Linux 4.14.51
[linux/fpc-iii.git] / drivers / md / raid1.c
blobe4e01d3bab8195718456676eba774f668577d6b2
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
42 #include <trace/events/block.h>
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL) | \
52 (1L << MD_HAS_MULTIPLE_PPLS))
55 * Number of guaranteed r1bios in case of extreme VM load:
57 #define NR_RAID1_BIOS 256
59 /* when we get a read error on a read-only array, we redirect to another
60 * device without failing the first device, or trying to over-write to
61 * correct the read error. To keep track of bad blocks on a per-bio
62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66 * bad-block marking which must be done from process context. So we record
67 * the success by setting devs[n].bio to IO_MADE_GOOD
69 #define IO_MADE_GOOD ((struct bio *)2)
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
73 /* When there are this many requests queue to be written by
74 * the raid1 thread, we become 'congested' to provide back-pressure
75 * for writeback.
77 static int max_queued_requests = 1024;
79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
82 #define raid1_log(md, fmt, args...) \
83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
85 #include "raid1-10.c"
88 * for resync bio, r1bio pointer can be retrieved from the per-bio
89 * 'struct resync_pages'.
91 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
93 return get_resync_pages(bio)->raid_bio;
96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
98 struct pool_info *pi = data;
99 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
101 /* allocate a r1bio with room for raid_disks entries in the bios array */
102 return kzalloc(size, gfp_flags);
105 static void r1bio_pool_free(void *r1_bio, void *data)
107 kfree(r1_bio);
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
119 struct pool_info *pi = data;
120 struct r1bio *r1_bio;
121 struct bio *bio;
122 int need_pages;
123 int j;
124 struct resync_pages *rps;
126 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
127 if (!r1_bio)
128 return NULL;
130 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131 gfp_flags);
132 if (!rps)
133 goto out_free_r1bio;
136 * Allocate bios : 1 for reading, n-1 for writing
138 for (j = pi->raid_disks ; j-- ; ) {
139 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
140 if (!bio)
141 goto out_free_bio;
142 r1_bio->bios[j] = bio;
145 * Allocate RESYNC_PAGES data pages and attach them to
146 * the first bio.
147 * If this is a user-requested check/repair, allocate
148 * RESYNC_PAGES for each bio.
150 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
151 need_pages = pi->raid_disks;
152 else
153 need_pages = 1;
154 for (j = 0; j < pi->raid_disks; j++) {
155 struct resync_pages *rp = &rps[j];
157 bio = r1_bio->bios[j];
159 if (j < need_pages) {
160 if (resync_alloc_pages(rp, gfp_flags))
161 goto out_free_pages;
162 } else {
163 memcpy(rp, &rps[0], sizeof(*rp));
164 resync_get_all_pages(rp);
167 rp->raid_bio = r1_bio;
168 bio->bi_private = rp;
171 r1_bio->master_bio = NULL;
173 return r1_bio;
175 out_free_pages:
176 while (--j >= 0)
177 resync_free_pages(&rps[j]);
179 out_free_bio:
180 while (++j < pi->raid_disks)
181 bio_put(r1_bio->bios[j]);
182 kfree(rps);
184 out_free_r1bio:
185 r1bio_pool_free(r1_bio, data);
186 return NULL;
189 static void r1buf_pool_free(void *__r1_bio, void *data)
191 struct pool_info *pi = data;
192 int i;
193 struct r1bio *r1bio = __r1_bio;
194 struct resync_pages *rp = NULL;
196 for (i = pi->raid_disks; i--; ) {
197 rp = get_resync_pages(r1bio->bios[i]);
198 resync_free_pages(rp);
199 bio_put(r1bio->bios[i]);
202 /* resync pages array stored in the 1st bio's .bi_private */
203 kfree(rp);
205 r1bio_pool_free(r1bio, data);
208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
210 int i;
212 for (i = 0; i < conf->raid_disks * 2; i++) {
213 struct bio **bio = r1_bio->bios + i;
214 if (!BIO_SPECIAL(*bio))
215 bio_put(*bio);
216 *bio = NULL;
220 static void free_r1bio(struct r1bio *r1_bio)
222 struct r1conf *conf = r1_bio->mddev->private;
224 put_all_bios(conf, r1_bio);
225 mempool_free(r1_bio, conf->r1bio_pool);
228 static void put_buf(struct r1bio *r1_bio)
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t sect = r1_bio->sector;
232 int i;
234 for (i = 0; i < conf->raid_disks * 2; i++) {
235 struct bio *bio = r1_bio->bios[i];
236 if (bio->bi_end_io)
237 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
240 mempool_free(r1_bio, conf->r1buf_pool);
242 lower_barrier(conf, sect);
245 static void reschedule_retry(struct r1bio *r1_bio)
247 unsigned long flags;
248 struct mddev *mddev = r1_bio->mddev;
249 struct r1conf *conf = mddev->private;
250 int idx;
252 idx = sector_to_idx(r1_bio->sector);
253 spin_lock_irqsave(&conf->device_lock, flags);
254 list_add(&r1_bio->retry_list, &conf->retry_list);
255 atomic_inc(&conf->nr_queued[idx]);
256 spin_unlock_irqrestore(&conf->device_lock, flags);
258 wake_up(&conf->wait_barrier);
259 md_wakeup_thread(mddev->thread);
263 * raid_end_bio_io() is called when we have finished servicing a mirrored
264 * operation and are ready to return a success/failure code to the buffer
265 * cache layer.
267 static void call_bio_endio(struct r1bio *r1_bio)
269 struct bio *bio = r1_bio->master_bio;
270 struct r1conf *conf = r1_bio->mddev->private;
272 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
273 bio->bi_status = BLK_STS_IOERR;
275 bio_endio(bio);
277 * Wake up any possible resync thread that waits for the device
278 * to go idle.
280 allow_barrier(conf, r1_bio->sector);
283 static void raid_end_bio_io(struct r1bio *r1_bio)
285 struct bio *bio = r1_bio->master_bio;
287 /* if nobody has done the final endio yet, do it now */
288 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 (bio_data_dir(bio) == WRITE) ? "write" : "read",
291 (unsigned long long) bio->bi_iter.bi_sector,
292 (unsigned long long) bio_end_sector(bio) - 1);
294 call_bio_endio(r1_bio);
296 free_r1bio(r1_bio);
300 * Update disk head position estimator based on IRQ completion info.
302 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
304 struct r1conf *conf = r1_bio->mddev->private;
306 conf->mirrors[disk].head_position =
307 r1_bio->sector + (r1_bio->sectors);
311 * Find the disk number which triggered given bio
313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
315 int mirror;
316 struct r1conf *conf = r1_bio->mddev->private;
317 int raid_disks = conf->raid_disks;
319 for (mirror = 0; mirror < raid_disks * 2; mirror++)
320 if (r1_bio->bios[mirror] == bio)
321 break;
323 BUG_ON(mirror == raid_disks * 2);
324 update_head_pos(mirror, r1_bio);
326 return mirror;
329 static void raid1_end_read_request(struct bio *bio)
331 int uptodate = !bio->bi_status;
332 struct r1bio *r1_bio = bio->bi_private;
333 struct r1conf *conf = r1_bio->mddev->private;
334 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
337 * this branch is our 'one mirror IO has finished' event handler:
339 update_head_pos(r1_bio->read_disk, r1_bio);
341 if (uptodate)
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
343 else if (test_bit(FailFast, &rdev->flags) &&
344 test_bit(R1BIO_FailFast, &r1_bio->state))
345 /* This was a fail-fast read so we definitely
346 * want to retry */
348 else {
349 /* If all other devices have failed, we want to return
350 * the error upwards rather than fail the last device.
351 * Here we redefine "uptodate" to mean "Don't want to retry"
353 unsigned long flags;
354 spin_lock_irqsave(&conf->device_lock, flags);
355 if (r1_bio->mddev->degraded == conf->raid_disks ||
356 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
357 test_bit(In_sync, &rdev->flags)))
358 uptodate = 1;
359 spin_unlock_irqrestore(&conf->device_lock, flags);
362 if (uptodate) {
363 raid_end_bio_io(r1_bio);
364 rdev_dec_pending(rdev, conf->mddev);
365 } else {
367 * oops, read error:
369 char b[BDEVNAME_SIZE];
370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 mdname(conf->mddev),
372 bdevname(rdev->bdev, b),
373 (unsigned long long)r1_bio->sector);
374 set_bit(R1BIO_ReadError, &r1_bio->state);
375 reschedule_retry(r1_bio);
376 /* don't drop the reference on read_disk yet */
380 static void close_write(struct r1bio *r1_bio)
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 bio_free_pages(r1_bio->behind_master_bio);
385 bio_put(r1_bio->behind_master_bio);
386 r1_bio->behind_master_bio = NULL;
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 r1_bio->sectors,
391 !test_bit(R1BIO_Degraded, &r1_bio->state),
392 test_bit(R1BIO_BehindIO, &r1_bio->state));
393 md_write_end(r1_bio->mddev);
396 static void r1_bio_write_done(struct r1bio *r1_bio)
398 if (!atomic_dec_and_test(&r1_bio->remaining))
399 return;
401 if (test_bit(R1BIO_WriteError, &r1_bio->state))
402 reschedule_retry(r1_bio);
403 else {
404 close_write(r1_bio);
405 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406 reschedule_retry(r1_bio);
407 else
408 raid_end_bio_io(r1_bio);
412 static void raid1_end_write_request(struct bio *bio)
414 struct r1bio *r1_bio = bio->bi_private;
415 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
416 struct r1conf *conf = r1_bio->mddev->private;
417 struct bio *to_put = NULL;
418 int mirror = find_bio_disk(r1_bio, bio);
419 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
420 bool discard_error;
422 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
425 * 'one mirror IO has finished' event handler:
427 if (bio->bi_status && !discard_error) {
428 set_bit(WriteErrorSeen, &rdev->flags);
429 if (!test_and_set_bit(WantReplacement, &rdev->flags))
430 set_bit(MD_RECOVERY_NEEDED, &
431 conf->mddev->recovery);
433 if (test_bit(FailFast, &rdev->flags) &&
434 (bio->bi_opf & MD_FAILFAST) &&
435 /* We never try FailFast to WriteMostly devices */
436 !test_bit(WriteMostly, &rdev->flags)) {
437 md_error(r1_bio->mddev, rdev);
438 if (!test_bit(Faulty, &rdev->flags))
439 /* This is the only remaining device,
440 * We need to retry the write without
441 * FailFast
443 set_bit(R1BIO_WriteError, &r1_bio->state);
444 else {
445 /* Finished with this branch */
446 r1_bio->bios[mirror] = NULL;
447 to_put = bio;
449 } else
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 } else {
453 * Set R1BIO_Uptodate in our master bio, so that we
454 * will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer
456 * fails.
458 * The 'master' represents the composite IO operation
459 * to user-side. So if something waits for IO, then it
460 * will wait for the 'master' bio.
462 sector_t first_bad;
463 int bad_sectors;
465 r1_bio->bios[mirror] = NULL;
466 to_put = bio;
468 * Do not set R1BIO_Uptodate if the current device is
469 * rebuilding or Faulty. This is because we cannot use
470 * such device for properly reading the data back (we could
471 * potentially use it, if the current write would have felt
472 * before rdev->recovery_offset, but for simplicity we don't
473 * check this here.
475 if (test_bit(In_sync, &rdev->flags) &&
476 !test_bit(Faulty, &rdev->flags))
477 set_bit(R1BIO_Uptodate, &r1_bio->state);
479 /* Maybe we can clear some bad blocks. */
480 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
481 &first_bad, &bad_sectors) && !discard_error) {
482 r1_bio->bios[mirror] = IO_MADE_GOOD;
483 set_bit(R1BIO_MadeGood, &r1_bio->state);
487 if (behind) {
488 if (test_bit(WriteMostly, &rdev->flags))
489 atomic_dec(&r1_bio->behind_remaining);
492 * In behind mode, we ACK the master bio once the I/O
493 * has safely reached all non-writemostly
494 * disks. Setting the Returned bit ensures that this
495 * gets done only once -- we don't ever want to return
496 * -EIO here, instead we'll wait
498 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
499 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
500 /* Maybe we can return now */
501 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
502 struct bio *mbio = r1_bio->master_bio;
503 pr_debug("raid1: behind end write sectors"
504 " %llu-%llu\n",
505 (unsigned long long) mbio->bi_iter.bi_sector,
506 (unsigned long long) bio_end_sector(mbio) - 1);
507 call_bio_endio(r1_bio);
511 if (r1_bio->bios[mirror] == NULL)
512 rdev_dec_pending(rdev, conf->mddev);
515 * Let's see if all mirrored write operations have finished
516 * already.
