputime_expires
.sched_exp
= 0;
1647 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1648 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1649 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1652 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1655 static inline void init_task_pid_links(struct task_struct
*task
)
1659 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1660 INIT_HLIST_NODE(&task
->pid_links
[type
]);
1665 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1667 if (type
== PIDTYPE_PID
)
1668 task
->thread_pid
= pid
;
1670 task
->signal
->pids
[type
] = pid
;
1673 static inline void rcu_copy_process(struct task_struct
*p
)
1675 #ifdef CONFIG_PREEMPT_RCU
1676 p
->rcu_read_lock_nesting
= 0;
1677 p
->rcu_read_unlock_special
.s
= 0;
1678 p
->rcu_blocked_node
= NULL
;
1679 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682 p
->rcu_tasks_holdout
= false;
1683 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1684 p
->rcu_tasks_idle_cpu
= -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1688 static int pidfd_release(struct inode
*inode
, struct file
*file
)
1690 struct pid
*pid
= file
->private_data
;
1692 file
->private_data
= NULL
;
1697 #ifdef CONFIG_PROC_FS
1698 static void pidfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1700 struct pid_namespace
*ns
= proc_pid_ns(file_inode(m
->file
));
1701 struct pid
*pid
= f
->private_data
;
1703 seq_put_decimal_ull(m
, "Pid:\t", pid_nr_ns(pid
, ns
));
1708 const struct file_operations pidfd_fops
= {
1709 .release
= pidfd_release
,
1710 #ifdef CONFIG_PROC_FS
1711 .show_fdinfo
= pidfd_show_fdinfo
,
1716 * pidfd_create() - Create a new pid file descriptor.
1718 * @pid: struct pid that the pidfd will reference
1720 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1722 * Note, that this function can only be called after the fd table has
1723 * been unshared to avoid leaking the pidfd to the new process.
1725 * Return: On success, a cloexec pidfd is returned.
1726 * On error, a negative errno number will be returned.
1728 static int pidfd_create(struct pid
*pid
)
1732 fd
= anon_inode_getfd("[pidfd]", &pidfd_fops
, get_pid(pid
),
1733 O_RDWR
| O_CLOEXEC
);
1740 static void __delayed_free_task(struct rcu_head
*rhp
)
1742 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
1747 static __always_inline
void delayed_free_task(struct task_struct
*tsk
)
1749 if (IS_ENABLED(CONFIG_MEMCG
))
1750 call_rcu(&tsk
->rcu
, __delayed_free_task
);
1756 * This creates a new process as a copy of the old one,
1757 * but does not actually start it yet.
1759 * It copies the registers, and all the appropriate
1760 * parts of the process environment (as per the clone
1761 * flags). The actual kick-off is left to the caller.
1763 static __latent_entropy
struct task_struct
*copy_process(
1764 unsigned long clone_flags
,
1765 unsigned long stack_start
,
1766 unsigned long stack_size
,
1767 int __user
*parent_tidptr
,
1768 int __user
*child_tidptr
,
1774 int pidfd
= -1, retval
;
1775 struct task_struct
*p
;
1776 struct multiprocess_signals delayed
;
1779 * Don't allow sharing the root directory with processes in a different
1782 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1783 return ERR_PTR(-EINVAL
);
1785 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1786 return ERR_PTR(-EINVAL
);
1789 * Thread groups must share signals as well, and detached threads
1790 * can only be started up within the thread group.
1792 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1793 return ERR_PTR(-EINVAL
);
1796 * Shared signal handlers imply shared VM. By way of the above,
1797 * thread groups also imply shared VM. Blocking this case allows
1798 * for various simplifications in other code.
1800 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1801 return ERR_PTR(-EINVAL
);
1804 * Siblings of global init remain as zombies on exit since they are
1805 * not reaped by their parent (swapper). To solve this and to avoid
1806 * multi-rooted process trees, prevent global and container-inits
1807 * from creating siblings.
1809 if ((clone_flags
& CLONE_PARENT
) &&
1810 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1811 return ERR_PTR(-EINVAL
);
1814 * If the new process will be in a different pid or user namespace
1815 * do not allow it to share a thread group with the forking task.
1817 if (clone_flags
& CLONE_THREAD
) {
1818 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1819 (task_active_pid_ns(current
) !=
1820 current
->nsproxy
->pid_ns_for_children
))
1821 return ERR_PTR(-EINVAL
);
1824 if (clone_flags
& CLONE_PIDFD
) {
1828 * - CLONE_PARENT_SETTID is useless for pidfds and also
1829 * parent_tidptr is used to return pidfds.
