2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
42 #include <trace/events/block.h>
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL) | \
52 (1L << MD_HAS_MULTIPLE_PPLS))
55 * Number of guaranteed r1bios in case of extreme VM load:
57 #define NR_RAID1_BIOS 256
59 /* when we get a read error on a read-only array, we redirect to another
60 * device without failing the first device, or trying to over-write to
61 * correct the read error. To keep track of bad blocks on a per-bio
62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66 * bad-block marking which must be done from process context. So we record
67 * the success by setting devs[n].bio to IO_MADE_GOOD
69 #define IO_MADE_GOOD ((struct bio *)2)
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
73 /* When there are this many requests queue to be written by
74 * the raid1 thread, we become 'congested' to provide back-pressure
77 static int max_queued_requests
= 1024;
79 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
80 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
82 #define raid1_log(md, fmt, args...) \
83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
88 * for resync bio, r1bio pointer can be retrieved from the per-bio
89 * 'struct resync_pages'.
91 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
93 return get_resync_pages(bio
)->raid_bio
;
96 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
98 struct pool_info
*pi
= data
;
99 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
101 /* allocate a r1bio with room for raid_disks entries in the bios array */
102 return kzalloc(size
, gfp_flags
);
105 static void r1bio_pool_free(void *r1_bio
, void *data
)
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
117 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
119 struct pool_info
*pi
= data
;
120 struct r1bio
*r1_bio
;
124 struct resync_pages
*rps
;
126 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
130 rps
= kmalloc(sizeof(struct resync_pages
) * pi
->raid_disks
,
136 * Allocate bios : 1 for reading, n-1 for writing
138 for (j
= pi
->raid_disks
; j
-- ; ) {
139 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
142 r1_bio
->bios
[j
] = bio
;
145 * Allocate RESYNC_PAGES data pages and attach them to
147 * If this is a user-requested check/repair, allocate
148 * RESYNC_PAGES for each bio.
150 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
151 need_pages
= pi
->raid_disks
;
154 for (j
= 0; j
< pi
->raid_disks
; j
++) {
155 struct resync_pages
*rp
= &rps
[j
];
157 bio
= r1_bio
->bios
[j
];
159 if (j
< need_pages
) {
160 if (resync_alloc_pages(rp
, gfp_flags
))
163 memcpy(rp
, &rps
[0], sizeof(*rp
));
164 resync_get_all_pages(rp
);
167 rp
->raid_bio
= r1_bio
;
168 bio
->bi_private
= rp
;
171 r1_bio
->master_bio
= NULL
;
177 resync_free_pages(&rps
[j
]);
180 while (++j
< pi
->raid_disks
)
181 bio_put(r1_bio
->bios
[j
]);
185 r1bio_pool_free(r1_bio
, data
);
189 static void r1buf_pool_free(void *__r1_bio
, void *data
)
191 struct pool_info
*pi
= data
;
193 struct r1bio
*r1bio
= __r1_bio
;
194 struct resync_pages
*rp
= NULL
;
196 for (i
= pi
->raid_disks
; i
--; ) {
197 rp
= get_resync_pages(r1bio
->bios
[i
]);
198 resync_free_pages(rp
);
199 bio_put(r1bio
->bios
[i
]);
202 /* resync pages array stored in the 1st bio's .bi_private */
205 r1bio_pool_free(r1bio
, data
);
208 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
212 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
213 struct bio
**bio
= r1_bio
->bios
+ i
;
214 if (!BIO_SPECIAL(*bio
))
220 static void free_r1bio(struct r1bio
*r1_bio
)
222 struct r1conf
*conf
= r1_bio
->mddev
->private;
224 put_all_bios(conf
, r1_bio
);
225 mempool_free(r1_bio
, conf
->r1bio_pool
);
228 static void put_buf(struct r1bio
*r1_bio
)
230 struct r1conf
*conf
= r1_bio
->mddev
->private;
231 sector_t sect
= r1_bio
->sector
;
234 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
235 struct bio
*bio
= r1_bio
->bios
[i
];
237 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
240 mempool_free(r1_bio
, conf
->r1buf_pool
);
242 lower_barrier(conf
, sect
);
245 static void reschedule_retry(struct r1bio
*r1_bio
)
248 struct mddev
*mddev
= r1_bio
->mddev
;
249 struct r1conf
*conf
= mddev
->private;
252 idx
= sector_to_idx(r1_bio
->sector
);
253 spin_lock_irqsave(&conf
->device_lock
, flags
);
254 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
255 atomic_inc(&conf
->nr_queued
[idx
]);
256 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
258 wake_up(&conf
->wait_barrier
);
259 md_wakeup_thread(mddev
->thread
);
263 * raid_end_bio_io() is called when we have finished servicing a mirrored
264 * operation and are ready to return a success/failure code to the buffer
267 static void call_bio_endio(struct r1bio
*r1_bio
)
269 struct bio
*bio
= r1_bio
->master_bio
;
270 struct r1conf
*conf
= r1_bio
->mddev
->private;
272 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
273 bio
->bi_status
= BLK_STS_IOERR
;
277 * Wake up any possible resync thread that waits for the device
280 allow_barrier(conf
, r1_bio
->sector
);
283 static void raid_end_bio_io(struct r1bio
*r1_bio
)
285 struct bio
*bio
= r1_bio
->master_bio
;
287 /* if nobody has done the final endio yet, do it now */
288 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
291 (unsigned long long) bio
->bi_iter
.bi_sector
,
292 (unsigned long long) bio_end_sector(bio
) - 1);
294 call_bio_endio(r1_bio
);
300 * Update disk head position estimator based on IRQ completion info.
302 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
304 struct r1conf
*conf
= r1_bio
->mddev
->private;
306 conf
->mirrors
[disk
].head_position
=
307 r1_bio
->sector
+ (r1_bio
->sectors
);
311 * Find the disk number which triggered given bio
313 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
316 struct r1conf
*conf
= r1_bio
->mddev
->private;
317 int raid_disks
= conf
->raid_disks
;
319 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
320 if (r1_bio
->bios
[mirror
] == bio
)
323 BUG_ON(mirror
== raid_disks
* 2);
324 update_head_pos(mirror
, r1_bio
);
329 static void raid1_end_read_request(struct bio
*bio
)
331 int uptodate
= !bio
->bi_status
;
332 struct r1bio
*r1_bio
= bio
->bi_private
;
333 struct r1conf
*conf
= r1_bio
->mddev
->private;
334 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
337 * this branch is our 'one mirror IO has finished' event handler:
339 update_head_pos(r1_bio
->read_disk
, r1_bio
);
342 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
343 else if (test_bit(FailFast
, &rdev
->flags
) &&
344 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
345 /* This was a fail-fast read so we definitely
349 /* If all other devices have failed, we want to return
350 * the error upwards rather than fail the last device.
351 * Here we redefine "uptodate" to mean "Don't want to retry"
354 spin_lock_irqsave(&conf
->device_lock
, flags
);
355 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
356 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
357 test_bit(In_sync
, &rdev
->flags
)))
359 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
363 raid_end_bio_io(r1_bio
);
364 rdev_dec_pending(rdev
, conf
->mddev
);
369 char b
[BDEVNAME_SIZE
];
370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
372 bdevname(rdev
->bdev
, b
),
373 (unsigned long long)r1_bio
->sector
);
374 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
375 reschedule_retry(r1_bio
);
376 /* don't drop the reference on read_disk yet */
380 static void close_write(struct r1bio
*r1_bio
)
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
384 bio_free_pages(r1_bio
->behind_master_bio
);
385 bio_put(r1_bio
->behind_master_bio
);
386 r1_bio
->behind_master_bio
= NULL
;
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
391 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
392 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
393 md_write_end(r1_bio
->mddev
);
396 static void r1_bio_write_done(struct r1bio
*r1_bio
)
398 if (!atomic_dec_and_test(&r1_bio
->remaining
))
401 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
402 reschedule_retry(r1_bio
);
405 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
406 reschedule_retry(r1_bio
);
408 raid_end_bio_io(r1_bio
);
412 static void raid1_end_write_request(struct bio
*bio
)
414 struct r1bio
*r1_bio
= bio
->bi_private
;
415 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
416 struct r1conf
*conf
= r1_bio
->mddev
->private;
417 struct bio
*to_put
= NULL
;
418 int mirror
= find_bio_disk(r1_bio
, bio
);
419 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
422 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
425 * 'one mirror IO has finished' event handler:
427 if (bio
->bi_status
&& !discard_error
) {
428 set_bit(WriteErrorSeen
, &rdev
->flags
);
429 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
430 set_bit(MD_RECOVERY_NEEDED
, &
431 conf
->mddev
->recovery
);
433 if (test_bit(FailFast
, &rdev
->flags
) &&
434 (bio
->bi_opf
& MD_FAILFAST
) &&
435 /* We never try FailFast to WriteMostly devices */
436 !test_bit(WriteMostly
, &rdev
->flags
)) {
437 md_error(r1_bio
->mddev
, rdev
);
438 if (!test_bit(Faulty
, &rdev
->flags
))
439 /* This is the only remaining device,
440 * We need to retry the write without
443 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
445 /* Finished with this branch */
446 r1_bio
->bios
[mirror
] = NULL
;
450 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
453 * Set R1BIO_Uptodate in our master bio, so that we
454 * will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer
458 * The 'master' represents the composite IO operation
459 * to user-side. So if something waits for IO, then it
460 * will wait for the 'master' bio.