518 r1_bio_write_done(r1_bio);
520 if (to_put)
521 bio_put(to_put);
524 static sector_t align_to_barrier_unit_end(sector_t start_sector,
525 sector_t sectors)
527 sector_t len;
529 WARN_ON(sectors == 0);
531 * len is the number of sectors from start_sector to end of the
532 * barrier unit which start_sector belongs to.
534 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
535 start_sector;
537 if (len > sectors)
538 len = sectors;
540 return len;
544 * This routine returns the disk from which the requested read should
545 * be done. There is a per-array 'next expected sequential IO' sector
546 * number - if this matches on the next IO then we use the last disk.
547 * There is also a per-disk 'last know head position' sector that is
548 * maintained from IRQ contexts, both the normal and the resync IO
549 * completion handlers update this position correctly. If there is no
550 * perfect sequential match then we pick the disk whose head is closest.
552 * If there are 2 mirrors in the same 2 devices, performance degrades
553 * because position is mirror, not device based.
555 * The rdev for the device selected will have nr_pending incremented.
557 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
559 const sector_t this_sector = r1_bio->sector;
560 int sectors;
561 int best_good_sectors;
562 int best_disk, best_dist_disk, best_pending_disk;
563 int has_nonrot_disk;
564 int disk;
565 sector_t best_dist;
566 unsigned int min_pending;
567 struct md_rdev *rdev;
568 int choose_first;
569 int choose_next_idle;
571 rcu_read_lock();
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on, or below the resync window.
575 * We take the first readable disk when above the resync window.
577 retry:
578 sectors = r1_bio->sectors;
579 best_disk = -1;
580 best_dist_disk = -1;
581 best_dist = MaxSector;
582 best_pending_disk = -1;
583 min_pending = UINT_MAX;
584 best_good_sectors = 0;
585 has_nonrot_disk = 0;
586 choose_next_idle = 0;
587 clear_bit(R1BIO_FailFast, &r1_bio->state);
589 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
590 (mddev_is_clustered(conf->mddev) &&
591 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
592 this_sector + sectors)))
593 choose_first = 1;
594 else
595 choose_first = 0;
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 sector_t dist;
599 sector_t first_bad;
600 int bad_sectors;
601 unsigned int pending;
602 bool nonrot;
604 rdev = rcu_dereference(conf->mirrors[disk].rdev);
605 if (r1_bio->bios[disk] == IO_BLOCKED
606 || rdev == NULL
607 || test_bit(Faulty, &rdev->flags))
608 continue;
609 if (!test_bit(In_sync, &rdev->flags) &&
610 rdev->recovery_offset < this_sector + sectors)
611 continue;
612 if (test_bit(WriteMostly, &rdev->flags)) {
613 /* Don't balance among write-mostly, just
614 * use the first as a last resort */
615 if (best_dist_disk < 0) {
616 if (is_badblock(rdev, this_sector, sectors,
617 &first_bad, &bad_sectors)) {
618 if (first_bad <= this_sector)
619 /* Cannot use this */
620 continue;
621 best_good_sectors = first_bad - this_sector;
622 } else
623 best_good_sectors = sectors;
624 best_dist_disk = disk;
625 best_pending_disk = disk;
627 continue;
629 /* This is a reasonable device to use. It might
630 * even be best.
632 if (is_badblock(rdev, this_sector, sectors,
633 &first_bad, &bad_sectors)) {
634 if (best_dist < MaxSector)
635 /* already have a better device */
636 continue;
637 if (first_bad <= this_sector) {
638 /* cannot read here. If this is the 'primary'
639 * device, then we must not read beyond
640 * bad_sectors from another device..
642 bad_sectors -= (this_sector - first_bad);
643 if (choose_first && sectors > bad_sectors)
644 sectors = bad_sectors;
645 if (best_good_sectors > sectors)
646 best_good_sectors = sectors;
648 } else {
649 sector_t good_sectors = first_bad - this_sector;
650 if (good_sectors > best_good_sectors) {
651 best_good_sectors = good_sectors;
652 best_disk = disk;
654 if (choose_first)
655 break;
657 continue;
658 } else {
659 if ((sectors > best_good_sectors) && (best_disk >= 0))
660 best_disk = -1;
661 best_good_sectors = sectors;
664 if (best_disk >= 0)
665 /* At least two disks to choose from so failfast is OK */
666 set_bit(R1BIO_FailFast, &r1_bio->state);
668 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
669 has_nonrot_disk |= nonrot;
670 pending = atomic_read(&rdev->nr_pending);
671 dist = abs(this_sector - conf->mirrors[disk].head_position);
672 if (choose_first) {
673 best_disk = disk;
674 break;
676 /* Don't change to another disk for sequential reads */
677 if (conf->mirrors[disk].next_seq_sect == this_sector
678 || dist == 0) {
679 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
680 struct raid1_info *mirror = &conf->mirrors[disk];
682 best_disk = disk;
684 * If buffered sequential IO size exceeds optimal
685 * iosize, check if there is idle disk. If yes, choose
686 * the idle disk. read_balance could already choose an
687 * idle disk before noticing it's a sequential IO in
688 * this disk. This doesn't matter because this disk
689 * will idle, next time it will be utilized after the
690 * first disk has IO size exceeds optimal iosize. In
691 * this way, iosize of the first disk will be optimal
692 * iosize at least. iosize of the second disk might be
693 * small, but not a big deal since when the second disk
694 * starts IO, the first disk is likely still busy.
696 if (nonrot && opt_iosize > 0 &&
697 mirror->seq_start != MaxSector &&
698 mirror->next_seq_sect > opt_iosize &&
699 mirror->next_seq_sect - opt_iosize >=
700 mirror->seq_start) {
701 choose_next_idle = 1;
702 continue;
704 break;
707 if (choose_next_idle)
708 continue;
710 if (min_pending > pending) {
711 min_pending = pending;
712 best_pending_disk = disk;
715 if (dist < best_dist) {
716 best_dist = dist;
717 best_dist_disk = disk;
722 * If all disks are rotational, choose the closest disk. If any disk is
723 * non-rotational, choose the disk with less pending request even the
724 * disk is rotational, which might/might not be optimal for raids with
725 * mixed ratation/non-rotational disks depending on workload.
727 if (best_disk == -1) {
728 if (has_nonrot_disk || min_pending == 0)
729 best_disk = best_pending_disk;
730 else
731 best_disk = best_dist_disk;
734 if (best_disk >= 0) {
735 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
736 if (!rdev)
737 goto retry;
738 atomic_inc(&rdev->nr_pending);
739 sectors = best_good_sectors;
741 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
742 conf->mirrors[best_disk].seq_start = this_sector;
744 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
746 rcu_read_unlock();
747 *max_sectors = sectors;
749 return best_disk;
752 static int raid1_congested(struct mddev *mddev, int bits)
754 struct r1conf *conf = mddev->private;
755 int i, ret = 0;
757 if ((bits & (1 << WB_async_congested)) &&
758 conf->pending_count >= max_queued_requests)
759 return 1;
761 rcu_read_lock();
762 for (i = 0; i < conf->raid_disks * 2; i++) {
763 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
764 if (rdev && !test_bit(Faulty, &rdev->flags)) {
765 struct request_queue *q = bdev_get_queue(rdev->bdev);
767 BUG_ON(!q);
769 /* Note the '|| 1' - when read_balance prefers
770 * non-congested targets, it can be removed
772 if ((bits & (1 << WB_async_congested)) || 1)
773 ret |= bdi_congested(q->backing_dev_info, bits);
774 else
775 ret &= bdi_congested(q->backing_dev_info, bits);
778 rcu_read_unlock();
779 return ret;
782 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 bitmap_unplug(conf->mddev->bitmap);
786 wake_up(&conf->wait_barrier);
788 while (bio) { /* submit pending writes */
789 struct bio *next = bio->bi_next;
790 struct md_rdev *rdev = (void *)bio->bi_disk;
791 bio->bi_next = NULL;
792 bio_set_dev(bio, rdev->bdev);
793 if (test_bit(Faulty, &rdev->flags)) {
794 bio_io_error(bio);
795 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
796 !blk_queue_discard(bio->bi_disk->queue)))
797 /* Just ignore it */
798 bio_endio(bio);
799 else
800 generic_make_request(bio);
801 bio = next;
805 static void flush_pending_writes(struct r1conf *conf)
807 /* Any writes that have been queued but are awaiting
808 * bitmap updates get flushed here.
810 spin_lock_irq(&conf->device_lock);
812 if (conf->pending_bio_list.head) {
813 struct blk_plug plug;
814 struct bio *bio;
816 bio = bio_list_get(&conf->pending_bio_list);
817 conf->pending_count = 0;
818 spin_unlock_irq(&conf->device_lock);
819 blk_start_plug(&plug);
820 flush_bio_list(conf, bio);
821 blk_finish_plug(&plug);
822 } else
823 spin_unlock_irq(&conf->device_lock);
826 /* Barriers....
827 * Sometimes we need to suspend IO while we do something else,
828 * either some resync/recovery, or reconfigure the array.
829 * To do this we raise a 'barrier'.
830 * The 'barrier' is a counter that can be raised multiple times
831 * to count how many activities are happening which preclude
832 * normal IO.
833 * We can only raise the barrier if there is no pending IO.
834 * i.e. if nr_pending == 0.
835 * We choose only to raise the barrier if no-one is waiting for the
836 * barrier to go down. This means that as soon as an IO request
837 * is ready, no other operations which require a barrier will start
838 * until the IO request has had a chance.
840 * So: regular IO calls 'wait_barrier'. When that returns there
841 * is no backgroup IO happening, It must arrange to call
842 * allow_barrier when it has finished its IO.
843 * backgroup IO calls must call raise_barrier. Once that returns
844 * there is no normal IO happeing. It must arrange to call
845 * lower_barrier when the particular background IO completes.
847 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
849 int idx = sector_to_idx(sector_nr);
851 spin_lock_irq(&conf->resync_lock);
853 /* Wait until no block IO is waiting */
854 wait_event_lock_irq(conf->wait_barrier,
855 !atomic_read(&conf->nr_waiting[idx]),
856 conf->resync_lock);
858 /* block any new IO from starting */
859 atomic_inc(&conf->barrier[idx]);
861 * In raise_barrier() we firstly increase conf->barrier[idx] then
862 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
863 * increase conf->nr_pending[idx] then check conf->barrier[idx].
864 * A memory barrier here to make sure conf->nr_pending[idx] won't
865 * be fetched before conf->barrier[idx] is increased. Otherwise
866 * there will be a race between raise_barrier() and _wait_barrier().
868 smp_mb__after_atomic();
870 /* For these conditions we must wait:
871 * A: while the array is in frozen state
872 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
873 * existing in corresponding I/O barrier bucket.
874 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
875 * max resync count which allowed on current I/O barrier bucket.
877 wait_event_lock_irq(conf->wait_barrier,
878 !conf->array_frozen &&
879 !atomic_read(&conf->nr_pending[idx]) &&
880 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
881 conf->resync_lock);
883 atomic_inc(&conf->nr_sync_pending);
884 spin_unlock_irq(&conf->resync_lock);
887 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
889 int idx = sector_to_idx(sector_nr);
891 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
893 atomic_dec(&conf->barrier[idx]);
894 atomic_dec(&conf->nr_sync_pending);
895 wake_up(&conf->wait_barrier);
898 static void _wait_barrier(struct r1conf *conf, int idx)
901 * We need to increase conf->nr_pending[idx] very early here,
902 * then raise_barrier() can be blocked when it waits for
903 * conf->nr_pending[idx] to be 0. Then we can avoid holding
904 * conf->resync_lock when there is no barrier raised in same
905 * barrier unit bucket. Also if the array is frozen, I/O
906 * should be blocked until array is unfrozen.
908 atomic_inc(&conf->nr_pending[idx]);
910 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
911 * check conf->barrier[idx]. In raise_barrier() we firstly increase
912 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
913 * barrier is necessary here to make sure conf->barrier[idx] won't be
914 * fetched before conf->nr_pending[idx] is increased. Otherwise there
915 * will be a race between _wait_barrier() and raise_barrier().