1830 * - CLONE_DETACHED is blocked so that we can potentially
1831 * reuse it later for CLONE_PIDFD.
1832 * - CLONE_THREAD is blocked until someone really needs it.
1835 (CLONE_DETACHED
| CLONE_PARENT_SETTID
| CLONE_THREAD
))
1836 return ERR_PTR(-EINVAL
);
1839 * Verify that parent_tidptr is sane so we can potentially
1842 if (get_user(reserved
, parent_tidptr
))
1843 return ERR_PTR(-EFAULT
);
1846 return ERR_PTR(-EINVAL
);
1850 * Force any signals received before this point to be delivered
1851 * before the fork happens. Collect up signals sent to multiple
1852 * processes that happen during the fork and delay them so that
1853 * they appear to happen after the fork.
1855 sigemptyset(&delayed
.signal
);
1856 INIT_HLIST_NODE(&delayed
.node
);
1858 spin_lock_irq(¤t
->sighand
->siglock
);
1859 if (!(clone_flags
& CLONE_THREAD
))
1860 hlist_add_head(&delayed
.node
, ¤t
->signal
->multiprocess
);
1861 recalc_sigpending();
1862 spin_unlock_irq(¤t
->sighand
->siglock
);
1863 retval
= -ERESTARTNOINTR
;
1864 if (signal_pending(current
))
1868 p
= dup_task_struct(current
, node
);
1873 * This _must_ happen before we call free_task(), i.e. before we jump
1874 * to any of the bad_fork_* labels. This is to avoid freeing
1875 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1876 * kernel threads (PF_KTHREAD).
1878 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1880 * Clear TID on mm_release()?
1882 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1884 ftrace_graph_init_task(p
);
1886 rt_mutex_init_task(p
);
1888 #ifdef CONFIG_PROVE_LOCKING
1889 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1890 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1893 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1894 task_rlimit(p
, RLIMIT_NPROC
)) {
1895 if (p
->real_cred
->user
!= INIT_USER
&&
1896 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1899 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1901 retval
= copy_creds(p
, clone_flags
);
1906 * If multiple threads are within copy_process(), then this check
1907 * triggers too late. This doesn't hurt, the check is only there
1908 * to stop root fork bombs.
1911 if (nr_threads
>= max_threads
)
1912 goto bad_fork_cleanup_count
;
1914 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1915 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1916 p
->flags
|= PF_FORKNOEXEC
;
1917 INIT_LIST_HEAD(&p
->children
);
1918 INIT_LIST_HEAD(&p
->sibling
);
1919 rcu_copy_process(p
);
1920 p
->vfork_done
= NULL
;
1921 spin_lock_init(&p
->alloc_lock
);
1923 init_sigpending(&p
->pending
);
1925 p
->utime
= p
->stime
= p
->gtime
= 0;
1926 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1927 p
->utimescaled
= p
->stimescaled
= 0;
1929 prev_cputime_init(&p
->prev_cputime
);
1931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1932 seqcount_init(&p
->vtime
.seqcount
);
1933 p
->vtime
.starttime
= 0;
1934 p
->vtime
.state
= VTIME_INACTIVE
;
1937 #if defined(SPLIT_RSS_COUNTING)
1938 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1941 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1947 task_io_accounting_init(&p
->ioac
);
1948 acct_clear_integrals(p
);
1950 posix_cpu_timers_init(p
);
1952 p
->io_context
= NULL
;
1953 audit_set_context(p
, NULL
);
