2 * EDAC driver for Intel(R) Xeon(R) Skylake processors
3 * Copyright (c) 2016, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/pci_ids.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/edac.h>
22 #include <linux/mmzone.h>
23 #include <linux/smp.h>
24 #include <linux/bitmap.h>
25 #include <linux/math64.h>
26 #include <linux/mod_devicetable.h>
27 #include <asm/cpu_device_id.h>
28 #include <asm/intel-family.h>
29 #include <asm/processor.h>
32 #include "edac_module.h"
37 #define skx_printk(level, fmt, arg...) \
38 edac_printk(level, "skx", fmt, ##arg)
40 #define skx_mc_printk(mci, level, fmt, arg...) \
41 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
44 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
46 #define GET_BITFIELD(v, lo, hi) \
47 (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
49 static LIST_HEAD(skx_edac_list
);
51 static u64 skx_tolm
, skx_tohm
;
53 #define NUM_IMC 2 /* memory controllers per socket */
54 #define NUM_CHANNELS 3 /* channels per memory controller */
55 #define NUM_DIMMS 2 /* Max DIMMS per channel */
57 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
58 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
61 * Each cpu socket contains some pci devices that provide global
62 * information, and also some that are local to each of the two
63 * memory controllers on the die.
66 struct list_head list
;
68 struct pci_dev
*sad_all
;
69 struct pci_dev
*util_all
;
72 struct mem_ctl_info
*mci
;
73 u8 mc
; /* system wide mc# */
74 u8 lmc
; /* socket relative mc# */
88 static int skx_num_sockets
;
113 static struct skx_dev
*get_skx_dev(u8 bus
, u8 idx
)
117 list_for_each_entry(d
, &skx_edac_list
, list
) {
118 if (d
->bus
[idx
] == bus
)
126 CHAN0
, CHAN1
, CHAN2
, SAD_ALL
, UTIL_ALL
, SAD
134 enum munittype mtype
;
138 * List of PCI device ids that we need together with some device
139 * number and function numbers to tell which memory controller the
142 static const struct munit skx_all_munits
[] = {
143 { 0x2054, { }, 1, 1, SAD_ALL
},
144 { 0x2055, { }, 1, 1, UTIL_ALL
},
145 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0
},
146 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1
},
147 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2
},
148 { 0x208e, { }, 1, 0, SAD
},
153 * We use the per-socket device 0x2016 to count how many sockets are present,
154 * and to detemine which PCI buses are associated with each socket. Allocate
155 * and build the full list of all the skx_dev structures that we need here.
157 static int get_all_bus_mappings(void)
159 struct pci_dev
*pdev
, *prev
;
166 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x2016, prev
);
170 d
= kzalloc(sizeof(*d
), GFP_KERNEL
);
175 pci_read_config_dword(pdev
, 0xCC, ®
);
176 d
->bus
[0] = GET_BITFIELD(reg
, 0, 7);
177 d
->bus
[1] = GET_BITFIELD(reg
, 8, 15);
178 d
->bus
[2] = GET_BITFIELD(reg
, 16, 23);
179 d
->bus
[3] = GET_BITFIELD(reg
, 24, 31);
180 edac_dbg(2, "busses: %x, %x, %x, %x\n",
181 d
->bus
[0], d
->bus
[1], d
->bus
[2], d
->bus
[3]);
182 list_add_tail(&d
->list
, &skx_edac_list
);
190 static int get_all_munits(const struct munit
*m
)
192 struct pci_dev
*pdev
, *prev
;
199 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, m
->did
, prev
);
203 if (m
->per_socket
== NUM_IMC
) {
204 for (i
= 0; i
< NUM_IMC
; i
++)
205 if (m
->devfn
[i
] == pdev
->devfn
)
210 d
= get_skx_dev(pdev
->bus
->number
, m
->busidx
);
214 /* Be sure that the device is enabled */
215 if (unlikely(pci_enable_device(pdev
) < 0)) {
217 "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL
, m
->did
);
222 case CHAN0
: case CHAN1
: case CHAN2
:
224 d
->imc
[i
].chan
[m
->mtype
].cdev
= pdev
;
236 * one of these devices per core, including cores
237 * that don't exist on this SKU. Ignore any that
238 * read a route table of zero, make sure all the
239 * non-zero values match.