917 smp_mb__after_atomic();
920 * Don't worry about checking two atomic_t variables at same time
921 * here. If during we check conf->barrier[idx], the array is
922 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
923 * 0, it is safe to return and make the I/O continue. Because the
924 * array is frozen, all I/O returned here will eventually complete
925 * or be queued, no race will happen. See code comment in
926 * frozen_array().
928 if (!READ_ONCE(conf->array_frozen) &&
929 !atomic_read(&conf->barrier[idx]))
930 return;
933 * After holding conf->resync_lock, conf->nr_pending[idx]
934 * should be decreased before waiting for barrier to drop.
935 * Otherwise, we may encounter a race condition because
936 * raise_barrer() might be waiting for conf->nr_pending[idx]
937 * to be 0 at same time.
939 spin_lock_irq(&conf->resync_lock);
940 atomic_inc(&conf->nr_waiting[idx]);
941 atomic_dec(&conf->nr_pending[idx]);
943 * In case freeze_array() is waiting for
944 * get_unqueued_pending() == extra
946 wake_up(&conf->wait_barrier);
947 /* Wait for the barrier in same barrier unit bucket to drop. */
948 wait_event_lock_irq(conf->wait_barrier,
949 !conf->array_frozen &&
950 !atomic_read(&conf->barrier[idx]),
951 conf->resync_lock);
952 atomic_inc(&conf->nr_pending[idx]);
953 atomic_dec(&conf->nr_waiting[idx]);
954 spin_unlock_irq(&conf->resync_lock);
957 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
959 int idx = sector_to_idx(sector_nr);
962 * Very similar to _wait_barrier(). The difference is, for read
963 * I/O we don't need wait for sync I/O, but if the whole array
964 * is frozen, the read I/O still has to wait until the array is
965 * unfrozen. Since there is no ordering requirement with
966 * conf->barrier[idx] here, memory barrier is unnecessary as well.
968 atomic_inc(&conf->nr_pending[idx]);
970 if (!READ_ONCE(conf->array_frozen))
971 return;
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
980 wake_up(&conf->wait_barrier);
981 /* Wait for array to be unfrozen */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->array_frozen,
984 conf->resync_lock);
985 atomic_inc(&conf->nr_pending[idx]);
986 atomic_dec(&conf->nr_waiting[idx]);
987 spin_unlock_irq(&conf->resync_lock);
990 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
992 int idx = sector_to_idx(sector_nr);
994 _wait_barrier(conf, idx);
997 static void _allow_barrier(struct r1conf *conf, int idx)
999 atomic_dec(&conf->nr_pending[idx]);
1000 wake_up(&conf->wait_barrier);
1003 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1005 int idx = sector_to_idx(sector_nr);
1007 _allow_barrier(conf, idx);
1010 /* conf->resync_lock should be held */
1011 static int get_unqueued_pending(struct r1conf *conf)
1013 int idx, ret;
1015 ret = atomic_read(&conf->nr_sync_pending);
1016 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1017 ret += atomic_read(&conf->nr_pending[idx]) -
1018 atomic_read(&conf->nr_queued[idx]);
1020 return ret;
1023 static void freeze_array(struct r1conf *conf, int extra)
1025 /* Stop sync I/O and normal I/O and wait for everything to
1026 * go quiet.
1027 * This is called in two situations:
1028 * 1) management command handlers (reshape, remove disk, quiesce).
1029 * 2) one normal I/O request failed.
1031 * After array_frozen is set to 1, new sync IO will be blocked at
1032 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1033 * or wait_read_barrier(). The flying I/Os will either complete or be
1034 * queued. When everything goes quite, there are only queued I/Os left.
1036 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1037 * barrier bucket index which this I/O request hits. When all sync and
1038 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1039 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1040 * in handle_read_error(), we may call freeze_array() before trying to
1041 * fix the read error. In this case, the error read I/O is not queued,
1042 * so get_unqueued_pending() == 1.
1044 * Therefore before this function returns, we need to wait until
1045 * get_unqueued_pendings(conf) gets equal to extra. For
1046 * normal I/O context, extra is 1, in rested situations extra is 0.
1048 spin_lock_irq(&conf->resync_lock);
1049 conf->array_frozen = 1;
1050 raid1_log(conf->mddev, "wait freeze");
1051 wait_event_lock_irq_cmd(
1052 conf->wait_barrier,
1053 get_unqueued_pending(conf) == extra,
1054 conf->resync_lock,
1055 flush_pending_writes(conf));
1056 spin_unlock_irq(&conf->resync_lock);
1058 static void unfreeze_array(struct r1conf *conf)
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf->resync_lock);
1062 conf->array_frozen = 0;
1063 spin_unlock_irq(&conf->resync_lock);
1064 wake_up(&conf->wait_barrier);
1067 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1068 struct bio *bio)
1070 int size = bio->bi_iter.bi_size;
1071 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1072 int i = 0;
1073 struct bio *behind_bio = NULL;
1075 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1076 if (!behind_bio)
1077 return;
1079 /* discard op, we don't support writezero/writesame yet */
1080 if (!bio_has_data(bio)) {
1081 behind_bio->bi_iter.bi_size = size;
1082 goto skip_copy;
1085 while (i < vcnt && size) {
1086 struct page *page;
1087 int len = min_t(int, PAGE_SIZE, size);
1089 page = alloc_page(GFP_NOIO);
1090 if (unlikely(!page))
1091 goto free_pages;
1093 bio_add_page(behind_bio, page, len, 0);
1095 size -= len;
1096 i++;
1099 bio_copy_data(behind_bio, bio);
1100 skip_copy:
1101 r1_bio->behind_master_bio = behind_bio;;
1102 set_bit(R1BIO_BehindIO, &r1_bio->state);
1104 return;
1106 free_pages:
1107 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1108 bio->bi_iter.bi_size);
1109 bio_free_pages(behind_bio);
1110 bio_put(behind_bio);
1113 struct raid1_plug_cb {
1114 struct blk_plug_cb cb;
1115 struct bio_list pending;
1116 int pending_cnt;
1119 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1121 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1122 cb);
1123 struct mddev *mddev = plug->cb.data;
1124 struct r1conf *conf = mddev->private;
1125 struct bio *bio;
1127 if (from_schedule || current->bio_list) {
1128 spin_lock_irq(&conf->device_lock);
1129 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130 conf->pending_count += plug->pending_cnt;
1131 spin_unlock_irq(&conf->device_lock);
1132 wake_up(&conf->wait_barrier);
1133 md_wakeup_thread(mddev->thread);
1134 kfree(plug);
1135 return;
1138 /* we aren't scheduling, so we can do the write-out directly. */
1139 bio = bio_list_get(&plug->pending);
1140 flush_bio_list(conf, bio);
1141 kfree(plug);
1144 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1146 r1_bio->master_bio = bio;
1147 r1_bio->sectors = bio_sectors(bio);
1148 r1_bio->state = 0;
1149 r1_bio->mddev = mddev;
1150 r1_bio->sector = bio->bi_iter.bi_sector;
1153 static inline struct r1bio *
1154 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1156 struct r1conf *conf = mddev->private;
1157 struct r1bio *r1_bio;
1159 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1160 /* Ensure no bio records IO_BLOCKED */
1161 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1162 init_r1bio(r1_bio, mddev, bio);
1163 return r1_bio;
1166 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1167 int max_read_sectors, struct r1bio *r1_bio)
1169 struct r1conf *conf = mddev->private;
1170 struct raid1_info *mirror;
1171 struct bio *read_bio;
1172 struct bitmap *bitmap = mddev->bitmap;
1173 const int op = bio_op(bio);
1174 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175 int max_sectors;
1176 int rdisk;
1177 bool print_msg = !!r1_bio;
1178 char b[BDEVNAME_SIZE];
1181 * If r1_bio is set, we are blocking the raid1d thread
1182 * so there is a tiny risk of deadlock. So ask for
1183 * emergency memory if needed.
1185 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1187 if (print_msg) {
1188 /* Need to get the block device name carefully */
1189 struct md_rdev *rdev;
1190 rcu_read_lock();
1191 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1192 if (rdev)
1193 bdevname(rdev->bdev, b);
1194 else
1195 strcpy(b, "???");
1196 rcu_read_unlock();
1200 * Still need barrier for READ in case that whole
1201 * array is frozen.
1203 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1205 if (!r1_bio)
1206 r1_bio = alloc_r1bio(mddev, bio);
1207 else
1208 init_r1bio(r1_bio, mddev, bio);
1209 r1_bio->sectors = max_read_sectors;
1212 * make_request() can abort the operation when read-ahead is being
1213 * used and no empty request is available.
1215 rdisk = read_balance(conf, r1_bio, &max_sectors);
1217 if (rdisk < 0) {
1218 /* couldn't find anywhere to read from */
1219 if (print_msg) {
1220 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1221 mdname(mddev),
1223 (unsigned long long)r1_bio->sector);
1225 raid_end_bio_io(r1_bio);
1226 return;
1228 mirror = conf->mirrors + rdisk;
1230 if (print_msg)
1231 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1232 mdname(mddev),
1233 (unsigned long long)r1_bio->sector,
1234 bdevname(mirror->rdev->bdev, b));
1236 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1237 bitmap) {
1239 * Reading from a write-mostly device must take care not to
1240 * over-take any writes that are 'behind'
1242 raid1_log(mddev, "wait behind writes");
1243 wait_event(bitmap->behind_wait,
1244 atomic_read(&bitmap->behind_writes) == 0);
1247 if (max_sectors < bio_sectors(bio)) {
1248 struct bio *split = bio_split(bio, max_sectors,
1249 gfp, conf->bio_split);
1250 bio_chain(split, bio);
1251 generic_make_request(bio);
1252 bio = split;
1253 r1_bio->master_bio = bio;
1254 r1_bio->sectors = max_sectors;
1257 r1_bio->read_disk = rdisk;
1259 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1261 r1_bio->bios[rdisk] = read_bio;
1263 read_bio->bi_iter.bi_sector = r1_bio->sector +
1264 mirror->rdev->data_offset;
1265 bio_set_dev(read_bio, mirror->rdev->bdev);
1266 read_bio->bi_end_io = raid1_end_read_request;
1267 bio_set_op_attrs(read_bio, op, do_sync);
1268 if (test_bit(FailFast, &mirror->rdev->flags) &&
1269 test_bit(R1BIO_FailFast, &r1_bio->state))
1270 read_bio->bi_opf |= MD_FAILFAST;
1271 read_bio->bi_private = r1_bio;
1273 if (mddev->gendisk)
1274 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1275 disk_devt(mddev->gendisk), r1_bio->sector);
1277 generic_make_request(read_bio);
1280 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1281 int max_write_sectors)
1283 struct r1conf *conf = mddev->private;
1284 struct r1bio *r1_bio;
1285 int i, disks;
1286 struct bitmap *bitmap = mddev->bitmap;
1287 unsigned long flags;
1288 struct md_rdev *blocked_rdev;
1289 struct blk_plug_cb *cb;
1290 struct raid1_plug_cb *plug = NULL;
1291 int first_clone;
1292 int max_sectors;
1295 * Register the new request and wait if the reconstruction
1296 * thread has put up a bar for new requests.
1297 * Continue immediately if no resync is active currently.
1301 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303 (mddev_is_clustered(mddev) &&
1304 md_cluster_ops->area_resyncing(mddev, WRITE,
1305 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1308 * As the suspend_* range is controlled by userspace, we want
1309 * an interruptible wait.
1311 DEFINE_WAIT(w);
1312 for (;;) {
1313 sigset_t full, old;
1314 prepare_to_wait(&conf->wait_barrier,
1315 &w, TASK_INTERRUPTIBLE);
1316 if ((bio_end_sector(bio) <= mddev->suspend_lo ||
1317 bio->bi_iter.bi_sector >= mddev->suspend_hi) &&
1318 (!mddev_is_clustered(mddev) ||
1319 !md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio))))
1322 break;
1323 sigfillset(&full);
1324 sigprocmask(SIG_BLOCK, &full, &old);
1325 schedule();
1326 sigprocmask(SIG_SETMASK, &old, NULL);
1328 finish_wait(&conf->wait_barrier, &w);
1330 wait_barrier(conf, bio->bi_iter.bi_sector);
1332 r1_bio = alloc_r1bio(mddev, bio);
1333 r1_bio->sectors = max_write_sectors;
1335 if (conf->pending_count >= max_queued_requests) {
1336 md_wakeup_thread(mddev->thread);
1337 raid1_log(mddev, "wait queued");
1338 wait_event(conf->wait_barrier,
1339 conf->pending_count < max_queued_requests);
1341 /* first select target devices under rcu_lock and
1342 * inc refcount on their rdev. Record them by setting
1343 * bios[x] to bio
1344 * If there are known/acknowledged bad blocks on any device on
1345 * which we have seen a write error, we want to avoid writing those
1346 * blocks.
