2 * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
4 * This program is free software; you may redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
8 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
9 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
10 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
11 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
12 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
13 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
14 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/sched/types.h>
22 #include <media/cec-pin.h>
24 /* All timings are in microseconds */
26 /* start bit timings */
27 #define CEC_TIM_START_BIT_LOW 3700
28 #define CEC_TIM_START_BIT_LOW_MIN 3500
29 #define CEC_TIM_START_BIT_LOW_MAX 3900
30 #define CEC_TIM_START_BIT_TOTAL 4500
31 #define CEC_TIM_START_BIT_TOTAL_MIN 4300
32 #define CEC_TIM_START_BIT_TOTAL_MAX 4700
34 /* data bit timings */
35 #define CEC_TIM_DATA_BIT_0_LOW 1500
36 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300
37 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700
38 #define CEC_TIM_DATA_BIT_1_LOW 600
39 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400
40 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800
41 #define CEC_TIM_DATA_BIT_TOTAL 2400
42 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050
43 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750
44 /* earliest safe time to sample the bit state */
45 #define CEC_TIM_DATA_BIT_SAMPLE 850
46 /* earliest time the bit is back to 1 (T7 + 50) */
47 #define CEC_TIM_DATA_BIT_HIGH 1750
49 /* when idle, sample once per millisecond */
50 #define CEC_TIM_IDLE_SAMPLE 1000
51 /* when processing the start bit, sample twice per millisecond */
52 #define CEC_TIM_START_BIT_SAMPLE 500
53 /* when polling for a state change, sample once every 50 micoseconds */
54 #define CEC_TIM_SAMPLE 50
56 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL)
59 const char * const name
;
63 static const struct cec_state states
[CEC_PIN_STATES
] = {
65 { "Idle", CEC_TIM_IDLE_SAMPLE
},
66 { "Tx Wait", CEC_TIM_SAMPLE
},
67 { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE
},
68 { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW
},
69 { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL
- CEC_TIM_START_BIT_LOW
},
70 { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW
},
71 { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_0_LOW
},
72 { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW
},
73 { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_1_LOW
},
74 { "Tx Data 1 Pre Sample", CEC_TIM_DATA_BIT_SAMPLE
- CEC_TIM_DATA_BIT_1_LOW
},
75 { "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL
- CEC_TIM_DATA_BIT_SAMPLE
},
76 { "Rx Start Bit Low", CEC_TIM_SAMPLE
},
77 { "Rx Start Bit High", CEC_TIM_SAMPLE
},
78 { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE
},
79 { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_SAMPLE
},
80 { "Rx Data High", CEC_TIM_SAMPLE
},
81 { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW
},
82 { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH
- CEC_TIM_DATA_BIT_0_LOW
},
83 { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH
},
84 { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN
- CEC_TIM_DATA_BIT_HIGH
},
85 { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR
},
89 static void cec_pin_update(struct cec_pin
*pin
, bool v
, bool force
)
91 if (!force
&& v
== pin
->adap
->cec_pin_is_high
)
94 pin
->adap
->cec_pin_is_high
= v
;
95 if (atomic_read(&pin
->work_pin_events
) < CEC_NUM_PIN_EVENTS
) {
96 pin
->work_pin_is_high
[pin
->work_pin_events_wr
] = v
;
97 pin
->work_pin_ts
[pin
->work_pin_events_wr
] = ktime_get();
98 pin
->work_pin_events_wr
=
99 (pin
->work_pin_events_wr
+ 1) % CEC_NUM_PIN_EVENTS
;
100 atomic_inc(&pin
->work_pin_events
);
102 wake_up_interruptible(&pin
->kthread_waitq
);
105 static bool cec_pin_read(struct cec_pin
*pin
)
107 bool v
= pin
->ops
->read(pin
->adap
);
109 cec_pin_update(pin
, v
, false);
113 static void cec_pin_low(struct cec_pin
*pin
)
115 pin
->ops
->low(pin
->adap
);
116 cec_pin_update(pin
, false, false);
119 static bool cec_pin_high(struct cec_pin
*pin
)
121 pin
->ops
->high(pin
->adap
);
122 return cec_pin_read(pin
);
125 static void cec_pin_to_idle(struct cec_pin
*pin
)
128 * Reset all status fields, release the bus and
131 pin
->rx_bit
= pin
->tx_bit
= 0;
133 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
134 pin
->state
= CEC_ST_IDLE
;
139 * Handle Transmit-related states
141 * Basic state changes when transmitting:
143 * Idle -> Tx Wait (waiting for the end of signal free time) ->
144 * Tx Start Bit Low -> Tx Start Bit High ->
146 * Regular data bits + EOM:
147 * Tx Data 0 Low -> Tx Data 0 High ->
149 * Tx Data 1 Low -> Tx Data 1 High ->
151 * First 4 data bits or Ack bit:
152 * Tx Data 0 Low -> Tx Data 0 High ->
154 * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
155 * Tx Data 1 Post Sample ->
157 * After the last Ack go to Idle.