1956 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1957 if (IS_ERR(p
->mempolicy
)) {
1958 retval
= PTR_ERR(p
->mempolicy
);
1959 p
->mempolicy
= NULL
;
1960 goto bad_fork_cleanup_threadgroup_lock
;
1963 #ifdef CONFIG_CPUSETS
1964 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1965 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1966 seqcount_init(&p
->mems_allowed_seq
);
1968 #ifdef CONFIG_TRACE_IRQFLAGS
1970 p
->hardirqs_enabled
= 0;
1971 p
->hardirq_enable_ip
= 0;
1972 p
->hardirq_enable_event
= 0;
1973 p
->hardirq_disable_ip
= _THIS_IP_
;
1974 p
->hardirq_disable_event
= 0;
1975 p
->softirqs_enabled
= 1;
1976 p
->softirq_enable_ip
= _THIS_IP_
;
1977 p
->softirq_enable_event
= 0;
1978 p
->softirq_disable_ip
= 0;
1979 p
->softirq_disable_event
= 0;
1980 p
->hardirq_context
= 0;
1981 p
->softirq_context
= 0;
1984 p
->pagefault_disabled
= 0;
1986 #ifdef CONFIG_LOCKDEP
1987 p
->lockdep_depth
= 0; /* no locks held yet */
1988 p
->curr_chain_key
= 0;
1989 p
->lockdep_recursion
= 0;
1990 lockdep_init_task(p
);
1993 #ifdef CONFIG_DEBUG_MUTEXES
1994 p
->blocked_on
= NULL
; /* not blocked yet */
1996 #ifdef CONFIG_BCACHE
1997 p
->sequential_io
= 0;
1998 p
->sequential_io_avg
= 0;
2001 /* Perform scheduler related setup. Assign this task to a CPU. */
2002 retval
= sched_fork(clone_flags
, p
);
2004 goto bad_fork_cleanup_policy
;
2006 retval
= perf_event_init_task(p
);
2008 goto bad_fork_cleanup_policy
;
2009 retval
= audit_alloc(p
);
2011 goto bad_fork_cleanup_perf
;
2012 /* copy all the process information */
2014 retval
= security_task_alloc(p
, clone_flags
);
2016 goto bad_fork_cleanup_audit
;
2017 retval
= copy_semundo(clone_flags
, p
);
2019 goto bad_fork_cleanup_security
;
2020 retval
= copy_files(clone_flags
, p
);
2022 goto bad_fork_cleanup_semundo
;
2023 retval
= copy_fs(clone_flags
, p
);
2025 goto bad_fork_cleanup_files
;
2026 retval
= copy_sighand(clone_flags
, p
);
2028 goto bad_fork_cleanup_fs
;
2029 retval
= copy_signal(clone_flags
, p
);
2031 goto bad_fork_cleanup_sighand
;
2032 retval
= copy_mm(clone_flags
, p
);
2034 goto bad_fork_cleanup_signal
;
2035 retval
= copy_namespaces(clone_flags
, p
);
2037 goto bad_fork_cleanup_mm
;
2038 retval
= copy_io(clone_flags
, p
);
2040 goto bad_fork_cleanup_namespaces
;
2041 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
2043 goto bad_fork_cleanup_io
;
2045 stackleak_task_init(p
);
2047 if (pid
!= &init_struct_pid
) {
2048 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
2050 retval
= PTR_ERR(pid
);
2051 goto bad_fork_cleanup_thread
;
2056 * This has to happen after we've potentially unshared the file
2057 * descriptor table (so that the pidfd doesn't leak into the child
2058 * if the fd table isn't shared).
2060 if (clone_flags
& CLONE_PIDFD
) {
2061 retval
= pidfd_create(pid
);
2063 goto bad_fork_free_pid
;
2066 retval
= put_user(pidfd
, parent_tidptr
);
2068 goto bad_fork_put_pidfd
;
2075 p
->robust_list
= NULL
;
2076 #ifdef CONFIG_COMPAT
2077 p
->compat_robust_list
= NULL
;
2079 INIT_LIST_HEAD(&p
->pi_state_list
);
2080 p
->pi_state_cache
= NULL
;
2083 * sigaltstack should be cleared when sharing the same VM
2085 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
2089 * Syscall tracing and stepping should be turned off in the
2090 * child regardless of CLONE_PTRACE.
