Linux 4.14.51
[linux/fpc-iii.git] / drivers / media / rc / rc-main.c
blob72f381522cb26dfa64662ab0b6a4f61adc91a11c
1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <media/rc-core.h>
18 #include <linux/spinlock.h>
19 #include <linux/delay.h>
20 #include <linux/input.h>
21 #include <linux/leds.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/device.h>
25 #include <linux/module.h>
26 #include "rc-core-priv.h"
28 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
29 #define IR_TAB_MIN_SIZE 256
30 #define IR_TAB_MAX_SIZE 8192
31 #define RC_DEV_MAX 256
33 static const struct {
34 const char *name;
35 unsigned int repeat_period;
36 unsigned int scancode_bits;
37 } protocols[] = {
38 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
39 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
40 [RC_PROTO_RC5] = { .name = "rc-5",
41 .scancode_bits = 0x1f7f, .repeat_period = 250 },
42 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
43 .scancode_bits = 0x1f7f3f, .repeat_period = 250 },
44 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
45 .scancode_bits = 0x2fff, .repeat_period = 250 },
46 [RC_PROTO_JVC] = { .name = "jvc",
47 .scancode_bits = 0xffff, .repeat_period = 250 },
48 [RC_PROTO_SONY12] = { .name = "sony-12",
49 .scancode_bits = 0x1f007f, .repeat_period = 250 },
50 [RC_PROTO_SONY15] = { .name = "sony-15",
51 .scancode_bits = 0xff007f, .repeat_period = 250 },
52 [RC_PROTO_SONY20] = { .name = "sony-20",
53 .scancode_bits = 0x1fff7f, .repeat_period = 250 },
54 [RC_PROTO_NEC] = { .name = "nec",
55 .scancode_bits = 0xffff, .repeat_period = 250 },
56 [RC_PROTO_NECX] = { .name = "nec-x",
57 .scancode_bits = 0xffffff, .repeat_period = 250 },
58 [RC_PROTO_NEC32] = { .name = "nec-32",
59 .scancode_bits = 0xffffffff, .repeat_period = 250 },
60 [RC_PROTO_SANYO] = { .name = "sanyo",
61 .scancode_bits = 0x1fffff, .repeat_period = 250 },
62 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
63 .scancode_bits = 0xffff, .repeat_period = 250 },
64 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
65 .scancode_bits = 0x1fffff, .repeat_period = 250 },
66 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
67 .scancode_bits = 0xffff, .repeat_period = 250 },
68 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
69 .scancode_bits = 0xfffff, .repeat_period = 250 },
70 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
71 .scancode_bits = 0xffffff, .repeat_period = 250 },
72 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
73 .scancode_bits = 0xffffffff, .repeat_period = 250 },
74 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
75 .scancode_bits = 0xffff7fff, .repeat_period = 250 },
76 [RC_PROTO_SHARP] = { .name = "sharp",
77 .scancode_bits = 0x1fff, .repeat_period = 250 },
78 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
79 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
90 static struct rc_map_list *seek_rc_map(const char *name)
92 struct rc_map_list *map = NULL;
94 spin_lock(&rc_map_lock);
95 list_for_each_entry(map, &rc_map_list, list) {
96 if (!strcmp(name, map->map.name)) {
97 spin_unlock(&rc_map_lock);
98 return map;
101 spin_unlock(&rc_map_lock);
103 return NULL;
106 struct rc_map *rc_map_get(const char *name)
109 struct rc_map_list *map;
111 map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 if (!map) {
114 int rc = request_module("%s", name);
115 if (rc < 0) {
116 pr_err("Couldn't load IR keymap %s\n", name);
117 return NULL;
119 msleep(20); /* Give some time for IR to register */
121 map = seek_rc_map(name);
123 #endif
124 if (!map) {
125 pr_err("IR keymap %s not found\n", name);
126 return NULL;
129 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
131 return &map->map;
133 EXPORT_SYMBOL_GPL(rc_map_get);
135 int rc_map_register(struct rc_map_list *map)
137 spin_lock(&rc_map_lock);
138 list_add_tail(&map->list, &rc_map_list);
139 spin_unlock(&rc_map_lock);
140 return 0;
142 EXPORT_SYMBOL_GPL(rc_map_register);
144 void rc_map_unregister(struct rc_map_list *map)
146 spin_lock(&rc_map_lock);
147 list_del(&map->list);
148 spin_unlock(&rc_map_lock);
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
153 static struct rc_map_table empty[] = {
154 { 0x2a, KEY_COFFEE },
157 static struct rc_map_list empty_map = {
158 .map = {
159 .scan = empty,
160 .size = ARRAY_SIZE(empty),
161 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
162 .name = RC_MAP_EMPTY,
167 * ir_create_table() - initializes a scancode table
168 * @rc_map: the rc_map to initialize
169 * @name: name to assign to the table
170 * @rc_proto: ir type to assign to the new table
171 * @size: initial size of the table
172 * @return: zero on success or a negative error code
174 * This routine will initialize the rc_map and will allocate
175 * memory to hold at least the specified number of elements.
177 static int ir_create_table(struct rc_map *rc_map,
178 const char *name, u64 rc_proto, size_t size)
180 rc_map->name = kstrdup(name, GFP_KERNEL);
181 if (!rc_map->name)
182 return -ENOMEM;
183 rc_map->rc_proto = rc_proto;
184 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
185 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
186 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
187 if (!rc_map->scan) {
188 kfree(rc_map->name);
189 rc_map->name = NULL;
190 return -ENOMEM;
193 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
194 rc_map->size, rc_map->alloc);
195 return 0;
199 * ir_free_table() - frees memory allocated by a scancode table
200 * @rc_map: the table whose mappings need to be freed
202 * This routine will free memory alloctaed for key mappings used by given
203 * scancode table.
205 static void ir_free_table(struct rc_map *rc_map)
207 rc_map->size = 0;
208 kfree(rc_map->name);
209 rc_map->name = NULL;
210 kfree(rc_map->scan);
211 rc_map->scan = NULL;
215 * ir_resize_table() - resizes a scancode table if necessary
216 * @rc_map: the rc_map to resize
217 * @gfp_flags: gfp flags to use when allocating memory
218 * @return: zero on success or a negative error code
220 * This routine will shrink the rc_map if it has lots of
221 * unused entries and grow it if it is full.