159 * If it detects a Low Drive condition then:
160 * Tx Wait For High -> Idle
162 * If it loses arbitration, then it switches to state Rx Data Post Sample.
164 static void cec_pin_tx_states(struct cec_pin
*pin
, ktime_t ts
)
167 bool is_ack_bit
, ack
;
169 switch (pin
->state
) {
170 case CEC_ST_TX_WAIT_FOR_HIGH
:
171 if (cec_pin_read(pin
))
172 cec_pin_to_idle(pin
);
175 case CEC_ST_TX_START_BIT_LOW
:
176 pin
->state
= CEC_ST_TX_START_BIT_HIGH
;
177 /* Generate start bit */
181 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
182 /* If the read value is 1, then all is OK */
183 if (!cec_pin_read(pin
)) {
185 * It's 0, so someone detected an error and pulled the
186 * line low for 1.5 times the nominal bit period.
189 pin
->work_tx_ts
= ts
;
190 pin
->work_tx_status
= CEC_TX_STATUS_LOW_DRIVE
;
191 pin
->state
= CEC_ST_TX_WAIT_FOR_HIGH
;
192 wake_up_interruptible(&pin
->kthread_waitq
);
195 if (pin
->tx_nacked
) {
196 cec_pin_to_idle(pin
);
198 pin
->work_tx_ts
= ts
;
199 pin
->work_tx_status
= CEC_TX_STATUS_NACK
;
200 wake_up_interruptible(&pin
->kthread_waitq
);
204 case CEC_ST_TX_DATA_BIT_0_HIGH
:
205 case CEC_ST_TX_DATA_BIT_1_HIGH
:
208 case CEC_ST_TX_START_BIT_HIGH
:
209 if (pin
->tx_bit
/ 10 >= pin
->tx_msg
.len
) {
210 cec_pin_to_idle(pin
);
212 pin
->work_tx_ts
= ts
;
213 pin
->work_tx_status
= CEC_TX_STATUS_OK
;
214 wake_up_interruptible(&pin
->kthread_waitq
);
218 switch (pin
->tx_bit
% 10) {
220 v
= pin
->tx_msg
.msg
[pin
->tx_bit
/ 10] &
221 (1 << (7 - (pin
->tx_bit
% 10)));
222 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
223 CEC_ST_TX_DATA_BIT_0_LOW
;
226 v
= pin
->tx_bit
/ 10 == pin
->tx_msg
.len
- 1;
227 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_LOW
:
228 CEC_ST_TX_DATA_BIT_0_LOW
;
231 pin
->state
= CEC_ST_TX_DATA_BIT_1_LOW
;
237 case CEC_ST_TX_DATA_BIT_0_LOW
:
238 case CEC_ST_TX_DATA_BIT_1_LOW
:
239 v
= pin
->state
== CEC_ST_TX_DATA_BIT_1_LOW
;
240 pin
->state
= v
? CEC_ST_TX_DATA_BIT_1_HIGH
:
241 CEC_ST_TX_DATA_BIT_0_HIGH
;
242 is_ack_bit
= pin
->tx_bit
% 10 == 9;
243 if (v
&& (pin
->tx_bit
< 4 || is_ack_bit
))
244 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
;
248 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
249 /* Read the CEC value at the sample time */
250 v
= cec_pin_read(pin
);
251 is_ack_bit
= pin
->tx_bit
% 10 == 9;
253 * If v == 0 and we're within the first 4 bits
254 * of the initiator, then someone else started
255 * transmitting and we lost the arbitration
256 * (i.e. the logical address of the other
257 * transmitter has more leading 0 bits in the
260 if (!v
&& !is_ack_bit
) {
262 pin
->work_tx_ts
= ts
;
263 pin
->work_tx_status
= CEC_TX_STATUS_ARB_LOST
;
264 wake_up_interruptible(&pin
->kthread_waitq
);
265 pin
->rx_bit
= pin
->tx_bit
;
267 memset(pin
->rx_msg
.msg
, 0, sizeof(pin
->rx_msg