1347 * This potentially requires several writes to write around
1348 * the bad blocks. Each set of writes gets it's own r1bio
1349 * with a set of bios attached.
1352 disks = conf->raid_disks * 2;
1353 retry_write:
1354 blocked_rdev = NULL;
1355 rcu_read_lock();
1356 max_sectors = r1_bio->sectors;
1357 for (i = 0; i < disks; i++) {
1358 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1359 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1360 atomic_inc(&rdev->nr_pending);
1361 blocked_rdev = rdev;
1362 break;
1364 r1_bio->bios[i] = NULL;
1365 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1366 if (i < conf->raid_disks)
1367 set_bit(R1BIO_Degraded, &r1_bio->state);
1368 continue;
1371 atomic_inc(&rdev->nr_pending);
1372 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1373 sector_t first_bad;
1374 int bad_sectors;
1375 int is_bad;
1377 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1378 &first_bad, &bad_sectors);
1379 if (is_bad < 0) {
1380 /* mustn't write here until the bad block is
1381 * acknowledged*/
1382 set_bit(BlockedBadBlocks, &rdev->flags);
1383 blocked_rdev = rdev;
1384 break;
1386 if (is_bad && first_bad <= r1_bio->sector) {
1387 /* Cannot write here at all */
1388 bad_sectors -= (r1_bio->sector - first_bad);
1389 if (bad_sectors < max_sectors)
1390 /* mustn't write more than bad_sectors
1391 * to other devices yet
1393 max_sectors = bad_sectors;
1394 rdev_dec_pending(rdev, mddev);
1395 /* We don't set R1BIO_Degraded as that
1396 * only applies if the disk is
1397 * missing, so it might be re-added,
1398 * and we want to know to recover this
1399 * chunk.
1400 * In this case the device is here,
1401 * and the fact that this chunk is not
1402 * in-sync is recorded in the bad
1403 * block log
1405 continue;
1407 if (is_bad) {
1408 int good_sectors = first_bad - r1_bio->sector;
1409 if (good_sectors < max_sectors)
1410 max_sectors = good_sectors;
1413 r1_bio->bios[i] = bio;
1415 rcu_read_unlock();
1417 if (unlikely(blocked_rdev)) {
1418 /* Wait for this device to become unblocked */
1419 int j;
1421 for (j = 0; j < i; j++)
1422 if (r1_bio->bios[j])
1423 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1424 r1_bio->state = 0;
1425 allow_barrier(conf, bio->bi_iter.bi_sector);
1426 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1427 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428 wait_barrier(conf, bio->bi_iter.bi_sector);
1429 goto retry_write;
1432 if (max_sectors < bio_sectors(bio)) {
1433 struct bio *split = bio_split(bio, max_sectors,
1434 GFP_NOIO, conf->bio_split);
1435 bio_chain(split, bio);
1436 generic_make_request(bio);
1437 bio = split;
1438 r1_bio->master_bio = bio;
1439 r1_bio->sectors = max_sectors;
1442 atomic_set(&r1_bio->remaining, 1);
1443 atomic_set(&r1_bio->behind_remaining, 0);
1445 first_clone = 1;
1447 for (i = 0; i < disks; i++) {
1448 struct bio *mbio = NULL;
1449 if (!r1_bio->bios[i])
1450 continue;
1453 if (first_clone) {
1454 /* do behind I/O ?
1455 * Not if there are too many, or cannot
1456 * allocate memory, or a reader on WriteMostly
1457 * is waiting for behind writes to flush */
1458 if (bitmap &&
1459 (atomic_read(&bitmap->behind_writes)
1460 < mddev->bitmap_info.max_write_behind) &&
1461 !waitqueue_active(&bitmap->behind_wait)) {
1462 alloc_behind_master_bio(r1_bio, bio);
1465 bitmap_startwrite(bitmap, r1_bio->sector,
1466 r1_bio->sectors,
1467 test_bit(R1BIO_BehindIO,
1468 &r1_bio->state));
1469 first_clone = 0;
1472 if (r1_bio->behind_master_bio)
1473 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1474 GFP_NOIO, mddev->bio_set);
1475 else
1476 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1478 if (r1_bio->behind_master_bio) {
1479 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1480 atomic_inc(&r1_bio->behind_remaining);
1483 r1_bio->bios[i] = mbio;
1485 mbio->bi_iter.bi_sector = (r1_bio->sector +
1486 conf->mirrors[i].rdev->data_offset);
1487 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1488 mbio->bi_end_io = raid1_end_write_request;
1489 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1490 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1491 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1492 conf->raid_disks - mddev->degraded > 1)
1493 mbio->bi_opf |= MD_FAILFAST;
1494 mbio->bi_private = r1_bio;
1496 atomic_inc(&r1_bio->remaining);
1498 if (mddev->gendisk)
1499 trace_block_bio_remap(mbio->bi_disk->queue,
1500 mbio, disk_devt(mddev->gendisk),
1501 r1_bio->sector);
1502 /* flush_pending_writes() needs access to the rdev so...*/
1503 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1505 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1506 if (cb)
1507 plug = container_of(cb, struct raid1_plug_cb, cb);
1508 else
1509 plug = NULL;
1510 if (plug) {
1511 bio_list_add(&plug->pending, mbio);
1512 plug->pending_cnt++;
1513 } else {
1514 spin_lock_irqsave(&conf->device_lock, flags);
1515 bio_list_add(&conf->pending_bio_list, mbio);
1516 conf->pending_count++;
1517 spin_unlock_irqrestore(&conf->device_lock, flags);
1518 md_wakeup_thread(mddev->thread);
1522 r1_bio_write_done(r1_bio);
1524 /* In case raid1d snuck in to freeze_array */
1525 wake_up(&conf->wait_barrier);
1528 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1530 sector_t sectors;
1532 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1533 md_flush_request(mddev, bio);
1534 return true;
1538 * There is a limit to the maximum size, but
1539 * the read/write handler might find a lower limit
1540 * due to bad blocks. To avoid multiple splits,
1541 * we pass the maximum number of sectors down
1542 * and let the lower level perform the split.
1544 sectors = align_to_barrier_unit_end(
1545 bio->bi_iter.bi_sector, bio_sectors(bio));
1547 if (bio_data_dir(bio) == READ)
1548 raid1_read_request(mddev, bio, sectors, NULL);
1549 else {
1550 if (!md_write_start(mddev,bio))
1551 return false;
1552 raid1_write_request(mddev, bio, sectors);
1554 return true;
1557 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1559 struct r1conf *conf = mddev->private;
1560 int i;
1562 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1563 conf->raid_disks - mddev->degraded);
1564 rcu_read_lock();
1565 for (i = 0; i < conf->raid_disks; i++) {
1566 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1567 seq_printf(seq, "%s",
1568 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1570 rcu_read_unlock();
1571 seq_printf(seq, "]");
1574 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1576 char b[BDEVNAME_SIZE];
1577 struct r1conf *conf = mddev->private;
1578 unsigned long flags;
1581 * If it is not operational, then we have already marked it as dead
1582 * else if it is the last working disks, ignore the error, let the
1583 * next level up know.
1584 * else mark the drive as failed
1586 spin_lock_irqsave(&conf->device_lock, flags);
1587 if (test_bit(In_sync, &rdev->flags)
1588 && (conf->raid_disks - mddev->degraded) == 1) {
1590 * Don't fail the drive, act as though we were just a
1591 * normal single drive.
1592 * However don't try a recovery from this drive as
1593 * it is very likely to fail.
1595 conf->recovery_disabled = mddev->recovery_disabled;
1596 spin_unlock_irqrestore(&conf->device_lock, flags);
1597 return;
1599 set_bit(Blocked, &rdev->flags);
1600 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1601 mddev->degraded++;
1602 set_bit(Faulty, &rdev->flags);
1603 } else
1604 set_bit(Faulty, &rdev->flags);
1605 spin_unlock_irqrestore(&conf->device_lock, flags);
1607 * if recovery is running, make sure it aborts.
1609 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1610 set_mask_bits(&mddev->sb_flags, 0,
1611 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1612 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1613 "md/raid1:%s: Operation continuing on %d devices.\n",
1614 mdname(mddev), bdevname(rdev->bdev, b),
1615 mdname(mddev), conf->raid_disks - mddev->degraded);
1618 static void print_conf(struct r1conf *conf)
1620 int i;
1622 pr_debug("RAID1 conf printout:\n");
1623 if (!conf) {
1624 pr_debug("(!conf)\n");
1625 return;
1627 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1628 conf->raid_disks);
1630 rcu_read_lock();
1631 for (i = 0; i < conf->raid_disks; i++) {
1632 char b[BDEVNAME_SIZE];
1633 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1634 if (rdev)
1635 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1636 i, !test_bit(In_sync, &rdev->flags),
1637 !test_bit(Faulty, &rdev->flags),
1638 bdevname(rdev->bdev,b));
1640 rcu_read_unlock();
1643 static void close_sync(struct r1conf *conf)
1645 int idx;
1647 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1648 _wait_barrier(conf, idx);
1649 _allow_barrier(conf, idx);
1652 mempool_destroy(conf->r1buf_pool);
1653 conf->r1buf_pool = NULL;
1656 static int raid1_spare_active(struct mddev *mddev)
1658 int i;
1659 struct r1conf *conf = mddev->private;
1660 int count = 0;
1661 unsigned long flags;
1664 * Find all failed disks within the RAID1 configuration
1665 * and mark them readable.
1666 * Called under mddev lock, so rcu protection not needed.
1667 * device_lock used to avoid races with raid1_end_read_request
1668 * which expects 'In_sync' flags and ->degraded to be consistent.
1670 spin_lock_irqsave(&conf->device_lock, flags);
1671 for (i = 0; i < conf->raid_disks; i++) {
1672 struct md_rdev *rdev = conf->mirrors[i].rdev;
1673 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1674 if (repl
1675 && !test_bit(Candidate, &repl->flags)
1676 && repl->recovery_offset == MaxSector
1677 && !test_bit(Faulty, &repl->flags)
1678 && !test_and_set_bit(In_sync, &repl->flags)) {
1679 /* replacement has just become active */
1680 if (!rdev ||
1681 !test_and_clear_bit(In_sync, &rdev->flags))
1682 count++;
1683 if (rdev) {
1684 /* Replaced device not technically
1685 * faulty, but we need to be sure
1686 * it gets removed and never re-added
1688 set_bit(Faulty, &rdev->flags);
1689 sysfs_notify_dirent_safe(
1690 rdev->sysfs_state);
1693 if (rdev
1694 && rdev->recovery_offset == MaxSector
1695 && !test_bit(Faulty, &rdev->flags)
1696 && !test_and_set_bit(In_sync, &rdev->flags)) {
1697 count++;
1698 sysfs_notify_dirent_safe(rdev->sysfs_state);
1701 mddev->degraded -= count;
1702 spin_unlock_irqrestore(&conf->device_lock, flags);
1704 print_conf(conf);
1705 return count;
1708 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1710 struct r1conf *conf = mddev->private;
1711 int err = -EEXIST;
1712 int mirror = 0;
1713 struct raid1_info *p;
1714 int first = 0;
1715 int last = conf->raid_disks - 1;
1717 if (mddev->recovery_disabled == conf->recovery_disabled)
1718 return -EBUSY;
1720 if (md_integrity_add_rdev(rdev, mddev))
1721 return -ENXIO;
1723 if (rdev->raid_disk >= 0)
1724 first = last = rdev->raid_disk;
1727 * find the disk ... but prefer rdev->saved_raid_disk
1728 * if possible.