465 r1_bio
->bios
[mirror
] = NULL
;
468 * Do not set R1BIO_Uptodate if the current device is
469 * rebuilding or Faulty. This is because we cannot use
470 * such device for properly reading the data back (we could
471 * potentially use it, if the current write would have felt
472 * before rdev->recovery_offset, but for simplicity we don't
475 if (test_bit(In_sync
, &rdev
->flags
) &&
476 !test_bit(Faulty
, &rdev
->flags
))
477 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
479 /* Maybe we can clear some bad blocks. */
480 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
481 &first_bad
, &bad_sectors
) && !discard_error
) {
482 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
483 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
488 if (test_bit(WriteMostly
, &rdev
->flags
))
489 atomic_dec(&r1_bio
->behind_remaining
);
492 * In behind mode, we ACK the master bio once the I/O
493 * has safely reached all non-writemostly
494 * disks. Setting the Returned bit ensures that this
495 * gets done only once -- we don't ever want to return
496 * -EIO here, instead we'll wait
498 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
499 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
500 /* Maybe we can return now */
501 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
502 struct bio
*mbio
= r1_bio
->master_bio
;
503 pr_debug("raid1: behind end write sectors"
505 (unsigned long long) mbio
->bi_iter
.bi_sector
,
506 (unsigned long long) bio_end_sector(mbio
) - 1);
507 call_bio_endio(r1_bio
);
511 if (r1_bio
->bios
[mirror
] == NULL
)
512 rdev_dec_pending(rdev
, conf
->mddev
);
515 * Let's see if all mirrored write operations have finished
518 r1_bio_write_done(r1_bio
);
524 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
529 WARN_ON(sectors
== 0);
531 * len is the number of sectors from start_sector to end of the
532 * barrier unit which start_sector belongs to.
534 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
544 * This routine returns the disk from which the requested read should
545 * be done. There is a per-array 'next expected sequential IO' sector
546 * number - if this matches on the next IO then we use the last disk.
547 * There is also a per-disk 'last know head position' sector that is
548 * maintained from IRQ contexts, both the normal and the resync IO
549 * completion handlers update this position correctly. If there is no
550 * perfect sequential match then we pick the disk whose head is closest.
552 * If there are 2 mirrors in the same 2 devices, performance degrades
553 * because position is mirror, not device based.
555 * The rdev for the device selected will have nr_pending incremented.
557 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
559 const sector_t this_sector
= r1_bio
->sector
;
561 int best_good_sectors
;
562 int best_disk
, best_dist_disk
, best_pending_disk
;
566 unsigned int min_pending
;
567 struct md_rdev
*rdev
;
569 int choose_next_idle
;
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on, or below the resync window.
575 * We take the first readable disk when above the resync window.
578 sectors
= r1_bio
->sectors
;
581 best_dist
= MaxSector
;
582 best_pending_disk
= -1;
583 min_pending
= UINT_MAX
;
584 best_good_sectors
= 0;
586 choose_next_idle
= 0;
587 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
589 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
590 (mddev_is_clustered(conf
->mddev
) &&
591 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
592 this_sector
+ sectors
)))
597 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
601 unsigned int pending
;
604 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
605 if (r1_bio
->bios
[disk
] == IO_BLOCKED
607 || test_bit(Faulty
, &rdev
->flags
))
609 if (!test_bit(In_sync
, &rdev
->flags
) &&
610 rdev
->recovery_offset
< this_sector
+ sectors
)
612 if (test_bit(WriteMostly
, &rdev
->flags
)) {
613 /* Don't balance among write-mostly, just
614 * use the first as a last resort */
615 if (best_dist_disk
< 0) {
616 if (is_badblock(rdev
, this_sector
, sectors
,
617 &first_bad
, &bad_sectors
)) {
618 if (first_bad
<= this_sector
)
619 /* Cannot use this */
621 best_good_sectors
= first_bad
- this_sector
;
623 best_good_sectors
= sectors
;
624 best_dist_disk
= disk
;
625 best_pending_disk
= disk
;
629 /* This is a reasonable device to use. It might
632 if (is_badblock(rdev
, this_sector
, sectors
,
633 &first_bad
, &bad_sectors
)) {
634 if (best_dist
< MaxSector
)
635 /* already have a better device */
637 if (first_bad
<= this_sector
) {
638 /* cannot read here. If this is the 'primary'
639 * device, then we must not read beyond
640 * bad_sectors from another device..
642 bad_sectors
-= (this_sector
- first_bad
);
643 if (choose_first
&& sectors
> bad_sectors
)
644 sectors
= bad_sectors
;
645 if (best_good_sectors
> sectors
)
646 best_good_sectors
= sectors
;
649 sector_t good_sectors
= first_bad
- this_sector
;
650 if (good_sectors
> best_good_sectors
) {
651 best_good_sectors
= good_sectors
;
659 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
661 best_good_sectors
= sectors
;
665 /* At least two disks to choose from so failfast is OK */
666 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
668 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
669 has_nonrot_disk
|= nonrot
;
670 pending
= atomic_read(&rdev
->nr_pending
);
671 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
676 /* Don't change to another disk for sequential reads */
677 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
679 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
680 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
684 * If buffered sequential IO size exceeds optimal
685 * iosize, check if there is idle disk. If yes, choose
686 * the idle disk. read_balance could already choose an
687 * idle disk before noticing it's a sequential IO in
688 * this disk. This doesn't matter because this disk
689 * will idle, next time it will be utilized after the
690 * first disk has IO size exceeds optimal iosize. In
691 * this way, iosize of the first disk will be optimal
692 * iosize at least. iosize of the second disk might be
693 * small, but not a big deal since when the second disk
694 * starts IO, the first disk is likely still busy.
696 if (nonrot
&& opt_iosize
> 0 &&
697 mirror
->seq_start
!= MaxSector
&&
698 mirror
->next_seq_sect
> opt_iosize
&&
699 mirror
->next_seq_sect
- opt_iosize
>=
701 choose_next_idle
= 1;
707 if (choose_next_idle
)
710 if (min_pending
> pending
) {
711 min_pending
= pending
;
712 best_pending_disk
= disk
;
715 if (dist
< best_dist
) {
717 best_dist_disk
= disk
;
722 * If all disks are rotational, choose the closest disk. If any disk is
723 * non-rotational, choose the disk with less pending request even the
724 * disk is rotational, which might/might not be optimal for raids with
725 * mixed ratation/non-rotational disks depending on workload.
727 if (best_disk
== -1) {
728 if (has_nonrot_disk
|| min_pending
== 0)
729 best_disk
= best_pending_disk
;
731 best_disk
= best_dist_disk
;
734 if (best_disk
>= 0) {
735 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
738 atomic_inc(&rdev
->nr_pending
);
739 sectors
= best_good_sectors
;
741 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
742 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
744 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
747 *max_sectors
= sectors
;
752 static int raid1_congested(struct mddev
*mddev
, int bits
)
754 struct r1conf
*conf
= mddev
->private;
757 if ((bits
& (1 << WB_async_congested
)) &&
758 conf
->pending_count
>= max_queued_requests
)
762 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
763 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
764 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
765 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
769 /* Note the '|| 1' - when read_balance prefers
770 * non-congested targets, it can be removed
772 if ((bits
& (1 << WB_async_congested
)) || 1)
773 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
775 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
782 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 bitmap_unplug(conf
->mddev
->bitmap
);
786 wake_up(&conf
->wait_barrier
);
788 while (bio
) { /* submit pending writes */
789 struct bio
*next
= bio
->bi_next
;
790 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
792 bio_set_dev(bio
, rdev
->bdev
);
793 if (test_bit(Faulty
, &rdev
->flags
)) {
795 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
796 !blk_queue_discard(bio
->bi_disk
->queue
)))
800 generic_make_request(bio
);
805 static void flush_pending_writes(struct r1conf
*conf
)
807 /* Any writes that have been queued but are awaiting
808 * bitmap updates get flushed here.
810 spin_lock_irq(&conf
->device_lock
);
812 if (conf
->pending_bio_list
.head
) {
813 struct blk_plug plug
;
816 bio
= bio_list_get(&conf
->pending_bio_list
);
817 conf
->pending_count
= 0;
818 spin_unlock_irq(&conf
->device_lock
);
819 blk_start_plug(&plug
);
820 flush_bio_list(conf
, bio
);
821 blk_finish_plug(&plug
);
823 spin_unlock_irq(&conf
->device_lock
);
827 * Sometimes we need to suspend IO while we do something else,
828 * either some resync/recovery, or reconfigure the array.
829 * To do this we raise a 'barrier'.
830 * The 'barrier' is a counter that can be raised multiple times
831 * to count how many activities are happening which preclude
833 * We can only raise the barrier if there is no pending IO.
834 * i.e. if nr_pending == 0.
835 * We choose only to raise the barrier if no-one is waiting for the
836 * barrier to go down. This means that as soon as an IO request
837 * is ready, no other operations which require a barrier will start
838 * until the IO request has had a chance.
840 * So: regular IO calls 'wait_barrier'. When that returns there
841 * is no backgroup IO happening, It must arrange to call
842 * allow_barrier when it has finished its IO.
843 * backgroup IO calls must call raise_barrier. Once that returns
844 * there is no normal IO happeing. It must arrange to call
845 * lower_barrier when the particular background IO completes.
847 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
849 int idx
= sector_to_idx(sector_nr
);
851 spin_lock_irq(&conf
->resync_lock
);
853 /* Wait until no block IO is waiting */
854 wait_event_lock_irq(conf
->wait_barrier
,
855 !atomic_read(&conf
->nr_waiting
[idx
]),
858 /* block any new IO from starting */
859 atomic_inc(&conf
->barrier
[idx
]);
861 * In raise_barrier() we firstly increase conf->barrier[idx] then
862 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
863 * increase conf->nr_pending[idx] then check conf->barrier[idx].
864 * A memory barrier here to make sure conf->nr_pending[idx] won't
865 * be fetched before conf->barrier[idx] is increased. Otherwise
866 * there will be a race between raise_barrier() and _wait_barrier().
868 smp_mb__after_atomic();
870 /* For these conditions we must wait:
871 * A: while the array is in frozen state
872 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
873 * existing in corresponding I/O barrier bucket.
874 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
875 * max resync count which allowed on current I/O barrier bucket.