.msg
));
268 pin
->rx_msg
.msg
[0] = pin
->tx_msg
.msg
[0];
269 pin
->rx_msg
.msg
[0] &= ~(1 << (7 - pin
->rx_bit
));
271 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
275 pin
->state
= CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
;
278 /* Was the message ACKed? */
279 ack
= cec_msg_is_broadcast(&pin
->tx_msg
) ? v
: !v
;
282 * Note: the CEC spec is ambiguous regarding
283 * what action to take when a NACK appears
284 * before the last byte of the payload was
285 * transmitted: either stop transmitting
286 * immediately, or wait until the last byte
289 * Most CEC implementations appear to stop
290 * immediately, and that's what we do here
293 pin
->tx_nacked
= true;
303 * Handle Receive-related states
305 * Basic state changes when receiving:
307 * Rx Start Bit Low -> Rx Start Bit High ->
308 * Regular data bits + EOM:
309 * Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
311 * Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
313 * Rx Ack High Post -> Rx Data High ->
315 * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
317 static void cec_pin_rx_states(struct cec_pin
*pin
, ktime_t ts
)
325 switch (pin
->state
) {
327 case CEC_ST_RX_START_BIT_LOW
:
328 v
= cec_pin_read(pin
);
331 pin
->state
= CEC_ST_RX_START_BIT_HIGH
;
332 delta
= ktime_us_delta(ts
, pin
->ts
);
334 /* Start bit low is too short, go back to idle */
335 if (delta
< CEC_TIM_START_BIT_LOW_MIN
-
336 CEC_TIM_IDLE_SAMPLE
) {
337 cec_pin_to_idle(pin
);
341 case CEC_ST_RX_START_BIT_HIGH
:
342 v
= cec_pin_read(pin
);
343 delta
= ktime_us_delta(ts
, pin
->ts
);
344 if (v
&& delta
> CEC_TIM_START_BIT_TOTAL_MAX
-
345 CEC_TIM_START_BIT_LOW_MIN
) {
346 cec_pin_to_idle(pin
);
351 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
356 case CEC_ST_RX_DATA_SAMPLE
:
357 v
= cec_pin_read(pin
);
358 pin
->state
= CEC_ST_RX_DATA_POST_SAMPLE
;
359 switch (pin
->rx_bit
% 10) {
361 if (pin
->rx_bit
/ 10 < CEC_MAX_MSG_SIZE
)
362 pin
->rx_msg
.msg
[pin
->rx_bit
/ 10] |=
363 v
<< (7 - (pin
->rx_bit
% 10));
367 pin
->rx_msg
.len
= pin
->rx_bit
/ 10 + 1;
375 case CEC_ST_RX_DATA_POST_SAMPLE
:
376 pin
->state
= CEC_ST_RX_DATA_HIGH
;
379 case CEC_ST_RX_DATA_HIGH
:
380 v
= cec_pin_read(pin
);
381 delta
= ktime_us_delta(ts
, pin
->ts
);
382 if (v
&& delta
> CEC_TIM_DATA_BIT_TOTAL_MAX
) {
383 cec_pin_to_idle(pin
);
389 * Go to low drive state when the total bit time is
392 if (delta
< CEC_TIM_DATA_BIT_TOTAL_MIN
) {
394 pin
->state
= CEC_ST_LOW_DRIVE
;
398 if (pin
->rx_bit
% 10 != 9) {
399 pin
->state
= CEC_ST_RX_DATA_SAMPLE
;
403 dest
= cec_msg_destination(&pin
->rx_msg
);
404 bcast
= dest
== CEC_LOG_ADDR_BROADCAST
;
405 /* for_us == broadcast or directed to us */
406 for_us
= bcast
|| (pin
->la_mask
& (1 << dest
));
408 ack
= bcast
? 1 : !for_us
;
411 /* No need to write to the bus, just wait */