223 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
225 unsigned int oldalloc = rc_map->alloc;
226 unsigned int newalloc = oldalloc;
227 struct rc_map_table *oldscan = rc_map->scan;
228 struct rc_map_table *newscan;
230 if (rc_map->size == rc_map->len) {
231 /* All entries in use -> grow keytable */
232 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
233 return -ENOMEM;
235 newalloc *= 2;
236 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
239 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
240 /* Less than 1/3 of entries in use -> shrink keytable */
241 newalloc /= 2;
242 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
245 if (newalloc == oldalloc)
246 return 0;
248 newscan = kmalloc(newalloc, gfp_flags);
249 if (!newscan) {
250 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
251 return -ENOMEM;
254 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
255 rc_map->scan = newscan;
256 rc_map->alloc = newalloc;
257 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
258 kfree(oldscan);
259 return 0;
263 * ir_update_mapping() - set a keycode in the scancode->keycode table
264 * @dev: the struct rc_dev device descriptor
265 * @rc_map: scancode table to be adjusted
266 * @index: index of the mapping that needs to be updated
267 * @keycode: the desired keycode
268 * @return: previous keycode assigned to the mapping
270 * This routine is used to update scancode->keycode mapping at given
271 * position.
273 static unsigned int ir_update_mapping(struct rc_dev *dev,
274 struct rc_map *rc_map,
275 unsigned int index,
276 unsigned int new_keycode)
278 int old_keycode = rc_map->scan[index].keycode;
279 int i;
281 /* Did the user wish to remove the mapping? */
282 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
283 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
284 index, rc_map->scan[index].scancode);
285 rc_map->len--;
286 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
287 (rc_map->len - index) * sizeof(struct rc_map_table));
288 } else {
289 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
290 index,
291 old_keycode == KEY_RESERVED ? "New" : "Replacing",
292 rc_map->scan[index].scancode, new_keycode);
293 rc_map->scan[index].keycode = new_keycode;
294 __set_bit(new_keycode, dev->input_dev->keybit);
297 if (old_keycode != KEY_RESERVED) {
298 /* A previous mapping was updated... */
299 __clear_bit(old_keycode, dev->input_dev->keybit);
300 /* ... but another scancode might use the same keycode */
301 for (i = 0; i < rc_map->len; i++) {
302 if (rc_map->scan[i].keycode == old_keycode) {
303 __set_bit(old_keycode, dev->input_dev->keybit);
304 break;
308 /* Possibly shrink the keytable, failure is not a problem */
309 ir_resize_table(rc_map, GFP_ATOMIC);
312 return old_keycode;
316 * ir_establish_scancode() - set a keycode in the scancode->keycode table
317 * @dev: the struct rc_dev device descriptor
318 * @rc_map: scancode table to be searched
319 * @scancode: the desired scancode
320 * @resize: controls whether we allowed to resize the table to
321 * accommodate not yet present scancodes
322 * @return: index of the mapping containing scancode in question
323 * or -1U in case of failure.
325 * This routine is used to locate given scancode in rc_map.
326 * If scancode is not yet present the routine will allocate a new slot
327 * for it.
329 static unsigned int ir_establish_scancode(struct rc_dev *dev,
330 struct rc_map *rc_map,
331 unsigned int scancode,
332 bool resize)
334 unsigned int i;
337 * Unfortunately, some hardware-based IR decoders don't provide
338 * all bits for the complete IR code. In general, they provide only
339 * the command part of the IR code. Yet, as it is possible to replace
340 * the provided IR with another one, it is needed to allow loading
341 * IR tables from other remotes. So, we support specifying a mask to
342 * indicate the valid bits of the scancodes.
344 if (dev->scancode_mask)
345 scancode &= dev->scancode_mask;
347 /* First check if we already have a mapping for this ir command */
348 for (i = 0; i < rc_map->len; i++) {
349 if (rc_map->scan[i].scancode == scancode)
350 return i;
352 /* Keytable is sorted from lowest to highest scancode */
353 if (rc_map->scan[i].scancode >= scancode)
354 break;
357 /* No previous mapping found, we might need to grow the table */
358 if (rc_map->size == rc_map->len) {
359 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
360 return -1U;
363 /* i is the proper index to insert our new keycode */
364 if (i < rc_map->len)
365 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
366 (rc_map->len - i) * sizeof(struct rc_map_table));
367 rc_map->scan[i].scancode = scancode;
368 rc_map->scan[i].keycode = KEY_RESERVED;
369 rc_map->len++;
371 return i;
375 * ir_setkeycode() - set a keycode in the scancode->keycode table
376 * @idev: the struct input_dev device descriptor
377 * @scancode: the desired scancode
378 * @keycode: result
379 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
381 * This routine is used to handle evdev EVIOCSKEY ioctl.
383 static int ir_setkeycode(struct input_dev *idev,
384 const struct input_keymap_entry *ke,
385 unsigned int *old_keycode)
387 struct rc_dev *rdev = input_get_drvdata(idev);
388 struct rc_map *rc_map = &rdev->rc_map;
389 unsigned int index;
390 unsigned int scancode;
391 int retval = 0;
392 unsigned long flags;
394 spin_lock_irqsave(&rc_map->lock, flags);
396 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 index = ke->index;
398 if (index >= rc_map->len) {
399 retval = -EINVAL;
400 goto out;
402 } else {
403 retval = input_scancode_to_scalar(ke, &scancode);
404 if (retval)
405 goto out;
407 index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 if (index >= rc_map->len) {
409 retval = -ENOMEM;
410 goto out;
414 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
416 out:
417 spin_unlock_irqrestore(&rc_map->lock, flags);
418 return retval;
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @to: the struct rc_map to copy entries to
425 * @from: the struct rc_map to copy entries from
426 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
428 * This routine is used to handle table initialization.
430 static int ir_setkeytable(struct rc_dev *dev,
431 const struct rc_map *from)
433 struct rc_map *rc_map = &dev->rc_map;
434 unsigned int i, index;
435 int rc;
437 rc = ir_create_table(rc_map, from->name,
438 from->rc_proto, from->size);
439 if (rc)
440 return rc;
442 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
443 rc_map->size, rc_map->alloc);
445 for (i = 0; i < from->size; i++) {
446 index = ir_establish_scancode(dev, rc_map,
447 from->scan[i].scancode, false);
448 if (index >= rc_map->len) {
449 rc = -ENOMEM;
450 break;
453 ir_update_mapping(dev, rc_map, index,
454 from->scan[i].keycode);
457 if (rc)
458 ir_free_table(rc_map);
460 return rc;
464 * ir_lookup_by_scancode() - locate mapping by scancode
465 * @rc_map: the struct rc_map to search
466 * @scancode: scancode to look for in the table
467 * @return: index in the table, -1U if not found
469 * This routine performs binary search in RC keykeymap table for
470 * given scancode.
