Linux 4.14.51
[linux/fpc-iii.git] / drivers / media / cec / cec-pin.c
blobc003b8eac61762f8fa34e6e02c2138896aaa41d9
1 /*
2 * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
4 * This program is free software; you may redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
8 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
9 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
10 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
11 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
12 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
13 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
14 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
15 * SOFTWARE.
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/sched/types.h>
22 #include <media/cec-pin.h>
24 /* All timings are in microseconds */
26 /* start bit timings */
27 #define CEC_TIM_START_BIT_LOW 3700
28 #define CEC_TIM_START_BIT_LOW_MIN 3500
29 #define CEC_TIM_START_BIT_LOW_MAX 3900
30 #define CEC_TIM_START_BIT_TOTAL 4500
31 #define CEC_TIM_START_BIT_TOTAL_MIN 4300
32 #define CEC_TIM_START_BIT_TOTAL_MAX 4700
34 /* data bit timings */
35 #define CEC_TIM_DATA_BIT_0_LOW 1500
36 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300
37 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700
38 #define CEC_TIM_DATA_BIT_1_LOW 600
39 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400
40 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800
41 #define CEC_TIM_DATA_BIT_TOTAL 2400
42 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050
43 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750
44 /* earliest safe time to sample the bit state */
45 #define CEC_TIM_DATA_BIT_SAMPLE 850
46 /* earliest time the bit is back to 1 (T7 + 50) */
47 #define CEC_TIM_DATA_BIT_HIGH 1750
49 /* when idle, sample once per millisecond */
50 #define CEC_TIM_IDLE_SAMPLE 1000
51 /* when processing the start bit, sample twice per millisecond */
52 #define CEC_TIM_START_BIT_SAMPLE 500
53 /* when polling for a state change, sample once every 50 micoseconds */
54 #define CEC_TIM_SAMPLE 50
56 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL)
58 struct cec_state {
59 const char * const name;
60 unsigned int usecs;
63 static const struct cec_state states[CEC_PIN_STATES] = {
64 { "Off", 0 },
65 { "Idle", CEC_TIM_IDLE_SAMPLE },
66 { "Tx Wait", CEC_TIM_SAMPLE },
67 { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE },
68 { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW },
69 { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
70 { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW },
71 { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
72 { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW },
73 { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
74 { "Tx Data 1 Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
75 { "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
76 { "Rx Start Bit Low", CEC_TIM_SAMPLE },
77 { "Rx Start Bit High", CEC_TIM_SAMPLE },
78 { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE },
79 { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
80 { "Rx Data High", CEC_TIM_SAMPLE },
81 { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW },
82 { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
83 { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH },
84 { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
85 { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR },
86 { "Rx Irq", 0 },
89 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
91 if (!force && v == pin->adap->cec_pin_is_high)
92 return;
94 pin->adap->cec_pin_is_high = v;
95 if (atomic_read(&pin->work_pin_events) < CEC_NUM_PIN_EVENTS) {
96 pin->work_pin_is_high[pin->work_pin_events_wr] = v;
97 pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
98 pin->work_pin_events_wr =
99 (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
100 atomic_inc(&pin->work_pin_events);
102 wake_up_interruptible(&pin->kthread_waitq);
105 static bool cec_pin_read(struct cec_pin *pin)
107 bool v = pin->ops->read(pin->adap);
109 cec_pin_update(pin, v, false);
110 return v;
113 static void cec_pin_low(struct cec_pin *pin)
115 pin->ops->low(pin->adap);
116 cec_pin_update(pin, false, false);
119 static bool cec_pin_high(struct cec_pin *pin)
121 pin->ops->high(pin->adap);
122 return cec_pin_read(pin);
125 static void cec_pin_to_idle(struct cec_pin *pin)
128 * Reset all status fields, release the bus and
129 * go to idle state.
131 pin->rx_bit = pin->tx_bit = 0;
132 pin->rx_msg.len = 0;
133 memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
134 pin->state = CEC_ST_IDLE;
135 pin->ts = 0;
139 * Handle Transmit-related states
141 * Basic state changes when transmitting:
143 * Idle -> Tx Wait (waiting for the end of signal free time) ->
144 * Tx Start Bit Low -> Tx Start Bit High ->
146 * Regular data bits + EOM:
147 * Tx Data 0 Low -> Tx Data 0 High ->
148 * or:
149 * Tx Data 1 Low -> Tx Data 1 High ->
151 * First 4 data bits or Ack bit:
152 * Tx Data 0 Low -> Tx Data 0 High ->
153 * or:
154 * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
155 * Tx Data 1 Post Sample ->
157 * After the last Ack go to Idle.
