Linux 4.14.51
[linux/fpc-iii.git] / drivers / rtc / rtc-sun6i.c
blob3d2216ccd860c6fef173882e3e24a92e2309eca2
1 /*
2 * An RTC driver for Allwinner A31/A23
4 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6 * based on rtc-sunxi.c
8 * An RTC driver for Allwinner A10/A20
10 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
23 #include <linux/clk.h>
24 #include <linux/clk-provider.h>
25 #include <linux/delay.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/slab.h>
39 #include <linux/types.h>
41 /* Control register */
42 #define SUN6I_LOSC_CTRL 0x0000
43 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
44 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
45 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
46 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
47 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
48 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
50 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
52 /* RTC */
53 #define SUN6I_RTC_YMD 0x0010
54 #define SUN6I_RTC_HMS 0x0014
56 /* Alarm 0 (counter) */
57 #define SUN6I_ALRM_COUNTER 0x0020
58 #define SUN6I_ALRM_CUR_VAL 0x0024
59 #define SUN6I_ALRM_EN 0x0028
60 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
61 #define SUN6I_ALRM_IRQ_EN 0x002c
62 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
63 #define SUN6I_ALRM_IRQ_STA 0x0030
64 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
66 /* Alarm 1 (wall clock) */
67 #define SUN6I_ALRM1_EN 0x0044
68 #define SUN6I_ALRM1_IRQ_EN 0x0048
69 #define SUN6I_ALRM1_IRQ_STA 0x004c
70 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
72 /* Alarm config */
73 #define SUN6I_ALARM_CONFIG 0x0050
74 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
76 #define SUN6I_LOSC_OUT_GATING 0x0060
77 #define SUN6I_LOSC_OUT_GATING_EN BIT(0)
80 * Get date values
82 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
83 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
84 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
85 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
88 * Get time values
90 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
91 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
92 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
95 * Set date values
97 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
98 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
99 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
100 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
103 * Set time values
105 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
106 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
107 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
110 * The year parameter passed to the driver is usually an offset relative to
111 * the year 1900. This macro is used to convert this offset to another one
112 * relative to the minimum year allowed by the hardware.
114 * The year range is 1970 - 2033. This range is selected to match Allwinner's
115 * driver, even though it is somewhat limited.
117 #define SUN6I_YEAR_MIN 1970
118 #define SUN6I_YEAR_MAX 2033
119 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
121 struct sun6i_rtc_dev {
122 struct rtc_device *rtc;
123 struct device *dev;
124 void __iomem *base;
125 int irq;
126 unsigned long alarm;
128 struct clk_hw hw;
129 struct clk_hw *int_osc;
130 struct clk *losc;
131 struct clk *ext_losc;
133 spinlock_t lock;
136 static struct sun6i_rtc_dev *sun6i_rtc;
138 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
139 unsigned long parent_rate)
141 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
142 u32 val;
144 val = readl(rtc->base + SUN6I_LOSC_CTRL);
145 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
146 return parent_rate;
148 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
149 val &= GENMASK(4, 0);
151 return parent_rate / (val + 1);
154 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
156 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
158 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
161 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
163 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
164 unsigned long flags;
165 u32 val;
167 if (index > 1)
168 return -EINVAL;
170 spin_lock_irqsave(&rtc->lock, flags);
171 val = readl(rtc->base + SUN6I_LOSC_CTRL);
172 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
173 val |= SUN6I_LOSC_CTRL_KEY;
174 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
175 writel(val, rtc->base + SUN6I_LOSC_CTRL);
176 spin_unlock_irqrestore(&rtc->lock, flags);
178 return 0;
181 static const struct clk_ops sun6i_rtc_osc_ops = {
182 .recalc_rate = sun6i_rtc_osc_recalc_rate,
184 .get_parent = sun6i_rtc_osc_get_parent,
185 .set_parent = sun6i_rtc_osc_set_parent,
188 static void __init sun6i_rtc_clk_init(struct device_node *node)
190 struct clk_hw_onecell_data *clk_data;
191 struct sun6i_rtc_dev *rtc;
192 struct clk_init_data init = {
193 .ops = &sun6i_rtc_osc_ops,
195 const char *clkout_name = "osc32k-out";
196 const char *parents[2];
198 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199 if (!rtc)
200 return;