472 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
473 unsigned int scancode)
475 int start = 0;
476 int end = rc_map->len - 1;
477 int mid;
479 while (start <= end) {
480 mid = (start + end) / 2;
481 if (rc_map->scan[mid].scancode < scancode)
482 start = mid + 1;
483 else if (rc_map->scan[mid].scancode > scancode)
484 end = mid - 1;
485 else
486 return mid;
489 return -1U;
493 * ir_getkeycode() - get a keycode from the scancode->keycode table
494 * @idev: the struct input_dev device descriptor
495 * @scancode: the desired scancode
496 * @keycode: used to return the keycode, if found, or KEY_RESERVED
497 * @return: always returns zero.
499 * This routine is used to handle evdev EVIOCGKEY ioctl.
501 static int ir_getkeycode(struct input_dev *idev,
502 struct input_keymap_entry *ke)
504 struct rc_dev *rdev = input_get_drvdata(idev);
505 struct rc_map *rc_map = &rdev->rc_map;
506 struct rc_map_table *entry;
507 unsigned long flags;
508 unsigned int index;
509 unsigned int scancode;
510 int retval;
512 spin_lock_irqsave(&rc_map->lock, flags);
514 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
515 index = ke->index;
516 } else {
517 retval = input_scancode_to_scalar(ke, &scancode);
518 if (retval)
519 goto out;
521 index = ir_lookup_by_scancode(rc_map, scancode);
524 if (index < rc_map->len) {
525 entry = &rc_map->scan[index];
527 ke->index = index;
528 ke->keycode = entry->keycode;
529 ke->len = sizeof(entry->scancode);
530 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
532 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
534 * We do not really know the valid range of scancodes
535 * so let's respond with KEY_RESERVED to anything we
536 * do not have mapping for [yet].
538 ke->index = index;
539 ke->keycode = KEY_RESERVED;
540 } else {
541 retval = -EINVAL;
542 goto out;
545 retval = 0;
547 out:
548 spin_unlock_irqrestore(&rc_map->lock, flags);
549 return retval;
553 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
554 * @dev: the struct rc_dev descriptor of the device
555 * @scancode: the scancode to look for
556 * @return: the corresponding keycode, or KEY_RESERVED
558 * This routine is used by drivers which need to convert a scancode to a
559 * keycode. Normally it should not be used since drivers should have no
560 * interest in keycodes.
562 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
564 struct rc_map *rc_map = &dev->rc_map;
565 unsigned int keycode;
566 unsigned int index;
567 unsigned long flags;
569 spin_lock_irqsave(&rc_map->lock, flags);
571 index = ir_lookup_by_scancode(rc_map, scancode);
572 keycode = index < rc_map->len ?
573 rc_map->scan[index].keycode : KEY_RESERVED;
575 spin_unlock_irqrestore(&rc_map->lock, flags);
577 if (keycode != KEY_RESERVED)
578 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
579 dev->device_name, scancode, keycode);
581 return keycode;
583 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
586 * ir_do_keyup() - internal function to signal the release of a keypress
587 * @dev: the struct rc_dev descriptor of the device
588 * @sync: whether or not to call input_sync
590 * This function is used internally to release a keypress, it must be
591 * called with keylock held.
593 static void ir_do_keyup(struct rc_dev *dev, bool sync)
595 if (!dev->keypressed)
596 return;
598 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
599 input_report_key(dev->input_dev, dev->last_keycode, 0);
600 led_trigger_event(led_feedback, LED_OFF);
601 if (sync)
602 input_sync(dev->input_dev);
603 dev->keypressed = false;
607 * rc_keyup() - signals the release of a keypress
608 * @dev: the struct rc_dev descriptor of the device
610 * This routine is used to signal that a key has been released on the
611 * remote control.
613 void rc_keyup(struct rc_dev *dev)
615 unsigned long flags;
617 spin_lock_irqsave(&dev->keylock, flags);
618 ir_do_keyup(dev, true);
619 spin_unlock_irqrestore(&dev->keylock, flags);
621 EXPORT_SYMBOL_GPL(rc_keyup);
624 * ir_timer_keyup() - generates a keyup event after a timeout
625 * @cookie: a pointer to the struct rc_dev for the device
627 * This routine will generate a keyup event some time after a keydown event
628 * is generated when no further activity has been detected.
630 static void ir_timer_keyup(unsigned long cookie)
632 struct rc_dev *dev = (struct rc_dev *)cookie;
633 unsigned long flags;
636 * ir->keyup_jiffies is used to prevent a race condition if a
637 * hardware interrupt occurs at this point and the keyup timer
638 * event is moved further into the future as a result.
640 * The timer will then be reactivated and this function called
641 * again in the future. We need to exit gracefully in that case
642 * to allow the input subsystem to do its auto-repeat magic or
643 * a keyup event might follow immediately after the keydown.
645 spin_lock_irqsave(&dev->keylock, flags);
646 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
647 ir_do_keyup(dev, true);
648 spin_unlock_irqrestore(&dev->keylock, flags);
652 * rc_repeat() - signals that a key is still pressed
653 * @dev: the struct rc_dev descriptor of the device
655 * This routine is used by IR decoders when a repeat message which does
656 * not include the necessary bits to reproduce the scancode has been
657 * received.
659 void rc_repeat(struct rc_dev *dev)
661 unsigned long flags;
662 unsigned int timeout = protocols[dev->last_protocol].repeat_period;
664 spin_lock_irqsave(&dev->keylock, flags);
666 if (!dev->keypressed)
667 goto out;
669 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
670 input_sync(dev->input_dev);
672 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
673 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
675 out:
676 spin_unlock_irqrestore(&dev->keylock, flags);
678 EXPORT_SYMBOL_GPL(rc_repeat);
681 * ir_do_keydown() - internal function to process a keypress
682 * @dev: the struct rc_dev descriptor of the device
683 * @protocol: the protocol of the keypress
684 * @scancode: the scancode of the keypress
685 * @keycode: the keycode of the keypress
686 * @toggle: the toggle value of the keypress
688 * This function is used internally to register a keypress, it must be
689 * called with keylock held.
