Linux 4.14.51
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blobd8b185b0d0f9a2886fee1134055812389dc7fdae
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
58 * Returns negative errno, or zero on success
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
66 u32 result;
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
82 * Disable interrupts and begin the xHCI halting process.
84 void xhci_quiesce(struct xhci_hcd *xhci)
86 u32 halted;
87 u32 cmd;
88 u32 mask;
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
101 * Force HC into halt state.
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
108 int xhci_halt(struct xhci_hcd *xhci)
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (ret) {
117 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 return ret;
120 xhci->xhc_state |= XHCI_STATE_HALTED;
121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 return ret;
126 * Set the run bit and wait for the host to be running.
128 int xhci_start(struct xhci_hcd *xhci)
130 u32 temp;
131 int ret;
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
153 return ret;
157 * Reset a halted HC.
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
163 int xhci_reset(struct xhci_hcd *xhci)
165 u32 command;
166 u32 state;
167 int ret, i;
169 state = readl(&xhci->op_regs->status);
171 if (state == ~(u32)0) {
172 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 return -ENODEV;
176 if ((state & STS_HALT) == 0) {
177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 return 0;
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 command = readl(&xhci->op_regs->command);
183 command |= CMD_RESET;
184 writel(command, &xhci->op_regs->command);
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
193 if (xhci->quirks & XHCI_INTEL_HOST)
194 udelay(1000);
196 ret = xhci_handshake(&xhci->op_regs->command,
197 CMD_RESET, 0, 10 * 1000 * 1000);
198 if (ret)
199 return ret;
201 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
202 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
205 "Wait for controller to be ready for doorbell rings");
207 * xHCI cannot write to any doorbells or operational registers other
208 * than status until the "Controller Not Ready" flag is cleared.
210 ret = xhci_handshake(&xhci->op_regs->status,
211 STS_CNR, 0, 10 * 1000 * 1000);
213 for (i = 0; i < 2; i++) {
214 xhci->bus_state[i].port_c_suspend = 0;
215 xhci->bus_state[i].suspended_ports = 0;
216 xhci->bus_state[i].resuming_ports = 0;
219 return ret;
223 #ifdef CONFIG_USB_PCI
225 * Set up MSI
227 static int xhci_setup_msi(struct xhci_hcd *xhci)
229 int ret;
231 * TODO:Check with MSI Soc for sysdev
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
236 if (ret < 0) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_free_irq_vectors(pdev);
250 return ret;
254 * Set up MSI-X
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
272 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
273 PCI_IRQ_MSIX);
274 if (ret < 0) {
275 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
276 "Failed to enable MSI-X");
277 return ret;
280 for (i = 0; i < xhci->msix_count; i++) {
281 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
282 "xhci_hcd", xhci_to_hcd(xhci));
283 if (ret)
284 goto disable_msix;
287 hcd->msix_enabled = 1;
288 return ret;
290 disable_msix:
291 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
292 while (--i >= 0)
293 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
294 pci_free_irq_vectors(pdev);
295 return ret;
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
301 struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
304 if (xhci->quirks & XHCI_PLAT)
305 return;
307 /* return if using legacy interrupt */
308 if (hcd->irq > 0)
309 return;
311 if (hcd->msix_enabled) {
312 int i;
314 for (i = 0; i < xhci->msix_count; i++)
315 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
316 } else {
317 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
320 pci_free_irq_vectors(pdev);
321 hcd->msix_enabled = 0;
324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
326 struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 if (hcd->msix_enabled) {
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 int i;
332 for (i = 0; i < xhci->msix_count; i++)
333 synchronize_irq(pci_irq_vector(pdev, i));
337 static int xhci_try_enable_msi(struct usb_hcd *hcd)
339 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
340 struct pci_dev *pdev;
341 int ret;
343 /* The xhci platform device has set up IRQs through usb_add_hcd. */
344 if (xhci->quirks & XHCI_PLAT)
345 return 0;
347 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 goto legacy_irq;
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
365 if (!ret) {
366 hcd->msi_enabled = 1;
367 return 0;
370 if (!pdev->irq) {
371 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372 return -EINVAL;
375 legacy_irq:
376 if (!strlen(hcd->irq_descr))
377 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
378 hcd->driver->description, hcd->self.busnum);
380 /* fall back to legacy interrupt*/
381 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382 hcd->irq_descr, hcd);
383 if (ret) {
384 xhci_err(xhci, "request interrupt %d failed\n",
385 pdev->irq);
386 return ret;
388 hcd->irq = pdev->irq;
389 return 0;
392 #else
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
396 return 0;
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
407 #endif
409 static void compliance_mode_recovery(unsigned long arg)
411 struct xhci_hcd *xhci;
412 struct usb_hcd *hcd;
413 u32 temp;
414 int i;
416 xhci = (struct xhci_hcd *)arg;
418 for (i = 0; i < xhci->num_usb3_ports; i++) {
419 temp = readl(xhci->usb3_ports[i]);
420 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
422 * Compliance Mode Detected. Letting USB Core
423 * handle the Warm Reset
425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 "Compliance mode detected->port %d",
427 i + 1);
428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
429 "Attempting compliance mode recovery");
430 hcd = xhci->shared_hcd;
432 if (hcd->state == HC_STATE_SUSPENDED)
433 usb_hcd_resume_root_hub(hcd);
435 usb_hcd_poll_rh_status(hcd);
439 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
440 mod_timer(&xhci->comp_mode_recovery_timer,
441 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
445 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
446 * that causes ports behind that hardware to enter compliance mode sometimes.
447 * The quirk creates a timer that polls every 2 seconds the link state of
448 * each host controller's port and recovers it by issuing a Warm reset
449 * if Compliance mode is detected, otherwise the port will become "dead" (no
450 * device connections or disconnections will be detected anymore). Becasue no
451 * status event is generated when entering compliance mode (per xhci spec),
452 * this quirk is needed on systems that have the failing hardware installed.
454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 xhci->port_status_u0 = 0;
457 setup_timer(&xhci->comp_mode_recovery_timer,
458 compliance_mode_recovery, (unsigned long)xhci);
459 xhci->comp_mode_recovery_timer.expires = jiffies +
460 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
462 add_timer(&xhci->comp_mode_recovery_timer);
463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 "Compliance mode recovery timer initialized");
468 * This function identifies the systems that have installed the SN65LVPE502CP
469 * USB3.0 re-driver and that need the Compliance Mode Quirk.
470 * Systems:
471 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
475 const char *dmi_product_name, *dmi_sys_vendor;
477 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
478 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
479 if (!dmi_product_name || !dmi_sys_vendor)
480 return false;
482 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
483 return false;
485 if (strstr(dmi_product_name, "Z420") ||
486 strstr(dmi_product_name, "Z620") ||
487 strstr(dmi_product_name, "Z820") ||
488 strstr(dmi_product_name, "Z1 Workstation"))
489 return true;
491 return false;
494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
496 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
501 * Initialize memory for HCD and xHC (one-time init).
503 * Program the PAGESIZE register, initialize the device context array, create
504 * device contexts (?), set up a command ring segment (or two?), create event
505 * ring (one for now).