1730 if (rdev->saved_raid_disk >= 0 &&
1731 rdev->saved_raid_disk >= first &&
1732 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1733 first = last = rdev->saved_raid_disk;
1735 for (mirror = first; mirror <= last; mirror++) {
1736 p = conf->mirrors+mirror;
1737 if (!p->rdev) {
1739 if (mddev->gendisk)
1740 disk_stack_limits(mddev->gendisk, rdev->bdev,
1741 rdev->data_offset << 9);
1743 p->head_position = 0;
1744 rdev->raid_disk = mirror;
1745 err = 0;
1746 /* As all devices are equivalent, we don't need a full recovery
1747 * if this was recently any drive of the array
1749 if (rdev->saved_raid_disk < 0)
1750 conf->fullsync = 1;
1751 rcu_assign_pointer(p->rdev, rdev);
1752 break;
1754 if (test_bit(WantReplacement, &p->rdev->flags) &&
1755 p[conf->raid_disks].rdev == NULL) {
1756 /* Add this device as a replacement */
1757 clear_bit(In_sync, &rdev->flags);
1758 set_bit(Replacement, &rdev->flags);
1759 rdev->raid_disk = mirror;
1760 err = 0;
1761 conf->fullsync = 1;
1762 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1763 break;
1766 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1767 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1768 print_conf(conf);
1769 return err;
1772 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 struct r1conf *conf = mddev->private;
1775 int err = 0;
1776 int number = rdev->raid_disk;
1777 struct raid1_info *p = conf->mirrors + number;
1779 if (rdev != p->rdev)
1780 p = conf->mirrors + conf->raid_disks + number;
1782 print_conf(conf);
1783 if (rdev == p->rdev) {
1784 if (test_bit(In_sync, &rdev->flags) ||
1785 atomic_read(&rdev->nr_pending)) {
1786 err = -EBUSY;
1787 goto abort;
1789 /* Only remove non-faulty devices if recovery
1790 * is not possible.
1792 if (!test_bit(Faulty, &rdev->flags) &&
1793 mddev->recovery_disabled != conf->recovery_disabled &&
1794 mddev->degraded < conf->raid_disks) {
1795 err = -EBUSY;
1796 goto abort;
1798 p->rdev = NULL;
1799 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1800 synchronize_rcu();
1801 if (atomic_read(&rdev->nr_pending)) {
1802 /* lost the race, try later */
1803 err = -EBUSY;
1804 p->rdev = rdev;
1805 goto abort;
1808 if (conf->mirrors[conf->raid_disks + number].rdev) {
1809 /* We just removed a device that is being replaced.
1810 * Move down the replacement. We drain all IO before
1811 * doing this to avoid confusion.
1813 struct md_rdev *repl =
1814 conf->mirrors[conf->raid_disks + number].rdev;
1815 freeze_array(conf, 0);
1816 if (atomic_read(&repl->nr_pending)) {
1817 /* It means that some queued IO of retry_list
1818 * hold repl. Thus, we cannot set replacement
1819 * as NULL, avoiding rdev NULL pointer
1820 * dereference in sync_request_write and
1821 * handle_write_finished.
1823 err = -EBUSY;
1824 unfreeze_array(conf);
1825 goto abort;
1827 clear_bit(Replacement, &repl->flags);
1828 p->rdev = repl;
1829 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1830 unfreeze_array(conf);
1833 clear_bit(WantReplacement, &rdev->flags);
1834 err = md_integrity_register(mddev);
1836 abort:
1838 print_conf(conf);
1839 return err;
1842 static void end_sync_read(struct bio *bio)
1844 struct r1bio *r1_bio = get_resync_r1bio(bio);
1846 update_head_pos(r1_bio->read_disk, r1_bio);
1849 * we have read a block, now it needs to be re-written,
1850 * or re-read if the read failed.
1851 * We don't do much here, just schedule handling by raid1d
1853 if (!bio->bi_status)
1854 set_bit(R1BIO_Uptodate, &r1_bio->state);
1856 if (atomic_dec_and_test(&r1_bio->remaining))
1857 reschedule_retry(r1_bio);
1860 static void end_sync_write(struct bio *bio)
1862 int uptodate = !bio->bi_status;
1863 struct r1bio *r1_bio = get_resync_r1bio(bio);
1864 struct mddev *mddev = r1_bio->mddev;
1865 struct r1conf *conf = mddev->private;
1866 sector_t first_bad;
1867 int bad_sectors;
1868 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1870 if (!uptodate) {
1871 sector_t sync_blocks = 0;
1872 sector_t s = r1_bio->sector;
1873 long sectors_to_go = r1_bio->sectors;
1874 /* make sure these bits doesn't get cleared. */
1875 do {
1876 bitmap_end_sync(mddev->bitmap, s,
1877 &sync_blocks, 1);
1878 s += sync_blocks;
1879 sectors_to_go -= sync_blocks;
1880 } while (sectors_to_go > 0);
1881 set_bit(WriteErrorSeen, &rdev->flags);
1882 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1883 set_bit(MD_RECOVERY_NEEDED, &
1884 mddev->recovery);
1885 set_bit(R1BIO_WriteError, &r1_bio->state);
1886 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1887 &first_bad, &bad_sectors) &&
1888 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1889 r1_bio->sector,
1890 r1_bio->sectors,
1891 &first_bad, &bad_sectors)
1893 set_bit(R1BIO_MadeGood, &r1_bio->state);
1895 if (atomic_dec_and_test(&r1_bio->remaining)) {
1896 int s = r1_bio->sectors;
1897 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1898 test_bit(R1BIO_WriteError, &r1_bio->state))
1899 reschedule_retry(r1_bio);
1900 else {
1901 put_buf(r1_bio);
1902 md_done_sync(mddev, s, uptodate);
1907 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1908 int sectors, struct page *page, int rw)
1910 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1911 /* success */
1912 return 1;
1913 if (rw == WRITE) {
1914 set_bit(WriteErrorSeen, &rdev->flags);
1915 if (!test_and_set_bit(WantReplacement,
1916 &rdev->flags))
1917 set_bit(MD_RECOVERY_NEEDED, &
1918 rdev->mddev->recovery);
1920 /* need to record an error - either for the block or the device */
1921 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1922 md_error(rdev->mddev, rdev);
1923 return 0;
1926 static int fix_sync_read_error(struct r1bio *r1_bio)
1928 /* Try some synchronous reads of other devices to get
1929 * good data, much like with normal read errors. Only
1930 * read into the pages we already have so we don't
1931 * need to re-issue the read request.
1932 * We don't need to freeze the array, because being in an
1933 * active sync request, there is no normal IO, and
1934 * no overlapping syncs.
1935 * We don't need to check is_badblock() again as we
1936 * made sure that anything with a bad block in range
1937 * will have bi_end_io clear.
1939 struct mddev *mddev = r1_bio->mddev;
1940 struct r1conf *conf = mddev->private;
1941 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1942 struct page **pages = get_resync_pages(bio)->pages;
1943 sector_t sect = r1_bio->sector;
1944 int sectors = r1_bio->sectors;
1945 int idx = 0;
1946 struct md_rdev *rdev;
1948 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1949 if (test_bit(FailFast, &rdev->flags)) {
1950 /* Don't try recovering from here - just fail it
1951 * ... unless it is the last working device of course */
1952 md_error(mddev, rdev);
1953 if (test_bit(Faulty, &rdev->flags))
1954 /* Don't try to read from here, but make sure
1955 * put_buf does it's thing
1957 bio->bi_end_io = end_sync_write;
1960 while(sectors) {
1961 int s = sectors;
1962 int d = r1_bio->read_disk;
1963 int success = 0;
1964 int start;
1966 if (s > (PAGE_SIZE>>9))
1967 s = PAGE_SIZE >> 9;
1968 do {
1969 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1970 /* No rcu protection needed here devices
1971 * can only be removed when no resync is
1972 * active, and resync is currently active
1974 rdev = conf->mirrors[d].rdev;
1975 if (sync_page_io(rdev, sect, s<<9,
1976 pages[idx],
1977 REQ_OP_READ, 0, false)) {
1978 success = 1;
1979 break;
1982 d++;
1983 if (d == conf->raid_disks * 2)
1984 d = 0;
1985 } while (!success && d != r1_bio->read_disk);
1987 if (!success) {
1988 char b[BDEVNAME_SIZE];
1989 int abort = 0;
1990 /* Cannot read from anywhere, this block is lost.
1991 * Record a bad block on each device. If that doesn't
1992 * work just disable and interrupt the recovery.
1993 * Don't fail devices as that won't really help.
1995 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1996 mdname(mddev), bio_devname(bio, b),
1997 (unsigned long long)r1_bio->sector);
1998 for (d = 0; d < conf->raid_disks * 2; d++) {
1999 rdev = conf->mirrors[d].rdev;
2000 if (!rdev || test_bit(Faulty, &rdev->flags))
2001 continue;
2002 if (!rdev_set_badblocks(rdev, sect, s, 0))
2003 abort = 1;
2005 if (abort) {
2006 conf->recovery_disabled =
2007 mddev->recovery_disabled;
2008 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2009 md_done_sync(mddev, r1_bio->sectors, 0);
2010 put_buf(r1_bio);
2011 return 0;
2013 /* Try next page */
2014 sectors -= s;
2015 sect += s;
2016 idx++;
2017 continue;
2020 start = d;
2021 /* write it back and re-read */
2022 while (d != r1_bio->read_disk) {
2023 if (d == 0)
2024 d = conf->raid_disks * 2;
2025 d--;
2026 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2027 continue;
2028 rdev = conf->mirrors[d].rdev;
2029 if (r1_sync_page_io(rdev, sect, s,
2030 pages[idx],
2031 WRITE) == 0) {
2032 r1_bio->bios[d]->bi_end_io = NULL;
2033 rdev_dec_pending(rdev, mddev);
2036 d = start;
2037 while (d != r1_bio->read_disk) {
2038 if (d == 0)
2039 d = conf->raid_disks * 2;
2040 d--;
2041 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2042 continue;
2043 rdev = conf->mirrors[d].rdev;
2044 if (r1_sync_page_io(rdev, sect, s,
2045 pages[idx],
2046 READ) != 0)
2047 atomic_add(s, &rdev->corrected_errors);
2049 sectors -= s;
2050 sect += s;
2051 idx ++;
2053 set_bit(R1BIO_Uptodate, &r1_bio->state);
2054 bio->bi_status = 0;
2055 return 1;
2058 static void process_checks(struct r1bio *r1_bio)
2060 /* We have read all readable devices. If we haven't
2061 * got the block, then there is no hope left.
2062 * If we have, then we want to do a comparison
2063 * and skip the write if everything is the same.
2064 * If any blocks failed to read, then we need to
2065 * attempt an over-write
2067 struct mddev *mddev = r1_bio->mddev;
2068 struct r1conf *conf = mddev->private;
2069 int primary;
2070 int i;
2071 int vcnt;
2073 /* Fix variable parts of all bios */
2074 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2075 for (i = 0; i < conf->raid_disks * 2; i++) {
2076 blk_status_t status;
2077 struct bio *b = r1_bio->bios[i];
2078 struct resync_pages *rp = get_resync_pages(b);
2079 if (b->bi_end_io != end_sync_read)
2080 continue;
2081 /* fixup the bio for reuse, but preserve errno */
2082 status = b->bi_status;
2083 bio_reset(b);
2084 b->bi_status = status;
2085 b->bi_iter.bi_sector = r1_bio->sector +
2086 conf->mirrors[i].rdev->data_offset;
2087 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2088 b->bi_end_io = end_sync_read;
2089 rp->raid_bio = r1_bio;
2090 b->bi_private = rp;
2092 /* initialize bvec table again */
2093 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2095 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2096 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2097 !r1_bio->bios[primary]->bi_status) {
2098 r1_bio->bios[primary]->bi_end_io = NULL;
2099 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2100 break;
2102 r1_bio->read_disk = primary;
2103 for (i = 0; i < conf->raid_disks * 2; i++) {
2104 int j;
2105 struct bio *pbio = r1_bio->bios[primary];
2106 struct bio *sbio = r1_bio->bios[i];
2107 blk_status_t status = sbio->bi_status;
2108 struct page **ppages = get_resync_pages(pbio)->pages;
2109 struct page **spages = get_resync_pages(sbio)->pages;
2110 struct bio_vec *bi;
2111 int page_len[RESYNC_PAGES] = { 0 };
2113 if (sbio->bi_end_io != end_sync_read)
2114 continue;
2115 /* Now we can 'fixup' the error value */
2116 sbio->bi_status = 0;
2118 bio_for_each_segment_all(bi, sbio, j)
2119 page_len[j] = bi->bv_len;
2121 if (!status) {
2122 for (j = vcnt; j-- ; ) {
2123 if (memcmp(page_address(ppages[j]),
2124 page_address(spages[j]),
2125 page_len[j]))
2126 break;
2128 } else
2129 j = 0;
2130 if (j >= 0)
2131 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2132 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2133 && !status)) {
2134 /* No need to write to this device. */
2135 sbio->bi_end_io = NULL;
2136 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2137 continue;
2140 bio_copy_data(sbio, pbio);
2144 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2146 struct r1conf *conf = mddev->private;
2147 int i;
2148 int disks = conf->raid_disks * 2;
2149 struct bio *wbio;
2151 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2152 /* ouch - failed to read all of that. */
2153 if (!fix_sync_read_error(r1_bio))
2154 return;
2156 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2157 process_checks(r1_bio);
2160 * schedule writes
2162 atomic_set(&r1_bio->remaining, 1);
2163 for (i = 0; i < disks ; i++) {
2164 wbio = r1_bio->bios[i];
2165 if (wbio->bi_end_io == NULL ||
2166 (wbio->bi_end_io == end_sync_read &&
2167 (i == r1_bio->read_disk ||
2168 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2169 continue;
2170 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2171 continue;
2173 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2174 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2175 wbio->bi_opf |= MD_FAILFAST;
2177 wbio->bi_end_io = end_sync_write;
2178 atomic_inc(&r1_bio->remaining);
2179 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2181 generic_make_request(wbio);
2184 if (atomic_dec_and_test(&r1_bio->remaining)) {
2185 /* if we're here, all write(s) have completed, so clean up */
2186 int s = r1_bio->sectors;
2187 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2188 test_bit(R1BIO_WriteError, &r1_bio->state))
2189 reschedule_retry(r1_bio);
2190 else {
2191 put_buf(r1_bio);
2192 md_done_sync(mddev, s, 1);
2198 * This is a kernel thread which:
2200 * 1. Retries failed read operations on working mirrors.