412 pin
->state
= CEC_ST_RX_ACK_HIGH_POST
;
416 pin
->state
= CEC_ST_RX_ACK_LOW
;
419 case CEC_ST_RX_ACK_LOW
:
421 pin
->state
= CEC_ST_RX_ACK_LOW_POST
;
424 case CEC_ST_RX_ACK_LOW_POST
:
425 case CEC_ST_RX_ACK_HIGH_POST
:
426 v
= cec_pin_read(pin
);
427 if (v
&& pin
->rx_eom
) {
428 pin
->work_rx_msg
= pin
->rx_msg
;
429 pin
->work_rx_msg
.rx_ts
= ts
;
430 wake_up_interruptible(&pin
->kthread_waitq
);
432 pin
->state
= CEC_ST_RX_ACK_FINISH
;
436 pin
->state
= CEC_ST_RX_DATA_HIGH
;
439 case CEC_ST_RX_ACK_FINISH
:
440 cec_pin_to_idle(pin
);
449 * Main timer function
452 static enum hrtimer_restart
cec_pin_timer(struct hrtimer
*timer
)
454 struct cec_pin
*pin
= container_of(timer
, struct cec_pin
, timer
);
455 struct cec_adapter
*adap
= pin
->adap
;
461 delta
= ktime_us_delta(ts
, pin
->timer_ts
);
463 if (delta
> 100 && pin
->state
!= CEC_ST_IDLE
) {
464 /* Keep track of timer overruns */
465 pin
->timer_sum_overrun
+= delta
;
466 pin
->timer_100ms_overruns
++;
468 pin
->timer_300ms_overruns
++;
469 if (delta
> pin
->timer_max_overrun
)
470 pin
->timer_max_overrun
= delta
;
473 if (adap
->monitor_pin_cnt
)
476 if (pin
->wait_usecs
) {
478 * If we are monitoring the pin, then we have to
479 * sample at regular intervals.
481 if (pin
->wait_usecs
> 150) {
482 pin
->wait_usecs
-= 100;
483 pin
->timer_ts
= ktime_add_us(ts
, 100);
484 hrtimer_forward_now(timer
, 100000);
485 return HRTIMER_RESTART
;
487 if (pin
->wait_usecs
> 100) {
488 pin
->wait_usecs
/= 2;
489 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
490 hrtimer_forward_now(timer
, pin
->wait_usecs
* 1000);
491 return HRTIMER_RESTART
;
493 pin
->timer_ts
= ktime_add_us(ts
, pin
->wait_usecs
);
494 hrtimer_forward_now(timer
, pin
->wait_usecs
* 1000);
496 return HRTIMER_RESTART
;
499 switch (pin
->state
) {
500 /* Transmit states */
501 case CEC_ST_TX_WAIT_FOR_HIGH
:
502 case CEC_ST_TX_START_BIT_LOW
:
503 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE
:
504 case CEC_ST_TX_DATA_BIT_0_HIGH
:
505 case CEC_ST_TX_DATA_BIT_1_HIGH
:
506 case CEC_ST_TX_START_BIT_HIGH
:
507 case CEC_ST_TX_DATA_BIT_0_LOW
:
508 case CEC_ST_TX_DATA_BIT_1_LOW
:
509 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE
:
510 cec_pin_tx_states(pin
, ts
);
514 case CEC_ST_RX_START_BIT_LOW
:
515 case CEC_ST_RX_START_BIT_HIGH
:
516 case CEC_ST_RX_DATA_SAMPLE
:
517 case CEC_ST_RX_DATA_POST_SAMPLE
:
518 case CEC_ST_RX_DATA_HIGH
:
519 case CEC_ST_RX_ACK_LOW
:
520 case CEC_ST_RX_ACK_LOW_POST
:
521 case CEC_ST_RX_ACK_HIGH_POST
:
522 case CEC_ST_RX_ACK_FINISH
:
523 cec_pin_rx_states(pin
, ts
);
528 if (!cec_pin_high(pin
)) {
529 /* Start bit, switch to receive state */
531 pin
->state
= CEC_ST_RX_START_BIT_LOW
;
536 if (pin
->tx_msg
.len
) {
538 * Check if the bus has been free for long enough
539 * so we can kick off the pending transmit.