507 static int xhci_init(struct usb_hcd *hcd)
509 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
510 int retval = 0;
512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
513 spin_lock_init(&xhci->lock);
514 if (xhci->hci_version == 0x95 && link_quirk) {
515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
516 "QUIRK: Not clearing Link TRB chain bits.");
517 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518 } else {
519 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
520 "xHCI doesn't need link TRB QUIRK");
522 retval = xhci_mem_init(xhci, GFP_KERNEL);
523 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
525 /* Initializing Compliance Mode Recovery Data If Needed */
526 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
527 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
528 compliance_mode_recovery_timer_init(xhci);
531 return retval;
534 /*-------------------------------------------------------------------------*/
537 static int xhci_run_finished(struct xhci_hcd *xhci)
539 if (xhci_start(xhci)) {
540 xhci_halt(xhci);
541 return -ENODEV;
543 xhci->shared_hcd->state = HC_STATE_RUNNING;
544 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
546 if (xhci->quirks & XHCI_NEC_HOST)
547 xhci_ring_cmd_db(xhci);
549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 "Finished xhci_run for USB3 roothub");
551 return 0;
555 * Start the HC after it was halted.
557 * This function is called by the USB core when the HC driver is added.
558 * Its opposite is xhci_stop().
560 * xhci_init() must be called once before this function can be called.
561 * Reset the HC, enable device slot contexts, program DCBAAP, and
562 * set command ring pointer and event ring pointer.
564 * Setup MSI-X vectors and enable interrupts.
566 int xhci_run(struct usb_hcd *hcd)
568 u32 temp;
569 u64 temp_64;
570 int ret;
571 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
573 /* Start the xHCI host controller running only after the USB 2.0 roothub
574 * is setup.
577 hcd->uses_new_polling = 1;
578 if (!usb_hcd_is_primary_hcd(hcd))
579 return xhci_run_finished(xhci);
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
583 ret = xhci_try_enable_msi(hcd);
584 if (ret)
585 return ret;
587 xhci_dbg_cmd_ptrs(xhci);
589 xhci_dbg(xhci, "ERST memory map follows:\n");
590 xhci_dbg_erst(xhci, &xhci->erst);
591 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
592 temp_64 &= ~ERST_PTR_MASK;
593 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "// Set the interrupt modulation register");
598 temp = readl(&xhci->ir_set->irq_control);
599 temp &= ~ER_IRQ_INTERVAL_MASK;
601 * the increment interval is 8 times as much as that defined
602 * in xHCI spec on MTK's controller
604 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
605 writel(temp, &xhci->ir_set->irq_control);
607 /* Set the HCD state before we enable the irqs */
608 temp = readl(&xhci->op_regs->command);
609 temp |= (CMD_EIE);
610 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
611 "// Enable interrupts, cmd = 0x%x.", temp);
612 writel(temp, &xhci->op_regs->command);
614 temp = readl(&xhci->ir_set->irq_pending);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
617 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
618 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
619 xhci_print_ir_set(xhci, 0);
621 if (xhci->quirks & XHCI_NEC_HOST) {
622 struct xhci_command *command;
624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
625 if (!command)
626 return -ENOMEM;
628 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
629 TRB_TYPE(TRB_NEC_GET_FW));
630 if (ret)
631 xhci_free_command(xhci, command);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "Finished xhci_run for USB2 roothub");
635 return 0;
637 EXPORT_SYMBOL_GPL(xhci_run);
640 * Stop xHCI driver.
642 * This function is called by the USB core when the HC driver is removed.
643 * Its opposite is xhci_run().
645 * Disable device contexts, disable IRQs, and quiesce the HC.
646 * Reset the HC, finish any completed transactions, and cleanup memory.
648 static void xhci_stop(struct usb_hcd *hcd)
650 u32 temp;
651 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
653 mutex_lock(&xhci->mutex);
655 /* Only halt host and free memory after both hcds are removed */
656 if (!usb_hcd_is_primary_hcd(hcd)) {
657 /* usb core will free this hcd shortly, unset pointer */
658 xhci->shared_hcd = NULL;
659 mutex_unlock(&xhci->mutex);
660 return;
663 spin_lock_irq(&xhci->lock);
664 xhci->xhc_state |= XHCI_STATE_HALTED;
665 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
666 xhci_halt(xhci);
667 xhci_reset(xhci);
668 spin_unlock_irq(&xhci->lock);
670 xhci_cleanup_msix(xhci);
672 /* Deleting Compliance Mode Recovery Timer */
673 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
674 (!(xhci_all_ports_seen_u0(xhci)))) {
675 del_timer_sync(&xhci->comp_mode_recovery_timer);
676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
677 "%s: compliance mode recovery timer deleted",
678 __func__);
681 if (xhci->quirks & XHCI_AMD_PLL_FIX)
682 usb_amd_dev_put();
684 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
685 "// Disabling event ring interrupts");
686 temp = readl(&xhci->op_regs->status);
687 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
688 temp = readl(&xhci->ir_set->irq_pending);
689 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
690 xhci_print_ir_set(xhci, 0);
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
693 xhci_mem_cleanup(xhci);
694 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 "xhci_stop completed - status = %x",
696 readl(&xhci->op_regs->status));
697 mutex_unlock(&xhci->mutex);
701 * Shutdown HC (not bus-specific)
703 * This is called when the machine is rebooting or halting. We assume that the
704 * machine will be powered off, and the HC's internal state will be reset.
705 * Don't bother to free memory.
707 * This will only ever be called with the main usb_hcd (the USB3 roothub).
709 static void xhci_shutdown(struct usb_hcd *hcd)
711 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
713 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
714 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
716 spin_lock_irq(&xhci->lock);
717 xhci_halt(xhci);
718 /* Workaround for spurious wakeups at shutdown with HSW */
719 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
720 xhci_reset(xhci);
721 spin_unlock_irq(&xhci->lock);
723 xhci_cleanup_msix(xhci);
725 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726 "xhci_shutdown completed - status = %x",
727 readl(&xhci->op_regs->status));
729 /* Yet another workaround for spurious wakeups at shutdown with HSW */
730 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
731 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
734 #ifdef CONFIG_PM
735 static void xhci_save_registers(struct xhci_hcd *xhci)
737 xhci->s3.command = readl(&xhci->op_regs->command);
738 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
739 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
740 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
741 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
742 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
743 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
744 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
745 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
748 static void xhci_restore_registers(struct xhci_hcd *xhci)
750 writel(xhci->s3.command, &xhci->op_regs->command);
751 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
752 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
753 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
754 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
755 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
756 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
757 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
758 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
763 u64 val_64;
765 /* step 2: initialize command ring buffer */
766 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
767 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
768 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
769 xhci->cmd_ring->dequeue) &
770 (u64) ~CMD_RING_RSVD_BITS) |
771 xhci->cmd_ring->cycle_state;
772 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
773 "// Setting command ring address to 0x%llx",
774 (long unsigned long) val_64);
775 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
779 * The whole command ring must be cleared to zero when we suspend the host.
781 * The host doesn't save the command ring pointer in the suspend well, so we
782 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
783 * aligned, because of the reserved bits in the command ring dequeue pointer
784 * register. Therefore, we can't just set the dequeue pointer back in the
785 * middle of the ring (TRBs are 16-byte aligned).
787 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
789 struct xhci_ring *ring;
790 struct xhci_segment *seg;
792 ring = xhci->cmd_ring;
793 seg = ring->deq_seg;
794 do {
795 memset(seg->trbs, 0,
796 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
797 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
798 cpu_to_le32(~TRB_CYCLE);
799 seg = seg->next;
800 } while (seg != ring->deq_seg);
802 /* Reset the software enqueue and dequeue pointers */
803 ring->deq_seg = ring->first_seg;
804 ring->dequeue = ring->first_seg->trbs;
805 ring->enq_seg = ring->deq_seg;
806 ring->enqueue = ring->dequeue;
808 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
810 * Ring is now zeroed, so the HW should look for change of ownership
811 * when the cycle bit is set to 1.