2201 * 2. Updates the raid superblock when problems encounter.
2202 * 3. Performs writes following reads for array synchronising.
2205 static void fix_read_error(struct r1conf *conf, int read_disk,
2206 sector_t sect, int sectors)
2208 struct mddev *mddev = conf->mddev;
2209 while(sectors) {
2210 int s = sectors;
2211 int d = read_disk;
2212 int success = 0;
2213 int start;
2214 struct md_rdev *rdev;
2216 if (s > (PAGE_SIZE>>9))
2217 s = PAGE_SIZE >> 9;
2219 do {
2220 sector_t first_bad;
2221 int bad_sectors;
2223 rcu_read_lock();
2224 rdev = rcu_dereference(conf->mirrors[d].rdev);
2225 if (rdev &&
2226 (test_bit(In_sync, &rdev->flags) ||
2227 (!test_bit(Faulty, &rdev->flags) &&
2228 rdev->recovery_offset >= sect + s)) &&
2229 is_badblock(rdev, sect, s,
2230 &first_bad, &bad_sectors) == 0) {
2231 atomic_inc(&rdev->nr_pending);
2232 rcu_read_unlock();
2233 if (sync_page_io(rdev, sect, s<<9,
2234 conf->tmppage, REQ_OP_READ, 0, false))
2235 success = 1;
2236 rdev_dec_pending(rdev, mddev);
2237 if (success)
2238 break;
2239 } else
2240 rcu_read_unlock();
2241 d++;
2242 if (d == conf->raid_disks * 2)
2243 d = 0;
2244 } while (!success && d != read_disk);
2246 if (!success) {
2247 /* Cannot read from anywhere - mark it bad */
2248 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2249 if (!rdev_set_badblocks(rdev, sect, s, 0))
2250 md_error(mddev, rdev);
2251 break;
2253 /* write it back and re-read */
2254 start = d;
2255 while (d != read_disk) {
2256 if (d==0)
2257 d = conf->raid_disks * 2;
2258 d--;
2259 rcu_read_lock();
2260 rdev = rcu_dereference(conf->mirrors[d].rdev);
2261 if (rdev &&
2262 !test_bit(Faulty, &rdev->flags)) {
2263 atomic_inc(&rdev->nr_pending);
2264 rcu_read_unlock();
2265 r1_sync_page_io(rdev, sect, s,
2266 conf->tmppage, WRITE);
2267 rdev_dec_pending(rdev, mddev);
2268 } else
2269 rcu_read_unlock();
2271 d = start;
2272 while (d != read_disk) {
2273 char b[BDEVNAME_SIZE];
2274 if (d==0)
2275 d = conf->raid_disks * 2;
2276 d--;
2277 rcu_read_lock();
2278 rdev = rcu_dereference(conf->mirrors[d].rdev);
2279 if (rdev &&
2280 !test_bit(Faulty, &rdev->flags)) {
2281 atomic_inc(&rdev->nr_pending);
2282 rcu_read_unlock();
2283 if (r1_sync_page_io(rdev, sect, s,
2284 conf->tmppage, READ)) {
2285 atomic_add(s, &rdev->corrected_errors);
2286 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2287 mdname(mddev), s,
2288 (unsigned long long)(sect +
2289 rdev->data_offset),
2290 bdevname(rdev->bdev, b));
2292 rdev_dec_pending(rdev, mddev);
2293 } else
2294 rcu_read_unlock();
2296 sectors -= s;
2297 sect += s;
2301 static int narrow_write_error(struct r1bio *r1_bio, int i)
2303 struct mddev *mddev = r1_bio->mddev;
2304 struct r1conf *conf = mddev->private;
2305 struct md_rdev *rdev = conf->mirrors[i].rdev;
2307 /* bio has the data to be written to device 'i' where
2308 * we just recently had a write error.
2309 * We repeatedly clone the bio and trim down to one block,
2310 * then try the write. Where the write fails we record
2311 * a bad block.
2312 * It is conceivable that the bio doesn't exactly align with
2313 * blocks. We must handle this somehow.
2315 * We currently own a reference on the rdev.
2318 int block_sectors;
2319 sector_t sector;
2320 int sectors;
2321 int sect_to_write = r1_bio->sectors;
2322 int ok = 1;
2324 if (rdev->badblocks.shift < 0)
2325 return 0;
2327 block_sectors = roundup(1 << rdev->badblocks.shift,
2328 bdev_logical_block_size(rdev->bdev) >> 9);
2329 sector = r1_bio->sector;
2330 sectors = ((sector + block_sectors)
2331 & ~(sector_t)(block_sectors - 1))
2332 - sector;
2334 while (sect_to_write) {
2335 struct bio *wbio;
2336 if (sectors > sect_to_write)
2337 sectors = sect_to_write;
2338 /* Write at 'sector' for 'sectors'*/
2340 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2341 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2342 GFP_NOIO,
2343 mddev->bio_set);
2344 } else {
2345 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2346 mddev->bio_set);
2349 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2350 wbio->bi_iter.bi_sector = r1_bio->sector;
2351 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2353 bio_trim(wbio, sector - r1_bio->sector, sectors);
2354 wbio->bi_iter.bi_sector += rdev->data_offset;
2355 bio_set_dev(wbio, rdev->bdev);
2357 if (submit_bio_wait(wbio) < 0)
2358 /* failure! */
2359 ok = rdev_set_badblocks(rdev, sector,
2360 sectors, 0)
2361 && ok;
2363 bio_put(wbio);
2364 sect_to_write -= sectors;
2365 sector += sectors;
2366 sectors = block_sectors;
2368 return ok;
2371 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2373 int m;
2374 int s = r1_bio->sectors;
2375 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2376 struct md_rdev *rdev = conf->mirrors[m].rdev;
2377 struct bio *bio = r1_bio->bios[m];
2378 if (bio->bi_end_io == NULL)
2379 continue;
2380 if (!bio->bi_status &&
2381 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2382 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2384 if (bio->bi_status &&
2385 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2386 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2387 md_error(conf->mddev, rdev);
2390 put_buf(r1_bio);
2391 md_done_sync(conf->mddev, s, 1);
2394 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2396 int m, idx;
2397 bool fail = false;
2399 for (m = 0; m < conf->raid_disks * 2 ; m++)
2400 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2401 struct md_rdev *rdev = conf->mirrors[m].rdev;
2402 rdev_clear_badblocks(rdev,
2403 r1_bio->sector,
2404 r1_bio->sectors, 0);
2405 rdev_dec_pending(rdev, conf->mddev);
2406 } else if (r1_bio->bios[m] != NULL) {
2407 /* This drive got a write error. We need to
2408 * narrow down and record precise write
2409 * errors.
2411 fail = true;
2412 if (!narrow_write_error(r1_bio, m)) {
2413 md_error(conf->mddev,
2414 conf->mirrors[m].rdev);
2415 /* an I/O failed, we can't clear the bitmap */
2416 set_bit(R1BIO_Degraded, &r1_bio->state);
2418 rdev_dec_pending(conf->mirrors[m].rdev,
2419 conf->mddev);
2421 if (fail) {
2422 spin_lock_irq(&conf->device_lock);
2423 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2424 idx = sector_to_idx(r1_bio->sector);
2425 atomic_inc(&conf->nr_queued[idx]);
2426 spin_unlock_irq(&conf->device_lock);
2428 * In case freeze_array() is waiting for condition
2429 * get_unqueued_pending() == extra to be true.
2431 wake_up(&conf->wait_barrier);
2432 md_wakeup_thread(conf->mddev->thread);
2433 } else {
2434 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2435 close_write(r1_bio);
2436 raid_end_bio_io(r1_bio);
2440 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2442 struct mddev *mddev = conf->mddev;
2443 struct bio *bio;
2444 struct md_rdev *rdev;
2445 sector_t bio_sector;
2447 clear_bit(R1BIO_ReadError, &r1_bio->state);
2448 /* we got a read error. Maybe the drive is bad. Maybe just
2449 * the block and we can fix it.
2450 * We freeze all other IO, and try reading the block from
2451 * other devices. When we find one, we re-write
2452 * and check it that fixes the read error.
2453 * This is all done synchronously while the array is
2454 * frozen
2457 bio = r1_bio->bios[r1_bio->read_disk];
2458 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2459 bio_put(bio);
2460 r1_bio->bios[r1_bio->read_disk] = NULL;
2462 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2463 if (mddev->ro == 0
2464 && !test_bit(FailFast, &rdev->flags)) {
2465 freeze_array(conf, 1);
2466 fix_read_error(conf, r1_bio->read_disk,
2467 r1_bio->sector, r1_bio->sectors);
2468 unfreeze_array(conf);
2469 } else {
2470 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2473 rdev_dec_pending(rdev, conf->mddev);
2474 allow_barrier(conf, r1_bio->sector);
2475 bio = r1_bio->master_bio;
2477 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2478 r1_bio->state = 0;
2479 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2482 static void raid1d(struct md_thread *thread)
2484 struct mddev *mddev = thread->mddev;
2485 struct r1bio *r1_bio;
2486 unsigned long flags;
2487 struct r1conf *conf = mddev->private;
2488 struct list_head *head = &conf->retry_list;
2489 struct blk_plug plug;
2490 int idx;
2492 md_check_recovery(mddev);
2494 if (!list_empty_careful(&conf->bio_end_io_list) &&
2495 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2496 LIST_HEAD(tmp);
2497 spin_lock_irqsave(&conf->device_lock, flags);
2498 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2499 list_splice_init(&conf->bio_end_io_list, &tmp);
2500 spin_unlock_irqrestore(&conf->device_lock, flags);
2501 while (!list_empty(&tmp)) {
2502 r1_bio = list_first_entry(&tmp, struct r1bio,
2503 retry_list);
2504 list_del(&r1_bio->retry_list);
2505 idx = sector_to_idx(r1_bio->sector);
2506 atomic_dec(&conf->nr_queued[idx]);
2507 if (mddev->degraded)
2508 set_bit(R1BIO_Degraded, &r1_bio->state);
2509 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2510 close_write(r1_bio);
2511 raid_end_bio_io(r1_bio);
2515 blk_start_plug(&plug);
2516 for (;;) {
2518 flush_pending_writes(conf);
2520 spin_lock_irqsave(&conf->device_lock, flags);
2521 if (list_empty(head)) {
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523 break;
2525 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2526 list_del(head->prev);
2527 idx = sector_to_idx(r1_bio->sector);
2528 atomic_dec(&conf->nr_queued[idx]);
2529 spin_unlock_irqrestore(&conf->device_lock, flags);
2531 mddev = r1_bio->mddev;
2532 conf = mddev->private;
2533 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2534 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2535 test_bit(R1BIO_WriteError, &r1_bio->state))
2536 handle_sync_write_finished(conf, r1_bio);
2537 else
2538 sync_request_write(mddev, r1_bio);
2539 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2540 test_bit(R1BIO_WriteError, &r1_bio->state))
2541 handle_write_finished(conf, r1_bio);
2542 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2543 handle_read_error(conf, r1_bio);
2544 else
2545 WARN_ON_ONCE(1);
2547 cond_resched();
2548 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2549 md_check_recovery(mddev);
2551 blk_finish_plug(&plug);
2554 static int init_resync(struct r1conf *conf)
2556 int buffs;
2558 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2559 BUG_ON(conf->r1buf_pool);
2560 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2561 conf->poolinfo);
2562 if (!conf->r1buf_pool)
2563 return -ENOMEM;
2564 return 0;
2567 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2569 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2570 struct resync_pages *rps;
2571 struct bio *bio;
2572 int i;
2574 for (i = conf->poolinfo->raid_disks; i--; ) {
2575 bio = r1bio->bios[i];
2576 rps = bio->bi_private;
2577 bio_reset(bio);
2578 bio->bi_private = rps;
2580 r1bio->master_bio = NULL;
2581 return r1bio;
2585 * perform a "sync" on one "block"
2587 * We need to make sure that no normal I/O request - particularly write
2588 * requests - conflict with active sync requests.