541 delta
= ktime_us_delta(ts
, pin
->ts
);
542 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
543 pin
->tx_signal_free_time
) {
544 pin
->tx_nacked
= false;
545 pin
->state
= CEC_ST_TX_START_BIT_LOW
;
546 /* Generate start bit */
550 if (delta
/ CEC_TIM_DATA_BIT_TOTAL
>
551 pin
->tx_signal_free_time
- 1)
552 pin
->state
= CEC_ST_TX_WAIT
;
555 if (pin
->state
!= CEC_ST_IDLE
|| pin
->ops
->enable_irq
== NULL
||
556 pin
->enable_irq_failed
|| adap
->is_configuring
||
557 adap
->is_configured
|| adap
->monitor_all_cnt
)
559 /* Switch to interrupt mode */
560 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_ENABLE
);
561 pin
->state
= CEC_ST_RX_IRQ
;
562 wake_up_interruptible(&pin
->kthread_waitq
);
563 return HRTIMER_NORESTART
;
565 case CEC_ST_LOW_DRIVE
:
566 cec_pin_to_idle(pin
);
572 if (!adap
->monitor_pin_cnt
|| states
[pin
->state
].usecs
<= 150) {
574 pin
->timer_ts
= ktime_add_us(ts
, states
[pin
->state
].usecs
);
575 hrtimer_forward_now(timer
, states
[pin
->state
].usecs
* 1000);
576 return HRTIMER_RESTART
;
578 pin
->wait_usecs
= states
[pin
->state
].usecs
- 100;
579 pin
->timer_ts
= ktime_add_us(ts
, 100);
580 hrtimer_forward_now(timer
, 100000);
581 return HRTIMER_RESTART
;
584 static int cec_pin_thread_func(void *_adap
)
586 struct cec_adapter
*adap
= _adap
;
587 struct cec_pin
*pin
= adap
->pin
;
590 wait_event_interruptible(pin
->kthread_waitq
,
591 kthread_should_stop() ||
592 pin
->work_rx_msg
.len
||
593 pin
->work_tx_status
||
594 atomic_read(&pin
->work_irq_change
) ||
595 atomic_read(&pin
->work_pin_events
));
597 if (pin
->work_rx_msg
.len
) {
598 cec_received_msg_ts(adap
, &pin
->work_rx_msg
,
599 pin
->work_rx_msg
.rx_ts
);
600 pin
->work_rx_msg
.len
= 0;
602 if (pin
->work_tx_status
) {
603 unsigned int tx_status
= pin
->work_tx_status
;
605 pin
->work_tx_status
= 0;
606 cec_transmit_attempt_done_ts(adap
, tx_status
,
610 while (atomic_read(&pin
->work_pin_events
)) {
611 unsigned int idx
= pin
->work_pin_events_rd
;
613 cec_queue_pin_cec_event(adap
,
614 pin
->work_pin_is_high
[idx
],
615 pin
->work_pin_ts
[idx
]);
616 pin
->work_pin_events_rd
= (idx
+ 1) % CEC_NUM_PIN_EVENTS
;
617 atomic_dec(&pin
->work_pin_events
);
620 switch (atomic_xchg(&pin
->work_irq_change
,
621 CEC_PIN_IRQ_UNCHANGED
)) {
622 case CEC_PIN_IRQ_DISABLE
:
623 pin
->ops
->disable_irq(adap
);
625 cec_pin_to_idle(pin
);
626 hrtimer_start(&pin
->timer
, 0, HRTIMER_MODE_REL
);
628 case CEC_PIN_IRQ_ENABLE
:
629 pin
->enable_irq_failed
= !pin
->ops
->enable_irq(adap
);
630 if (pin
->enable_irq_failed
) {
631 cec_pin_to_idle(pin
);
632 hrtimer_start(&pin
->timer
, 0, HRTIMER_MODE_REL
);
639 if (kthread_should_stop())
645 static int cec_pin_adap_enable(struct cec_adapter
*adap
, bool enable
)
647 struct cec_pin
*pin
= adap
->pin
;
649 pin
->enabled
= enable
;
651 atomic_set(&pin
->work_pin_events
, 0);
652 pin
->work_pin_events_rd
= pin
->work_pin_events_wr
= 0;
654 cec_pin_to_idle(pin
);
657 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
658 pin
->kthread
= kthread_run(cec_pin_thread_func
, adap
,
660 if (IS_ERR(pin
->kthread
)) {
661 pr_err("cec-pin: kernel_thread() failed\n");
662 return PTR_ERR(pin
->kthread
);
664 hrtimer_start(&pin
->timer
, 0, HRTIMER_MODE_REL
);
666 if (pin
->ops
->disable_irq
)
667 pin
->ops
->disable_irq(adap
);
668 hrtimer_cancel(&pin
->timer
);
669 kthread_stop(pin
->kthread
);
671 cec_pin_to_idle(pin
);
672 pin
->state
= CEC_ST_OFF
;