159 * If it detects a Low Drive condition then:
160 * Tx Wait For High -> Idle
162 * If it loses arbitration, then it switches to state Rx Data Post Sample.
164 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
166 bool v;
167 bool is_ack_bit, ack;
169 switch (pin->state) {
170 case CEC_ST_TX_WAIT_FOR_HIGH:
171 if (cec_pin_read(pin))
172 cec_pin_to_idle(pin);
173 break;
175 case CEC_ST_TX_START_BIT_LOW:
176 pin->state = CEC_ST_TX_START_BIT_HIGH;
177 /* Generate start bit */
178 cec_pin_high(pin);
179 break;
181 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
182 /* If the read value is 1, then all is OK */
183 if (!cec_pin_read(pin)) {
185 * It's 0, so someone detected an error and pulled the
186 * line low for 1.5 times the nominal bit period.
188 pin->tx_msg.len = 0;
189 pin->work_tx_ts = ts;
190 pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
191 pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
192 wake_up_interruptible(&pin->kthread_waitq);
193 break;
195 if (pin->tx_nacked) {
196 cec_pin_to_idle(pin);
197 pin->tx_msg.len = 0;
198 pin->work_tx_ts = ts;
199 pin->work_tx_status = CEC_TX_STATUS_NACK;
200 wake_up_interruptible(&pin->kthread_waitq);
201 break;
203 /* fall through */
204 case CEC_ST_TX_DATA_BIT_0_HIGH:
205 case CEC_ST_TX_DATA_BIT_1_HIGH:
206 pin->tx_bit++;
207 /* fall through */
208 case CEC_ST_TX_START_BIT_HIGH:
209 if (pin->tx_bit / 10 >= pin->tx_msg.len) {
210 cec_pin_to_idle(pin);
211 pin->tx_msg.len = 0;
212 pin->work_tx_ts = ts;
213 pin->work_tx_status = CEC_TX_STATUS_OK;
214 wake_up_interruptible(&pin->kthread_waitq);
215 break;
218 switch (pin->tx_bit % 10) {
219 default:
220 v = pin->tx_msg.msg[pin->tx_bit / 10] &
221 (1 << (7 - (pin->tx_bit % 10)));
222 pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
223 CEC_ST_TX_DATA_BIT_0_LOW;
224 break;
225 case 8:
226 v = pin->tx_bit / 10 == pin->tx_msg.len - 1;
227 pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
228 CEC_ST_TX_DATA_BIT_0_LOW;
229 break;
230 case 9:
231 pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
232 break;
234 cec_pin_low(pin);
235 break;
237 case CEC_ST_TX_DATA_BIT_0_LOW:
238 case CEC_ST_TX_DATA_BIT_1_LOW:
239 v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
240 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
241 CEC_ST_TX_DATA_BIT_0_HIGH;
242 is_ack_bit = pin->tx_bit % 10 == 9;
243 if (v && (pin->tx_bit < 4 || is_ack_bit))
244 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
245 cec_pin_high(pin);
246 break;
248 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
249 /* Read the CEC value at the sample time */
250 v = cec_pin_read(pin);
251 is_ack_bit = pin->tx_bit % 10 == 9;
253 * If v == 0 and we're within the first 4 bits
254 * of the initiator, then someone else started
255 * transmitting and we lost the arbitration
256 * (i.e. the logical address of the other
257 * transmitter has more leading 0 bits in the
258 * initiator).