813 ring->cycle_state = 1;
816 * Reset the hardware dequeue pointer.
817 * Yes, this will need to be re-written after resume, but we're paranoid
818 * and want to make sure the hardware doesn't access bogus memory
819 * because, say, the BIOS or an SMI started the host without changing
820 * the command ring pointers.
822 xhci_set_cmd_ring_deq(xhci);
825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
827 int port_index;
828 __le32 __iomem **port_array;
829 unsigned long flags;
830 u32 t1, t2;
832 spin_lock_irqsave(&xhci->lock, flags);
834 /* disable usb3 ports Wake bits */
835 port_index = xhci->num_usb3_ports;
836 port_array = xhci->usb3_ports;
837 while (port_index--) {
838 t1 = readl(port_array[port_index]);
839 t1 = xhci_port_state_to_neutral(t1);
840 t2 = t1 & ~PORT_WAKE_BITS;
841 if (t1 != t2)
842 writel(t2, port_array[port_index]);
845 /* disable usb2 ports Wake bits */
846 port_index = xhci->num_usb2_ports;
847 port_array = xhci->usb2_ports;
848 while (port_index--) {
849 t1 = readl(port_array[port_index]);
850 t1 = xhci_port_state_to_neutral(t1);
851 t2 = t1 & ~PORT_WAKE_BITS;
852 if (t1 != t2)
853 writel(t2, port_array[port_index]);
856 spin_unlock_irqrestore(&xhci->lock, flags);
860 * Stop HC (not bus-specific)
862 * This is called when the machine transition into S3/S4 mode.
865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
867 int rc = 0;
868 unsigned int delay = XHCI_MAX_HALT_USEC;
869 struct usb_hcd *hcd = xhci_to_hcd(xhci);
870 u32 command;
872 if (!hcd->state)
873 return 0;
875 if (hcd->state != HC_STATE_SUSPENDED ||
876 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
877 return -EINVAL;
879 /* Clear root port wake on bits if wakeup not allowed. */
880 if (!do_wakeup)
881 xhci_disable_port_wake_on_bits(xhci);
883 /* Don't poll the roothubs on bus suspend. */
884 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886 del_timer_sync(&hcd->rh_timer);
887 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
888 del_timer_sync(&xhci->shared_hcd->rh_timer);
890 if (xhci->quirks & XHCI_SUSPEND_DELAY)
891 usleep_range(1000, 1500);
893 spin_lock_irq(&xhci->lock);
894 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
895 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
896 /* step 1: stop endpoint */
897 /* skipped assuming that port suspend has done */
899 /* step 2: clear Run/Stop bit */
900 command = readl(&xhci->op_regs->command);
901 command &= ~CMD_RUN;
902 writel(command, &xhci->op_regs->command);
904 /* Some chips from Fresco Logic need an extraordinary delay */
905 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
907 if (xhci_handshake(&xhci->op_regs->status,
908 STS_HALT, STS_HALT, delay)) {
909 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
910 spin_unlock_irq(&xhci->lock);
911 return -ETIMEDOUT;
913 xhci_clear_command_ring(xhci);
915 /* step 3: save registers */
916 xhci_save_registers(xhci);
918 /* step 4: set CSS flag */
919 command = readl(&xhci->op_regs->command);
920 command |= CMD_CSS;
921 writel(command, &xhci->op_regs->command);
922 if (xhci_handshake(&xhci->op_regs->status,
923 STS_SAVE, 0, 10 * 1000)) {
924 xhci_warn(xhci, "WARN: xHC save state timeout\n");
925 spin_unlock_irq(&xhci->lock);
926 return -ETIMEDOUT;
928 spin_unlock_irq(&xhci->lock);
931 * Deleting Compliance Mode Recovery Timer because the xHCI Host
932 * is about to be suspended.
934 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
935 (!(xhci_all_ports_seen_u0(xhci)))) {
936 del_timer_sync(&xhci->comp_mode_recovery_timer);
937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
938 "%s: compliance mode recovery timer deleted",
939 __func__);
942 /* step 5: remove core well power */
943 /* synchronize irq when using MSI-X */
944 xhci_msix_sync_irqs(xhci);
946 return rc;
948 EXPORT_SYMBOL_GPL(xhci_suspend);
951 * start xHC (not bus-specific)
953 * This is called when the machine transition from S3/S4 mode.
956 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
958 u32 command, temp = 0, status;
959 struct usb_hcd *hcd = xhci_to_hcd(xhci);
960 struct usb_hcd *secondary_hcd;
961 int retval = 0;
962 bool comp_timer_running = false;
964 if (!hcd->state)
965 return 0;
967 /* Wait a bit if either of the roothubs need to settle from the
968 * transition into bus suspend.
970 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
971 time_before(jiffies,
972 xhci->bus_state[1].next_statechange))
973 msleep(100);
975 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
976 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
978 spin_lock_irq(&xhci->lock);
979 if (xhci->quirks & XHCI_RESET_ON_RESUME)
980 hibernated = true;
982 if (!hibernated) {
983 /* step 1: restore register */
984 xhci_restore_registers(xhci);
985 /* step 2: initialize command ring buffer */
986 xhci_set_cmd_ring_deq(xhci);
987 /* step 3: restore state and start state*/
988 /* step 3: set CRS flag */
989 command = readl(&xhci->op_regs->command);
990 command |= CMD_CRS;
991 writel(command, &xhci->op_regs->command);
992 if (xhci_handshake(&xhci->op_regs->status,
993 STS_RESTORE, 0, 10 * 1000)) {
994 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
995 spin_unlock_irq(&xhci->lock);
996 return -ETIMEDOUT;
998 temp = readl(&xhci->op_regs->status);
1001 /* If restore operation fails, re-initialize the HC during resume */
1002 if ((temp & STS_SRE) || hibernated) {
1004 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1005 !(xhci_all_ports_seen_u0(xhci))) {
1006 del_timer_sync(&xhci->comp_mode_recovery_timer);
1007 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1008 "Compliance Mode Recovery Timer deleted!");
1011 /* Let the USB core know _both_ roothubs lost power. */
1012 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1013 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1015 xhci_dbg(xhci, "Stop HCD\n");
1016 xhci_halt(xhci);
1017 xhci_reset(xhci);
1018 spin_unlock_irq(&xhci->lock);
1019 xhci_cleanup_msix(xhci);
1021 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1022 temp = readl(&xhci->op_regs->status);
1023 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1024 temp = readl(&xhci->ir_set->irq_pending);
1025 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1026 xhci_print_ir_set(xhci, 0);
1028 xhci_dbg(xhci, "cleaning up memory\n");
1029 xhci_mem_cleanup(xhci);
1030 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1031 readl(&xhci->op_regs->status));
1033 /* USB core calls the PCI reinit and start functions twice:
1034 * first with the primary HCD, and then with the secondary HCD.
1035 * If we don't do the same, the host will never be started.