691 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
692 u32 scancode, u32 keycode, u8 toggle)
694 bool new_event = (!dev->keypressed ||
695 dev->last_protocol != protocol ||
696 dev->last_scancode != scancode ||
697 dev->last_toggle != toggle);
699 if (new_event && dev->keypressed)
700 ir_do_keyup(dev, false);
702 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
704 if (new_event && keycode != KEY_RESERVED) {
705 /* Register a keypress */
706 dev->keypressed = true;
707 dev->last_protocol = protocol;
708 dev->last_scancode = scancode;
709 dev->last_toggle = toggle;
710 dev->last_keycode = keycode;
712 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
713 dev->device_name, keycode, protocol, scancode);
714 input_report_key(dev->input_dev, keycode, 1);
716 led_trigger_event(led_feedback, LED_FULL);
719 input_sync(dev->input_dev);
723 * rc_keydown() - generates input event for a key press
724 * @dev: the struct rc_dev descriptor of the device
725 * @protocol: the protocol for the keypress
726 * @scancode: the scancode for the keypress
727 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
728 * support toggle values, this should be set to zero)
730 * This routine is used to signal that a key has been pressed on the
731 * remote control.
733 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
734 u8 toggle)
736 unsigned long flags;
737 u32 keycode = rc_g_keycode_from_table(dev, scancode);
739 spin_lock_irqsave(&dev->keylock, flags);
740 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
742 if (dev->keypressed) {
743 dev->keyup_jiffies = jiffies +
744 msecs_to_jiffies(protocols[protocol].repeat_period);
745 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
747 spin_unlock_irqrestore(&dev->keylock, flags);
749 EXPORT_SYMBOL_GPL(rc_keydown);
752 * rc_keydown_notimeout() - generates input event for a key press without
753 * an automatic keyup event at a later time
754 * @dev: the struct rc_dev descriptor of the device
755 * @protocol: the protocol for the keypress
756 * @scancode: the scancode for the keypress
757 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
758 * support toggle values, this should be set to zero)
760 * This routine is used to signal that a key has been pressed on the
761 * remote control. The driver must manually call rc_keyup() at a later stage.
763 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
764 u32 scancode, u8 toggle)
766 unsigned long flags;
767 u32 keycode = rc_g_keycode_from_table(dev, scancode);
769 spin_lock_irqsave(&dev->keylock, flags);
770 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
771 spin_unlock_irqrestore(&dev->keylock, flags);
773 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
776 * rc_validate_filter() - checks that the scancode and mask are valid and
777 * provides sensible defaults
778 * @dev: the struct rc_dev descriptor of the device
779 * @filter: the scancode and mask
780 * @return: 0 or -EINVAL if the filter is not valid
782 static int rc_validate_filter(struct rc_dev *dev,
783 struct rc_scancode_filter *filter)
785 u32 mask, s = filter->data;
786 enum rc_proto protocol = dev->wakeup_protocol;
788 if (protocol >= ARRAY_SIZE(protocols))
789 return -EINVAL;
791 mask = protocols[protocol].scancode_bits;
793 switch (protocol) {
794 case RC_PROTO_NECX:
795 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
796 return -EINVAL;
797 break;
798 case RC_PROTO_NEC32:
799 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
800 return -EINVAL;
801 break;
802 case RC_PROTO_RC6_MCE:
803 if ((s & 0xffff0000) != 0x800f0000)
804 return -EINVAL;
805 break;
806 case RC_PROTO_RC6_6A_32:
807 if ((s & 0xffff0000) == 0x800f0000)
808 return -EINVAL;
809 break;
810 default:
811 break;
814 filter->data &= mask;
815 filter->mask &= mask;
818 * If we have to raw encode the IR for wakeup, we cannot have a mask
820 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
821 return -EINVAL;
823 return 0;
826 int rc_open(struct rc_dev *rdev)
828 int rval = 0;
830 if (!rdev)
831 return -EINVAL;
833 mutex_lock(&rdev->lock);
835 if (!rdev->users++ && rdev->open != NULL)
836 rval = rdev->open(rdev);
838 if (rval)
839 rdev->users--;
841 mutex_unlock(&rdev->lock);
843 return rval;
845 EXPORT_SYMBOL_GPL(rc_open);
847 static int ir_open(struct input_dev *idev)
849 struct rc_dev *rdev = input_get_drvdata(idev);
851 return rc_open(rdev);
854 void rc_close(struct rc_dev *rdev)
856 if (rdev) {
857 mutex_lock(&rdev->lock);
859 if (!--rdev->users && rdev->close != NULL)
860 rdev->close(rdev);
862 mutex_unlock(&rdev->lock);
865 EXPORT_SYMBOL_GPL(rc_close);
867 static void ir_close(struct input_dev *idev)
869 struct rc_dev *rdev = input_get_drvdata(idev);
870 rc_close(rdev);
873 /* class for /sys/class/rc */
874 static char *rc_devnode(struct device *dev, umode_t *mode)
876 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
879 static struct class rc_class = {
880 .name = "rc",
881 .devnode = rc_devnode,
885 * These are the protocol textual descriptions that are
886 * used by the sysfs protocols file. Note that the order
887 * of the entries is relevant.
889 static const struct {
890 u64 type;
891 const char *name;
892 const char *module_name;
893 } proto_names[] = {
894 { RC_PROTO_BIT_NONE, "none", NULL },
895 { RC_PROTO_BIT_OTHER, "other", NULL },
896 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
897 { RC_PROTO_BIT_RC5 |
898 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
899 { RC_PROTO_BIT_NEC |
900 RC_PROTO_BIT_NECX |
901 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
902 { RC_PROTO_BIT_RC6_0 |
903 RC_PROTO_BIT_RC6_6A_20 |
904 RC_PROTO_BIT_RC6_6A_24 |
905 RC_PROTO_BIT_RC6_6A_32 |
906 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
907 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
908 { RC_PROTO_BIT_SONY12 |
909 RC_PROTO_BIT_SONY15 |
910 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
911 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
912 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
913 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
914 { RC_PROTO_BIT_MCIR2_KBD |
915 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
916 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
917 { RC_PROTO_BIT_CEC, "cec", NULL },
921 * struct rc_filter_attribute - Device attribute relating to a filter type.