877 wait_event_lock_irq(conf
->wait_barrier
,
878 !conf
->array_frozen
&&
879 !atomic_read(&conf
->nr_pending
[idx
]) &&
880 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
,
883 atomic_inc(&conf
->nr_sync_pending
);
884 spin_unlock_irq(&conf
->resync_lock
);
887 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
889 int idx
= sector_to_idx(sector_nr
);
891 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
893 atomic_dec(&conf
->barrier
[idx
]);
894 atomic_dec(&conf
->nr_sync_pending
);
895 wake_up(&conf
->wait_barrier
);
898 static void _wait_barrier(struct r1conf
*conf
, int idx
)
901 * We need to increase conf->nr_pending[idx] very early here,
902 * then raise_barrier() can be blocked when it waits for
903 * conf->nr_pending[idx] to be 0. Then we can avoid holding
904 * conf->resync_lock when there is no barrier raised in same
905 * barrier unit bucket. Also if the array is frozen, I/O
906 * should be blocked until array is unfrozen.
908 atomic_inc(&conf
->nr_pending
[idx
]);
910 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
911 * check conf->barrier[idx]. In raise_barrier() we firstly increase
912 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
913 * barrier is necessary here to make sure conf->barrier[idx] won't be
914 * fetched before conf->nr_pending[idx] is increased. Otherwise there
915 * will be a race between _wait_barrier() and raise_barrier().
917 smp_mb__after_atomic();
920 * Don't worry about checking two atomic_t variables at same time
921 * here. If during we check conf->barrier[idx], the array is
922 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
923 * 0, it is safe to return and make the I/O continue. Because the
924 * array is frozen, all I/O returned here will eventually complete
925 * or be queued, no race will happen. See code comment in
928 if (!READ_ONCE(conf
->array_frozen
) &&
929 !atomic_read(&conf
->barrier
[idx
]))
933 * After holding conf->resync_lock, conf->nr_pending[idx]
934 * should be decreased before waiting for barrier to drop.
935 * Otherwise, we may encounter a race condition because
936 * raise_barrer() might be waiting for conf->nr_pending[idx]
937 * to be 0 at same time.
939 spin_lock_irq(&conf
->resync_lock
);
940 atomic_inc(&conf
->nr_waiting
[idx
]);
941 atomic_dec(&conf
->nr_pending
[idx
]);
943 * In case freeze_array() is waiting for
944 * get_unqueued_pending() == extra
946 wake_up(&conf
->wait_barrier
);
947 /* Wait for the barrier in same barrier unit bucket to drop. */
948 wait_event_lock_irq(conf
->wait_barrier
,
949 !conf
->array_frozen
&&
950 !atomic_read(&conf
->barrier
[idx
]),
952 atomic_inc(&conf
->nr_pending
[idx
]);
953 atomic_dec(&conf
->nr_waiting
[idx
]);
954 spin_unlock_irq(&conf
->resync_lock
);
957 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
959 int idx
= sector_to_idx(sector_nr
);
962 * Very similar to _wait_barrier(). The difference is, for read
963 * I/O we don't need wait for sync I/O, but if the whole array
964 * is frozen, the read I/O still has to wait until the array is
965 * unfrozen. Since there is no ordering requirement with
966 * conf->barrier[idx] here, memory barrier is unnecessary as well.
968 atomic_inc(&conf
->nr_pending
[idx
]);
970 if (!READ_ONCE(conf
->array_frozen
))
973 spin_lock_irq(&conf
->resync_lock
);
974 atomic_inc(&conf
->nr_waiting
[idx
]);
975 atomic_dec(&conf
->nr_pending
[idx
]);
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
980 wake_up(&conf
->wait_barrier
);
981 /* Wait for array to be unfrozen */
982 wait_event_lock_irq(conf
->wait_barrier
,
985 atomic_inc(&conf
->nr_pending
[idx
]);
986 atomic_dec(&conf
->nr_waiting
[idx
]);
987 spin_unlock_irq(&conf
->resync_lock
);
990 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
992 int idx
= sector_to_idx(sector_nr
);
994 _wait_barrier(conf
, idx
);
997 static void _allow_barrier(struct r1conf
*conf
, int idx
)
999 atomic_dec(&conf
->nr_pending
[idx
]);
1000 wake_up(&conf
->wait_barrier
);
1003 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1005 int idx
= sector_to_idx(sector_nr
);
1007 _allow_barrier(conf
, idx
);
1010 /* conf->resync_lock should be held */
1011 static int get_unqueued_pending(struct r1conf
*conf
)
1015 ret
= atomic_read(&conf
->nr_sync_pending
);
1016 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1017 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1018 atomic_read(&conf
->nr_queued
[idx
]);
1023 static void freeze_array(struct r1conf
*conf
, int extra
)
1025 /* Stop sync I/O and normal I/O and wait for everything to
1027 * This is called in two situations:
1028 * 1) management command handlers (reshape, remove disk, quiesce).
1029 * 2) one normal I/O request failed.
1031 * After array_frozen is set to 1, new sync IO will be blocked at
1032 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1033 * or wait_read_barrier(). The flying I/Os will either complete or be
1034 * queued. When everything goes quite, there are only queued I/Os left.
1036 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1037 * barrier bucket index which this I/O request hits. When all sync and
1038 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1039 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1040 * in handle_read_error(), we may call freeze_array() before trying to
1041 * fix the read error. In this case, the error read I/O is not queued,
1042 * so get_unqueued_pending() == 1.
1044 * Therefore before this function returns, we need to wait until
1045 * get_unqueued_pendings(conf) gets equal to extra. For
1046 * normal I/O context, extra is 1, in rested situations extra is 0.
1048 spin_lock_irq(&conf
->resync_lock
);
1049 conf
->array_frozen
= 1;
1050 raid1_log(conf
->mddev
, "wait freeze");
1051 wait_event_lock_irq_cmd(
1053 get_unqueued_pending(conf
) == extra
,
1055 flush_pending_writes(conf
));
1056 spin_unlock_irq(&conf
->resync_lock
);
1058 static void unfreeze_array(struct r1conf
*conf
)
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf
->resync_lock
);
1062 conf
->array_frozen
= 0;
1063 spin_unlock_irq(&conf
->resync_lock
);
1064 wake_up(&conf
->wait_barrier
);
1067 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1070 int size
= bio
->bi_iter
.bi_size
;
1071 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1073 struct bio
*behind_bio
= NULL
;
1075 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1079 /* discard op, we don't support writezero/writesame yet */
1080 if (!bio_has_data(bio
)) {
1081 behind_bio
->bi_iter
.bi_size
= size
;
1085 while (i
< vcnt
&& size
) {
1087 int len
= min_t(int, PAGE_SIZE
, size
);
1089 page
= alloc_page(GFP_NOIO
);
1090 if (unlikely(!page
))
1093 bio_add_page(behind_bio
, page
, len
, 0);
1099 bio_copy_data(behind_bio
, bio
);
1101 r1_bio
->behind_master_bio
= behind_bio
;;
1102 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1107 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1108 bio
->bi_iter
.bi_size
);
1109 bio_free_pages(behind_bio
);
1110 bio_put(behind_bio
);
1113 struct raid1_plug_cb
{
1114 struct blk_plug_cb cb
;
1115 struct bio_list pending
;
1119 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1121 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1123 struct mddev
*mddev
= plug
->cb
.data
;
1124 struct r1conf
*conf
= mddev
->private;
1127 if (from_schedule
|| current
->bio_list
) {
1128 spin_lock_irq(&conf
->device_lock
);
1129 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1130 conf
->pending_count
+= plug
->pending_cnt
;
1131 spin_unlock_irq(&conf
->device_lock
);
1132 wake_up(&conf
->wait_barrier
);
1133 md_wakeup_thread(mddev
->thread
);
1138 /* we aren't scheduling, so we can do the write-out directly. */
1139 bio
= bio_list_get(&plug
->pending
);
1140 flush_bio_list(conf
, bio
);
1144 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1146 r1_bio
->master_bio
= bio
;
1147 r1_bio
->sectors
= bio_sectors(bio
);
1149 r1_bio
->mddev
= mddev
;
1150 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1153 static inline struct r1bio
*
1154 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1156 struct r1conf
*conf
= mddev
->private;
1157 struct r1bio
*r1_bio
;
1159 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1160 /* Ensure no bio records IO_BLOCKED */
1161 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1162 init_r1bio(r1_bio
, mddev
, bio
);
1166 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1167 int max_read_sectors
, struct r1bio
*r1_bio
)
1169 struct r1conf
*conf
= mddev
->private;
1170 struct raid1_info
*mirror
;
1171 struct bio
*read_bio
;
1172 struct bitmap
*bitmap
= mddev
->bitmap
;
1173 const int op
= bio_op(bio
);
1174 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1177 bool print_msg
= !!r1_bio
;
1178 char b
[BDEVNAME_SIZE
];
1181 * If r1_bio is set, we are blocking the raid1d thread
1182 * so there is a tiny risk of deadlock. So ask for
1183 * emergency memory if needed.
1185 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1188 /* Need to get the block device name carefully */
1189 struct md_rdev
*rdev
;
1191 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1193 bdevname(rdev
->bdev
, b
);
1200 * Still need barrier for READ in case that whole
1203 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1206 r1_bio
= alloc_r1bio(mddev
, bio
);
1208 init_r1bio(r1_bio
, mddev
, bio
);
1209 r1_bio
->sectors
= max_read_sectors
;
1212 * make_request() can abort the operation when read-ahead is being
1213 * used and no empty request is available.