241 pci_read_config_dword(pdev
, 0xB4, ®
);
245 else if (d
->mcroute
!= reg
) {
247 "mcroute mismatch\n");
264 static const struct x86_cpu_id skx_cpuids
[] = {
265 { X86_VENDOR_INTEL
, 6, INTEL_FAM6_SKYLAKE_X
, 0, 0 },
268 MODULE_DEVICE_TABLE(x86cpu
, skx_cpuids
);
270 static u8
get_src_id(struct skx_dev
*d
)
274 pci_read_config_dword(d
->util_all
, 0xF0, ®
);
276 return GET_BITFIELD(reg
, 12, 14);
279 static u8
skx_get_node_id(struct skx_dev
*d
)
283 pci_read_config_dword(d
->util_all
, 0xF4, ®
);
285 return GET_BITFIELD(reg
, 0, 2);
288 static int get_dimm_attr(u32 reg
, int lobit
, int hibit
, int add
, int minval
,
289 int maxval
, char *name
)
291 u32 val
= GET_BITFIELD(reg
, lobit
, hibit
);
293 if (val
< minval
|| val
> maxval
) {
294 edac_dbg(2, "bad %s = %d (raw=%x)\n", name
, val
, reg
);
300 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
302 #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
303 #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
304 #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
306 static int get_width(u32 mtr
)
308 switch (GET_BITFIELD(mtr
, 8, 9)) {
319 static int skx_get_hi_lo(void)
321 struct pci_dev
*pdev
;
324 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x2034, NULL
);
326 edac_dbg(0, "Can't get tolm/tohm\n");
330 pci_read_config_dword(pdev
, 0xD0, ®
);
332 pci_read_config_dword(pdev
, 0xD4, ®
);
334 pci_read_config_dword(pdev
, 0xD8, ®
);
335 skx_tohm
|= (u64
)reg
<< 32;
338 edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm
, skx_tohm
);
343 static int get_dimm_info(u32 mtr
, u32 amap
, struct dimm_info
*dimm
,
344 struct skx_imc
*imc
, int chan
, int dimmno
)
346 int banks
= 16, ranks
, rows
, cols
, npages
;
349 if (!IS_DIMM_PRESENT(mtr
))
351 ranks
= numrank(mtr
);
356 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
358 size
= ((1ull << (rows
+ cols
+ ranks
)) * banks
) >> (20 - 3);
359 npages
= MiB_TO_PAGES(size
);
361 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
362 imc
->mc
, chan
, dimmno
, size
, npages
,
363 banks
, ranks
, rows
, cols
);
365 imc
->chan
[chan
].dimms
[dimmno
].close_pg
= GET_BITFIELD(mtr
, 0, 0);
366 imc
->chan
[chan
].dimms
[dimmno
].bank_xor_enable
= GET_BITFIELD(mtr
, 9, 9);
367 imc
->chan
[chan
].dimms
[dimmno
].fine_grain_bank
= GET_BITFIELD(amap
, 0, 0);
368 imc
->chan
[chan
].dimms
[dimmno
].rowbits
= rows
;
369 imc
->chan
[chan
].dimms
[dimmno
].colbits
= cols
;
371 dimm
->nr_pages
= npages
;
373 dimm
->dtype
= get_width(mtr
);
374 dimm
->mtype
= MEM_DDR4
;
375 dimm
->edac_mode
= EDAC_SECDED
; /* likely better than this */
376 snprintf(dimm
->label
, sizeof(dimm
->label
), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
377 imc
->src_id
, imc
->lmc
, chan
, dimmno
);
382 #define SKX_GET_MTMTR(dev, reg) \
383 pci_read_config_dword((dev), 0x87c, ®)
385 static bool skx_check_ecc(struct pci_dev
*pdev
)
389 SKX_GET_MTMTR(pdev
, mtmtr
);
391 return !!GET_BITFIELD(mtmtr
, 2, 2);
394 static int skx_get_dimm_config(struct mem_ctl_info
*mci
)
396 struct skx_pvt
*pvt
= mci
->pvt_info
;
397 struct skx_imc
*imc
= pvt
->imc
;
398 struct dimm_info
*dimm
;
403 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
405 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x8C, &amap
);
406 for (j
= 0; j
< NUM_DIMMS
; j
++) {
407 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
,
408 mci
->n_layers
, i
, j
, 0);
409 pci_read_config_dword(imc
->chan
[i
].cdev
,
411 ndimms
+= get_dimm_info(mtr