677 static int cec_pin_adap_log_addr(struct cec_adapter
*adap
, u8 log_addr
)
679 struct cec_pin
*pin
= adap
->pin
;
681 if (log_addr
== CEC_LOG_ADDR_INVALID
)
684 pin
->la_mask
|= (1 << log_addr
);
688 static int cec_pin_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
689 u32 signal_free_time
, struct cec_msg
*msg
)
691 struct cec_pin
*pin
= adap
->pin
;
693 pin
->tx_signal_free_time
= signal_free_time
;
695 pin
->work_tx_status
= 0;
697 if (pin
->state
== CEC_ST_RX_IRQ
) {
698 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_UNCHANGED
);
699 pin
->ops
->disable_irq(adap
);
701 cec_pin_to_idle(pin
);
702 hrtimer_start(&pin
->timer
, 0, HRTIMER_MODE_REL
);
707 static void cec_pin_adap_status(struct cec_adapter
*adap
,
708 struct seq_file
*file
)
710 struct cec_pin
*pin
= adap
->pin
;
712 seq_printf(file
, "state: %s\n", states
[pin
->state
].name
);
713 seq_printf(file
, "tx_bit: %d\n", pin
->tx_bit
);
714 seq_printf(file
, "rx_bit: %d\n", pin
->rx_bit
);
715 seq_printf(file
, "cec pin: %d\n", pin
->ops
->read(adap
));
716 seq_printf(file
, "irq failed: %d\n", pin
->enable_irq_failed
);
717 if (pin
->timer_100ms_overruns
) {
718 seq_printf(file
, "timer overruns > 100ms: %u of %u\n",
719 pin
->timer_100ms_overruns
, pin
->timer_cnt
);
720 seq_printf(file
, "timer overruns > 300ms: %u of %u\n",
721 pin
->timer_300ms_overruns
, pin
->timer_cnt
);
722 seq_printf(file
, "max timer overrun: %u usecs\n",
723 pin
->timer_max_overrun
);
724 seq_printf(file
, "avg timer overrun: %u usecs\n",
725 pin
->timer_sum_overrun
/ pin
->timer_100ms_overruns
);
728 pin
->timer_100ms_overruns
= 0;
729 pin
->timer_300ms_overruns
= 0;
730 pin
->timer_max_overrun
= 0;
731 pin
->timer_sum_overrun
= 0;
732 if (pin
->ops
->status
)
733 pin
->ops
->status(adap
, file
);
736 static int cec_pin_adap_monitor_all_enable(struct cec_adapter
*adap
,
739 struct cec_pin
*pin
= adap
->pin
;
741 pin
->monitor_all
= enable
;
745 static void cec_pin_adap_free(struct cec_adapter
*adap
)
747 struct cec_pin
*pin
= adap
->pin
;
750 pin
->ops
->free(adap
);
755 void cec_pin_changed(struct cec_adapter
*adap
, bool value
)
757 struct cec_pin
*pin
= adap
->pin
;
759 cec_pin_update(pin
, value
, false);
760 if (!value
&& (adap
->is_configuring
|| adap
->is_configured
||
761 adap
->monitor_all_cnt
))
762 atomic_set(&pin
->work_irq_change
, CEC_PIN_IRQ_DISABLE
);
764 EXPORT_SYMBOL_GPL(cec_pin_changed
);
766 static const struct cec_adap_ops cec_pin_adap_ops
= {
767 .adap_enable
= cec_pin_adap_enable
,
768 .adap_monitor_all_enable
= cec_pin_adap_monitor_all_enable
,
769 .adap_log_addr
= cec_pin_adap_log_addr
,
770 .adap_transmit
= cec_pin_adap_transmit
,
771 .adap_status
= cec_pin_adap_status
,
772 .adap_free
= cec_pin_adap_free
,
775 struct cec_adapter
*cec_pin_allocate_adapter(const struct cec_pin_ops
*pin_ops
,
776 void *priv
, const char *name
, u32 caps
)
778 struct cec_adapter
*adap
;
779 struct cec_pin
*pin
= kzalloc(sizeof(*pin
), GFP_KERNEL
);
782 return ERR_PTR(-ENOMEM
);
784 hrtimer_init(&pin
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
785 pin
->timer
.function
= cec_pin_timer
;
786 init_waitqueue_head(&pin
->kthread_waitq
);
788 adap
= cec_allocate_adapter(&cec_pin_adap_ops
, priv
, name
,
789 caps
| CEC_CAP_MONITOR_ALL
| CEC_CAP_MONITOR_PIN
,
792 if (PTR_ERR_OR_ZERO(adap
)) {
799 cec_pin_update(pin
, cec_pin_high(pin
), true);
802 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter
);