1037 if (!usb_hcd_is_primary_hcd(hcd))
1038 secondary_hcd = hcd;
1039 else
1040 secondary_hcd = xhci->shared_hcd;
1042 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1043 retval = xhci_init(hcd->primary_hcd);
1044 if (retval)
1045 return retval;
1046 comp_timer_running = true;
1048 xhci_dbg(xhci, "Start the primary HCD\n");
1049 retval = xhci_run(hcd->primary_hcd);
1050 if (!retval) {
1051 xhci_dbg(xhci, "Start the secondary HCD\n");
1052 retval = xhci_run(secondary_hcd);
1054 hcd->state = HC_STATE_SUSPENDED;
1055 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1056 goto done;
1059 /* step 4: set Run/Stop bit */
1060 command = readl(&xhci->op_regs->command);
1061 command |= CMD_RUN;
1062 writel(command, &xhci->op_regs->command);
1063 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1064 0, 250 * 1000);
1066 /* step 5: walk topology and initialize portsc,
1067 * portpmsc and portli
1069 /* this is done in bus_resume */
1071 /* step 6: restart each of the previously
1072 * Running endpoints by ringing their doorbells
1075 spin_unlock_irq(&xhci->lock);
1077 done:
1078 if (retval == 0) {
1079 /* Resume root hubs only when have pending events. */
1080 status = readl(&xhci->op_regs->status);
1081 if (status & STS_EINT) {
1082 usb_hcd_resume_root_hub(xhci->shared_hcd);
1083 usb_hcd_resume_root_hub(hcd);
1088 * If system is subject to the Quirk, Compliance Mode Timer needs to
1089 * be re-initialized Always after a system resume. Ports are subject
1090 * to suffer the Compliance Mode issue again. It doesn't matter if
1091 * ports have entered previously to U0 before system's suspension.
1093 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1094 compliance_mode_recovery_timer_init(xhci);
1096 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1097 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1099 /* Re-enable port polling. */
1100 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1101 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1102 usb_hcd_poll_rh_status(xhci->shared_hcd);
1103 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1104 usb_hcd_poll_rh_status(hcd);
1106 return retval;
1108 EXPORT_SYMBOL_GPL(xhci_resume);
1109 #endif /* CONFIG_PM */
1111 /*-------------------------------------------------------------------------*/
1114 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1115 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1116 * value to right shift 1 for the bitmask.
1118 * Index = (epnum * 2) + direction - 1,
1119 * where direction = 0 for OUT, 1 for IN.
1120 * For control endpoints, the IN index is used (OUT index is unused), so
1121 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1123 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1125 unsigned int index;
1126 if (usb_endpoint_xfer_control(desc))
1127 index = (unsigned int) (usb_endpoint_num(desc)*2);
1128 else
1129 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1130 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1131 return index;
1134 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1135 * address from the XHCI endpoint index.
1137 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1139 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1140 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1141 return direction | number;
1144 /* Find the flag for this endpoint (for use in the control context). Use the
1145 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1146 * bit 1, etc.
1148 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1150 return 1 << (xhci_get_endpoint_index(desc) + 1);
1153 /* Find the flag for this endpoint (for use in the control context). Use the
1154 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1155 * bit 1, etc.
1157 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1159 return 1 << (ep_index + 1);
1162 /* Compute the last valid endpoint context index. Basically, this is the
1163 * endpoint index plus one. For slot contexts with more than valid endpoint,
1164 * we find the most significant bit set in the added contexts flags.
1165 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1166 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1168 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1170 return fls(added_ctxs) - 1;
1173 /* Returns 1 if the arguments are OK;
1174 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1176 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1177 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1178 const char *func) {
1179 struct xhci_hcd *xhci;
1180 struct xhci_virt_device *virt_dev;
1182 if (!hcd || (check_ep && !ep) || !udev) {
1183 pr_debug("xHCI %s called with invalid args\n", func);
1184 return -EINVAL;
1186 if (!udev->parent) {
1187 pr_debug("xHCI %s called for root hub\n", func);
1188 return 0;
1191 xhci = hcd_to_xhci(hcd);
1192 if (check_virt_dev) {
1193 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1194 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1195 func);
1196 return -EINVAL;
1199 virt_dev = xhci->devs[udev->slot_id];
1200 if (virt_dev->udev != udev) {
1201 xhci_dbg(xhci, "xHCI %s called with udev and "
1202 "virt_dev does not match\n", func);
1203 return -EINVAL;
1207 if (xhci->xhc_state & XHCI_STATE_HALTED)
1208 return -ENODEV;
1210 return 1;
1213 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1214 struct usb_device *udev, struct xhci_command *command,
1215 bool ctx_change, bool must_succeed);
1218 * Full speed devices may have a max packet size greater than 8 bytes, but the
1219 * USB core doesn't know that until it reads the first 8 bytes of the
1220 * descriptor. If the usb_device's max packet size changes after that point,
1221 * we need to issue an evaluate context command and wait on it.
1223 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1224 unsigned int ep_index, struct urb *urb)
1226 struct xhci_container_ctx *out_ctx;
1227 struct xhci_input_control_ctx *ctrl_ctx;
1228 struct xhci_ep_ctx *ep_ctx;
1229 struct xhci_command *command;
1230 int max_packet_size;
1231 int hw_max_packet_size;
1232 int ret = 0;
1234 out_ctx = xhci->devs[slot_id]->out_ctx;
1235 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1236 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1237 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1238 if (hw_max_packet_size != max_packet_size) {
1239 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1240 "Max Packet Size for ep 0 changed.");
1241 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1242 "Max packet size in usb_device = %d",
1243 max_packet_size);
1244 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1245 "Max packet size in xHCI HW = %d",
1246 hw_max_packet_size);
1247 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1248 "Issuing evaluate context command.");
1250 /* Set up the input context flags for the command */
1251 /* FIXME: This won't work if a non-default control endpoint
1252 * changes max packet sizes.
1255 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1256 if (!command)
1257 return -ENOMEM;
1259 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1260 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1261 if (!ctrl_ctx) {
1262 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1263 __func__);
1264 ret = -ENOMEM;
1265 goto command_cleanup;
1267 /* Set up the modified control endpoint 0 */
1268 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1269 xhci->devs[slot_id]->out_ctx, ep_index);
1271 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1272 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1273 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1275 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1276 ctrl_ctx->drop_flags = 0;
1278 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1279 true, false);
1281 /* Clean up the input context for later use by bandwidth
1282 * functions.