, amap
, dimm
, imc
, i
, j
);
413 if (ndimms
&& !skx_check_ecc(imc
->chan
[0].cdev
)) {
414 skx_printk(KERN_ERR
, "ECC is disabled on imc %d\n", imc
->mc
);
422 static void skx_unregister_mci(struct skx_imc
*imc
)
424 struct mem_ctl_info
*mci
= imc
->mci
;
429 edac_dbg(0, "MC%d: mci = %p\n", imc
->mc
, mci
);
431 /* Remove MC sysfs nodes */
432 edac_mc_del_mc(mci
->pdev
);
434 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
435 kfree(mci
->ctl_name
);
439 static int skx_register_mci(struct skx_imc
*imc
)
441 struct mem_ctl_info
*mci
;
442 struct edac_mc_layer layers
[2];
443 struct pci_dev
*pdev
= imc
->chan
[0].cdev
;
447 /* allocate a new MC control structure */
448 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
449 layers
[0].size
= NUM_CHANNELS
;
450 layers
[0].is_virt_csrow
= false;
451 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
452 layers
[1].size
= NUM_DIMMS
;
453 layers
[1].is_virt_csrow
= true;
454 mci
= edac_mc_alloc(imc
->mc
, ARRAY_SIZE(layers
), layers
,
455 sizeof(struct skx_pvt
));
460 edac_dbg(0, "MC#%d: mci = %p\n", imc
->mc
, mci
);
462 /* Associate skx_dev and mci for future usage */
467 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Skylake Socket#%d IMC#%d",
468 imc
->node_id
, imc
->lmc
);
469 mci
->mtype_cap
= MEM_FLAG_DDR4
;
470 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
471 mci
->edac_cap
= EDAC_FLAG_NONE
;
472 mci
->mod_name
= "skx_edac.c";
473 mci
->dev_name
= pci_name(imc
->chan
[0].cdev
);
474 mci
->ctl_page_to_phys
= NULL
;
476 rc
= skx_get_dimm_config(mci
);
480 /* record ptr to the generic device */
481 mci
->pdev
= &pdev
->dev
;
483 /* add this new MC control structure to EDAC's list of MCs */
484 if (unlikely(edac_mc_add_mc(mci
))) {
485 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
493 kfree(mci
->ctl_name
);
499 #define SKX_MAX_SAD 24
501 #define SKX_GET_SAD(d, i, reg) \
502 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®)
503 #define SKX_GET_ILV(d, i, reg) \
504 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®)
506 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
507 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
508 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
509 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
510 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
511 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
512 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
514 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
515 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
517 static bool skx_sad_decode(struct decoded_addr
*res
)
519 struct skx_dev
*d
= list_first_entry(&skx_edac_list
, typeof(*d
), list
);
520 u64 addr
= res
->addr
;
521 int i
, idx
, tgt
, lchan
, shift
;
523 u64 limit
, prev_limit
;
526 /* Simple sanity check for I/O space or out of range */
527 if (addr
>= skx_tohm
|| (addr
>= skx_tolm
&& addr
< BIT_ULL(32))) {
528 edac_dbg(0, "Address %llx out of range\n", addr
);
534 for (i
= 0; i
< SKX_MAX_SAD
; i
++) {
535 SKX_GET_SAD(d
, i
, sad
);
536 limit
= SKX_SAD_LIMIT(sad
);
537 if (SKX_SAD_ENABLE(sad
)) {
538 if (addr
>= prev_limit
&& addr
<= limit
)
541 prev_limit
= limit
+ 1;
543 edac_dbg(0, "No SAD entry for %llx\n", addr
);
547 SKX_GET_ILV(d
, i
, ilv
);
549 switch (SKX_SAD_INTERLEAVE(sad
)) {
551 idx
= GET_BITFIELD(addr
, 6, 8);
554 idx
= GET_BITFIELD(addr
, 8, 10);
557 idx
= GET_BITFIELD(addr
, 12, 14);
560 idx