2092 user_disable_single_step(p
);
2093 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
2094 #ifdef TIF_SYSCALL_EMU
2095 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
2097 clear_tsk_latency_tracing(p
);
2099 /* ok, now we should be set up.. */
2100 p
->pid
= pid_nr(pid
);
2101 if (clone_flags
& CLONE_THREAD
) {
2102 p
->exit_signal
= -1;
2103 p
->group_leader
= current
->group_leader
;
2104 p
->tgid
= current
->tgid
;
2106 if (clone_flags
& CLONE_PARENT
)
2107 p
->exit_signal
= current
->group_leader
->exit_signal
;
2109 p
->exit_signal
= (clone_flags
& CSIGNAL
);
2110 p
->group_leader
= p
;
2115 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
2116 p
->dirty_paused_when
= 0;
2118 p
->pdeath_signal
= 0;
2119 INIT_LIST_HEAD(&p
->thread_group
);
2120 p
->task_works
= NULL
;
2122 cgroup_threadgroup_change_begin(current
);
2124 * Ensure that the cgroup subsystem policies allow the new process to be
2125 * forked. It should be noted the the new process's css_set can be changed
2126 * between here and cgroup_post_fork() if an organisation operation is in
2129 retval
= cgroup_can_fork(p
);
2131 goto bad_fork_cgroup_threadgroup_change_end
;
2134 * From this point on we must avoid any synchronous user-space
2135 * communication until we take the tasklist-lock. In particular, we do
2136 * not want user-space to be able to predict the process start-time by
2137 * stalling fork(2) after we recorded the start_time but before it is
2138 * visible to the system.
2141 p
->start_time
= ktime_get_ns();
2142 p
->real_start_time
= ktime_get_boot_ns();
2145 * Make it visible to the rest of the system, but dont wake it up yet.
2146 * Need tasklist lock for parent etc handling!
2148 write_lock_irq(&tasklist_lock
);
2150 /* CLONE_PARENT re-uses the old parent */
2151 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
2152 p
->real_parent
= current
->real_parent
;
2153 p
->parent_exec_id
= current
->parent_exec_id
;
2155 p
->real_parent
= current
;
2156 p
->parent_exec_id
= current
->self_exec_id
;
2159 klp_copy_process(p
);
2161 spin_lock(¤t
->sighand
->siglock
);
2164 * Copy seccomp details explicitly here, in case they were changed
2165 * before holding sighand lock.
2169 rseq_fork(p
, clone_flags
);
2171 /* Don't start children in a dying pid namespace */
2172 if (unlikely(!(ns_of_pid(pid
)->pid_allocated
& PIDNS_ADDING
))) {
2174 goto bad_fork_cancel_cgroup
;
2177 /* Let kill terminate clone/fork in the middle */
2178 if (fatal_signal_pending(current
)) {
2180 goto bad_fork_cancel_cgroup
;
2184 init_task_pid_links(p
);
2185 if (likely(p
->pid
)) {
2186 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
2188 init_task_pid(p
, PIDTYPE_PID
, pid
);
2189 if (thread_group_leader(p
)) {
2190 init_task_pid(p
, PIDTYPE_TGID
, pid
);
2191 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
2192 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
2194 if (is_child_reaper(pid
)) {
2195 ns_of_pid(pid
)->child_reaper
= p
;
2196 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
2198 p
->signal
->shared_pending
.signal
= delayed
.signal
;
2199 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
2201 * Inherit has_child_subreaper flag under the same
2202 * tasklist_lock with adding child to the process tree
2203 * for propagate_has_child_subreaper optimization.
2205 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
2206 p
->real_parent
->signal
->is_child_subreaper
;
2207 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
2208 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
2209 attach_pid(p
, PIDTYPE_TGID
);
2210 attach_pid(p
, PIDTYPE_PGID
);
2211 attach_pid(p
, PIDTYPE_SID
);
2212 __this_cpu_inc(process_counts
);
2214 current
->signal
->nr_threads
++;
2215 atomic_inc(¤t
->signal
->live
);
2216 refcount_inc(¤t
->signal
->sigcnt
);