1215 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1218 /* couldn't find anywhere to read from */
1220 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1223 (unsigned long long)r1_bio
->sector
);
1225 raid_end_bio_io(r1_bio
);
1228 mirror
= conf
->mirrors
+ rdisk
;
1231 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1233 (unsigned long long)r1_bio
->sector
,
1234 bdevname(mirror
->rdev
->bdev
, b
));
1236 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1239 * Reading from a write-mostly device must take care not to
1240 * over-take any writes that are 'behind'
1242 raid1_log(mddev
, "wait behind writes");
1243 wait_event(bitmap
->behind_wait
,
1244 atomic_read(&bitmap
->behind_writes
) == 0);
1247 if (max_sectors
< bio_sectors(bio
)) {
1248 struct bio
*split
= bio_split(bio
, max_sectors
,
1249 gfp
, conf
->bio_split
);
1250 bio_chain(split
, bio
);
1251 generic_make_request(bio
);
1253 r1_bio
->master_bio
= bio
;
1254 r1_bio
->sectors
= max_sectors
;
1257 r1_bio
->read_disk
= rdisk
;
1259 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1261 r1_bio
->bios
[rdisk
] = read_bio
;
1263 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1264 mirror
->rdev
->data_offset
;
1265 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1266 read_bio
->bi_end_io
= raid1_end_read_request
;
1267 bio_set_op_attrs(read_bio
, op
, do_sync
);
1268 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1269 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1270 read_bio
->bi_opf
|= MD_FAILFAST
;
1271 read_bio
->bi_private
= r1_bio
;
1274 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1275 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1277 generic_make_request(read_bio
);
1280 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1281 int max_write_sectors
)
1283 struct r1conf
*conf
= mddev
->private;
1284 struct r1bio
*r1_bio
;
1286 struct bitmap
*bitmap
= mddev
->bitmap
;
1287 unsigned long flags
;
1288 struct md_rdev
*blocked_rdev
;
1289 struct blk_plug_cb
*cb
;
1290 struct raid1_plug_cb
*plug
= NULL
;
1295 * Register the new request and wait if the reconstruction
1296 * thread has put up a bar for new requests.
1297 * Continue immediately if no resync is active currently.
1301 if ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1302 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1303 (mddev_is_clustered(mddev
) &&
1304 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1305 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))) {
1308 * As the suspend_* range is controlled by userspace, we want
1309 * an interruptible wait.
1314 prepare_to_wait(&conf
->wait_barrier
,
1315 &w
, TASK_INTERRUPTIBLE
);
1316 if ((bio_end_sector(bio
) <= mddev
->suspend_lo
||
1317 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
) &&
1318 (!mddev_is_clustered(mddev
) ||
1319 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1320 bio
->bi_iter
.bi_sector
,
1321 bio_end_sector(bio
))))
1324 sigprocmask(SIG_BLOCK
, &full
, &old
);
1326 sigprocmask(SIG_SETMASK
, &old
, NULL
);
1328 finish_wait(&conf
->wait_barrier
, &w
);
1330 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1332 r1_bio
= alloc_r1bio(mddev
, bio
);
1333 r1_bio
->sectors
= max_write_sectors
;
1335 if (conf
->pending_count
>= max_queued_requests
) {
1336 md_wakeup_thread(mddev
->thread
);
1337 raid1_log(mddev
, "wait queued");
1338 wait_event(conf
->wait_barrier
,
1339 conf
->pending_count
< max_queued_requests
);
1341 /* first select target devices under rcu_lock and
1342 * inc refcount on their rdev. Record them by setting
1344 * If there are known/acknowledged bad blocks on any device on
1345 * which we have seen a write error, we want to avoid writing those
1347 * This potentially requires several writes to write around
1348 * the bad blocks. Each set of writes gets it's own r1bio
1349 * with a set of bios attached.
1352 disks
= conf
->raid_disks
* 2;
1354 blocked_rdev
= NULL
;
1356 max_sectors
= r1_bio
->sectors
;
1357 for (i
= 0; i
< disks
; i
++) {
1358 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1359 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1360 atomic_inc(&rdev
->nr_pending
);
1361 blocked_rdev
= rdev
;
1364 r1_bio
->bios
[i
] = NULL
;
1365 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1366 if (i
< conf
->raid_disks
)
1367 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1371 atomic_inc(&rdev
->nr_pending
);
1372 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1377 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1378 &first_bad
, &bad_sectors
);
1380 /* mustn't write here until the bad block is
1382 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1383 blocked_rdev
= rdev
;
1386 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1387 /* Cannot write here at all */
1388 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1389 if (bad_sectors
< max_sectors
)
1390 /* mustn't write more than bad_sectors
1391 * to other devices yet
1393 max_sectors
= bad_sectors
;
1394 rdev_dec_pending(rdev
, mddev
);
1395 /* We don't set R1BIO_Degraded as that
1396 * only applies if the disk is
1397 * missing, so it might be re-added,
1398 * and we want to know to recover this
1400 * In this case the device is here,
1401 * and the fact that this chunk is not
1402 * in-sync is recorded in the bad
1408 int good_sectors
= first_bad
- r1_bio
->sector
;
1409 if (good_sectors
< max_sectors
)
1410 max_sectors
= good_sectors
;
1413 r1_bio
->bios
[i
] = bio
;
1417 if (unlikely(blocked_rdev
)) {
1418 /* Wait for this device to become unblocked */
1421 for (j
= 0; j
< i
; j
++)
1422 if (r1_bio
->bios
[j
])
1423 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1425 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1426 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1427 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1428 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1432 if (max_sectors
< bio_sectors(bio
)) {
1433 struct bio
*split
= bio_split(bio
, max_sectors
,
1434 GFP_NOIO
, conf
->bio_split
);
1435 bio_chain(split
, bio
);
1436 generic_make_request(bio
);
1438 r1_bio
->master_bio
= bio
;
1439 r1_bio
->sectors
= max_sectors
;
1442 atomic_set(&r1_bio
->remaining
, 1);
1443 atomic_set(&r1_bio
->behind_remaining
, 0);
1447 for (i
= 0; i
< disks
; i
++) {
1448 struct bio
*mbio
= NULL
;
1449 if (!r1_bio
->bios
[i
])
1455 * Not if there are too many, or cannot
1456 * allocate memory, or a reader on WriteMostly
1457 * is waiting for behind writes to flush */
1459 (atomic_read(&bitmap
->behind_writes
)
1460 < mddev
->bitmap_info
.max_write_behind
) &&
1461 !waitqueue_active(&bitmap
->behind_wait
)) {
1462 alloc_behind_master_bio(r1_bio
, bio
);
1465 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1467 test_bit(R1BIO_BehindIO
,
1472 if (r1_bio
->behind_master_bio
)
1473 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1474 GFP_NOIO
, mddev
->bio_set
);
1476 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1478 if (r1_bio
->behind_master_bio
) {
1479 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1480 atomic_inc(&r1_bio
->behind_remaining
);
1483 r1_bio
->bios
[i
] = mbio
;
1485 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1486 conf
->mirrors
[i
].rdev
->data_offset
);
1487 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1488 mbio
->bi_end_io
= raid1_end_write_request
;
1489 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1490 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1491 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1492 conf
->raid_disks
- mddev
->degraded
> 1)
1493 mbio
->bi_opf
|= MD_FAILFAST
;
1494 mbio
->bi_private
= r1_bio
;
1496 atomic_inc(&r1_bio
->remaining
);
1499 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1500 mbio
, disk_devt(mddev
->gendisk
),
1502 /* flush_pending_writes() needs access to the rdev so...*/
1503 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1505 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1507 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1511 bio_list_add(&plug
->pending
, mbio
);
1512 plug
->pending_cnt
++;
1514 spin_lock_irqsave(&conf
->device_lock
, flags
);
1515 bio_list_add(&conf
->pending_bio_list
, mbio
);
1516 conf
->pending_count
++;
1517 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1518 md_wakeup_thread(mddev
->thread
);
1522 r1_bio_write_done(r1_bio
);
1524 /* In case raid1d snuck in to freeze_array */
1525 wake_up(&conf
->wait_barrier
);
1528 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1532 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1533 md_flush_request(mddev
, bio
);
1538 * There is a limit to the maximum size, but
1539 * the read/write handler might find a lower limit
1540 * due to bad blocks. To avoid multiple splits,
1541 * we pass the maximum number of sectors down
1542 * and let the lower level perform the split.
1544 sectors
= align_to_barrier_unit_end(
1545 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1547 if (bio_data_dir(bio
) == READ
)
1548 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1550 if (!md_write_start(mddev
,bio
))
1552 raid1_write_request(mddev
, bio
, sectors
);
1557 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1559 struct r1conf
*conf
= mddev
->private;
1562 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1563 conf
->raid_disks
- mddev
->degraded
);
1565 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1566 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1567 seq_printf(seq
, "%s",
1568 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1571 seq_printf(seq
, "]");
1574 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1576 char b
[BDEVNAME_SIZE
];
1577 struct r1conf
*conf
= mddev
->private;
1578 unsigned long flags
;
1581 * If it is not operational, then we have already marked it as dead
1582 * else if it is the last working disks, ignore the error, let the
1583 * next level up know.
1584 * else mark the drive as failed
1586 spin_lock_irqsave(&conf
->device_lock
, flags
);
1587 if (test_bit(In_sync
, &rdev
->flags
)
1588 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1590 * Don't fail the drive, act as though we were just a
1591 * normal single drive.
1592 * However don't try a recovery from this drive as
1593 * it is very likely to fail.
1595 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1596 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1599 set_bit(Blocked
, &rdev
->flags
);
1600 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1602 set_bit(Faulty
, &rdev
->flags
);
1604 set_bit(Faulty
, &rdev
->flags
);
1605 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1607 * if recovery is running, make sure it aborts.
1609 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1610 set_mask_bits(&mddev
->sb_flags
, 0,
1611 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1612 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1613 "md/raid1:%s: Operation continuing on %d devices.\n",
1614 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1615 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1618 static void print_conf(struct r1conf
*conf
)
1622 pr_debug("RAID1 conf printout:\n");
1624 pr_debug("(!conf)\n");
1627 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1631 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1632 char b
[BDEVNAME_SIZE
];
1633 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1635 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1636 i
, !test_bit(In_sync
, &rdev
->flags
),
1637 !test_bit(Faulty
, &rdev
->flags
),
1638 bdevname(rdev
->bdev
,b
));
1643 static void close_sync(struct r1conf
*conf
)
1647 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1648 _wait_barrier(conf
, idx
);
1649 _allow_barrier(conf
, idx
);
1652 mempool_destroy(conf
->r1buf_pool
);
1653 conf
->r1buf_pool
= NULL
;
1656 static int raid1_spare_active(struct mddev
*mddev
)
1659 struct r1conf
*conf
= mddev
->private;
1661 unsigned long flags
;
1664 * Find all failed disks within the RAID1 configuration
1665 * and mark them readable.