= GET_BITFIELD(addr
, 30, 32);
564 tgt
= GET_BITFIELD(ilv
, 4 * idx
, 4 * idx
+ 3);
566 /* If point to another node, find it and start over */
567 if (SKX_ILV_REMOTE(tgt
)) {
569 edac_dbg(0, "Double remote!\n");
573 list_for_each_entry(d
, &skx_edac_list
, list
) {
574 if (d
->imc
[0].src_id
== SKX_ILV_TARGET(tgt
))
577 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt
));
581 if (SKX_SAD_MOD3(sad
) == 0)
582 lchan
= SKX_ILV_TARGET(tgt
);
584 switch (SKX_SAD_MOD3MODE(sad
)) {
595 edac_dbg(0, "illegal mod3mode\n");
598 switch (SKX_SAD_MOD3ASMOD2(sad
)) {
600 lchan
= (addr
>> shift
) % 3;
603 lchan
= (addr
>> shift
) % 2;
606 lchan
= (addr
>> shift
) % 2;
607 lchan
= (lchan
<< 1) | ~lchan
;
610 lchan
= ((addr
>> shift
) % 2) << 1;
613 lchan
= (lchan
<< 1) | (SKX_ILV_TARGET(tgt
) & 1);
617 res
->socket
= d
->imc
[0].src_id
;
618 res
->imc
= GET_BITFIELD(d
->mcroute
, lchan
* 3, lchan
* 3 + 2);
619 res
->channel
= GET_BITFIELD(d
->mcroute
, lchan
* 2 + 18, lchan
* 2 + 19);
621 edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
622 res
->addr
, res
->socket
, res
->imc
, res
->channel
);
626 #define SKX_MAX_TAD 8
628 #define SKX_GET_TADBASE(d, mc, i, reg) \
629 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®)
630 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
631 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®)
632 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
633 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®)
635 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
636 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
637 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
638 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
639 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
640 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
641 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
643 /* which bit used for both socket and channel interleave */
644 static int skx_granularity
[] = { 6, 8, 12, 30 };
646 static u64
skx_do_interleave(u64 addr
, int shift
, int ways
, u64 lowbits
)
652 return addr
| (lowbits
& ((1ull << shift
) - 1));
655 static bool skx_tad_decode(struct decoded_addr
*res
)
658 u32 base
, wayness
, chnilvoffset
;
659 int skt_interleave_bit
, chn_interleave_bit
;
662 for (i
= 0; i
< SKX_MAX_TAD
; i
++) {
663 SKX_GET_TADBASE(res
->dev
, res
->imc
, i
, base
);
664 SKX_GET_TADWAYNESS(res
->dev
, res
->imc
, i
, wayness
);
665 if (SKX_TAD_BASE(base
) <= res
->addr
&& res
->addr
<= SKX_TAD_LIMIT(wayness
))
668 edac_dbg(0, "No TAD entry for %llx\n", res
->addr
);
672 res
->sktways
= SKX_TAD_SKTWAYS(wayness
);
673 res
->chanways
= SKX_TAD_CHNWAYS(wayness
);
674 skt_interleave_bit
= skx_granularity
[SKX_TAD_SKT_GRAN(base
)];
675 chn_interleave_bit
= skx_granularity
[SKX_TAD_CHN_GRAN(base
)];
677 SKX_GET_TADCHNILVOFFSET(res
->dev
, res
->imc
, res
->channel
, i
, chnilvoffset
);
678 channel_addr
= res
->addr
- SKX_TAD_OFFSET(chnilvoffset
);
680 if (res
->chanways
== 3 && skt_interleave_bit
> chn_interleave_bit
) {
681 /* Must handle channel first, then socket */
682 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
683 res
->chanways
, channel_addr
);
684 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
685 res
->sktways
, channel_addr
);
687 /* Handle socket then channel. Preserve low bits from original address */
688 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
689 res
->sktways
, res
->addr
);