260 if (!v && !is_ack_bit) {
261 pin->tx_msg.len = 0;
262 pin->work_tx_ts = ts;
263 pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
264 wake_up_interruptible(&pin->kthread_waitq);
265 pin->rx_bit = pin->tx_bit;
266 pin->tx_bit = 0;
267 memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
268 pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
269 pin->rx_msg.msg[0] &= ~(1 << (7 - pin->rx_bit));
270 pin->rx_msg.len = 0;
271 pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
272 pin->rx_bit++;
273 break;
275 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
276 if (!is_ack_bit)
277 break;
278 /* Was the message ACKed? */
279 ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
280 if (!ack) {
282 * Note: the CEC spec is ambiguous regarding
283 * what action to take when a NACK appears
284 * before the last byte of the payload was
285 * transmitted: either stop transmitting
286 * immediately, or wait until the last byte
287 * was transmitted.
289 * Most CEC implementations appear to stop
290 * immediately, and that's what we do here
291 * as well.
293 pin->tx_nacked = true;
295 break;
297 default:
298 break;
303 * Handle Receive-related states
305 * Basic state changes when receiving:
307 * Rx Start Bit Low -> Rx Start Bit High ->
308 * Regular data bits + EOM:
309 * Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
310 * Ack bit 0:
311 * Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
312 * Ack bit 1:
313 * Rx Ack High Post -> Rx Data High ->
314 * Ack bit 0 && EOM:
315 * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
317 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
319 s32 delta;
320 bool v;
321 bool ack;
322 bool bcast, for_us;
323 u8 dest;
325 switch (pin->state) {
326 /* Receive states */
327 case CEC_ST_RX_START_BIT_LOW:
328 v = cec_pin_read(pin);
329 if (!v)
330 break;
331 pin->state = CEC_ST_RX_START_BIT_HIGH;
332 delta = ktime_us_delta(ts, pin->ts);
333 pin->ts = ts;
334 /* Start bit low is too short, go back to idle */
335 if (delta < CEC_TIM_START_BIT_LOW_MIN -
336 CEC_TIM_IDLE_SAMPLE) {
337 cec_pin_to_idle(pin);
339 break;
341 case CEC_ST_RX_START_BIT_HIGH:
342 v = cec_pin_read(pin);
343 delta = ktime_us_delta(ts, pin->ts);
344 if (v && delta > CEC_TIM_START_BIT_TOTAL_MAX -
345 CEC_TIM_START_BIT_LOW_MIN) {
346 cec_pin_to_idle(pin);
347 break;
349 if (v)
350 break;
351 pin->state = CEC_ST_RX_DATA_SAMPLE;
352 pin->ts = ts;
353 pin->rx_eom = false;
354 break;
356 case CEC_ST_RX_DATA_SAMPLE:
357 v = cec_pin_read(pin);
358 pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
359 switch (pin->rx_bit % 10) {
360 default:
361 if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
362 pin->rx_msg.msg[pin->rx_bit / 10] |=
363 v << (7 - (pin->rx_bit % 10));
364 break;
365 case 8:
366 pin->rx_eom = v;
367 pin->rx_msg.len = pin->rx_bit / 10 + 1;
368 break;
369 case 9:
370 break;
372 pin->rx_bit++;
373 break;
375 case CEC_ST_RX_DATA_POST_SAMPLE:
376 pin->state = CEC_ST_RX_DATA_HIGH;
377 break;
379 case CEC_ST_RX_DATA_HIGH:
380 v = cec_pin_read(pin);
381 delta = ktime_us_delta(ts, pin->ts);
382 if (v && delta > CEC_TIM_DATA_BIT_TOTAL_MAX) {
383 cec_pin_to_idle(pin);
384 break;
386 if (v)
387 break;
389 * Go to low drive state when the total bit time is
390 * too short.