1666 * Called under mddev lock, so rcu protection not needed.
1667 * device_lock used to avoid races with raid1_end_read_request
1668 * which expects 'In_sync' flags and ->degraded to be consistent.
1670 spin_lock_irqsave(&conf
->device_lock
, flags
);
1671 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1672 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1673 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1675 && !test_bit(Candidate
, &repl
->flags
)
1676 && repl
->recovery_offset
== MaxSector
1677 && !test_bit(Faulty
, &repl
->flags
)
1678 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1679 /* replacement has just become active */
1681 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1684 /* Replaced device not technically
1685 * faulty, but we need to be sure
1686 * it gets removed and never re-added
1688 set_bit(Faulty
, &rdev
->flags
);
1689 sysfs_notify_dirent_safe(
1694 && rdev
->recovery_offset
== MaxSector
1695 && !test_bit(Faulty
, &rdev
->flags
)
1696 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1698 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1701 mddev
->degraded
-= count
;
1702 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1708 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1710 struct r1conf
*conf
= mddev
->private;
1713 struct raid1_info
*p
;
1715 int last
= conf
->raid_disks
- 1;
1717 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1720 if (md_integrity_add_rdev(rdev
, mddev
))
1723 if (rdev
->raid_disk
>= 0)
1724 first
= last
= rdev
->raid_disk
;
1727 * find the disk ... but prefer rdev->saved_raid_disk
1730 if (rdev
->saved_raid_disk
>= 0 &&
1731 rdev
->saved_raid_disk
>= first
&&
1732 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1733 first
= last
= rdev
->saved_raid_disk
;
1735 for (mirror
= first
; mirror
<= last
; mirror
++) {
1736 p
= conf
->mirrors
+mirror
;
1740 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1741 rdev
->data_offset
<< 9);
1743 p
->head_position
= 0;
1744 rdev
->raid_disk
= mirror
;
1746 /* As all devices are equivalent, we don't need a full recovery
1747 * if this was recently any drive of the array
1749 if (rdev
->saved_raid_disk
< 0)
1751 rcu_assign_pointer(p
->rdev
, rdev
);
1754 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1755 p
[conf
->raid_disks
].rdev
== NULL
) {
1756 /* Add this device as a replacement */
1757 clear_bit(In_sync
, &rdev
->flags
);
1758 set_bit(Replacement
, &rdev
->flags
);
1759 rdev
->raid_disk
= mirror
;
1762 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1766 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1767 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1772 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1774 struct r1conf
*conf
= mddev
->private;
1776 int number
= rdev
->raid_disk
;
1777 struct raid1_info
*p
= conf
->mirrors
+ number
;
1779 if (rdev
!= p
->rdev
)
1780 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1783 if (rdev
== p
->rdev
) {
1784 if (test_bit(In_sync
, &rdev
->flags
) ||
1785 atomic_read(&rdev
->nr_pending
)) {
1789 /* Only remove non-faulty devices if recovery
1792 if (!test_bit(Faulty
, &rdev
->flags
) &&
1793 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1794 mddev
->degraded
< conf
->raid_disks
) {
1799 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1801 if (atomic_read(&rdev
->nr_pending
)) {
1802 /* lost the race, try later */
1808 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1809 /* We just removed a device that is being replaced.
1810 * Move down the replacement. We drain all IO before
1811 * doing this to avoid confusion.
1813 struct md_rdev
*repl
=
1814 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1815 freeze_array(conf
, 0);
1816 if (atomic_read(&repl
->nr_pending
)) {
1817 /* It means that some queued IO of retry_list
1818 * hold repl. Thus, we cannot set replacement
1819 * as NULL, avoiding rdev NULL pointer
1820 * dereference in sync_request_write and
1821 * handle_write_finished.
1824 unfreeze_array(conf
);
1827 clear_bit(Replacement
, &repl
->flags
);
1829 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1830 unfreeze_array(conf
);
1833 clear_bit(WantReplacement
, &rdev
->flags
);
1834 err
= md_integrity_register(mddev
);
1842 static void end_sync_read(struct bio
*bio
)
1844 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1846 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1849 * we have read a block, now it needs to be re-written,
1850 * or re-read if the read failed.
1851 * We don't do much here, just schedule handling by raid1d
1853 if (!bio
->bi_status
)
1854 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1856 if (atomic_dec_and_test(&r1_bio
->remaining
))
1857 reschedule_retry(r1_bio
);
1860 static void end_sync_write(struct bio
*bio
)
1862 int uptodate
= !bio
->bi_status
;
1863 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1864 struct mddev
*mddev
= r1_bio
->mddev
;
1865 struct r1conf
*conf
= mddev
->private;
1868 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1871 sector_t sync_blocks
= 0;
1872 sector_t s
= r1_bio
->sector
;
1873 long sectors_to_go
= r1_bio
->sectors
;
1874 /* make sure these bits doesn't get cleared. */
1876 bitmap_end_sync(mddev
->bitmap
, s
,
1879 sectors_to_go
-= sync_blocks
;
1880 } while (sectors_to_go
> 0);
1881 set_bit(WriteErrorSeen
, &rdev
->flags
);
1882 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1883 set_bit(MD_RECOVERY_NEEDED
, &
1885 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1886 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1887 &first_bad
, &bad_sectors
) &&
1888 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1891 &first_bad
, &bad_sectors
)
1893 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1895 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1896 int s
= r1_bio
->sectors
;
1897 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1898 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1899 reschedule_retry(r1_bio
);
1902 md_done_sync(mddev
, s
, uptodate
);
1907 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1908 int sectors
, struct page
*page
, int rw
)
1910 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1914 set_bit(WriteErrorSeen
, &rdev
->flags
);
1915 if (!test_and_set_bit(WantReplacement
,
1917 set_bit(MD_RECOVERY_NEEDED
, &
1918 rdev
->mddev
->recovery
);
1920 /* need to record an error - either for the block or the device */
1921 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1922 md_error(rdev
->mddev
, rdev
);
1926 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1928 /* Try some synchronous reads of other devices to get
1929 * good data, much like with normal read errors. Only
1930 * read into the pages we already have so we don't
1931 * need to re-issue the read request.
1932 * We don't need to freeze the array, because being in an
1933 * active sync request, there is no normal IO, and
1934 * no overlapping syncs.
1935 * We don't need to check is_badblock() again as we
1936 * made sure that anything with a bad block in range
1937 * will have bi_end_io clear.
1939 struct mddev
*mddev
= r1_bio
->mddev
;
1940 struct r1conf
*conf
= mddev
->private;
1941 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1942 struct page
**pages
= get_resync_pages(bio
)->pages
;
1943 sector_t sect
= r1_bio
->sector
;
1944 int sectors
= r1_bio
->sectors
;
1946 struct md_rdev
*rdev
;
1948 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1949 if (test_bit(FailFast
, &rdev
->flags
)) {
1950 /* Don't try recovering from here - just fail it
1951 * ... unless it is the last working device of course */
1952 md_error(mddev
, rdev
);
1953 if (test_bit(Faulty
, &rdev
->flags
))
1954 /* Don't try to read from here, but make sure
1955 * put_buf does it's thing
1957 bio
->bi_end_io
= end_sync_write
;
1962 int d
= r1_bio
->read_disk
;
1966 if (s
> (PAGE_SIZE
>>9))
1969 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1970 /* No rcu protection needed here devices
1971 * can only be removed when no resync is
1972 * active, and resync is currently active
1974 rdev
= conf
->mirrors
[d
].rdev
;
1975 if (sync_page_io(rdev
, sect
, s
<<9,
1977 REQ_OP_READ
, 0, false)) {
1983 if (d
== conf
->raid_disks
* 2)
1985 } while (!success
&& d
!= r1_bio
->read_disk
);
1988 char b
[BDEVNAME_SIZE
];
1990 /* Cannot read from anywhere, this block is lost.
1991 * Record a bad block on each device. If that doesn't
1992 * work just disable and interrupt the recovery.
1993 * Don't fail devices as that won't really help.
1995 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1996 mdname(mddev
), bio_devname(bio
, b
),
1997 (unsigned long long)r1_bio
->sector
);
1998 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1999 rdev
= conf
->mirrors
[d
].rdev
;
2000 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
2002 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2006 conf
->recovery_disabled
=
2007 mddev
->recovery_disabled
;
2008 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2009 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2021 /* write it back and re-read */
2022 while (d
!= r1_bio
->read_disk
) {
2024 d
= conf
->raid_disks
* 2;
2026 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2028 rdev
= conf
->mirrors
[d
].rdev
;
2029 if (r1_sync_page_io(rdev
, sect
, s
,
2032 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2033 rdev_dec_pending(rdev
, mddev
);
2037 while (d
!= r1_bio
->read_disk
) {
2039 d
= conf
->raid_disks
* 2;
2041 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2043 rdev
= conf
->mirrors
[d
].rdev
;
2044 if (r1_sync_page_io(rdev
, sect
, s
,
2047 atomic_add(s
, &rdev
->corrected_errors
);
2053 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2058 static void process_checks(struct r1bio
*r1_bio
)
2060 /* We have read all readable devices. If we haven't
2061 * got the block, then there is no hope left.
2062 * If we have, then we want to do a comparison
2063 * and skip the write if everything is the same.