922 * @attr: Device attribute.
923 * @type: Filter type.
924 * @mask: false for filter value, true for filter mask.
926 struct rc_filter_attribute {
927 struct device_attribute attr;
928 enum rc_filter_type type;
929 bool mask;
931 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
933 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
934 struct rc_filter_attribute dev_attr_##_name = { \
935 .attr = __ATTR(_name, _mode, _show, _store), \
936 .type = (_type), \
937 .mask = (_mask), \
940 static bool lirc_is_present(void)
942 #if defined(CONFIG_LIRC_MODULE)
943 struct module *lirc;
945 mutex_lock(&module_mutex);
946 lirc = find_module("lirc_dev");
947 mutex_unlock(&module_mutex);
949 return lirc ? true : false;
950 #elif defined(CONFIG_LIRC)
951 return true;
952 #else
953 return false;
954 #endif
958 * show_protocols() - shows the current IR protocol(s)
959 * @device: the device descriptor
960 * @mattr: the device attribute struct
961 * @buf: a pointer to the output buffer
963 * This routine is a callback routine for input read the IR protocol type(s).
964 * it is trigged by reading /sys/class/rc/rc?/protocols.
965 * It returns the protocol names of supported protocols.
966 * Enabled protocols are printed in brackets.
968 * dev->lock is taken to guard against races between
969 * store_protocols and show_protocols.
971 static ssize_t show_protocols(struct device *device,
972 struct device_attribute *mattr, char *buf)
974 struct rc_dev *dev = to_rc_dev(device);
975 u64 allowed, enabled;
976 char *tmp = buf;
977 int i;
979 mutex_lock(&dev->lock);
981 enabled = dev->enabled_protocols;
982 allowed = dev->allowed_protocols;
983 if (dev->raw && !allowed)
984 allowed = ir_raw_get_allowed_protocols();
986 mutex_unlock(&dev->lock);
988 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
989 __func__, (long long)allowed, (long long)enabled);
991 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
992 if (allowed & enabled & proto_names[i].type)
993 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
994 else if (allowed & proto_names[i].type)
995 tmp += sprintf(tmp, "%s ", proto_names[i].name);
997 if (allowed & proto_names[i].type)
998 allowed &= ~proto_names[i].type;
1001 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
1002 tmp += sprintf(tmp, "[lirc] ");
1004 if (tmp != buf)
1005 tmp--;
1006 *tmp = '\n';
1008 return tmp + 1 - buf;
1012 * parse_protocol_change() - parses a protocol change request
1013 * @protocols: pointer to the bitmask of current protocols
1014 * @buf: pointer to the buffer with a list of changes
1016 * Writing "+proto" will add a protocol to the protocol mask.
1017 * Writing "-proto" will remove a protocol from protocol mask.
1018 * Writing "proto" will enable only "proto".
1019 * Writing "none" will disable all protocols.
1020 * Returns the number of changes performed or a negative error code.
1022 static int parse_protocol_change(u64 *protocols, const char *buf)
1024 const char *tmp;
1025 unsigned count = 0;
1026 bool enable, disable;
1027 u64 mask;
1028 int i;
1030 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1031 if (!*tmp)
1032 break;
1034 if (*tmp == '+') {
1035 enable = true;
1036 disable = false;
1037 tmp++;
1038 } else if (*tmp == '-') {
1039 enable = false;
1040 disable = true;
1041 tmp++;
1042 } else {
1043 enable = false;
1044 disable = false;
1047 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1048 if (!strcasecmp(tmp, proto_names[i].name)) {
1049 mask = proto_names[i].type;
1050 break;
1054 if (i == ARRAY_SIZE(proto_names)) {
1055 if (!strcasecmp(tmp, "lirc"))
1056 mask = 0;
1057 else {
1058 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1059 return -EINVAL;
1063 count++;
1065 if (enable)
1066 *protocols |= mask;
1067 else if (disable)
1068 *protocols &= ~mask;
1069 else
1070 *protocols = mask;
1073 if (!count) {
1074 IR_dprintk(1, "Protocol not specified\n");
1075 return -EINVAL;
1078 return count;
1081 static void ir_raw_load_modules(u64 *protocols)
1083 u64 available;
1084 int i, ret;
1086 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1087 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1088 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1089 RC_PROTO_BIT_UNKNOWN))
1090 continue;
1092 available = ir_raw_get_allowed_protocols();
1093 if (!(*protocols & proto_names[i].type & ~available))
1094 continue;
1096 if (!proto_names[i].module_name) {
1097 pr_err("Can't enable IR protocol %s\n",
1098 proto_names[i].name);
1099 *protocols &= ~proto_names[i].type;
1100 continue;
1103 ret = request_module("%s", proto_names[i].module_name);
1104 if (ret < 0) {
1105 pr_err("Couldn't load IR protocol module %s\n",
1106 proto_names[i].module_name);
1107 *protocols &= ~proto_names[i].type;
1108 continue;
1110 msleep(20);
1111 available = ir_raw_get_allowed_protocols();
1112 if (!(*protocols & proto_names[i].type & ~available))
1113 continue;
1115 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1116 proto_names[i].module_name,
1117 proto_names[i].name);
1118 *protocols &= ~proto_names[i].type;
1123 * store_protocols() - changes the current/wakeup IR protocol(s)
1124 * @device: the device descriptor
1125 * @mattr: the device attribute struct
1126 * @buf: a pointer to the input buffer
1127 * @len: length of the input buffer
1129 * This routine is for changing the IR protocol type.
1130 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1131 * See parse_protocol_change() for the valid commands.
1132 * Returns @len on success or a negative error code.
1134 * dev->lock is taken to guard against races between
1135 * store_protocols and show_protocols.