2590 * This is achieved by tracking pending requests and a 'barrier' concept
2591 * that can be installed to exclude normal IO requests.
2594 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2595 int *skipped)
2597 struct r1conf *conf = mddev->private;
2598 struct r1bio *r1_bio;
2599 struct bio *bio;
2600 sector_t max_sector, nr_sectors;
2601 int disk = -1;
2602 int i;
2603 int wonly = -1;
2604 int write_targets = 0, read_targets = 0;
2605 sector_t sync_blocks;
2606 int still_degraded = 0;
2607 int good_sectors = RESYNC_SECTORS;
2608 int min_bad = 0; /* number of sectors that are bad in all devices */
2609 int idx = sector_to_idx(sector_nr);
2610 int page_idx = 0;
2612 if (!conf->r1buf_pool)
2613 if (init_resync(conf))
2614 return 0;
2616 max_sector = mddev->dev_sectors;
2617 if (sector_nr >= max_sector) {
2618 /* If we aborted, we need to abort the
2619 * sync on the 'current' bitmap chunk (there will
2620 * only be one in raid1 resync.
2621 * We can find the current addess in mddev->curr_resync
2623 if (mddev->curr_resync < max_sector) /* aborted */
2624 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2625 &sync_blocks, 1);
2626 else /* completed sync */
2627 conf->fullsync = 0;
2629 bitmap_close_sync(mddev->bitmap);
2630 close_sync(conf);
2632 if (mddev_is_clustered(mddev)) {
2633 conf->cluster_sync_low = 0;
2634 conf->cluster_sync_high = 0;
2636 return 0;
2639 if (mddev->bitmap == NULL &&
2640 mddev->recovery_cp == MaxSector &&
2641 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2642 conf->fullsync == 0) {
2643 *skipped = 1;
2644 return max_sector - sector_nr;
2646 /* before building a request, check if we can skip these blocks..
2647 * This call the bitmap_start_sync doesn't actually record anything
2649 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2650 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2651 /* We can skip this block, and probably several more */
2652 *skipped = 1;
2653 return sync_blocks;
2657 * If there is non-resync activity waiting for a turn, then let it
2658 * though before starting on this new sync request.
2660 if (atomic_read(&conf->nr_waiting[idx]))
2661 schedule_timeout_uninterruptible(1);
2663 /* we are incrementing sector_nr below. To be safe, we check against
2664 * sector_nr + two times RESYNC_SECTORS
2667 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2668 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2669 r1_bio = raid1_alloc_init_r1buf(conf);
2671 raise_barrier(conf, sector_nr);
2673 rcu_read_lock();
2675 * If we get a correctably read error during resync or recovery,
2676 * we might want to read from a different device. So we
2677 * flag all drives that could conceivably be read from for READ,
2678 * and any others (which will be non-In_sync devices) for WRITE.
2679 * If a read fails, we try reading from something else for which READ
2680 * is OK.
2683 r1_bio->mddev = mddev;
2684 r1_bio->sector = sector_nr;
2685 r1_bio->state = 0;
2686 set_bit(R1BIO_IsSync, &r1_bio->state);
2687 /* make sure good_sectors won't go across barrier unit boundary */
2688 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2690 for (i = 0; i < conf->raid_disks * 2; i++) {
2691 struct md_rdev *rdev;
2692 bio = r1_bio->bios[i];
2694 rdev = rcu_dereference(conf->mirrors[i].rdev);
2695 if (rdev == NULL ||
2696 test_bit(Faulty, &rdev->flags)) {
2697 if (i < conf->raid_disks)
2698 still_degraded = 1;
2699 } else if (!test_bit(In_sync, &rdev->flags)) {
2700 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2701 bio->bi_end_io = end_sync_write;
2702 write_targets ++;
2703 } else {
2704 /* may need to read from here */
2705 sector_t first_bad = MaxSector;
2706 int bad_sectors;
2708 if (is_badblock(rdev, sector_nr, good_sectors,
2709 &first_bad, &bad_sectors)) {
2710 if (first_bad > sector_nr)
2711 good_sectors = first_bad - sector_nr;
2712 else {
2713 bad_sectors -= (sector_nr - first_bad);
2714 if (min_bad == 0 ||
2715 min_bad > bad_sectors)
2716 min_bad = bad_sectors;
2719 if (sector_nr < first_bad) {
2720 if (test_bit(WriteMostly, &rdev->flags)) {
2721 if (wonly < 0)
2722 wonly = i;
2723 } else {
2724 if (disk < 0)
2725 disk = i;
2727 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2728 bio->bi_end_io = end_sync_read;
2729 read_targets++;
2730 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2731 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2732 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2734 * The device is suitable for reading (InSync),
2735 * but has bad block(s) here. Let's try to correct them,
2736 * if we are doing resync or repair. Otherwise, leave
2737 * this device alone for this sync request.
2739 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2740 bio->bi_end_io = end_sync_write;
2741 write_targets++;
2744 if (bio->bi_end_io) {
2745 atomic_inc(&rdev->nr_pending);
2746 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2747 bio_set_dev(bio, rdev->bdev);
2748 if (test_bit(FailFast, &rdev->flags))
2749 bio->bi_opf |= MD_FAILFAST;
2752 rcu_read_unlock();
2753 if (disk < 0)
2754 disk = wonly;
2755 r1_bio->read_disk = disk;
2757 if (read_targets == 0 && min_bad > 0) {
2758 /* These sectors are bad on all InSync devices, so we
2759 * need to mark them bad on all write targets
2761 int ok = 1;
2762 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2763 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2764 struct md_rdev *rdev = conf->mirrors[i].rdev;
2765 ok = rdev_set_badblocks(rdev, sector_nr,
2766 min_bad, 0
2767 ) && ok;
2769 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2770 *skipped = 1;
2771 put_buf(r1_bio);
2773 if (!ok) {
2774 /* Cannot record the badblocks, so need to
2775 * abort the resync.
2776 * If there are multiple read targets, could just
2777 * fail the really bad ones ???
2779 conf->recovery_disabled = mddev->recovery_disabled;
2780 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2781 return 0;
2782 } else
2783 return min_bad;
2786 if (min_bad > 0 && min_bad < good_sectors) {
2787 /* only resync enough to reach the next bad->good
2788 * transition */
2789 good_sectors = min_bad;
2792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2793 /* extra read targets are also write targets */
2794 write_targets += read_targets-1;
2796 if (write_targets == 0 || read_targets == 0) {
2797 /* There is nowhere to write, so all non-sync
2798 * drives must be failed - so we are finished
2800 sector_t rv;
2801 if (min_bad > 0)
2802 max_sector = sector_nr + min_bad;
2803 rv = max_sector - sector_nr;
2804 *skipped = 1;
2805 put_buf(r1_bio);
2806 return rv;
2809 if (max_sector > mddev->resync_max)
2810 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2811 if (max_sector > sector_nr + good_sectors)
2812 max_sector = sector_nr + good_sectors;
2813 nr_sectors = 0;
2814 sync_blocks = 0;
2815 do {
2816 struct page *page;
2817 int len = PAGE_SIZE;
2818 if (sector_nr + (len>>9) > max_sector)
2819 len = (max_sector - sector_nr) << 9;
2820 if (len == 0)
2821 break;
2822 if (sync_blocks == 0) {
2823 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2824 &sync_blocks, still_degraded) &&
2825 !conf->fullsync &&
2826 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2827 break;
2828 if ((len >> 9) > sync_blocks)
2829 len = sync_blocks<<9;
2832 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2833 struct resync_pages *rp;
2835 bio = r1_bio->bios[i];
2836 rp = get_resync_pages(bio);
2837 if (bio->bi_end_io) {
2838 page = resync_fetch_page(rp, page_idx);
2841 * won't fail because the vec table is big
2842 * enough to hold all these pages
2844 bio_add_page(bio, page, len, 0);
2847 nr_sectors += len>>9;
2848 sector_nr += len>>9;
2849 sync_blocks -= (len>>9);
2850 } while (++page_idx < RESYNC_PAGES);
2852 r1_bio->sectors = nr_sectors;
2854 if (mddev_is_clustered(mddev) &&
2855 conf->cluster_sync_high < sector_nr + nr_sectors) {
2856 conf->cluster_sync_low = mddev->curr_resync_completed;
2857 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2858 /* Send resync message */
2859 md_cluster_ops->resync_info_update(mddev,
2860 conf->cluster_sync_low,
2861 conf->cluster_sync_high);
2864 /* For a user-requested sync, we read all readable devices and do a
2865 * compare
2867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2868 atomic_set(&r1_bio->remaining, read_targets);
2869 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2870 bio = r1_bio->bios[i];
2871 if (bio->bi_end_io == end_sync_read) {
2872 read_targets--;
2873 md_sync_acct_bio(bio, nr_sectors);
2874 if (read_targets == 1)
2875 bio->bi_opf &= ~MD_FAILFAST;
2876 generic_make_request(bio);
2879 } else {
2880 atomic_set(&r1_bio->remaining, 1);
2881 bio = r1_bio->bios[r1_bio->read_disk];
2882 md_sync_acct_bio(bio, nr_sectors);
2883 if (read_targets == 1)
2884 bio->bi_opf &= ~MD_FAILFAST;
2885 generic_make_request(bio);
2888 return nr_sectors;
2891 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2893 if (sectors)
2894 return sectors;
2896 return mddev->dev_sectors;
2899 static struct r1conf *setup_conf(struct mddev *mddev)
2901 struct r1conf *conf;
2902 int i;
2903 struct raid1_info *disk;
2904 struct md_rdev *rdev;
2905 int err = -ENOMEM;
2907 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2908 if (!conf)
2909 goto abort;
2911 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2912 sizeof(atomic_t), GFP_KERNEL);
2913 if (!conf->nr_pending)
2914 goto abort;
2916 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2917 sizeof(atomic_t), GFP_KERNEL);
2918 if (!conf->nr_waiting)
2919 goto abort;
2921 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2922 sizeof(atomic_t), GFP_KERNEL);
2923 if (!conf->nr_queued)
2924 goto abort;
2926 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2927 sizeof(atomic_t), GFP_KERNEL);
2928 if (!conf->barrier)
2929 goto abort;
2931 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2932 * mddev->raid_disks * 2,
2933 GFP_KERNEL);
2934 if (!conf->mirrors)
2935 goto abort;
2937 conf->tmppage = alloc_page(GFP_KERNEL);
2938 if (!conf->tmppage)
2939 goto abort;
2941 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2942 if (!conf->poolinfo)
2943 goto abort;
2944 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2945 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2946 r1bio_pool_free,
2947 conf->poolinfo);
2948 if (!conf->r1bio_pool)
2949 goto abort;
2951 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2952 if (!conf->bio_split)
2953 goto abort;
2955 conf->poolinfo->mddev = mddev;
2957 err = -EINVAL;
2958 spin_lock_init(&conf->device_lock);
2959 rdev_for_each(rdev, mddev) {
2960 int disk_idx = rdev->raid_disk;
2961 if (disk_idx >= mddev->raid_disks
2962 || disk_idx < 0)
2963 continue;