2064 * If any blocks failed to read, then we need to
2065 * attempt an over-write
2067 struct mddev
*mddev
= r1_bio
->mddev
;
2068 struct r1conf
*conf
= mddev
->private;
2073 /* Fix variable parts of all bios */
2074 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2075 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2076 blk_status_t status
;
2077 struct bio
*b
= r1_bio
->bios
[i
];
2078 struct resync_pages
*rp
= get_resync_pages(b
);
2079 if (b
->bi_end_io
!= end_sync_read
)
2081 /* fixup the bio for reuse, but preserve errno */
2082 status
= b
->bi_status
;
2084 b
->bi_status
= status
;
2085 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2086 conf
->mirrors
[i
].rdev
->data_offset
;
2087 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2088 b
->bi_end_io
= end_sync_read
;
2089 rp
->raid_bio
= r1_bio
;
2092 /* initialize bvec table again */
2093 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2095 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2096 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2097 !r1_bio
->bios
[primary
]->bi_status
) {
2098 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2099 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2102 r1_bio
->read_disk
= primary
;
2103 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2105 struct bio
*pbio
= r1_bio
->bios
[primary
];
2106 struct bio
*sbio
= r1_bio
->bios
[i
];
2107 blk_status_t status
= sbio
->bi_status
;
2108 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2109 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2111 int page_len
[RESYNC_PAGES
] = { 0 };
2113 if (sbio
->bi_end_io
!= end_sync_read
)
2115 /* Now we can 'fixup' the error value */
2116 sbio
->bi_status
= 0;
2118 bio_for_each_segment_all(bi
, sbio
, j
)
2119 page_len
[j
] = bi
->bv_len
;
2122 for (j
= vcnt
; j
-- ; ) {
2123 if (memcmp(page_address(ppages
[j
]),
2124 page_address(spages
[j
]),
2131 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2132 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2134 /* No need to write to this device. */
2135 sbio
->bi_end_io
= NULL
;
2136 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2140 bio_copy_data(sbio
, pbio
);
2144 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2146 struct r1conf
*conf
= mddev
->private;
2148 int disks
= conf
->raid_disks
* 2;
2151 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2152 /* ouch - failed to read all of that. */
2153 if (!fix_sync_read_error(r1_bio
))
2156 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2157 process_checks(r1_bio
);
2162 atomic_set(&r1_bio
->remaining
, 1);
2163 for (i
= 0; i
< disks
; i
++) {
2164 wbio
= r1_bio
->bios
[i
];
2165 if (wbio
->bi_end_io
== NULL
||
2166 (wbio
->bi_end_io
== end_sync_read
&&
2167 (i
== r1_bio
->read_disk
||
2168 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2170 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2173 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2174 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2175 wbio
->bi_opf
|= MD_FAILFAST
;
2177 wbio
->bi_end_io
= end_sync_write
;
2178 atomic_inc(&r1_bio
->remaining
);
2179 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2181 generic_make_request(wbio
);
2184 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2185 /* if we're here, all write(s) have completed, so clean up */
2186 int s
= r1_bio
->sectors
;
2187 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2188 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2189 reschedule_retry(r1_bio
);
2192 md_done_sync(mddev
, s
, 1);
2198 * This is a kernel thread which:
2200 * 1. Retries failed read operations on working mirrors.
2201 * 2. Updates the raid superblock when problems encounter.
2202 * 3. Performs writes following reads for array synchronising.
2205 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2206 sector_t sect
, int sectors
)
2208 struct mddev
*mddev
= conf
->mddev
;
2214 struct md_rdev
*rdev
;
2216 if (s
> (PAGE_SIZE
>>9))
2224 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2226 (test_bit(In_sync
, &rdev
->flags
) ||
2227 (!test_bit(Faulty
, &rdev
->flags
) &&
2228 rdev
->recovery_offset
>= sect
+ s
)) &&
2229 is_badblock(rdev
, sect
, s
,
2230 &first_bad
, &bad_sectors
) == 0) {
2231 atomic_inc(&rdev
->nr_pending
);
2233 if (sync_page_io(rdev
, sect
, s
<<9,
2234 conf
->tmppage
, REQ_OP_READ
, 0, false))
2236 rdev_dec_pending(rdev
, mddev
);
2242 if (d
== conf
->raid_disks
* 2)
2244 } while (!success
&& d
!= read_disk
);
2247 /* Cannot read from anywhere - mark it bad */
2248 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2249 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2250 md_error(mddev
, rdev
);
2253 /* write it back and re-read */
2255 while (d
!= read_disk
) {
2257 d
= conf
->raid_disks
* 2;
2260 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2262 !test_bit(Faulty
, &rdev
->flags
)) {
2263 atomic_inc(&rdev
->nr_pending
);
2265 r1_sync_page_io(rdev
, sect
, s
,
2266 conf
->tmppage
, WRITE
);
2267 rdev_dec_pending(rdev
, mddev
);
2272 while (d
!= read_disk
) {
2273 char b
[BDEVNAME_SIZE
];
2275 d
= conf
->raid_disks
* 2;
2278 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2280 !test_bit(Faulty
, &rdev
->flags
)) {
2281 atomic_inc(&rdev
->nr_pending
);
2283 if (r1_sync_page_io(rdev
, sect
, s
,
2284 conf
->tmppage
, READ
)) {
2285 atomic_add(s
, &rdev
->corrected_errors
);
2286 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2288 (unsigned long long)(sect
+
2290 bdevname(rdev
->bdev
, b
));
2292 rdev_dec_pending(rdev
, mddev
);
2301 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2303 struct mddev
*mddev
= r1_bio
->mddev
;
2304 struct r1conf
*conf
= mddev
->private;
2305 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2307 /* bio has the data to be written to device 'i' where
2308 * we just recently had a write error.
2309 * We repeatedly clone the bio and trim down to one block,
2310 * then try the write. Where the write fails we record
2312 * It is conceivable that the bio doesn't exactly align with
2313 * blocks. We must handle this somehow.
2315 * We currently own a reference on the rdev.
2321 int sect_to_write
= r1_bio
->sectors
;
2324 if (rdev
->badblocks
.shift
< 0)
2327 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2328 bdev_logical_block_size(rdev
->bdev
) >> 9);
2329 sector
= r1_bio
->sector
;
2330 sectors
= ((sector
+ block_sectors
)
2331 & ~(sector_t
)(block_sectors
- 1))
2334 while (sect_to_write
) {
2336 if (sectors
> sect_to_write
)
2337 sectors
= sect_to_write
;
2338 /* Write at 'sector' for 'sectors'*/
2340 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2341 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2345 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2349 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2350 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2351 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2353 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2354 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2355 bio_set_dev(wbio
, rdev
->bdev
);
2357 if (submit_bio_wait(wbio
) < 0)
2359 ok
= rdev_set_badblocks(rdev
, sector
,
2364 sect_to_write
-= sectors
;
2366 sectors
= block_sectors
;
2371 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2374 int s
= r1_bio
->sectors
;
2375 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2376 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2377 struct bio
*bio
= r1_bio
->bios
[m
];
2378 if (bio
->bi_end_io
== NULL
)
2380 if (!bio
->bi_status
&&
2381 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2382 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2384 if (bio
->bi_status
&&
2385 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2386 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2387 md_error(conf
->mddev
, rdev
);
2391 md_done_sync(conf
->mddev
, s
, 1);
2394 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2399 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2400 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2401 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2402 rdev_clear_badblocks(rdev
,
2404 r1_bio
->sectors
, 0);
2405 rdev_dec_pending(rdev
, conf
->mddev
);
2406 } else if (r1_bio
->bios
[m
] != NULL
) {
2407 /* This drive got a write error. We need to
2408 * narrow down and record precise write
2412 if (!narrow_write_error(r1_bio
, m
)) {
2413 md_error(conf
->mddev
,
2414 conf
->mirrors
[m
].rdev
);
2415 /* an I/O failed, we can't clear the bitmap */
2416 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2418 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2422 spin_lock_irq(&conf
->device_lock
);
2423 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2424 idx
= sector_to_idx(r1_bio
->sector
);
2425 atomic_inc(&conf
->nr_queued
[idx
]);
2426 spin_unlock_irq(&conf
->device_lock
);
2428 * In case freeze_array() is waiting for condition
2429 * get_unqueued_pending() == extra to be true.
2431 wake_up(&conf
->wait_barrier
);
2432 md_wakeup_thread(conf
->mddev
->thread
);
2434 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2435 close_write(r1_bio
);
2436 raid_end_bio_io(r1_bio
);
2440 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2442 struct mddev
*mddev
= conf
->mddev
;
2444 struct md_rdev
*rdev
;
2445 sector_t bio_sector
;
2447 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2448 /* we got a read error. Maybe the drive is bad. Maybe just
2449 * the block and we can fix it.
2450 * We freeze all other IO, and try reading the block from
2451 * other devices. When we find one, we re-write
2452 * and check it that fixes the read error.
2453 * This is all done synchronously while the array is
2457 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2458 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2460 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2462 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2464 && !test_bit(FailFast
, &rdev
->flags
)) {
2465 freeze_array(conf
, 1);
2466 fix_read_error(conf
, r1_bio
->read_disk
,
2467 r1_bio
->sector
, r1_bio
->sectors
);
2468 unfreeze_array(conf
);
2470 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2473 rdev_dec_pending(rdev
, conf
->mddev
);
2474 allow_barrier(conf
, r1_bio
->sector
);
2475 bio
= r1_bio
->master_bio
;
2477 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2479 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2482 static void raid1d(struct md_thread
*thread
)
2484 struct mddev
*mddev
= thread
->mddev
;
2485 struct r1bio
*r1_bio
;
2486 unsigned long flags
;
2487 struct r1conf
*conf
= mddev
->private;
2488 struct list_head
*head
= &conf
->retry_list
;
2489 struct blk_plug plug
;
2492 md_check_recovery(mddev
);
2494 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2495 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2497 spin_lock_irqsave(&conf
->device_lock
, flags
);
2498 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2499 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2500 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2501 while (!list_empty(&tmp
)) {
2502 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2504 list_del(&r1_bio
->retry_list
);
2505 idx
= sector_to_idx(r1_bio
->sector
);
2506 atomic_dec(&conf
->nr_queued
[idx
]);
2507 if (mddev
->degraded
)
2508 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2509 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2510 close_write(r1_bio
);
2511 raid_end_bio_io(r1_bio
);
2515 blk_start_plug(&plug
);
2518 flush_pending_writes(conf
);
2520 spin_lock_irqsave(&conf
->device_lock
, flags
);
2521 if (list_empty(head
)) {
2522 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2525 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2526 list_del(head
->prev
);
2527 idx
= sector_to_idx(r1_bio
->sector
);
2528 atomic_dec(&conf
->nr_queued
[idx
]);
2529 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2531 mddev
= r1_bio
->mddev
;
2532 conf
= mddev
->private;
2533 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2534 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2535 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2536 handle_sync_write_finished(conf
, r1_bio
);
2538 sync_request_write(mddev
, r1_bio
);
2539 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2540 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2541 handle_write_finished(conf
, r1_bio
);
2542 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2543 handle_read_error(conf
, r1_bio
);
2548 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2549 md_check_recovery(mddev
);
2551 blk_finish_plug(&plug
);
2554 static int init_resync(struct r1conf
*conf
)
2558 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2559 BUG_ON(conf
->r1buf_pool
);
2560 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2562 if (!conf
->r1buf_pool
)
2567 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2569 struct r1bio
*r1bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2570 struct resync_pages
*rps
;
2574 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2575 bio
= r1bio
->bios
[i
];
2576 rps
= bio
->bi_private
;
2578 bio
->bi_private
= rps
;
2580 r1bio
->master_bio
= NULL
;
2585 * perform a "sync" on one "block"
2587 * We need to make sure that no normal I/O request - particularly write
2588 * requests - conflict with active sync requests.