1284 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1285 command_cleanup:
1286 kfree(command->completion);
1287 kfree(command);
1289 return ret;
1293 * non-error returns are a promise to giveback() the urb later
1294 * we drop ownership so next owner (or urb unlink) can get it
1296 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1298 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1299 unsigned long flags;
1300 int ret = 0;
1301 unsigned int slot_id, ep_index, ep_state;
1302 struct urb_priv *urb_priv;
1303 int num_tds;
1305 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1306 true, true, __func__) <= 0)
1307 return -EINVAL;
1309 slot_id = urb->dev->slot_id;
1310 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1312 if (!HCD_HW_ACCESSIBLE(hcd)) {
1313 if (!in_interrupt())
1314 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1315 return -ESHUTDOWN;
1318 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1319 num_tds = urb->number_of_packets;
1320 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1321 urb->transfer_buffer_length > 0 &&
1322 urb->transfer_flags & URB_ZERO_PACKET &&
1323 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1324 num_tds = 2;
1325 else
1326 num_tds = 1;
1328 urb_priv = kzalloc(sizeof(struct urb_priv) +
1329 num_tds * sizeof(struct xhci_td), mem_flags);
1330 if (!urb_priv)
1331 return -ENOMEM;
1333 urb_priv->num_tds = num_tds;
1334 urb_priv->num_tds_done = 0;
1335 urb->hcpriv = urb_priv;
1337 trace_xhci_urb_enqueue(urb);
1339 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1340 /* Check to see if the max packet size for the default control
1341 * endpoint changed during FS device enumeration
1343 if (urb->dev->speed == USB_SPEED_FULL) {
1344 ret = xhci_check_maxpacket(xhci, slot_id,
1345 ep_index, urb);
1346 if (ret < 0) {
1347 xhci_urb_free_priv(urb_priv);
1348 urb->hcpriv = NULL;
1349 return ret;
1354 spin_lock_irqsave(&xhci->lock, flags);
1356 if (xhci->xhc_state & XHCI_STATE_DYING) {
1357 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1358 urb->ep->desc.bEndpointAddress, urb);
1359 ret = -ESHUTDOWN;
1360 goto free_priv;
1363 switch (usb_endpoint_type(&urb->ep->desc)) {
1365 case USB_ENDPOINT_XFER_CONTROL:
1366 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1367 slot_id, ep_index);
1368 break;
1369 case USB_ENDPOINT_XFER_BULK:
1370 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1371 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1372 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1373 ep_state);
1374 ret = -EINVAL;
1375 break;
1377 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1378 slot_id, ep_index);
1379 break;
1382 case USB_ENDPOINT_XFER_INT:
1383 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1384 slot_id, ep_index);
1385 break;
1387 case USB_ENDPOINT_XFER_ISOC:
1388 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1389 slot_id, ep_index);
1392 if (ret) {
1393 free_priv:
1394 xhci_urb_free_priv(urb_priv);
1395 urb->hcpriv = NULL;
1397 spin_unlock_irqrestore(&xhci->lock, flags);
1398 return ret;
1402 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1403 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1404 * should pick up where it left off in the TD, unless a Set Transfer Ring
1405 * Dequeue Pointer is issued.
1407 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1408 * the ring. Since the ring is a contiguous structure, they can't be physically
1409 * removed. Instead, there are two options:
1411 * 1) If the HC is in the middle of processing the URB to be canceled, we
1412 * simply move the ring's dequeue pointer past those TRBs using the Set
1413 * Transfer Ring Dequeue Pointer command. This will be the common case,
1414 * when drivers timeout on the last submitted URB and attempt to cancel.
1416 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1417 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1418 * HC will need to invalidate the any TRBs it has cached after the stop
1419 * endpoint command, as noted in the xHCI 0.95 errata.
1421 * 3) The TD may have completed by the time the Stop Endpoint Command
1422 * completes, so software needs to handle that case too.
1424 * This function should protect against the TD enqueueing code ringing the
1425 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1426 * It also needs to account for multiple cancellations on happening at the same
1427 * time for the same endpoint.
1429 * Note that this function can be called in any context, or so says
1430 * usb_hcd_unlink_urb()
1432 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1434 unsigned long flags;
1435 int ret, i;
1436 u32 temp;
1437 struct xhci_hcd *xhci;
1438 struct urb_priv *urb_priv;
1439 struct xhci_td *td;
1440 unsigned int ep_index;
1441 struct xhci_ring *ep_ring;
1442 struct xhci_virt_ep *ep;
1443 struct xhci_command *command;
1444 struct xhci_virt_device *vdev;
1446 xhci = hcd_to_xhci(hcd);
1447 spin_lock_irqsave(&xhci->lock, flags);
1449 trace_xhci_urb_dequeue(urb);
1451 /* Make sure the URB hasn't completed or been unlinked already */
1452 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453 if (ret)
1454 goto done;
1456 /* give back URB now if we can't queue it for cancel */
1457 vdev = xhci->devs[urb->dev->slot_id];
1458 urb_priv = urb->hcpriv;
1459 if (!vdev || !urb_priv)
1460 goto err_giveback;
1462 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1463 ep = &vdev->eps[ep_index];
1464 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1465 if (!ep || !ep_ring)
1466 goto err_giveback;
1468 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1469 temp = readl(&xhci->op_regs->status);
1470 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1471 xhci_hc_died(xhci);
1472 goto done;
1475 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1476 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1477 "HC halted, freeing TD manually.");
1478 for (i = urb_priv->num_tds_done;
1479 i < urb_priv->num_tds;
1480 i++) {
1481 td = &urb_priv->td[i];
1482 if (!list_empty(&td->td_list))
1483 list_del_init(&td->td_list);
1484 if (!list_empty(&td->cancelled_td_list))
1485 list_del_init(&td->cancelled_td_list);
1487 goto err_giveback;
1490 i = urb_priv->num_tds_done;
1491 if (i < urb_priv->num_tds)
1492 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1493 "Cancel URB %p, dev %s, ep 0x%x, "
1494 "starting at offset 0x%llx",
1495 urb, urb->dev->devpath,
1496 urb->ep->desc.bEndpointAddress,
1497 (unsigned long long) xhci_trb_virt_to_dma(
1498 urb_priv->td[i].start_seg,
1499 urb_priv->td[i].first_trb));
1501 for (; i < urb_priv->num_tds; i++) {
1502 td = &urb_priv->td[i];
1503 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1506 /* Queue a stop endpoint command, but only if this is
1507 * the first cancellation to be handled.
1509 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1510 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1511 if (!command) {
1512 ret = -ENOMEM;
1513 goto done;
1515 ep->ep_state |= EP_STOP_CMD_PENDING;
1516 ep->stop_cmd_timer.expires = jiffies +
1517 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1518 add_timer(&ep->stop_cmd_timer);
1519 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1520 ep_index, 0);
1521 xhci_ring_cmd_db(xhci);
1523 done:
1524 spin_unlock_irqrestore(&xhci->lock, flags);
1525 return ret;
1527 err_giveback:
1528 if (urb_priv)
1529 xhci_urb_free_priv(urb_priv);
1530 usb_hcd_unlink_urb_from_ep(hcd, urb);
1531 spin_unlock_irqrestore(&xhci->lock, flags);
1532 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1533 return ret;
1536 /* Drop an endpoint from a new bandwidth configuration for this device.
1537 * Only one call to this function is allowed per endpoint before
1538 * check_bandwidth() or reset_bandwidth() must be called.
1539 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1540 * add the endpoint to the schedule with possibly new parameters denoted by a
1541 * different endpoint descriptor in usb_host_endpoint.
1542 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1543 * not allowed.
1545 * The USB core will not allow URBs to be queued to an endpoint that is being
1546 * disabled, so there's no need for mutual exclusion to protect
1547 * the xhci->devs[slot_id] structure.
1549 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1550 struct usb_host_endpoint *ep)
1552 struct xhci_hcd *xhci;
1553 struct xhci_container_ctx *in_ctx, *out_ctx;
1554 struct xhci_input_control_ctx *ctrl_ctx;
1555 unsigned int ep_index;
1556 struct xhci_ep_ctx *ep_ctx;
1557 u32 drop_flag;
1558 u32 new_add_flags, new_drop_flags;
1559 int ret;
1561 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1562 if (ret <= 0)
1563 return ret;
1564 xhci = hcd_to_xhci(hcd);
1565 if (xhci->xhc_state & XHCI_STATE_DYING)
1566 return -ENODEV;
1568 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1569 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1570 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1571 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1572 __func__, drop_flag);
1573 return 0;
1576 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1577 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1578 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1579 if (!ctrl_ctx) {
1580 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1581 __func__);
1582 return 0;
1585 ep_index = xhci_get_endpoint_index(&ep->desc);
1586 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 /* If the HC already knows the endpoint is disabled,
1588 * or the HCD has noted it is disabled, ignore this request
1590 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1591 le32_to_cpu(ctrl_ctx->drop_flags) &
1592 xhci_get_endpoint_flag(&ep->desc)) {
1593 /* Do not warn when called after a usb_device_reset */
1594 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1595 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1596 __func__, ep);
1597 return 0;
1600 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1601 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1603 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1604 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1606 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1608 if (xhci->quirks & XHCI_MTK_HOST)
1609 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1611 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1612 (unsigned int) ep->desc.bEndpointAddress,
1613 udev->slot_id,
1614 (unsigned int) new_drop_flags,
1615 (unsigned int) new_add_flags);
1616 return 0;
1619 /* Add an endpoint to a new possible bandwidth configuration for this device.