690 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
691 res
->chanways
, res
->addr
);
694 res
->chan_addr
= channel_addr
;
696 edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
697 res
->addr
, res
->chan_addr
, res
->sktways
, res
->chanways
);
701 #define SKX_MAX_RIR 4
703 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
704 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
705 0x108 + 4 * (i), ®)
706 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
707 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
708 0x120 + 16 * idx + 4 * (i), ®)
710 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
711 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
712 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
713 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
714 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
716 static bool skx_rir_decode(struct decoded_addr
*res
)
718 int i
, idx
, chan_rank
;
721 u64 rank_addr
, prev_limit
= 0, limit
;
723 if (res
->dev
->imc
[res
->imc
].chan
[res
->channel
].dimms
[0].close_pg
)
728 for (i
= 0; i
< SKX_MAX_RIR
; i
++) {
729 SKX_GET_RIRWAYNESS(res
->dev
, res
->imc
, res
->channel
, i
, rirway
);
730 limit
= SKX_RIR_LIMIT(rirway
);
731 if (SKX_RIR_VALID(rirway
)) {
732 if (prev_limit
<= res
->chan_addr
&&
733 res
->chan_addr
<= limit
)
738 edac_dbg(0, "No RIR entry for %llx\n", res
->addr
);
742 rank_addr
= res
->chan_addr
>> shift
;
743 rank_addr
/= SKX_RIR_WAYS(rirway
);
745 rank_addr
|= res
->chan_addr
& GENMASK_ULL(shift
- 1, 0);
747 res
->rank_address
= rank_addr
;
748 idx
= (res
->chan_addr
>> shift
) % SKX_RIR_WAYS(rirway
);
750 SKX_GET_RIRILV(res
->dev
, res
->imc
, res
->channel
, idx
, i
, rirlv
);
751 res
->rank_address
= rank_addr
- SKX_RIR_OFFSET(rirlv
);
752 chan_rank
= SKX_RIR_CHAN_RANK(rirlv
);
753 res
->channel_rank
= chan_rank
;
754 res
->dimm
= chan_rank
/ 4;
755 res
->rank
= chan_rank
% 4;
757 edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
758 res
->addr
, res
->dimm
, res
->rank
,
759 res
->channel_rank
, res
->rank_address
);
763 static u8 skx_close_row
[] = {
764 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
766 static u8 skx_close_column
[] = {
767 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
769 static u8 skx_open_row
[] = {
770 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
772 static u8 skx_open_column
[] = {
773 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
775 static u8 skx_open_fine_column
[] = {
776 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
779 static int skx_bits(u64 addr
, int nbits
, u8
*bits
)
783 for (i
= 0; i
< nbits
; i
++)
784 res
|= ((addr
>> bits
[i
]) & 1) << i
;
788 static int skx_bank_bits(u64 addr
, int b0
, int b1
, int do_xor
, int x0
, int x1
)
790 int ret
= GET_BITFIELD(addr
, b0
, b0
) | (GET_BITFIELD(addr
, b1
, b1
) << 1);
793 ret
^= GET_BITFIELD(addr
, x0
, x0
) | (GET_BITFIELD(addr
, x1
, x1
) << 1);
798 static bool skx_mad_decode(struct decoded_addr
*r
)
800 struct skx_dimm
*dimm
= &r
->dev
->imc
[r
->imc
].chan
[r
->channel
].dimms
[r
->dimm
];
801 int bg0
= dimm
->fine_grain_bank
? 6 : 13;
803 if (dimm
->close_pg
) {
804 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_close_row
);
805 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_close_column
);
806 r
->column
|= 0x400; /* C10 is autoprecharge, always set */
807 r
->bank_address
= skx_bank_bits(r
->rank_address
, 8, 9, dimm
->bank_xor_enable
, 22, 28);
808 r