2590 * This is achieved by tracking pending requests and a 'barrier' concept
2591 * that can be installed to exclude normal IO requests.
2594 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2597 struct r1conf
*conf
= mddev
->private;
2598 struct r1bio
*r1_bio
;
2600 sector_t max_sector
, nr_sectors
;
2604 int write_targets
= 0, read_targets
= 0;
2605 sector_t sync_blocks
;
2606 int still_degraded
= 0;
2607 int good_sectors
= RESYNC_SECTORS
;
2608 int min_bad
= 0; /* number of sectors that are bad in all devices */
2609 int idx
= sector_to_idx(sector_nr
);
2612 if (!conf
->r1buf_pool
)
2613 if (init_resync(conf
))
2616 max_sector
= mddev
->dev_sectors
;
2617 if (sector_nr
>= max_sector
) {
2618 /* If we aborted, we need to abort the
2619 * sync on the 'current' bitmap chunk (there will
2620 * only be one in raid1 resync.
2621 * We can find the current addess in mddev->curr_resync
2623 if (mddev
->curr_resync
< max_sector
) /* aborted */
2624 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2626 else /* completed sync */
2629 bitmap_close_sync(mddev
->bitmap
);
2632 if (mddev_is_clustered(mddev
)) {
2633 conf
->cluster_sync_low
= 0;
2634 conf
->cluster_sync_high
= 0;
2639 if (mddev
->bitmap
== NULL
&&
2640 mddev
->recovery_cp
== MaxSector
&&
2641 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2642 conf
->fullsync
== 0) {
2644 return max_sector
- sector_nr
;
2646 /* before building a request, check if we can skip these blocks..
2647 * This call the bitmap_start_sync doesn't actually record anything
2649 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2650 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2651 /* We can skip this block, and probably several more */
2657 * If there is non-resync activity waiting for a turn, then let it
2658 * though before starting on this new sync request.
2660 if (atomic_read(&conf
->nr_waiting
[idx
]))
2661 schedule_timeout_uninterruptible(1);
2663 /* we are incrementing sector_nr below. To be safe, we check against
2664 * sector_nr + two times RESYNC_SECTORS
2667 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2668 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2669 r1_bio
= raid1_alloc_init_r1buf(conf
);
2671 raise_barrier(conf
, sector_nr
);
2675 * If we get a correctably read error during resync or recovery,
2676 * we might want to read from a different device. So we
2677 * flag all drives that could conceivably be read from for READ,
2678 * and any others (which will be non-In_sync devices) for WRITE.
2679 * If a read fails, we try reading from something else for which READ
2683 r1_bio
->mddev
= mddev
;
2684 r1_bio
->sector
= sector_nr
;
2686 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2687 /* make sure good_sectors won't go across barrier unit boundary */
2688 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2690 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2691 struct md_rdev
*rdev
;
2692 bio
= r1_bio
->bios
[i
];
2694 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2696 test_bit(Faulty
, &rdev
->flags
)) {
2697 if (i
< conf
->raid_disks
)
2699 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2700 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2701 bio
->bi_end_io
= end_sync_write
;
2704 /* may need to read from here */
2705 sector_t first_bad
= MaxSector
;
2708 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2709 &first_bad
, &bad_sectors
)) {
2710 if (first_bad
> sector_nr
)
2711 good_sectors
= first_bad
- sector_nr
;
2713 bad_sectors
-= (sector_nr
- first_bad
);
2715 min_bad
> bad_sectors
)
2716 min_bad
= bad_sectors
;
2719 if (sector_nr
< first_bad
) {
2720 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2727 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2728 bio
->bi_end_io
= end_sync_read
;
2730 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2731 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2732 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2734 * The device is suitable for reading (InSync),
2735 * but has bad block(s) here. Let's try to correct them,
2736 * if we are doing resync or repair. Otherwise, leave
2737 * this device alone for this sync request.
2739 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2740 bio
->bi_end_io
= end_sync_write
;
2744 if (bio
->bi_end_io
) {
2745 atomic_inc(&rdev
->nr_pending
);
2746 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2747 bio_set_dev(bio
, rdev
->bdev
);
2748 if (test_bit(FailFast
, &rdev
->flags
))
2749 bio
->bi_opf
|= MD_FAILFAST
;
2755 r1_bio
->read_disk
= disk
;
2757 if (read_targets
== 0 && min_bad
> 0) {
2758 /* These sectors are bad on all InSync devices, so we
2759 * need to mark them bad on all write targets
2762 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2763 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2764 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2765 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2769 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2774 /* Cannot record the badblocks, so need to
2776 * If there are multiple read targets, could just
2777 * fail the really bad ones ???
2779 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2780 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2786 if (min_bad
> 0 && min_bad
< good_sectors
) {
2787 /* only resync enough to reach the next bad->good
2789 good_sectors
= min_bad
;
2792 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2793 /* extra read targets are also write targets */
2794 write_targets
+= read_targets
-1;
2796 if (write_targets
== 0 || read_targets
== 0) {
2797 /* There is nowhere to write, so all non-sync
2798 * drives must be failed - so we are finished
2802 max_sector
= sector_nr
+ min_bad
;
2803 rv
= max_sector
- sector_nr
;
2809 if (max_sector
> mddev
->resync_max
)
2810 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2811 if (max_sector
> sector_nr
+ good_sectors
)
2812 max_sector
= sector_nr
+ good_sectors
;
2817 int len
= PAGE_SIZE
;
2818 if (sector_nr
+ (len
>>9) > max_sector
)
2819 len
= (max_sector
- sector_nr
) << 9;
2822 if (sync_blocks
== 0) {
2823 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2824 &sync_blocks
, still_degraded
) &&
2826 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2828 if ((len
>> 9) > sync_blocks
)
2829 len
= sync_blocks
<<9;
2832 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2833 struct resync_pages
*rp
;
2835 bio
= r1_bio
->bios
[i
];
2836 rp
= get_resync_pages(bio
);
2837 if (bio
->bi_end_io
) {
2838 page
= resync_fetch_page(rp
, page_idx
);
2841 * won't fail because the vec table is big
2842 * enough to hold all these pages
2844 bio_add_page(bio
, page
, len
, 0);
2847 nr_sectors
+= len
>>9;
2848 sector_nr
+= len
>>9;
2849 sync_blocks
-= (len
>>9);
2850 } while (++page_idx
< RESYNC_PAGES
);
2852 r1_bio
->sectors
= nr_sectors
;
2854 if (mddev_is_clustered(mddev
) &&
2855 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2856 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2857 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2858 /* Send resync message */
2859 md_cluster_ops
->resync_info_update(mddev
,
2860 conf
->cluster_sync_low
,
2861 conf
->cluster_sync_high
);
2864 /* For a user-requested sync, we read all readable devices and do a
2867 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2868 atomic_set(&r1_bio
->remaining
, read_targets
);
2869 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2870 bio
= r1_bio
->bios
[i
];
2871 if (bio
->bi_end_io
== end_sync_read
) {
2873 md_sync_acct_bio(bio
, nr_sectors
);
2874 if (read_targets
== 1)
2875 bio
->bi_opf
&= ~MD_FAILFAST
;
2876 generic_make_request(bio
);
2880 atomic_set(&r1_bio
->remaining
, 1);
2881 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2882 md_sync_acct_bio(bio
, nr_sectors
);
2883 if (read_targets
== 1)
2884 bio
->bi_opf
&= ~MD_FAILFAST
;
2885 generic_make_request(bio
);
2891 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2896 return mddev
->dev_sectors
;
2899 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2901 struct r1conf
*conf
;
2903 struct raid1_info
*disk
;
2904 struct md_rdev
*rdev
;
2907 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2911 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2912 sizeof(atomic_t
), GFP_KERNEL
);
2913 if (!conf
->nr_pending
)
2916 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2917 sizeof(atomic_t
), GFP_KERNEL
);
2918 if (!conf
->nr_waiting
)
2921 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2922 sizeof(atomic_t
), GFP_KERNEL
);
2923 if (!conf
->nr_queued
)
2926 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2927 sizeof(atomic_t
), GFP_KERNEL
);
2931 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2932 * mddev
->raid_disks
* 2,
2937 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2941 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2942 if (!conf
->poolinfo
)
2944 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2945 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2948 if (!conf
->r1bio_pool
)
2951 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
2952 if (!conf
->bio_split
)
2955 conf
->poolinfo
->mddev
= mddev
;
2958 spin_lock_init(&conf
->device_lock
);
2959 rdev_for_each(rdev
, mddev
) {
2960 int disk_idx
= rdev
->raid_disk
;
2961 if (disk_idx
>= mddev
->raid_disks
2964 if (test_bit(Replacement
, &rdev
->flags
))
2965 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2967 disk
= conf
->mirrors
+ disk_idx
;
2972 disk
->head_position
= 0;