202 clk_data = kzalloc(sizeof(*clk_data) + (sizeof(*clk_data->hws) * 2),
203 GFP_KERNEL);
204 if (!clk_data)
205 return;
207 spin_lock_init(&rtc->lock);
209 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
210 if (IS_ERR(rtc->base)) {
211 pr_crit("Can't map RTC registers");
212 goto err;
215 /* Switch to the external, more precise, oscillator */
216 writel(SUN6I_LOSC_CTRL_KEY | SUN6I_LOSC_CTRL_EXT_OSC,
217 rtc->base + SUN6I_LOSC_CTRL);
219 /* Yes, I know, this is ugly. */
220 sun6i_rtc = rtc;
222 /* Deal with old DTs */
223 if (!of_get_property(node, "clocks", NULL))
224 goto err;
226 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
227 "rtc-int-osc",
228 NULL, 0,
229 667000,
230 300000000);
231 if (IS_ERR(rtc->int_osc)) {
232 pr_crit("Couldn't register the internal oscillator\n");
233 return;
236 parents[0] = clk_hw_get_name(rtc->int_osc);
237 parents[1] = of_clk_get_parent_name(node, 0);
239 rtc->hw.init = &init;
241 init.parent_names = parents;
242 init.num_parents = of_clk_get_parent_count(node) + 1;
243 of_property_read_string_index(node, "clock-output-names", 0,
244 &init.name);
246 rtc->losc = clk_register(NULL, &rtc->hw);
247 if (IS_ERR(rtc->losc)) {
248 pr_crit("Couldn't register the LOSC clock\n");
249 return;
252 of_property_read_string_index(node, "clock-output-names", 1,
253 &clkout_name);
254 rtc->ext_losc = clk_register_gate(NULL, clkout_name, rtc->hw.init->name,
255 0, rtc->base + SUN6I_LOSC_OUT_GATING,
256 SUN6I_LOSC_OUT_GATING_EN, 0,
257 &rtc->lock);
258 if (IS_ERR(rtc->ext_losc)) {
259 pr_crit("Couldn't register the LOSC external gate\n");
260 return;
263 clk_data->num = 2;
264 clk_data->hws[0] = &rtc->hw;
265 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
266 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
267 return;
269 err:
270 kfree(clk_data);
272 CLK_OF_DECLARE_DRIVER(sun6i_rtc_clk, "allwinner,sun6i-a31-rtc",
273 sun6i_rtc_clk_init);
275 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
277 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
278 irqreturn_t ret = IRQ_NONE;
279 u32 val;
281 spin_lock(&chip->lock);
282 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
284 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
285 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
286 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
288 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
290 ret = IRQ_HANDLED;
292 spin_unlock(&chip->lock);
294 return ret;
297 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
299 u32 alrm_val = 0;
300 u32 alrm_irq_val = 0;
301 u32 alrm_wake_val = 0;
302 unsigned long flags;
304 if (to) {
305 alrm_val = SUN6I_ALRM_EN_CNT_EN;
306 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
307 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
308 } else {
309 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
310 chip->base + SUN6I_ALRM_IRQ_STA);
313 spin_lock_irqsave(&chip->lock, flags);
314 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
315 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
316 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
317 spin_unlock_irqrestore(&chip->lock, flags);
320 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
322 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
323 u32 date, time;
326 * read again in case it changes
328 do {
329 date = readl(chip->base + SUN6I_RTC_YMD);
330 time = readl(chip->base + SUN6I_RTC_HMS);
331 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
332 (time != readl(chip->base + SUN6I_RTC_HMS)));
334 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
335 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
336 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
338 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
339 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date);
340 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
342 rtc_tm->tm_mon -= 1;
345 * switch from (data_year->min)-relative offset to
346 * a (1900)-relative one
348 rtc_tm->tm_year += SUN6I_YEAR_OFF;
350 return rtc_valid_tm(rtc_tm);
353 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
355 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
356 unsigned long flags;
357 u32 alrm_st;
358 u32 alrm_en;
360 spin_lock_irqsave(&chip->lock, flags);
361 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
362 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
363 spin_unlock_irqrestore(&chip->lock, flags);
365 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
366 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
367 rtc_time_to_tm(chip->alarm, &wkalrm->time);
369 return 0;
372 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
374 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
375 struct rtc_time *alrm_tm = &wkalrm->time;
376 struct rtc_time tm_now;
377 unsigned long time_now = 0;
378 unsigned long time_set = 0;
379 unsigned long time_gap = 0;
380 int ret = 0;
382 ret = sun6i_rtc_gettime(dev, &tm_now);
383 if (ret < 0) {
384 dev_err(dev, "Error in getting time\n");
385 return -EINVAL;
388 rtc_tm_to_time(alrm_tm, &time_set);
389 rtc_tm_to_time(&tm_now, &time_now);
390 if (time_set <= time_now) {
391 dev_err(dev, "Date to set in the past\n");