->bank_group
= skx_bank_bits(r
->rank_address
, 6, 7, dimm
->bank_xor_enable
, 20, 21);
810 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_open_row
);
811 if (dimm
->fine_grain_bank
)
812 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_fine_column
);
814 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_column
);
815 r
->bank_address
= skx_bank_bits(r
->rank_address
, 18, 19, dimm
->bank_xor_enable
, 22, 23);
816 r
->bank_group
= skx_bank_bits(r
->rank_address
, bg0
, 17, dimm
->bank_xor_enable
, 20, 21);
818 r
->row
&= (1u << dimm
->rowbits
) - 1;
820 edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
821 r
->addr
, r
->row
, r
->column
, r
->bank_address
,
826 static bool skx_decode(struct decoded_addr
*res
)
829 return skx_sad_decode(res
) && skx_tad_decode(res
) &&
830 skx_rir_decode(res
) && skx_mad_decode(res
);
833 #ifdef CONFIG_EDAC_DEBUG
835 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
836 * Write an address to this file to exercise the address decode
837 * logic in this driver.
839 static struct dentry
*skx_test
;
840 static u64 skx_fake_addr
;
842 static int debugfs_u64_set(void *data
, u64 val
)
844 struct decoded_addr res
;
852 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo
, NULL
, debugfs_u64_set
, "%llu\n");
854 static struct dentry
*mydebugfs_create(const char *name
, umode_t mode
,
855 struct dentry
*parent
, u64
*value
)
857 return debugfs_create_file(name
, mode
, parent
, value
, &fops_u64_wo
);
860 static void setup_skx_debug(void)
862 skx_test
= debugfs_create_dir("skx_edac_test", NULL
);
863 mydebugfs_create("addr", S_IWUSR
, skx_test
, &skx_fake_addr
);
866 static void teardown_skx_debug(void)
868 debugfs_remove_recursive(skx_test
);
871 static void setup_skx_debug(void)
875 static void teardown_skx_debug(void)
878 #endif /*CONFIG_EDAC_DEBUG*/
880 static void skx_mce_output_error(struct mem_ctl_info
*mci
,
882 struct decoded_addr
*res
)
884 enum hw_event_mc_err_type tp_event
;
885 char *type
, *optype
, msg
[256];
886 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
887 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
888 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
890 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
891 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
892 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
893 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
895 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
897 if (uncorrected_error
) {
900 tp_event
= HW_EVENT_ERR_FATAL
;
903 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
907 tp_event
= HW_EVENT_ERR_CORRECTED
;
911 * According with Table 15-9 of the Intel Architecture spec vol 3A,
912 * memory errors should fit in this mask:
913 * 000f 0000 1mmm cccc (binary)
915 * f = Correction Report Filtering Bit. If 1, subsequent errors
919 * If the mask doesn't match, report an error to the parsing logic
921 if (!((errcode
& 0xef80) == 0x80)) {
922 optype
= "Can't parse: it is not a mem";
926 optype
= "generic undef request error";
929 optype
= "memory read error";
932 optype
= "memory write error";
935 optype
= "addr/cmd error";
938 optype
= "memory scrubbing error";
946 snprintf(msg
, sizeof(msg
),
947 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
948 overflow
? " OVERFLOW" : "",
949 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
951 res
->socket
, res
->imc
, res
->rank
,
952 res
->bank_group
, res
->bank_address