1137 static ssize_t store_protocols(struct device *device,
1138 struct device_attribute *mattr,
1139 const char *buf, size_t len)
1141 struct rc_dev *dev = to_rc_dev(device);
1142 u64 *current_protocols;
1143 struct rc_scancode_filter *filter;
1144 u64 old_protocols, new_protocols;
1145 ssize_t rc;
1147 IR_dprintk(1, "Normal protocol change requested\n");
1148 current_protocols = &dev->enabled_protocols;
1149 filter = &dev->scancode_filter;
1151 if (!dev->change_protocol) {
1152 IR_dprintk(1, "Protocol switching not supported\n");
1153 return -EINVAL;
1156 mutex_lock(&dev->lock);
1158 old_protocols = *current_protocols;
1159 new_protocols = old_protocols;
1160 rc = parse_protocol_change(&new_protocols, buf);
1161 if (rc < 0)
1162 goto out;
1164 rc = dev->change_protocol(dev, &new_protocols);
1165 if (rc < 0) {
1166 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1167 (long long)new_protocols);
1168 goto out;
1171 if (dev->driver_type == RC_DRIVER_IR_RAW)
1172 ir_raw_load_modules(&new_protocols);
1174 if (new_protocols != old_protocols) {
1175 *current_protocols = new_protocols;
1176 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1177 (long long)new_protocols);
1181 * If a protocol change was attempted the filter may need updating, even
1182 * if the actual protocol mask hasn't changed (since the driver may have
1183 * cleared the filter).
1184 * Try setting the same filter with the new protocol (if any).
1185 * Fall back to clearing the filter.
1187 if (dev->s_filter && filter->mask) {
1188 if (new_protocols)
1189 rc = dev->s_filter(dev, filter);
1190 else
1191 rc = -1;
1193 if (rc < 0) {
1194 filter->data = 0;
1195 filter->mask = 0;
1196 dev->s_filter(dev, filter);
1200 rc = len;
1202 out:
1203 mutex_unlock(&dev->lock);
1204 return rc;
1208 * show_filter() - shows the current scancode filter value or mask
1209 * @device: the device descriptor
1210 * @attr: the device attribute struct
1211 * @buf: a pointer to the output buffer
1213 * This routine is a callback routine to read a scancode filter value or mask.
1214 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1215 * It prints the current scancode filter value or mask of the appropriate filter
1216 * type in hexadecimal into @buf and returns the size of the buffer.
1218 * Bits of the filter value corresponding to set bits in the filter mask are
1219 * compared against input scancodes and non-matching scancodes are discarded.
1221 * dev->lock is taken to guard against races between
1222 * store_filter and show_filter.
1224 static ssize_t show_filter(struct device *device,
1225 struct device_attribute *attr,
1226 char *buf)
1228 struct rc_dev *dev = to_rc_dev(device);
1229 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1230 struct rc_scancode_filter *filter;
1231 u32 val;
1233 mutex_lock(&dev->lock);
1235 if (fattr->type == RC_FILTER_NORMAL)
1236 filter = &dev->scancode_filter;
1237 else
1238 filter = &dev->scancode_wakeup_filter;
1240 if (fattr->mask)
1241 val = filter->mask;
1242 else
1243 val = filter->data;
1244 mutex_unlock(&dev->lock);
1246 return sprintf(buf, "%#x\n", val);
1250 * store_filter() - changes the scancode filter value
1251 * @device: the device descriptor
1252 * @attr: the device attribute struct
1253 * @buf: a pointer to the input buffer
1254 * @len: length of the input buffer
1256 * This routine is for changing a scancode filter value or mask.
1257 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1258 * Returns -EINVAL if an invalid filter value for the current protocol was
1259 * specified or if scancode filtering is not supported by the driver, otherwise
1260 * returns @len.
1262 * Bits of the filter value corresponding to set bits in the filter mask are
1263 * compared against input scancodes and non-matching scancodes are discarded.
1265 * dev->lock is taken to guard against races between
1266 * store_filter and show_filter.
1268 static ssize_t store_filter(struct device *device,
1269 struct device_attribute *attr,
1270 const char *buf, size_t len)
1272 struct rc_dev *dev = to_rc_dev(device);
1273 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1274 struct rc_scancode_filter new_filter, *filter;
1275 int ret;
1276 unsigned long val;
1277 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1279 ret = kstrtoul(buf, 0, &val);
1280 if (ret < 0)
1281 return ret;
1283 if (fattr->type == RC_FILTER_NORMAL) {
1284 set_filter = dev->s_filter;
1285 filter = &dev->scancode_filter;
1286 } else {
1287 set_filter = dev->s_wakeup_filter;
1288 filter = &dev->scancode_wakeup_filter;
1291 if (!set_filter)
1292 return -EINVAL;
1294 mutex_lock(&dev->lock);
1296 new_filter = *filter;
1297 if (fattr->mask)
1298 new_filter.mask = val;
1299 else
1300 new_filter.data = val;
1302 if (fattr->type == RC_FILTER_WAKEUP) {
1304 * Refuse to set a filter unless a protocol is enabled
1305 * and the filter is valid for that protocol
1307 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1308 ret = rc_validate_filter(dev, &new_filter);
1309 else
1310 ret = -EINVAL;
1312 if (ret != 0)
1313 goto unlock;
1316 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1317 val) {
1318 /* refuse to set a filter unless a protocol is enabled */
1319 ret = -EINVAL;
1320 goto unlock;
1323 ret = set_filter(dev, &new_filter);
1324 if (ret < 0)
1325 goto unlock;
1327 *filter = new_filter;
1329 unlock:
1330 mutex_unlock(&dev->lock);
1331 return (ret < 0) ? ret : len;
1335 * show_wakeup_protocols() - shows the wakeup IR protocol
1336 * @device: the device descriptor
1337 * @mattr: the device attribute struct
1338 * @buf: a pointer to the output buffer
1340 * This routine is a callback routine for input read the IR protocol type(s).
1341 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1342 * It returns the protocol names of supported protocols.
1343 * The enabled protocols are printed in brackets.
1345 * dev->lock is taken to guard against races between
1346 * store_wakeup_protocols and show_wakeup_protocols.
1348 static ssize_t show_wakeup_protocols(struct device *device,
1349 struct device_attribute *mattr,
1350 char *buf)
1352 struct rc_dev *dev = to_rc_dev(device);
1353 u64 allowed;
1354 enum rc_proto enabled;
1355 char *tmp = buf;
1356 int i;
1358 mutex_lock(&dev->lock);
1360 allowed = dev->allowed_wakeup_protocols;
1361 enabled = dev->wakeup_protocol;
1363 mutex_unlock(&dev->lock);
1365 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1366 __func__, (long long)allowed, enabled);
1368 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1369 if (allowed & (1ULL << i)) {
1370 if (i == enabled)
1371 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1372 else
1373 tmp += sprintf(tmp, "%s ", protocols[i].name);
1377 if (tmp != buf)
1378 tmp--;
1379 *tmp = '\n';
1381 return tmp + 1 - buf;
1385 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1386 * @device: the device descriptor
1387 * @mattr: the device attribute struct
1388 * @buf: a pointer to the input buffer
1389 * @len: length of the input buffer
1391 * This routine is for changing the IR protocol type.