2217 task_join_group_stop(p
);
2218 list_add_tail_rcu(&p
->thread_group
,
2219 &p
->group_leader
->thread_group
);
2220 list_add_tail_rcu(&p
->thread_node
,
2221 &p
->signal
->thread_head
);
2223 attach_pid(p
, PIDTYPE_PID
);
2227 hlist_del_init(&delayed
.node
);
2228 spin_unlock(¤t
->sighand
->siglock
);
2229 syscall_tracepoint_update(p
);
2230 write_unlock_irq(&tasklist_lock
);
2232 proc_fork_connector(p
);
2233 cgroup_post_fork(p
);
2234 cgroup_threadgroup_change_end(current
);
2237 trace_task_newtask(p
, clone_flags
);
2238 uprobe_copy_process(p
, clone_flags
);
2242 bad_fork_cancel_cgroup
:
2243 spin_unlock(¤t
->sighand
->siglock
);
2244 write_unlock_irq(&tasklist_lock
);
2245 cgroup_cancel_fork(p
);
2246 bad_fork_cgroup_threadgroup_change_end
:
2247 cgroup_threadgroup_change_end(current
);
2249 if (clone_flags
& CLONE_PIDFD
)
2252 if (pid
!= &init_struct_pid
)
2254 bad_fork_cleanup_thread
:
2256 bad_fork_cleanup_io
:
2259 bad_fork_cleanup_namespaces
:
2260 exit_task_namespaces(p
);
2261 bad_fork_cleanup_mm
:
2263 mm_clear_owner(p
->mm
, p
);
2266 bad_fork_cleanup_signal
:
2267 if (!(clone_flags
& CLONE_THREAD
))
2268 free_signal_struct(p
->signal
);
2269 bad_fork_cleanup_sighand
:
2270 __cleanup_sighand(p
->sighand
);
2271 bad_fork_cleanup_fs
:
2272 exit_fs(p
); /* blocking */
2273 bad_fork_cleanup_files
:
2274 exit_files(p
); /* blocking */
2275 bad_fork_cleanup_semundo
:
2277 bad_fork_cleanup_security
:
2278 security_task_free(p
);
2279 bad_fork_cleanup_audit
:
2281 bad_fork_cleanup_perf
:
2282 perf_event_free_task(p
);
2283 bad_fork_cleanup_policy
:
2284 lockdep_free_task(p
);
2286 mpol_put(p
->mempolicy
);
2287 bad_fork_cleanup_threadgroup_lock
:
2289 delayacct_tsk_free(p
);
2290 bad_fork_cleanup_count
:
2291 atomic_dec(&p
->cred
->user
->processes
);
2294 p
->state
= TASK_DEAD
;
2296 delayed_free_task(p
);
2298 spin_lock_irq(¤t
->sighand
->siglock
);
2299 hlist_del_init(&delayed
.node
);
2300 spin_unlock_irq(¤t
->sighand
->siglock
);
2301 return ERR_PTR(retval
);
2304 static inline void init_idle_pids(struct task_struct
*idle
)
2308 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
2309 INIT_HLIST_NODE(&idle
->pid_links
[type
]); /* not really needed */
2310 init_task_pid(idle
, type
, &init_struct_pid
);
2314 struct task_struct
*fork_idle(int cpu
)
2316 struct task_struct
*task
;
2317 task
= copy_process(CLONE_VM
, 0, 0, NULL
, NULL
, &init_struct_pid
, 0, 0,
2319 if (!IS_ERR(task
)) {
2320 init_idle_pids(task
);
2321 init_idle(task
, cpu
);
2327 struct mm_struct
*copy_init_mm(void)
2329 return dup_mm(NULL
, &init_mm
);
2333 * Ok, this is the main fork-routine.
2335 * It copies the process, and if successful kick-starts
2336 * it and waits for it to finish using the VM if required.
2338 long _do_fork(unsigned long clone_flags
,
2339 unsigned long stack_start
,
2340 unsigned long stack_size
,
2341 int __user
*parent_tidptr
,
2342 int __user
*child_tidptr
,
2345 struct completion vfork
;
2347 struct task_struct
*p
;
2352 * Determine whether and which event to report to ptracer. When
2353 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 * requested, no event is reported; otherwise, report if the event
2355 * for the type of forking is enabled.
2357 if (!(clone_flags
& CLONE_UNTRACED
)) {
2358 if (clone_flags
& CLONE_VFORK
)
2359 trace
= PTRACE_EVENT_VFORK
;
2360 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2361 trace
= PTRACE_EVENT_CLONE
;
2363 trace
= PTRACE_EVENT_FORK
;
2365 if (likely(!ptrace_event_enabled(current
, trace
)))
2369 p
= copy_process(clone_flags
, stack_start
, stack_size
, parent_tidptr
,
2370 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2371 add_latent_entropy();
2377 * Do this prior waking up the new thread - the thread pointer
2378 * might get invalid after that point, if the thread exits quickly.