2973 disk
->seq_start
= MaxSector
;
2975 conf
->raid_disks
= mddev
->raid_disks
;
2976 conf
->mddev
= mddev
;
2977 INIT_LIST_HEAD(&conf
->retry_list
);
2978 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2980 spin_lock_init(&conf
->resync_lock
);
2981 init_waitqueue_head(&conf
->wait_barrier
);
2983 bio_list_init(&conf
->pending_bio_list
);
2984 conf
->pending_count
= 0;
2985 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2988 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2990 disk
= conf
->mirrors
+ i
;
2992 if (i
< conf
->raid_disks
&&
2993 disk
[conf
->raid_disks
].rdev
) {
2994 /* This slot has a replacement. */
2996 /* No original, just make the replacement
2997 * a recovering spare
3000 disk
[conf
->raid_disks
].rdev
;
3001 disk
[conf
->raid_disks
].rdev
= NULL
;
3002 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3003 /* Original is not in_sync - bad */
3008 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3009 disk
->head_position
= 0;
3011 (disk
->rdev
->saved_raid_disk
< 0))
3017 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3025 mempool_destroy(conf
->r1bio_pool
);
3026 kfree(conf
->mirrors
);
3027 safe_put_page(conf
->tmppage
);
3028 kfree(conf
->poolinfo
);
3029 kfree(conf
->nr_pending
);
3030 kfree(conf
->nr_waiting
);
3031 kfree(conf
->nr_queued
);
3032 kfree(conf
->barrier
);
3033 if (conf
->bio_split
)
3034 bioset_free(conf
->bio_split
);
3037 return ERR_PTR(err
);
3040 static void raid1_free(struct mddev
*mddev
, void *priv
);
3041 static int raid1_run(struct mddev
*mddev
)
3043 struct r1conf
*conf
;
3045 struct md_rdev
*rdev
;
3047 bool discard_supported
= false;
3049 if (mddev
->level
!= 1) {
3050 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3051 mdname(mddev
), mddev
->level
);
3054 if (mddev
->reshape_position
!= MaxSector
) {
3055 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3059 if (mddev_init_writes_pending(mddev
) < 0)
3062 * copy the already verified devices into our private RAID1
3063 * bookkeeping area. [whatever we allocate in run(),
3064 * should be freed in raid1_free()]
3066 if (mddev
->private == NULL
)
3067 conf
= setup_conf(mddev
);
3069 conf
= mddev
->private;
3072 return PTR_ERR(conf
);
3075 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3076 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3079 rdev_for_each(rdev
, mddev
) {
3080 if (!mddev
->gendisk
)
3082 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3083 rdev
->data_offset
<< 9);
3084 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3085 discard_supported
= true;
3088 mddev
->degraded
= 0;
3089 for (i
=0; i
< conf
->raid_disks
; i
++)
3090 if (conf
->mirrors
[i
].rdev
== NULL
||
3091 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3092 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3095 if (conf
->raid_disks
- mddev
->degraded
== 1)
3096 mddev
->recovery_cp
= MaxSector
;
3098 if (mddev
->recovery_cp
!= MaxSector
)
3099 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3101 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3102 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3106 * Ok, everything is just fine now
3108 mddev
->thread
= conf
->thread
;
3109 conf
->thread
= NULL
;
3110 mddev
->private = conf
;
3111 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3113 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3116 if (discard_supported
)
3117 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3120 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3124 ret
= md_integrity_register(mddev
);
3126 md_unregister_thread(&mddev
->thread
);
3127 raid1_free(mddev
, conf
);
3132 static void raid1_free(struct mddev
*mddev
, void *priv
)
3134 struct r1conf
*conf
= priv
;
3136 mempool_destroy(conf
->r1bio_pool
);
3137 kfree(conf
->mirrors
);
3138 safe_put_page(conf
->tmppage
);
3139 kfree(conf
->poolinfo
);
3140 kfree(conf
->nr_pending
);
3141 kfree(conf
->nr_waiting
);
3142 kfree(conf
->nr_queued
);
3143 kfree(conf
->barrier
);
3144 if (conf
->bio_split
)
3145 bioset_free(conf
->bio_split
);
3149 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3151 /* no resync is happening, and there is enough space
3152 * on all devices, so we can resize.
3153 * We need to make sure resync covers any new space.
3154 * If the array is shrinking we should possibly wait until
3155 * any io in the removed space completes, but it hardly seems
3158 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3159 if (mddev
->external_size
&&
3160 mddev
->array_sectors
> newsize
)
3162 if (mddev
->bitmap
) {
3163 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3167 md_set_array_sectors(mddev
, newsize
);
3168 if (sectors
> mddev
->dev_sectors
&&
3169 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3170 mddev
->recovery_cp
= mddev
->dev_sectors
;
3171 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3173 mddev
->dev_sectors
= sectors
;
3174 mddev
->resync_max_sectors
= sectors
;
3178 static int raid1_reshape(struct mddev
*mddev
)
3181 * 1/ resize the r1bio_pool
3182 * 2/ resize conf->mirrors
3184 * We allocate a new r1bio_pool if we can.
3185 * Then raise a device barrier and wait until all IO stops.
3186 * Then resize conf->mirrors and swap in the new r1bio pool.
3188 * At the same time, we "pack" the devices so that all the missing
3189 * devices have the higher raid_disk numbers.
3191 mempool_t
*newpool
, *oldpool
;
3192 struct pool_info
*newpoolinfo
;
3193 struct raid1_info
*newmirrors
;
3194 struct r1conf
*conf
= mddev
->private;
3195 int cnt
, raid_disks
;
3196 unsigned long flags
;
3199 /* Cannot change chunk_size, layout, or level */
3200 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3201 mddev
->layout
!= mddev
->new_layout
||
3202 mddev
->level
!= mddev
->new_level
) {
3203 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3204 mddev
->new_layout
= mddev
->layout
;
3205 mddev
->new_level
= mddev
->level
;
3209 if (!mddev_is_clustered(mddev
))
3210 md_allow_write(mddev
);
3212 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3214 if (raid_disks
< conf
->raid_disks
) {
3216 for (d
= 0; d
< conf
->raid_disks
; d
++)
3217 if (conf
->mirrors
[d
].rdev
)
3219 if (cnt
> raid_disks
)
3223 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3226 newpoolinfo
->mddev
= mddev
;
3227 newpoolinfo
->raid_disks
= raid_disks
* 2;
3229 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3230 r1bio_pool_free
, newpoolinfo
);
3235 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3239 mempool_destroy(newpool
);
3243 freeze_array(conf
, 0);
3245 /* ok, everything is stopped */
3246 oldpool
= conf
->r1bio_pool
;
3247 conf
->r1bio_pool
= newpool
;
3249 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3250 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3251 if (rdev
&& rdev
->raid_disk
!= d2
) {
3252 sysfs_unlink_rdev(mddev
, rdev
);
3253 rdev
->raid_disk
= d2
;
3254 sysfs_unlink_rdev(mddev
, rdev
);
3255 if (sysfs_link_rdev(mddev
, rdev
))
3256 pr_warn("md/raid1:%s: cannot register rd%d\n",
3257 mdname(mddev
), rdev
->raid_disk
);
3260 newmirrors
[d2
++].rdev
= rdev
;
3262 kfree(conf
->mirrors
);
3263 conf
->mirrors
= newmirrors
;
3264 kfree(conf
->poolinfo
);
3265 conf
->poolinfo
= newpoolinfo
;
3267 spin_lock_irqsave(&conf
->device_lock
, flags
);
3268 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3269 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3270 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3271 mddev
->delta_disks
= 0;
3273 unfreeze_array(conf
);
3275 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3276 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3277 md_wakeup_thread(mddev
->thread
);
3279 mempool_destroy(oldpool
);
3283 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3285 struct r1conf
*conf
= mddev
->private;
3288 case 2: /* wake for suspend */
3289 wake_up(&conf
->wait_barrier
);
3292 freeze_array(conf
, 0);
3295 unfreeze_array(conf
);
3300 static void *raid1_takeover(struct mddev
*mddev
)
3302 /* raid1 can take over:
3303 * raid5 with 2 devices, any layout or chunk size
3305 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3306 struct r1conf
*conf
;
3307 mddev
->new_level
= 1;
3308 mddev
->new_layout
= 0;
3309 mddev
->new_chunk_sectors
= 0;
3310 conf
= setup_conf(mddev
);
3311 if (!IS_ERR(conf
)) {
3312 /* Array must appear to be quiesced */
3313 conf
->array_frozen
= 1;
3314 mddev_clear_unsupported_flags(mddev
,
3315 UNSUPPORTED_MDDEV_FLAGS
);
3319 return ERR_PTR(-EINVAL
);
3322 static struct md_personality raid1_personality
=
3326 .owner
= THIS_MODULE
,
3327 .make_request
= raid1_make_request
,
3330 .status
= raid1_status
,
3331 .error_handler
= raid1_error
,
3332 .hot_add_disk
= raid1_add_disk
,
3333 .hot_remove_disk
= raid1_remove_disk
,
3334 .spare_active
= raid1_spare_active
,
3335 .sync_request
= raid1_sync_request
,
3336 .resize
= raid1_resize
,
3338 .check_reshape
= raid1_reshape
,
3339 .quiesce
= raid1_quiesce
,
3340 .takeover
= raid1_takeover
,
3341 .congested
= raid1_congested
,
3344 static int __init
raid_init(void)
3346 return register_md_personality(&raid1_personality
);
3349 static void raid_exit(void)
3351 unregister_md_personality(&raid1_personality
);
3354 module_init(raid_init
);
3355 module_exit(raid_exit
);
3356 MODULE_LICENSE("GPL");
3357 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3358 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3359 MODULE_ALIAS("md-raid1");
3360 MODULE_ALIAS("md-level-1");
3362 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);