392 if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
393 cec_pin_low(pin);
394 pin->state = CEC_ST_LOW_DRIVE;
395 break;
397 pin->ts = ts;
398 if (pin->rx_bit % 10 != 9) {
399 pin->state = CEC_ST_RX_DATA_SAMPLE;
400 break;
403 dest = cec_msg_destination(&pin->rx_msg);
404 bcast = dest == CEC_LOG_ADDR_BROADCAST;
405 /* for_us == broadcast or directed to us */
406 for_us = bcast || (pin->la_mask & (1 << dest));
407 /* ACK bit value */
408 ack = bcast ? 1 : !for_us;
410 if (ack) {
411 /* No need to write to the bus, just wait */
412 pin->state = CEC_ST_RX_ACK_HIGH_POST;
413 break;
415 cec_pin_low(pin);
416 pin->state = CEC_ST_RX_ACK_LOW;
417 break;
419 case CEC_ST_RX_ACK_LOW:
420 cec_pin_high(pin);
421 pin->state = CEC_ST_RX_ACK_LOW_POST;
422 break;
424 case CEC_ST_RX_ACK_LOW_POST:
425 case CEC_ST_RX_ACK_HIGH_POST:
426 v = cec_pin_read(pin);
427 if (v && pin->rx_eom) {
428 pin->work_rx_msg = pin->rx_msg;
429 pin->work_rx_msg.rx_ts = ts;
430 wake_up_interruptible(&pin->kthread_waitq);
431 pin->ts = ts;
432 pin->state = CEC_ST_RX_ACK_FINISH;
433 break;
435 pin->rx_bit++;
436 pin->state = CEC_ST_RX_DATA_HIGH;
437 break;
439 case CEC_ST_RX_ACK_FINISH:
440 cec_pin_to_idle(pin);
441 break;
443 default:
444 break;
449 * Main timer function
452 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
454 struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
455 struct cec_adapter *adap = pin->adap;
456 ktime_t ts;
457 s32 delta;
459 ts = ktime_get();
460 if (pin->timer_ts) {
461 delta = ktime_us_delta(ts, pin->timer_ts);
462 pin->timer_cnt++;
463 if (delta > 100 && pin->state != CEC_ST_IDLE) {
464 /* Keep track of timer overruns */
465 pin->timer_sum_overrun += delta;
466 pin->timer_100ms_overruns++;
467 if (delta > 300)
468 pin->timer_300ms_overruns++;
469 if (delta > pin->timer_max_overrun)
470 pin->timer_max_overrun = delta;
473 if (adap->monitor_pin_cnt)
474 cec_pin_read(pin);
476 if (pin->wait_usecs) {
478 * If we are monitoring the pin, then we have to
479 * sample at regular intervals.
481 if (pin->wait_usecs > 150) {
482 pin->wait_usecs -= 100;
483 pin->timer_ts = ktime_add_us(ts, 100);
484 hrtimer_forward_now(timer, 100000);
485 return HRTIMER_RESTART;
487 if (pin->wait_usecs > 100) {
488 pin->wait_usecs /= 2;
489 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
490 hrtimer_forward_now(timer, pin->wait_usecs * 1000);
491 return HRTIMER_RESTART;
493 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
494 hrtimer_forward_now(timer, pin->wait_usecs * 1000);
495 pin->wait_usecs = 0;
496 return HRTIMER_RESTART;
499 switch (pin->state) {
500 /* Transmit states */
501 case CEC_ST_TX_WAIT_FOR_HIGH:
502 case CEC_ST_TX_START_BIT_LOW:
503 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
504 case CEC_ST_TX_DATA_BIT_0_HIGH:
505 case CEC_ST_TX_DATA_BIT_1_HIGH:
506 case CEC_ST_TX_START_BIT_HIGH:
507 case CEC_ST_TX_DATA_BIT_0_LOW:
508 case CEC_ST_TX_DATA_BIT_1_LOW:
509 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
510 cec_pin_tx_states(pin, ts);
511 break;
513 /* Receive states */
514 case CEC_ST_RX_START_BIT_LOW:
515 case CEC_ST_RX_START_BIT_HIGH:
516 case CEC_ST_RX_DATA_SAMPLE:
517 case CEC_ST_RX_DATA_POST_SAMPLE:
518 case CEC_ST_RX_DATA_HIGH:
519 case CEC_ST_RX_ACK_LOW:
520 case CEC_ST_RX_ACK_LOW_POST:
521 case CEC_ST_RX_ACK_HIGH_POST:
522 case CEC_ST_RX_ACK_FINISH:
523 cec_pin_rx_states(pin, ts);
524 break;
526 case CEC_ST_IDLE:
527 case CEC_ST_TX_WAIT:
528 if (!cec_pin_high(pin)) {
529 /* Start bit, switch to receive state */
530 pin->ts = ts;
531 pin->state = CEC_ST_RX_START_BIT_LOW;
532 break;
534 if (pin->ts == 0)
535 pin->ts = ts;
536 if (pin->tx_msg.len) {
538 * Check if the bus has been free for long enough
539 * so we can kick off the pending transmit.