392 return -EINVAL;
395 time_gap = time_set - time_now;
397 if (time_gap > U32_MAX) {
398 dev_err(dev, "Date too far in the future\n");
399 return -EINVAL;
402 sun6i_rtc_setaie(0, chip);
403 writel(0, chip->base + SUN6I_ALRM_COUNTER);
404 usleep_range(100, 300);
406 writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
407 chip->alarm = time_set;
409 sun6i_rtc_setaie(wkalrm->enabled, chip);
411 return 0;
414 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
415 unsigned int mask, unsigned int ms_timeout)
417 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
418 u32 reg;
420 do {
421 reg = readl(chip->base + offset);
422 reg &= mask;
424 if (!reg)
425 return 0;
427 } while (time_before(jiffies, timeout));
429 return -ETIMEDOUT;
432 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
434 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
435 u32 date = 0;
436 u32 time = 0;
437 int year;
439 year = rtc_tm->tm_year + 1900;
440 if (year < SUN6I_YEAR_MIN || year > SUN6I_YEAR_MAX) {
441 dev_err(dev, "rtc only supports year in range %d - %d\n",
442 SUN6I_YEAR_MIN, SUN6I_YEAR_MAX);
443 return -EINVAL;
446 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
447 rtc_tm->tm_mon += 1;
449 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
450 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
451 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
453 if (is_leap_year(year))
454 date |= SUN6I_LEAP_SET_VALUE(1);
456 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
457 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
458 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
460 /* Check whether registers are writable */
461 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
462 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
463 dev_err(dev, "rtc is still busy.\n");
464 return -EBUSY;
467 writel(time, chip->base + SUN6I_RTC_HMS);
470 * After writing the RTC HH-MM-SS register, the
471 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
472 * be cleared until the real writing operation is finished
475 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
476 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
477 dev_err(dev, "Failed to set rtc time.\n");
478 return -ETIMEDOUT;
481 writel(date, chip->base + SUN6I_RTC_YMD);
484 * After writing the RTC YY-MM-DD register, the
485 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
486 * be cleared until the real writing operation is finished
489 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
490 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
491 dev_err(dev, "Failed to set rtc time.\n");
492 return -ETIMEDOUT;
495 return 0;
498 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
500 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
502 if (!enabled)
503 sun6i_rtc_setaie(enabled, chip);
505 return 0;
508 static const struct rtc_class_ops sun6i_rtc_ops = {
509 .read_time = sun6i_rtc_gettime,
510 .set_time = sun6i_rtc_settime,
511 .read_alarm = sun6i_rtc_getalarm,
512 .set_alarm = sun6i_rtc_setalarm,
513 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
516 static int sun6i_rtc_probe(struct platform_device *pdev)
518 struct sun6i_rtc_dev *chip = sun6i_rtc;
519 int ret;
521 if (!chip)
522 return -ENODEV;
524 platform_set_drvdata(pdev, chip);
525 chip->dev = &pdev->dev;
527 chip->irq = platform_get_irq(pdev, 0);
528 if (chip->irq < 0) {
529 dev_err(&pdev->dev, "No IRQ resource\n");
530 return chip->irq;
533 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
534 0, dev_name(&pdev->dev), chip);
535 if (ret) {
536 dev_err(&pdev->dev, "Could not request IRQ\n");
537 return ret;
540 /* clear the alarm counter value */
541 writel(0, chip->base + SUN6I_ALRM_COUNTER);
543 /* disable counter alarm */
544 writel(0, chip->base + SUN6I_ALRM_EN);
546 /* disable counter alarm interrupt */
547 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
549 /* disable week alarm */
550 writel(0, chip->base + SUN6I_ALRM1_EN);
552 /* disable week alarm interrupt */
553 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
555 /* clear counter alarm pending interrupts */
556 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
557 chip->base + SUN6I_ALRM_IRQ_STA);
559 /* clear week alarm pending interrupts */
560 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
561 chip->base + SUN6I_ALRM1_IRQ_STA);
563 /* disable alarm wakeup */
564 writel(0, chip->base + SUN6I_ALARM_CONFIG);
566 clk_prepare_enable(chip->losc);
568 chip->rtc = devm_rtc_device_register(&pdev->dev, "rtc-sun6i",
569 &sun6i_rtc_ops, THIS_MODULE);
570 if (IS_ERR(chip->rtc)) {
571 dev_err(&pdev->dev, "unable to register device\n");
572 return PTR_ERR(chip->rtc);
575 dev_info(&pdev->dev, "RTC enabled\n");
577 return 0;
580 static const struct of_device_id sun6i_rtc_dt_ids[] = {
581 { .compatible = "allwinner,sun6i-a31-rtc" },
582 { /* sentinel */ },
584 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
586 static struct platform_driver sun6i_rtc_driver = {
587 .probe = sun6i_rtc_probe,
588 .driver = {
589 .name = "sun6i-rtc",
590 .of_match_table = sun6i_rtc_dt_ids,
593 builtin_platform_driver(sun6i_rtc_driver);