2380 trace_sched_process_fork(current
, p
);
2382 pid
= get_task_pid(p
, PIDTYPE_PID
);
2385 if (clone_flags
& CLONE_PARENT_SETTID
)
2386 put_user(nr
, parent_tidptr
);
2388 if (clone_flags
& CLONE_VFORK
) {
2389 p
->vfork_done
= &vfork
;
2390 init_completion(&vfork
);
2394 wake_up_new_task(p
);
2396 /* forking complete and child started to run, tell ptracer */
2397 if (unlikely(trace
))
2398 ptrace_event_pid(trace
, pid
);
2400 if (clone_flags
& CLONE_VFORK
) {
2401 if (!wait_for_vfork_done(p
, &vfork
))
2402 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2409 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2410 /* For compatibility with architectures that call do_fork directly rather than
2411 * using the syscall entry points below. */
2412 long do_fork(unsigned long clone_flags
,
2413 unsigned long stack_start
,
2414 unsigned long stack_size
,
2415 int __user
*parent_tidptr
,
2416 int __user
*child_tidptr
)
2418 return _do_fork(clone_flags
, stack_start
, stack_size
,
2419 parent_tidptr
, child_tidptr
, 0);
2424 * Create a kernel thread.
2426 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2428 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2429 (unsigned long)arg
, NULL
, NULL
, 0);
2432 #ifdef __ARCH_WANT_SYS_FORK
2433 SYSCALL_DEFINE0(fork
)
2436 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2438 /* can not support in nommu mode */
2444 #ifdef __ARCH_WANT_SYS_VFORK
2445 SYSCALL_DEFINE0(vfork
)
2447 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2452 #ifdef __ARCH_WANT_SYS_CLONE
2453 #ifdef CONFIG_CLONE_BACKWARDS
2454 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2455 int __user
*, parent_tidptr
,
2457 int __user
*, child_tidptr
)
2458 #elif defined(CONFIG_CLONE_BACKWARDS2)
2459 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2460 int __user
*, parent_tidptr
,
2461 int __user
*, child_tidptr
,
2463 #elif defined(CONFIG_CLONE_BACKWARDS3)
2464 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2466 int __user
*, parent_tidptr
,
2467 int __user
*, child_tidptr
,
2470 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2471 int __user
*, parent_tidptr
,
2472 int __user
*, child_tidptr
,
2476 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2480 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2482 struct task_struct
*leader
, *parent
, *child
;
2485 read_lock(&tasklist_lock
);
2486 leader
= top
= top
->group_leader
;
2488 for_each_thread(leader
, parent
) {
2489 list_for_each_entry(child
, &parent
->children
, sibling
) {
2490 res
= visitor(child
, data
);
2502 if (leader
!= top
) {
2504 parent
= child
->real_parent
;
2505 leader
= parent
->group_leader
;
2509 read_unlock(&tasklist_lock
);
2512 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2513 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2516 static void sighand_ctor(void *data
)
2518 struct sighand_struct
*sighand
= data
;
2520 spin_lock_init(&sighand
->siglock
);
2521 init_waitqueue_head(&sighand
->signalfd_wqh
);
2524 void __init
proc_caches_init(void)
2526 unsigned int mm_size
;
2528 sighand_cachep
= kmem_cache_create("sighand_cache",
2529 sizeof(struct sighand_struct
), 0,
2530 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2531 SLAB_ACCOUNT
, sighand_ctor
);
2532 signal_cachep
= kmem_cache_create("signal_cache",
2533 sizeof(struct signal_struct
), 0,
2534 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2536 files_cachep
= kmem_cache_create("files_cache",
2537 sizeof(struct files_struct
), 0,
2538 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2540 fs_cachep
= kmem_cache_create("fs_cache",
2541 sizeof(struct fs_struct
), 0,
2542 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2546 * The mm_cpumask is located at the end of mm_struct, and is
2547 * dynamically sized based on the maximum CPU number this system
2548 * can have, taking hotplug into account (nr_cpu_ids).
2550 mm_size
= sizeof(struct mm_struct
) + cpumask_size();
2552 mm_cachep
= kmem_cache_create_usercopy("mm_struct",
2553 mm_size
, ARCH_MIN_MMSTRUCT_ALIGN
,
2554 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2555 offsetof(struct mm_struct
, saved_auxv
),
2556 sizeof_field(struct mm_struct
, saved_auxv
),
2558 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2560 nsproxy_cache_init();
2564 * Check constraints on flags passed to the unshare system call.