1392 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1393 * Returns @len on success or a negative error code.
1395 * dev->lock is taken to guard against races between
1396 * store_wakeup_protocols and show_wakeup_protocols.
1398 static ssize_t store_wakeup_protocols(struct device *device,
1399 struct device_attribute *mattr,
1400 const char *buf, size_t len)
1402 struct rc_dev *dev = to_rc_dev(device);
1403 enum rc_proto protocol;
1404 ssize_t rc;
1405 u64 allowed;
1406 int i;
1408 mutex_lock(&dev->lock);
1410 allowed = dev->allowed_wakeup_protocols;
1412 if (sysfs_streq(buf, "none")) {
1413 protocol = RC_PROTO_UNKNOWN;
1414 } else {
1415 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1416 if ((allowed & (1ULL << i)) &&
1417 sysfs_streq(buf, protocols[i].name)) {
1418 protocol = i;
1419 break;
1423 if (i == ARRAY_SIZE(protocols)) {
1424 rc = -EINVAL;
1425 goto out;
1428 if (dev->encode_wakeup) {
1429 u64 mask = 1ULL << protocol;
1431 ir_raw_load_modules(&mask);
1432 if (!mask) {
1433 rc = -EINVAL;
1434 goto out;
1439 if (dev->wakeup_protocol != protocol) {
1440 dev->wakeup_protocol = protocol;
1441 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1443 if (protocol == RC_PROTO_RC6_MCE)
1444 dev->scancode_wakeup_filter.data = 0x800f0000;
1445 else
1446 dev->scancode_wakeup_filter.data = 0;
1447 dev->scancode_wakeup_filter.mask = 0;
1449 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1450 if (rc == 0)
1451 rc = len;
1452 } else {
1453 rc = len;
1456 out:
1457 mutex_unlock(&dev->lock);
1458 return rc;
1461 static void rc_dev_release(struct device *device)
1463 struct rc_dev *dev = to_rc_dev(device);
1465 kfree(dev);
1468 #define ADD_HOTPLUG_VAR(fmt, val...) \
1469 do { \
1470 int err = add_uevent_var(env, fmt, val); \
1471 if (err) \
1472 return err; \
1473 } while (0)
1475 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1477 struct rc_dev *dev = to_rc_dev(device);
1479 if (dev->rc_map.name)
1480 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1481 if (dev->driver_name)
1482 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1484 return 0;
1488 * Static device attribute struct with the sysfs attributes for IR's
1490 static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1491 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1492 store_wakeup_protocols);
1493 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1494 show_filter, store_filter, RC_FILTER_NORMAL, false);
1495 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1496 show_filter, store_filter, RC_FILTER_NORMAL, true);
1497 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1498 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1499 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1500 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1502 static struct attribute *rc_dev_protocol_attrs[] = {
1503 &dev_attr_protocols.attr,
1504 NULL,
1507 static const struct attribute_group rc_dev_protocol_attr_grp = {
1508 .attrs = rc_dev_protocol_attrs,
1511 static struct attribute *rc_dev_filter_attrs[] = {
1512 &dev_attr_filter.attr.attr,
1513 &dev_attr_filter_mask.attr.attr,
1514 NULL,
1517 static const struct attribute_group rc_dev_filter_attr_grp = {
1518 .attrs = rc_dev_filter_attrs,
1521 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1522 &dev_attr_wakeup_filter.attr.attr,
1523 &dev_attr_wakeup_filter_mask.attr.attr,
1524 &dev_attr_wakeup_protocols.attr,
1525 NULL,
1528 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1529 .attrs = rc_dev_wakeup_filter_attrs,
1532 static struct device_type rc_dev_type = {
1533 .release = rc_dev_release,
1534 .uevent = rc_dev_uevent,
1537 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1539 struct rc_dev *dev;
1541 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1542 if (!dev)
1543 return NULL;
1545 if (type != RC_DRIVER_IR_RAW_TX) {
1546 dev->input_dev = input_allocate_device();
1547 if (!dev->input_dev) {
1548 kfree(dev);
1549 return NULL;
1552 dev->input_dev->getkeycode = ir_getkeycode;
1553 dev->input_dev->setkeycode = ir_setkeycode;
1554 input_set_drvdata(dev->input_dev, dev);
1556 setup_timer(&dev->timer_keyup, ir_timer_keyup,
1557 (unsigned long)dev);
1559 spin_lock_init(&dev->rc_map.lock);
1560 spin_lock_init(&dev->keylock);
1562 mutex_init(&dev->lock);
1564 dev->dev.type = &rc_dev_type;
1565 dev->dev.class = &rc_class;
1566 device_initialize(&dev->dev);
1568 dev->driver_type = type;
1570 __module_get(THIS_MODULE);
1571 return dev;
1573 EXPORT_SYMBOL_GPL(rc_allocate_device);
1575 void rc_free_device(struct rc_dev *dev)
1577 if (!dev)
1578 return;
1580 input_free_device(dev->input_dev);
1582 put_device(&dev->dev);
1584 /* kfree(dev) will be called by the callback function
1585 rc_dev_release() */
1587 module_put(THIS_MODULE);
1589 EXPORT_SYMBOL_GPL(rc_free_device);
1591 static void devm_rc_alloc_release(struct device *dev, void *res)
1593 rc_free_device(*(struct rc_dev **)res);
1596 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1597 enum rc_driver_type type)
1599 struct rc_dev **dr, *rc;
1601 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1602 if (!dr)
1603 return NULL;
1605 rc = rc_allocate_device(type);
1606 if (!rc) {
1607 devres_free(dr);
1608 return NULL;
1611 rc->dev.parent = dev;
1612 rc->managed_alloc = true;
1613 *dr = rc;
1614 devres_add(dev, dr);
1616 return rc;
1618 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1620 static int rc_prepare_rx_device(struct rc_dev *dev)
1622 int rc;
1623 struct rc_map *rc_map;
1624 u64 rc_proto;
1626 if (!dev->map_name)
1627 return -EINVAL;
1629 rc_map = rc_map_get(dev->map_name);
1630 if (!rc_map)
1631 rc_map = rc_map_get(RC_MAP_EMPTY);
1632 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1633 return -EINVAL;
1635 rc = ir_setkeytable(dev, rc_map);
1636 if (rc)
1637 return rc;
1639 rc_proto = BIT_ULL(rc_map->rc_proto);
1641 if (dev->change_protocol) {
1642 rc = dev->change_protocol(dev, &rc_proto);
1643 if (rc < 0)
1644 goto out_table;
1645 dev->enabled_protocols = rc_proto;
1648 if (dev->driver_type == RC_DRIVER_IR_RAW)
1649 ir_raw_load_modules(&rc_proto);
1651 set_bit(EV_KEY, dev->input_dev->evbit);
1652 set_bit(EV_REP, dev->input_dev->evbit);
1653 set_bit(EV_MSC, dev->input_dev->evbit);
1654 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1655 if (dev->open)
1656 dev->input_dev->open = ir_open;
1657 if (dev->close)
1658 dev->input_dev->close = ir_close;
1660 dev->input_dev->dev.parent = &dev->dev;
1661 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1662 dev->input_dev->phys = dev->input_phys;
1663 dev->input_dev->name = dev->device_name;
1665 return 0;
1667 out_table:
1668 ir_free_table(&dev->rc_map);
1670 return rc;
1673 static int rc_setup_rx_device(struct rc_dev *dev)
1675 int rc;
1677 /* rc_open will be called here */
1678 rc = input_register_device(dev->input_dev);
1679 if (rc)
1680 return rc;
1683 * Default delay of 250ms is too short for some protocols, especially
1684 * since the timeout is currently set to 250ms. Increase it to 500ms,
1685 * to avoid wrong repetition of the keycodes. Note that this must be
1686 * set after the call to input_register_device().