541 delta = ktime_us_delta(ts, pin->ts);
542 if (delta / CEC_TIM_DATA_BIT_TOTAL >
543 pin->tx_signal_free_time) {
544 pin->tx_nacked = false;
545 pin->state = CEC_ST_TX_START_BIT_LOW;
546 /* Generate start bit */
547 cec_pin_low(pin);
548 break;
550 if (delta / CEC_TIM_DATA_BIT_TOTAL >
551 pin->tx_signal_free_time - 1)
552 pin->state = CEC_ST_TX_WAIT;
553 break;
555 if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
556 pin->enable_irq_failed || adap->is_configuring ||
557 adap->is_configured || adap->monitor_all_cnt)
558 break;
559 /* Switch to interrupt mode */
560 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
561 pin->state = CEC_ST_RX_IRQ;
562 wake_up_interruptible(&pin->kthread_waitq);
563 return HRTIMER_NORESTART;
565 case CEC_ST_LOW_DRIVE:
566 cec_pin_to_idle(pin);
567 break;
569 default:
570 break;
572 if (!adap->monitor_pin_cnt || states[pin->state].usecs <= 150) {
573 pin->wait_usecs = 0;
574 pin->timer_ts = ktime_add_us(ts, states[pin->state].usecs);
575 hrtimer_forward_now(timer, states[pin->state].usecs * 1000);
576 return HRTIMER_RESTART;
578 pin->wait_usecs = states[pin->state].usecs - 100;
579 pin->timer_ts = ktime_add_us(ts, 100);
580 hrtimer_forward_now(timer, 100000);
581 return HRTIMER_RESTART;
584 static int cec_pin_thread_func(void *_adap)
586 struct cec_adapter *adap = _adap;
587 struct cec_pin *pin = adap->pin;
589 for (;;) {
590 wait_event_interruptible(pin->kthread_waitq,
591 kthread_should_stop() ||
592 pin->work_rx_msg.len ||
593 pin->work_tx_status ||
594 atomic_read(&pin->work_irq_change) ||
595 atomic_read(&pin->work_pin_events));
597 if (pin->work_rx_msg.len) {
598 cec_received_msg_ts(adap, &pin->work_rx_msg,
599 pin->work_rx_msg.rx_ts);
600 pin->work_rx_msg.len = 0;
602 if (pin->work_tx_status) {
603 unsigned int tx_status = pin->work_tx_status;
605 pin->work_tx_status = 0;
606 cec_transmit_attempt_done_ts(adap, tx_status,
607 pin->work_tx_ts);
610 while (atomic_read(&pin->work_pin_events)) {
611 unsigned int idx = pin->work_pin_events_rd;
613 cec_queue_pin_cec_event(adap,
614 pin->work_pin_is_high[idx],
615 pin->work_pin_ts[idx]);
616 pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
617 atomic_dec(&pin->work_pin_events);
620 switch (atomic_xchg(&pin->work_irq_change,
621 CEC_PIN_IRQ_UNCHANGED)) {
622 case CEC_PIN_IRQ_DISABLE:
623 pin->ops->disable_irq(adap);
624 cec_pin_high(pin);
625 cec_pin_to_idle(pin);
626 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
627 break;
628 case CEC_PIN_IRQ_ENABLE:
629 pin->enable_irq_failed = !pin->ops->enable_irq(adap);
630 if (pin->enable_irq_failed) {
631 cec_pin_to_idle(pin);
632 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
634 break;
635 default:
636 break;
639 if (kthread_should_stop())
640 break;
642 return 0;
645 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
647 struct cec_pin *pin = adap->pin;
649 pin->enabled = enable;
650 if (enable) {
651 atomic_set(&pin->work_pin_events, 0);
652 pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
653 cec_pin_read(pin);
654 cec_pin_to_idle(pin);
655 pin->tx_msg.len = 0;
656 pin->timer_ts = 0;
657 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
658 pin->kthread = kthread_run(cec_pin_thread_func, adap,
659 "cec-pin");
660 if (IS_ERR(pin->kthread)) {
661 pr_err("cec-pin: kernel_thread() failed\n");
662 return PTR_ERR(pin->kthread);
664 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
665 } else {
666 if (pin->ops->disable_irq)
667 pin->ops->disable_irq(adap);
668 hrtimer_cancel(&pin->timer);
669 kthread_stop(pin->kthread);
670 cec_pin_read(pin);
671 cec_pin_to_idle(pin);
672 pin->state = CEC_ST_OFF;