, res
->row
, res
->column
);
954 edac_dbg(0, "%s\n", msg
);
956 /* Call the helper to output message */
957 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
958 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
959 res
->channel
, res
->dimm
, -1,
963 static int skx_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
966 struct mce
*mce
= (struct mce
*)data
;
967 struct decoded_addr res
;
968 struct mem_ctl_info
*mci
;
971 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
974 /* ignore unless this is memory related with an address */
975 if ((mce
->status
& 0xefff) >> 7 != 1 || !(mce
->status
& MCI_STATUS_ADDRV
))
978 res
.addr
= mce
->addr
;
979 if (!skx_decode(&res
))
981 mci
= res
.dev
->imc
[res
.imc
].mci
;
983 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
988 skx_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
990 skx_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
991 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
992 mce
->mcgstatus
, mce
->bank
, mce
->status
);
993 skx_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
994 skx_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
995 skx_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
997 skx_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
998 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
999 mce
->time
, mce
->socketid
, mce
->apicid
);
1001 skx_mce_output_error(mci
, mce
, &res
);
1006 static struct notifier_block skx_mce_dec
= {
1007 .notifier_call
= skx_mce_check_error
,
1008 .priority
= MCE_PRIO_EDAC
,
1011 static void skx_remove(void)
1014 struct skx_dev
*d
, *tmp
;
1018 list_for_each_entry_safe(d
, tmp
, &skx_edac_list
, list
) {
1020 for (i
= 0; i
< NUM_IMC
; i
++) {
1021 skx_unregister_mci(&d
->imc
[i
]);
1022 for (j
= 0; j
< NUM_CHANNELS
; j
++)
1023 pci_dev_put(d
->imc
[i
].chan
[j
].cdev
);
1025 pci_dev_put(d
->util_all
);
1026 pci_dev_put(d
->sad_all
);
1034 * make sure we are running on the correct cpu model
1035 * search for all the devices we need
1036 * check which DIMMs are present.
1038 static int __init
skx_init(void)
1040 const struct x86_cpu_id
*id
;
1041 const struct munit
*m
;
1043 u8 mc
= 0, src_id
, node_id
;
1048 id
= x86_match_cpu(skx_cpuids
);
1052 rc
= skx_get_hi_lo();
1056 rc
= get_all_bus_mappings();
1060 edac_dbg(2, "No memory controllers found\n");
1064 for (m
= skx_all_munits
; m
->did
; m
++) {
1065 rc
= get_all_munits(m
);
1068 if (rc
!= m
->per_socket
* skx_num_sockets
) {
1069 edac_dbg(2, "Expected %d, got %d of %x\n",
1070 m
->per_socket
* skx_num_sockets
, rc
, m
->did
);
1076 list_for_each_entry(d
, &skx_edac_list
, list
) {
1077 src_id
= get_src_id(d
);
1078 node_id
= skx_get_node_id(d
);
1079 edac_dbg(2, "src_id=%d node_id=%d\n", src_id
, node_id
);
1080 for (i
= 0; i
< NUM_IMC
; i
++) {
1081 d
->imc
[i
].mc
= mc
++;
1083 d
->imc
[i
].src_id
= src_id
;
1084 d
->imc
[i
].node_id
= node_id
;
1085 rc
= skx_register_mci(&d
->imc
[i
]);
1091 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1096 mce_register_decode_chain(&skx_mce_dec
);
1104 static void __exit
skx_exit(void)
1107 mce_unregister_decode_chain(&skx_mce_dec
);
1109 teardown_skx_debug();
1112 module_init(skx_init
);
1113 module_exit(skx_exit
);
1115 module_param(edac_op_state
, int, 0444);
1116 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1118 MODULE_LICENSE("GPL v2");
1119 MODULE_AUTHOR("Tony Luck");
1120 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");