1620 * Only one call to this function is allowed per endpoint before
1621 * check_bandwidth() or reset_bandwidth() must be called.
1622 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1623 * add the endpoint to the schedule with possibly new parameters denoted by a
1624 * different endpoint descriptor in usb_host_endpoint.
1625 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1626 * not allowed.
1628 * The USB core will not allow URBs to be queued to an endpoint until the
1629 * configuration or alt setting is installed in the device, so there's no need
1630 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1632 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1633 struct usb_host_endpoint *ep)
1635 struct xhci_hcd *xhci;
1636 struct xhci_container_ctx *in_ctx;
1637 unsigned int ep_index;
1638 struct xhci_input_control_ctx *ctrl_ctx;
1639 u32 added_ctxs;
1640 u32 new_add_flags, new_drop_flags;
1641 struct xhci_virt_device *virt_dev;
1642 int ret = 0;
1644 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1645 if (ret <= 0) {
1646 /* So we won't queue a reset ep command for a root hub */
1647 ep->hcpriv = NULL;
1648 return ret;
1650 xhci = hcd_to_xhci(hcd);
1651 if (xhci->xhc_state & XHCI_STATE_DYING)
1652 return -ENODEV;
1654 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1655 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1656 /* FIXME when we have to issue an evaluate endpoint command to
1657 * deal with ep0 max packet size changing once we get the
1658 * descriptors
1660 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1661 __func__, added_ctxs);
1662 return 0;
1665 virt_dev = xhci->devs[udev->slot_id];
1666 in_ctx = virt_dev->in_ctx;
1667 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1668 if (!ctrl_ctx) {
1669 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1670 __func__);
1671 return 0;
1674 ep_index = xhci_get_endpoint_index(&ep->desc);
1675 /* If this endpoint is already in use, and the upper layers are trying
1676 * to add it again without dropping it, reject the addition.
1678 if (virt_dev->eps[ep_index].ring &&
1679 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1680 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1681 "without dropping it.\n",
1682 (unsigned int) ep->desc.bEndpointAddress);
1683 return -EINVAL;
1686 /* If the HCD has already noted the endpoint is enabled,
1687 * ignore this request.
1689 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1690 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1691 __func__, ep);
1692 return 0;
1696 * Configuration and alternate setting changes must be done in
1697 * process context, not interrupt context (or so documenation
1698 * for usb_set_interface() and usb_set_configuration() claim).
1700 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1701 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1702 __func__, ep->desc.bEndpointAddress);
1703 return -ENOMEM;
1706 if (xhci->quirks & XHCI_MTK_HOST) {
1707 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1708 if (ret < 0) {
1709 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1710 virt_dev->eps[ep_index].new_ring = NULL;
1711 return ret;
1715 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1716 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1718 /* If xhci_endpoint_disable() was called for this endpoint, but the
1719 * xHC hasn't been notified yet through the check_bandwidth() call,
1720 * this re-adds a new state for the endpoint from the new endpoint
1721 * descriptors. We must drop and re-add this endpoint, so we leave the
1722 * drop flags alone.
1724 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1726 /* Store the usb_device pointer for later use */
1727 ep->hcpriv = udev;
1729 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1730 (unsigned int) ep->desc.bEndpointAddress,
1731 udev->slot_id,
1732 (unsigned int) new_drop_flags,
1733 (unsigned int) new_add_flags);
1734 return 0;
1737 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1739 struct xhci_input_control_ctx *ctrl_ctx;
1740 struct xhci_ep_ctx *ep_ctx;
1741 struct xhci_slot_ctx *slot_ctx;
1742 int i;
1744 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1745 if (!ctrl_ctx) {
1746 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1747 __func__);
1748 return;
1751 /* When a device's add flag and drop flag are zero, any subsequent
1752 * configure endpoint command will leave that endpoint's state
1753 * untouched. Make sure we don't leave any old state in the input
1754 * endpoint contexts.
1756 ctrl_ctx->drop_flags = 0;
1757 ctrl_ctx->add_flags = 0;
1758 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1759 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1760 /* Endpoint 0 is always valid */
1761 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1762 for (i = 1; i < 31; i++) {
1763 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1764 ep_ctx->ep_info = 0;
1765 ep_ctx->ep_info2 = 0;
1766 ep_ctx->deq = 0;
1767 ep_ctx->tx_info = 0;
1771 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1772 struct usb_device *udev, u32 *cmd_status)
1774 int ret;
1776 switch (*cmd_status) {
1777 case COMP_COMMAND_ABORTED:
1778 case COMP_COMMAND_RING_STOPPED:
1779 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1780 ret = -ETIME;
1781 break;
1782 case COMP_RESOURCE_ERROR:
1783 dev_warn(&udev->dev,
1784 "Not enough host controller resources for new device state.\n");
1785 ret = -ENOMEM;
1786 /* FIXME: can we allocate more resources for the HC? */
1787 break;
1788 case COMP_BANDWIDTH_ERROR:
1789 case COMP_SECONDARY_BANDWIDTH_ERROR:
1790 dev_warn(&udev->dev,
1791 "Not enough bandwidth for new device state.\n");
1792 ret = -ENOSPC;
1793 /* FIXME: can we go back to the old state? */
1794 break;
1795 case COMP_TRB_ERROR:
1796 /* the HCD set up something wrong */
1797 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1798 "add flag = 1, "
1799 "and endpoint is not disabled.\n");
1800 ret = -EINVAL;
1801 break;
1802 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1803 dev_warn(&udev->dev,
1804 "ERROR: Incompatible device for endpoint configure command.\n");
1805 ret = -ENODEV;
1806 break;
1807 case COMP_SUCCESS:
1808 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1809 "Successful Endpoint Configure command");
1810 ret = 0;
1811 break;
1812 default:
1813 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1814 *cmd_status);
1815 ret = -EINVAL;
1816 break;
1818 return ret;
1821 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1822 struct usb_device *udev, u32 *cmd_status)
1824 int ret;
1826 switch (*cmd_status) {
1827 case COMP_COMMAND_ABORTED:
1828 case COMP_COMMAND_RING_STOPPED:
1829 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1830 ret = -ETIME;
1831 break;
1832 case COMP_PARAMETER_ERROR:
1833 dev_warn(&udev->dev,
1834 "WARN: xHCI driver setup invalid evaluate context command.\n");
1835 ret = -EINVAL;
1836 break;
1837 case COMP_SLOT_NOT_ENABLED_ERROR:
1838 dev_warn(&udev->dev,
1839 "WARN: slot not enabled for evaluate context command.\n");
1840 ret = -EINVAL;
1841 break;
1842 case COMP_CONTEXT_STATE_ERROR:
1843 dev_warn(&udev->dev,
1844 "WARN: invalid context state for evaluate context command.\n");
1845 ret = -EINVAL;
1846 break;
1847 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1848 dev_warn(&udev->dev,
1849 "ERROR: Incompatible device for evaluate context command.\n");
1850 ret = -ENODEV;
1851 break;
1852 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1853 /* Max Exit Latency too large error */
1854 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1855 ret = -EINVAL;
1856 break;
1857 case COMP_SUCCESS:
1858 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859 "Successful evaluate context command");
1860 ret = 0;
1861 break;
1862 default:
1863 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1864 *cmd_status);
1865 ret = -EINVAL;
1866 break;
1868 return ret;
1871 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1872 struct xhci_input_control_ctx *ctrl_ctx)
1874 u32 valid_add_flags;
1875 u32 valid_drop_flags;
1877 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1878 * (bit 1). The default control endpoint is added during the Address
1879 * Device command and is never removed until the slot is disabled.