1688 dev->input_dev->rep[REP_DELAY] = 500;
1691 * As a repeat event on protocols like RC-5 and NEC take as long as
1692 * 110/114ms, using 33ms as a repeat period is not the right thing
1693 * to do.
1695 dev->input_dev->rep[REP_PERIOD] = 125;
1697 return 0;
1700 static void rc_free_rx_device(struct rc_dev *dev)
1702 if (!dev)
1703 return;
1705 if (dev->input_dev) {
1706 input_unregister_device(dev->input_dev);
1707 dev->input_dev = NULL;
1710 ir_free_table(&dev->rc_map);
1713 int rc_register_device(struct rc_dev *dev)
1715 const char *path;
1716 int attr = 0;
1717 int minor;
1718 int rc;
1720 if (!dev)
1721 return -EINVAL;
1723 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1724 if (minor < 0)
1725 return minor;
1727 dev->minor = minor;
1728 dev_set_name(&dev->dev, "rc%u", dev->minor);
1729 dev_set_drvdata(&dev->dev, dev);
1731 dev->dev.groups = dev->sysfs_groups;
1732 if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1733 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1734 if (dev->s_filter)
1735 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1736 if (dev->s_wakeup_filter)
1737 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1738 dev->sysfs_groups[attr++] = NULL;
1740 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1741 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1742 rc = ir_raw_event_prepare(dev);
1743 if (rc < 0)
1744 goto out_minor;
1747 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1748 rc = rc_prepare_rx_device(dev);
1749 if (rc)
1750 goto out_raw;
1753 rc = device_add(&dev->dev);
1754 if (rc)
1755 goto out_rx_free;
1757 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1758 dev_info(&dev->dev, "%s as %s\n",
1759 dev->device_name ?: "Unspecified device", path ?: "N/A");
1760 kfree(path);
1762 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1763 rc = rc_setup_rx_device(dev);
1764 if (rc)
1765 goto out_dev;
1768 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1769 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1770 rc = ir_raw_event_register(dev);
1771 if (rc < 0)
1772 goto out_rx;
1775 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1776 dev->minor,
1777 dev->driver_name ? dev->driver_name : "unknown");
1779 return 0;
1781 out_rx:
1782 rc_free_rx_device(dev);
1783 out_dev:
1784 device_del(&dev->dev);
1785 out_rx_free:
1786 ir_free_table(&dev->rc_map);
1787 out_raw:
1788 ir_raw_event_free(dev);
1789 out_minor:
1790 ida_simple_remove(&rc_ida, minor);
1791 return rc;
1793 EXPORT_SYMBOL_GPL(rc_register_device);
1795 static void devm_rc_release(struct device *dev, void *res)
1797 rc_unregister_device(*(struct rc_dev **)res);
1800 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1802 struct rc_dev **dr;
1803 int ret;
1805 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1806 if (!dr)
1807 return -ENOMEM;
1809 ret = rc_register_device(dev);
1810 if (ret) {
1811 devres_free(dr);
1812 return ret;
1815 *dr = dev;
1816 devres_add(parent, dr);
1818 return 0;
1820 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1822 void rc_unregister_device(struct rc_dev *dev)
1824 if (!dev)
1825 return;
1827 del_timer_sync(&dev->timer_keyup);
1829 if (dev->driver_type == RC_DRIVER_IR_RAW)
1830 ir_raw_event_unregister(dev);
1832 rc_free_rx_device(dev);
1834 device_del(&dev->dev);
1836 ida_simple_remove(&rc_ida, dev->minor);
1838 if (!dev->managed_alloc)
1839 rc_free_device(dev);
1842 EXPORT_SYMBOL_GPL(rc_unregister_device);
1845 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1848 static int __init rc_core_init(void)
1850 int rc = class_register(&rc_class);
1851 if (rc) {
1852 pr_err("rc_core: unable to register rc class\n");
1853 return rc;
1856 led_trigger_register_simple("rc-feedback", &led_feedback);
1857 rc_map_register(&empty_map);
1859 return 0;
1862 static void __exit rc_core_exit(void)
1864 class_unregister(&rc_class);
1865 led_trigger_unregister_simple(led_feedback);
1866 rc_map_unregister(&empty_map);
1869 subsys_initcall(rc_core_init);
1870 module_exit(rc_core_exit);
1872 int rc_core_debug; /* ir_debug level (0,1,2) */
1873 EXPORT_SYMBOL_GPL(rc_core_debug);
1874 module_param_named(debug, rc_core_debug, int, 0644);
1876 MODULE_AUTHOR("Mauro Carvalho Chehab");
1877 MODULE_LICENSE("GPL");