2964 if (test_bit(Replacement, &rdev->flags))
2965 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2966 else
2967 disk = conf->mirrors + disk_idx;
2969 if (disk->rdev)
2970 goto abort;
2971 disk->rdev = rdev;
2972 disk->head_position = 0;
2973 disk->seq_start = MaxSector;
2975 conf->raid_disks = mddev->raid_disks;
2976 conf->mddev = mddev;
2977 INIT_LIST_HEAD(&conf->retry_list);
2978 INIT_LIST_HEAD(&conf->bio_end_io_list);
2980 spin_lock_init(&conf->resync_lock);
2981 init_waitqueue_head(&conf->wait_barrier);
2983 bio_list_init(&conf->pending_bio_list);
2984 conf->pending_count = 0;
2985 conf->recovery_disabled = mddev->recovery_disabled - 1;
2987 err = -EIO;
2988 for (i = 0; i < conf->raid_disks * 2; i++) {
2990 disk = conf->mirrors + i;
2992 if (i < conf->raid_disks &&
2993 disk[conf->raid_disks].rdev) {
2994 /* This slot has a replacement. */
2995 if (!disk->rdev) {
2996 /* No original, just make the replacement
2997 * a recovering spare
2999 disk->rdev =
3000 disk[conf->raid_disks].rdev;
3001 disk[conf->raid_disks].rdev = NULL;
3002 } else if (!test_bit(In_sync, &disk->rdev->flags))
3003 /* Original is not in_sync - bad */
3004 goto abort;
3007 if (!disk->rdev ||
3008 !test_bit(In_sync, &disk->rdev->flags)) {
3009 disk->head_position = 0;
3010 if (disk->rdev &&
3011 (disk->rdev->saved_raid_disk < 0))
3012 conf->fullsync = 1;
3016 err = -ENOMEM;
3017 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3018 if (!conf->thread)
3019 goto abort;
3021 return conf;
3023 abort:
3024 if (conf) {
3025 mempool_destroy(conf->r1bio_pool);
3026 kfree(conf->mirrors);
3027 safe_put_page(conf->tmppage);
3028 kfree(conf->poolinfo);
3029 kfree(conf->nr_pending);
3030 kfree(conf->nr_waiting);
3031 kfree(conf->nr_queued);
3032 kfree(conf->barrier);
3033 if (conf->bio_split)
3034 bioset_free(conf->bio_split);
3035 kfree(conf);
3037 return ERR_PTR(err);
3040 static void raid1_free(struct mddev *mddev, void *priv);
3041 static int raid1_run(struct mddev *mddev)
3043 struct r1conf *conf;
3044 int i;
3045 struct md_rdev *rdev;
3046 int ret;
3047 bool discard_supported = false;
3049 if (mddev->level != 1) {
3050 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3051 mdname(mddev), mddev->level);
3052 return -EIO;
3054 if (mddev->reshape_position != MaxSector) {
3055 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3056 mdname(mddev));
3057 return -EIO;
3059 if (mddev_init_writes_pending(mddev) < 0)
3060 return -ENOMEM;
3062 * copy the already verified devices into our private RAID1
3063 * bookkeeping area. [whatever we allocate in run(),
3064 * should be freed in raid1_free()]
3066 if (mddev->private == NULL)
3067 conf = setup_conf(mddev);
3068 else
3069 conf = mddev->private;
3071 if (IS_ERR(conf))
3072 return PTR_ERR(conf);
3074 if (mddev->queue) {
3075 blk_queue_max_write_same_sectors(mddev->queue, 0);
3076 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3079 rdev_for_each(rdev, mddev) {
3080 if (!mddev->gendisk)
3081 continue;
3082 disk_stack_limits(mddev->gendisk, rdev->bdev,
3083 rdev->data_offset << 9);
3084 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3085 discard_supported = true;
3088 mddev->degraded = 0;
3089 for (i=0; i < conf->raid_disks; i++)
3090 if (conf->mirrors[i].rdev == NULL ||
3091 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3092 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3093 mddev->degraded++;
3095 if (conf->raid_disks - mddev->degraded == 1)
3096 mddev->recovery_cp = MaxSector;
3098 if (mddev->recovery_cp != MaxSector)
3099 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3100 mdname(mddev));
3101 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3102 mdname(mddev), mddev->raid_disks - mddev->degraded,
3103 mddev->raid_disks);
3106 * Ok, everything is just fine now
3108 mddev->thread = conf->thread;
3109 conf->thread = NULL;
3110 mddev->private = conf;
3111 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3113 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3115 if (mddev->queue) {
3116 if (discard_supported)
3117 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3118 mddev->queue);
3119 else
3120 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3121 mddev->queue);
3124 ret = md_integrity_register(mddev);
3125 if (ret) {
3126 md_unregister_thread(&mddev->thread);
3127 raid1_free(mddev, conf);
3129 return ret;
3132 static void raid1_free(struct mddev *mddev, void *priv)
3134 struct r1conf *conf = priv;
3136 mempool_destroy(conf->r1bio_pool);
3137 kfree(conf->mirrors);
3138 safe_put_page(conf->tmppage);
3139 kfree(conf->poolinfo);
3140 kfree(conf->nr_pending);
3141 kfree(conf->nr_waiting);
3142 kfree(conf->nr_queued);
3143 kfree(conf->barrier);
3144 if (conf->bio_split)
3145 bioset_free(conf->bio_split);
3146 kfree(conf);
3149 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3151 /* no resync is happening, and there is enough space
3152 * on all devices, so we can resize.
3153 * We need to make sure resync covers any new space.
3154 * If the array is shrinking we should possibly wait until
3155 * any io in the removed space completes, but it hardly seems
3156 * worth it.
3158 sector_t newsize = raid1_size(mddev, sectors, 0);
3159 if (mddev->external_size &&
3160 mddev->array_sectors > newsize)
3161 return -EINVAL;
3162 if (mddev->bitmap) {
3163 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3164 if (ret)
3165 return ret;
3167 md_set_array_sectors(mddev, newsize);
3168 if (sectors > mddev->dev_sectors &&
3169 mddev->recovery_cp > mddev->dev_sectors) {
3170 mddev->recovery_cp = mddev->dev_sectors;
3171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3173 mddev->dev_sectors = sectors;
3174 mddev->resync_max_sectors = sectors;
3175 return 0;
3178 static int raid1_reshape(struct mddev *mddev)
3180 /* We need to:
3181 * 1/ resize the r1bio_pool
3182 * 2/ resize conf->mirrors
3184 * We allocate a new r1bio_pool if we can.
3185 * Then raise a device barrier and wait until all IO stops.
3186 * Then resize conf->mirrors and swap in the new r1bio pool.
3188 * At the same time, we "pack" the devices so that all the missing
3189 * devices have the higher raid_disk numbers.
3191 mempool_t *newpool, *oldpool;
3192 struct pool_info *newpoolinfo;
3193 struct raid1_info *newmirrors;
3194 struct r1conf *conf = mddev->private;
3195 int cnt, raid_disks;
3196 unsigned long flags;
3197 int d, d2;
3199 /* Cannot change chunk_size, layout, or level */
3200 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3201 mddev->layout != mddev->new_layout ||
3202 mddev->level != mddev->new_level) {
3203 mddev->new_chunk_sectors = mddev->chunk_sectors;
3204 mddev->new_layout = mddev->layout;
3205 mddev->new_level = mddev->level;
3206 return -EINVAL;
3209 if (!mddev_is_clustered(mddev))
3210 md_allow_write(mddev);
3212 raid_disks = mddev->raid_disks + mddev->delta_disks;
3214 if (raid_disks < conf->raid_disks) {
3215 cnt=0;
3216 for (d= 0; d < conf->raid_disks; d++)
3217 if (conf->mirrors[d].rdev)
3218 cnt++;
3219 if (cnt > raid_disks)
3220 return -EBUSY;
3223 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3224 if (!newpoolinfo)
3225 return -ENOMEM;
3226 newpoolinfo->mddev = mddev;
3227 newpoolinfo->raid_disks = raid_disks * 2;
3229 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3230 r1bio_pool_free, newpoolinfo);
3231 if (!newpool) {
3232 kfree(newpoolinfo);
3233 return -ENOMEM;
3235 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3236 GFP_KERNEL);
3237 if (!newmirrors) {
3238 kfree(newpoolinfo);
3239 mempool_destroy(newpool);
3240 return -ENOMEM;
3243 freeze_array(conf, 0);
3245 /* ok, everything is stopped */
3246 oldpool = conf->r1bio_pool;
3247 conf->r1bio_pool = newpool;
3249 for (d = d2 = 0; d < conf->raid_disks; d++) {
3250 struct md_rdev *rdev = conf->mirrors[d].rdev;
3251 if (rdev && rdev->raid_disk != d2) {
3252 sysfs_unlink_rdev(mddev, rdev);
3253 rdev->raid_disk = d2;
3254 sysfs_unlink_rdev(mddev, rdev);
3255 if (sysfs_link_rdev(mddev, rdev))
3256 pr_warn("md/raid1:%s: cannot register rd%d\n",
3257 mdname(mddev), rdev->raid_disk);
3259 if (rdev)
3260 newmirrors[d2++].rdev = rdev;
3262 kfree(conf->mirrors);
3263 conf->mirrors = newmirrors;
3264 kfree(conf->poolinfo);
3265 conf->poolinfo = newpoolinfo;
3267 spin_lock_irqsave(&conf->device_lock, flags);
3268 mddev->degraded += (raid_disks - conf->raid_disks);
3269 spin_unlock_irqrestore(&conf->device_lock, flags);
3270 conf->raid_disks = mddev->raid_disks = raid_disks;
3271 mddev->delta_disks = 0;
3273 unfreeze_array(conf);
3275 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3276 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3277 md_wakeup_thread(mddev->thread);
3279 mempool_destroy(oldpool);
3280 return 0;
3283 static void raid1_quiesce(struct mddev *mddev, int state)
3285 struct r1conf *conf = mddev->private;
3287 switch(state) {
3288 case 2: /* wake for suspend */
3289 wake_up(&conf->wait_barrier);
3290 break;
3291 case 1:
3292 freeze_array(conf, 0);
3293 break;
3294 case 0:
3295 unfreeze_array(conf);
3296 break;
3300 static void *raid1_takeover(struct mddev *mddev)
3302 /* raid1 can take over:
3303 * raid5 with 2 devices, any layout or chunk size
3305 if (mddev->level == 5 && mddev->raid_disks == 2) {
3306 struct r1conf *conf;
3307 mddev->new_level = 1;
3308 mddev->new_layout = 0;
3309 mddev->new_chunk_sectors = 0;
3310 conf = setup_conf(mddev);
3311 if (!IS_ERR(conf)) {
3312 /* Array must appear to be quiesced */
3313 conf->array_frozen = 1;
3314 mddev_clear_unsupported_flags(mddev,
3315 UNSUPPORTED_MDDEV_FLAGS);
3317 return conf;
3319 return ERR_PTR(-EINVAL);
3322 static struct md_personality raid1_personality =
3324 .name = "raid1",
3325 .level = 1,
3326 .owner = THIS_MODULE,
3327 .make_request = raid1_make_request,
3328 .run = raid1_run,
3329 .free = raid1_free,
3330 .status = raid1_status,
3331 .error_handler = raid1_error,
3332 .hot_add_disk = raid1_add_disk,
3333 .hot_remove_disk= raid1_remove_disk,
3334 .spare_active = raid1_spare_active,
3335 .sync_request = raid1_sync_request,
3336 .resize = raid1_resize,
3337 .size = raid1_size,
3338 .check_reshape = raid1_reshape,
3339 .quiesce = raid1_quiesce,
3340 .takeover = raid1_takeover,
3341 .congested = raid1_congested,
3344 static int __init raid_init(void)
3346 return register_md_personality(&raid1_personality);
3349 static void raid_exit(void)
3351 unregister_md_personality(&raid1_personality);
3354 module_init(raid_init);
3355 module_exit(raid_exit);
3356 MODULE_LICENSE("GPL");
3357 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3358 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3359 MODULE_ALIAS("md-raid1");
3360 MODULE_ALIAS("md-level-1");
3362 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);