1881 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1882 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1884 /* Use hweight32 to count the number of ones in the add flags, or
1885 * number of endpoints added. Don't count endpoints that are changed
1886 * (both added and dropped).
1888 return hweight32(valid_add_flags) -
1889 hweight32(valid_add_flags & valid_drop_flags);
1892 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1893 struct xhci_input_control_ctx *ctrl_ctx)
1895 u32 valid_add_flags;
1896 u32 valid_drop_flags;
1898 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1899 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1901 return hweight32(valid_drop_flags) -
1902 hweight32(valid_add_flags & valid_drop_flags);
1906 * We need to reserve the new number of endpoints before the configure endpoint
1907 * command completes. We can't subtract the dropped endpoints from the number
1908 * of active endpoints until the command completes because we can oversubscribe
1909 * the host in this case:
1911 * - the first configure endpoint command drops more endpoints than it adds
1912 * - a second configure endpoint command that adds more endpoints is queued
1913 * - the first configure endpoint command fails, so the config is unchanged
1914 * - the second command may succeed, even though there isn't enough resources
1916 * Must be called with xhci->lock held.
1918 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1919 struct xhci_input_control_ctx *ctrl_ctx)
1921 u32 added_eps;
1923 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1924 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1925 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1926 "Not enough ep ctxs: "
1927 "%u active, need to add %u, limit is %u.",
1928 xhci->num_active_eps, added_eps,
1929 xhci->limit_active_eps);
1930 return -ENOMEM;
1932 xhci->num_active_eps += added_eps;
1933 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1934 "Adding %u ep ctxs, %u now active.", added_eps,
1935 xhci->num_active_eps);
1936 return 0;
1940 * The configure endpoint was failed by the xHC for some other reason, so we
1941 * need to revert the resources that failed configuration would have used.
1943 * Must be called with xhci->lock held.
1945 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1946 struct xhci_input_control_ctx *ctrl_ctx)
1948 u32 num_failed_eps;
1950 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1951 xhci->num_active_eps -= num_failed_eps;
1952 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1953 "Removing %u failed ep ctxs, %u now active.",
1954 num_failed_eps,
1955 xhci->num_active_eps);
1959 * Now that the command has completed, clean up the active endpoint count by
1960 * subtracting out the endpoints that were dropped (but not changed).
1962 * Must be called with xhci->lock held.
1964 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1965 struct xhci_input_control_ctx *ctrl_ctx)
1967 u32 num_dropped_eps;
1969 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1970 xhci->num_active_eps -= num_dropped_eps;
1971 if (num_dropped_eps)
1972 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1973 "Removing %u dropped ep ctxs, %u now active.",
1974 num_dropped_eps,
1975 xhci->num_active_eps);
1978 static unsigned int xhci_get_block_size(struct usb_device *udev)
1980 switch (udev->speed) {
1981 case USB_SPEED_LOW:
1982 case USB_SPEED_FULL:
1983 return FS_BLOCK;
1984 case USB_SPEED_HIGH:
1985 return HS_BLOCK;
1986 case USB_SPEED_SUPER:
1987 case USB_SPEED_SUPER_PLUS:
1988 return SS_BLOCK;
1989 case USB_SPEED_UNKNOWN:
1990 case USB_SPEED_WIRELESS:
1991 default:
1992 /* Should never happen */
1993 return 1;
1997 static unsigned int
1998 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2000 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2001 return LS_OVERHEAD;
2002 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2003 return FS_OVERHEAD;
2004 return HS_OVERHEAD;
2007 /* If we are changing a LS/FS device under a HS hub,
2008 * make sure (if we are activating a new TT) that the HS bus has enough
2009 * bandwidth for this new TT.
2011 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2012 struct xhci_virt_device *virt_dev,
2013 int old_active_eps)
2015 struct xhci_interval_bw_table *bw_table;
2016 struct xhci_tt_bw_info *tt_info;
2018 /* Find the bandwidth table for the root port this TT is attached to. */
2019 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2020 tt_info = virt_dev->tt_info;
2021 /* If this TT already had active endpoints, the bandwidth for this TT
2022 * has already been added. Removing all periodic endpoints (and thus
2023 * making the TT enactive) will only decrease the bandwidth used.
2025 if (old_active_eps)
2026 return 0;
2027 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2028 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2029 return -ENOMEM;
2030 return 0;
2032 /* Not sure why we would have no new active endpoints...
2034 * Maybe because of an Evaluate Context change for a hub update or a
2035 * control endpoint 0 max packet size change?
2036 * FIXME: skip the bandwidth calculation in that case.
2038 return 0;
2041 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2042 struct xhci_virt_device *virt_dev)
2044 unsigned int bw_reserved;
2046 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2047 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2048 return -ENOMEM;
2050 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2051 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2052 return -ENOMEM;
2054 return 0;
2058 * This algorithm is a very conservative estimate of the worst-case scheduling
2059 * scenario for any one interval. The hardware dynamically schedules the
2060 * packets, so we can't tell which microframe could be the limiting factor in
2061 * the bandwidth scheduling. This only takes into account periodic endpoints.
2063 * Obviously, we can't solve an NP complete problem to find the minimum worst
2064 * case scenario. Instead, we come up with an estimate that is no less than
2065 * the worst case bandwidth used for any one microframe, but may be an
2066 * over-estimate.
2068 * We walk the requirements for each endpoint by interval, starting with the
2069 * smallest interval, and place packets in the schedule where there is only one
2070 * possible way to schedule packets for that interval. In order to simplify
2071 * this algorithm, we record the largest max packet size for each interval, and
2072 * assume all packets will be that size.
2074 * For interval 0, we obviously must schedule all packets for each interval.
2075 * The bandwidth for interval 0 is just the amount of data to be transmitted
2076 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2077 * the number of packets).
2079 * For interval 1, we have two possible microframes to schedule those packets
2080 * in. For this algorithm, if we can schedule the same number of packets for
2081 * each possible scheduling opportunity (each microframe), we will do so. The
2082 * remaining number of packets will be saved to be transmitted in the gaps in
2083 * the next interval's scheduling sequence.
2085 * As we move those remaining packets to be scheduled with interval 2 packets,
2086 * we have to double the number of remaining packets to transmit. This is
2087 * because the intervals are actually powers of 2, and we would be transmitting
2088 * the previous interval's packets twice in this interval. We also have to be
2089 * sure that when we look at the largest max packet size for this interval, we
2090 * also look at the largest max packet size for the remaining packets and take
2091 * the greater of the two.