2566 static int check_unshare_flags(unsigned long unshare_flags
)
2568 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2569 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2570 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2571 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2574 * Not implemented, but pretend it works if there is nothing
2575 * to unshare. Note that unsharing the address space or the
2576 * signal handlers also need to unshare the signal queues (aka
2579 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2580 if (!thread_group_empty(current
))
2583 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2584 if (refcount_read(¤t
->sighand
->count
) > 1)
2587 if (unshare_flags
& CLONE_VM
) {
2588 if (!current_is_single_threaded())
2596 * Unshare the filesystem structure if it is being shared
2598 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2600 struct fs_struct
*fs
= current
->fs
;
2602 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2605 /* don't need lock here; in the worst case we'll do useless copy */
2609 *new_fsp
= copy_fs_struct(fs
);
2617 * Unshare file descriptor table if it is being shared
2619 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2621 struct files_struct
*fd
= current
->files
;
2624 if ((unshare_flags
& CLONE_FILES
) &&
2625 (fd
&& atomic_read(&fd
->count
) > 1)) {
2626 *new_fdp
= dup_fd(fd
, &error
);
2635 * unshare allows a process to 'unshare' part of the process
2636 * context which was originally shared using clone. copy_*
2637 * functions used by do_fork() cannot be used here directly
2638 * because they modify an inactive task_struct that is being
2639 * constructed. Here we are modifying the current, active,
2642 int ksys_unshare(unsigned long unshare_flags
)
2644 struct fs_struct
*fs
, *new_fs
= NULL
;
2645 struct files_struct
*fd
, *new_fd
= NULL
;
2646 struct cred
*new_cred
= NULL
;
2647 struct nsproxy
*new_nsproxy
= NULL
;
2652 * If unsharing a user namespace must also unshare the thread group
2653 * and unshare the filesystem root and working directories.
2655 if (unshare_flags
& CLONE_NEWUSER
)
2656 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2658 * If unsharing vm, must also unshare signal handlers.
2660 if (unshare_flags
& CLONE_VM
)
2661 unshare_flags
|= CLONE_SIGHAND
;
2663 * If unsharing a signal handlers, must also unshare the signal queues.
2665 if (unshare_flags
& CLONE_SIGHAND
)
2666 unshare_flags
|= CLONE_THREAD
;
2668 * If unsharing namespace, must also unshare filesystem information.
2670 if (unshare_flags
& CLONE_NEWNS
)
2671 unshare_flags
|= CLONE_FS
;
2673 err
= check_unshare_flags(unshare_flags
);
2675 goto bad_unshare_out
;
2677 * CLONE_NEWIPC must also detach from the undolist: after switching
2678 * to a new ipc namespace, the semaphore arrays from the old
2679 * namespace are unreachable.
2681 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2683 err
= unshare_fs(unshare_flags
, &new_fs
);
2685 goto bad_unshare_out
;
2686 err
= unshare_fd(unshare_flags
, &new_fd
);
2688 goto bad_unshare_cleanup_fs
;
2689 err
= unshare_userns(unshare_flags
, &new_cred
);
2691 goto bad_unshare_cleanup_fd
;
2692 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2695 goto bad_unshare_cleanup_cred
;
2697 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2700 * CLONE_SYSVSEM is equivalent to sys_exit().
2704 if (unshare_flags
& CLONE_NEWIPC
) {
2705 /* Orphan segments in old ns (see sem above). */
2707 shm_init_task(current
);
2711 switch_task_namespaces(current
, new_nsproxy
);
2717 spin_lock(&fs
->lock
);
2718 current
->fs
= new_fs
;
2723 spin_unlock(&fs
->lock
);
2727 fd
= current
->files
;
2728 current
->files
= new_fd
;
2732 task_unlock(current
);
2735 /* Install the new user namespace */
2736 commit_creds(new_cred
);
2741 perf_event_namespaces(current
);
2743 bad_unshare_cleanup_cred
:
2746 bad_unshare_cleanup_fd
:
2748 put_files_struct(new_fd
);
2750 bad_unshare_cleanup_fs
:
2752 free_fs_struct(new_fs
);
2758 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2760 return ksys_unshare(unshare_flags
);
2764 * Helper to unshare the files of the current task.
2765 * We don't want to expose copy_files internals to
2766 * the exec layer of the kernel.
2769 int unshare_files(struct files_struct
**displaced
)
2771 struct task_struct
*task
= current
;
2772 struct files_struct
*copy
= NULL
;
2775 error
= unshare_fd(CLONE_FILES
, ©
);
2776 if (error
|| !copy
) {
2780 *displaced
= task
->files
;
2787 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2788 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2792 int threads
= max_threads
;
2793 int min
= MIN_THREADS
;
2794 int max
= MAX_THREADS
;
2801 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2805 set_max_threads(threads
);