674 return 0;
677 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
679 struct cec_pin *pin = adap->pin;
681 if (log_addr == CEC_LOG_ADDR_INVALID)
682 pin->la_mask = 0;
683 else
684 pin->la_mask |= (1 << log_addr);
685 return 0;
688 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
689 u32 signal_free_time, struct cec_msg *msg)
691 struct cec_pin *pin = adap->pin;
693 pin->tx_signal_free_time = signal_free_time;
694 pin->tx_msg = *msg;
695 pin->work_tx_status = 0;
696 pin->tx_bit = 0;
697 if (pin->state == CEC_ST_RX_IRQ) {
698 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
699 pin->ops->disable_irq(adap);
700 cec_pin_high(pin);
701 cec_pin_to_idle(pin);
702 hrtimer_start(&pin->timer, 0, HRTIMER_MODE_REL);
704 return 0;
707 static void cec_pin_adap_status(struct cec_adapter *adap,
708 struct seq_file *file)
710 struct cec_pin *pin = adap->pin;
712 seq_printf(file, "state: %s\n", states[pin->state].name);
713 seq_printf(file, "tx_bit: %d\n", pin->tx_bit);
714 seq_printf(file, "rx_bit: %d\n", pin->rx_bit);
715 seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
716 seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
717 if (pin->timer_100ms_overruns) {
718 seq_printf(file, "timer overruns > 100ms: %u of %u\n",
719 pin->timer_100ms_overruns, pin->timer_cnt);
720 seq_printf(file, "timer overruns > 300ms: %u of %u\n",
721 pin->timer_300ms_overruns, pin->timer_cnt);
722 seq_printf(file, "max timer overrun: %u usecs\n",
723 pin->timer_max_overrun);
724 seq_printf(file, "avg timer overrun: %u usecs\n",
725 pin->timer_sum_overrun / pin->timer_100ms_overruns);
727 pin->timer_cnt = 0;
728 pin->timer_100ms_overruns = 0;
729 pin->timer_300ms_overruns = 0;
730 pin->timer_max_overrun = 0;
731 pin->timer_sum_overrun = 0;
732 if (pin->ops->status)
733 pin->ops->status(adap, file);
736 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
737 bool enable)
739 struct cec_pin *pin = adap->pin;
741 pin->monitor_all = enable;
742 return 0;
745 static void cec_pin_adap_free(struct cec_adapter *adap)
747 struct cec_pin *pin = adap->pin;
749 if (pin->ops->free)
750 pin->ops->free(adap);
751 adap->pin = NULL;
752 kfree(pin);
755 void cec_pin_changed(struct cec_adapter *adap, bool value)
757 struct cec_pin *pin = adap->pin;
759 cec_pin_update(pin, value, false);
760 if (!value && (adap->is_configuring || adap->is_configured ||
761 adap->monitor_all_cnt))
762 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
764 EXPORT_SYMBOL_GPL(cec_pin_changed);
766 static const struct cec_adap_ops cec_pin_adap_ops = {
767 .adap_enable = cec_pin_adap_enable,
768 .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
769 .adap_log_addr = cec_pin_adap_log_addr,
770 .adap_transmit = cec_pin_adap_transmit,
771 .adap_status = cec_pin_adap_status,
772 .adap_free = cec_pin_adap_free,
775 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
776 void *priv, const char *name, u32 caps)
778 struct cec_adapter *adap;
779 struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
781 if (pin == NULL)
782 return ERR_PTR(-ENOMEM);
783 pin->ops = pin_ops;
784 hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
785 pin->timer.function = cec_pin_timer;
786 init_waitqueue_head(&pin->kthread_waitq);
788 adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
789 caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
790 CEC_MAX_LOG_ADDRS);
792 if (PTR_ERR_OR_ZERO(adap)) {
793 kfree(pin);
794 return adap;
797 adap->pin = pin;
798 pin->adap = adap;
799 cec_pin_update(pin, cec_pin_high(pin), true);
800 return adap;
802 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);