2093 * The algorithm continues to evenly distribute packets in each scheduling
2094 * opportunity, and push the remaining packets out, until we get to the last
2095 * interval. Then those packets and their associated overhead are just added
2096 * to the bandwidth used.
2098 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2099 struct xhci_virt_device *virt_dev,
2100 int old_active_eps)
2102 unsigned int bw_reserved;
2103 unsigned int max_bandwidth;
2104 unsigned int bw_used;
2105 unsigned int block_size;
2106 struct xhci_interval_bw_table *bw_table;
2107 unsigned int packet_size = 0;
2108 unsigned int overhead = 0;
2109 unsigned int packets_transmitted = 0;
2110 unsigned int packets_remaining = 0;
2111 unsigned int i;
2113 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2114 return xhci_check_ss_bw(xhci, virt_dev);
2116 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2117 max_bandwidth = HS_BW_LIMIT;
2118 /* Convert percent of bus BW reserved to blocks reserved */
2119 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2120 } else {
2121 max_bandwidth = FS_BW_LIMIT;
2122 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2125 bw_table = virt_dev->bw_table;
2126 /* We need to translate the max packet size and max ESIT payloads into
2127 * the units the hardware uses.
2129 block_size = xhci_get_block_size(virt_dev->udev);
2131 /* If we are manipulating a LS/FS device under a HS hub, double check
2132 * that the HS bus has enough bandwidth if we are activing a new TT.
2134 if (virt_dev->tt_info) {
2135 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2136 "Recalculating BW for rootport %u",
2137 virt_dev->real_port);
2138 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2139 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2140 "newly activated TT.\n");
2141 return -ENOMEM;
2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 "Recalculating BW for TT slot %u port %u",
2145 virt_dev->tt_info->slot_id,
2146 virt_dev->tt_info->ttport);
2147 } else {
2148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 "Recalculating BW for rootport %u",
2150 virt_dev->real_port);
2153 /* Add in how much bandwidth will be used for interval zero, or the
2154 * rounded max ESIT payload + number of packets * largest overhead.
2156 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2157 bw_table->interval_bw[0].num_packets *
2158 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2160 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2161 unsigned int bw_added;
2162 unsigned int largest_mps;
2163 unsigned int interval_overhead;
2166 * How many packets could we transmit in this interval?
2167 * If packets didn't fit in the previous interval, we will need
2168 * to transmit that many packets twice within this interval.
2170 packets_remaining = 2 * packets_remaining +
2171 bw_table->interval_bw[i].num_packets;
2173 /* Find the largest max packet size of this or the previous
2174 * interval.
2176 if (list_empty(&bw_table->interval_bw[i].endpoints))
2177 largest_mps = 0;
2178 else {
2179 struct xhci_virt_ep *virt_ep;
2180 struct list_head *ep_entry;
2182 ep_entry = bw_table->interval_bw[i].endpoints.next;
2183 virt_ep = list_entry(ep_entry,
2184 struct xhci_virt_ep, bw_endpoint_list);
2185 /* Convert to blocks, rounding up */
2186 largest_mps = DIV_ROUND_UP(
2187 virt_ep->bw_info.max_packet_size,
2188 block_size);
2190 if (largest_mps > packet_size)
2191 packet_size = largest_mps;
2193 /* Use the larger overhead of this or the previous interval. */
2194 interval_overhead = xhci_get_largest_overhead(
2195 &bw_table->interval_bw[i]);
2196 if (interval_overhead > overhead)
2197 overhead = interval_overhead;
2199 /* How many packets can we evenly distribute across
2200 * (1 << (i + 1)) possible scheduling opportunities?
2202 packets_transmitted = packets_remaining >> (i + 1);
2204 /* Add in the bandwidth used for those scheduled packets */
2205 bw_added = packets_transmitted * (overhead + packet_size);
2207 /* How many packets do we have remaining to transmit? */
2208 packets_remaining = packets_remaining % (1 << (i + 1));
2210 /* What largest max packet size should those packets have? */
2211 /* If we've transmitted all packets, don't carry over the
2212 * largest packet size.
2214 if (packets_remaining == 0) {
2215 packet_size = 0;
2216 overhead = 0;
2217 } else if (packets_transmitted > 0) {
2218 /* Otherwise if we do have remaining packets, and we've
2219 * scheduled some packets in this interval, take the
2220 * largest max packet size from endpoints with this
2221 * interval.
2223 packet_size = largest_mps;
2224 overhead = interval_overhead;
2226 /* Otherwise carry over packet_size and overhead from the last
2227 * time we had a remainder.
2229 bw_used += bw_added;
2230 if (bw_used > max_bandwidth) {
2231 xhci_warn(xhci, "Not enough bandwidth. "
2232 "Proposed: %u, Max: %u\n",
2233 bw_used, max_bandwidth);
2234 return -ENOMEM;
2238 * Ok, we know we have some packets left over after even-handedly
2239 * scheduling interval 15. We don't know which microframes they will
2240 * fit into, so we over-schedule and say they will be scheduled every
2241 * microframe.
2243 if (packets_remaining > 0)
2244 bw_used += overhead + packet_size;
2246 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2247 unsigned int port_index = virt_dev->real_port - 1;
2249 /* OK, we're manipulating a HS device attached to a
2250 * root port bandwidth domain. Include the number of active TTs
2251 * in the bandwidth used.
2253 bw_used += TT_HS_OVERHEAD *
2254 xhci->rh_bw[port_index].num_active_tts;
2257 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2258 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2259 "Available: %u " "percent",
2260 bw_used, max_bandwidth, bw_reserved,
2261 (max_bandwidth - bw_used - bw_reserved) * 100 /
2262 max_bandwidth);
2264 bw_used += bw_reserved;
2265 if (bw_used > max_bandwidth) {
2266 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2267 bw_used, max_bandwidth);
2268 return -ENOMEM;
2271 bw_table->bw_used = bw_used;
2272 return 0;
2275 static bool xhci_is_async_ep(unsigned int ep_type)
2277 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2278 ep_type != ISOC_IN_EP &&
2279 ep_type != INT_IN_EP);
2282 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2284 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2287 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2289 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2291 if (ep_bw->ep_interval == 0)
2292 return SS_OVERHEAD_BURST +
2293 (ep_bw->mult * ep_bw->num_packets *
2294 (SS_OVERHEAD + mps));
2295 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2296 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2297 1 << ep_bw->ep_interval);
2301 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2302 struct xhci_bw_info *ep_bw,
2303 struct xhci_interval_bw_table *bw_table,
2304 struct usb_device *udev,
2305 struct xhci_virt_ep *virt_ep,
2306 struct xhci_tt_bw_info *tt_info)
2308 struct xhci_interval_bw *interval_bw;
2309 int normalized_interval;
2311 if (xhci_is_async_ep(ep_bw->type))
2312 return;
2314 if (udev->speed >= USB_SPEED_SUPER) {
2315 if (xhci_is_sync_in_ep(ep_bw->type))
2316 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2317 xhci_get_ss_bw_consumed(ep_bw);
2318 else
2319 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2320 xhci_get_ss_bw_consumed(ep_bw);
2321 return;
2324 /* SuperSpeed endpoints never get added to intervals in the table, so
2325 * this check is only valid for HS/FS/LS devices.
2327 if (list_empty(&virt_ep->bw_endpoint_list))
2328 return;
2329 /* For LS/FS devices, we need to translate the interval expressed in
2330 * microframes to frames.
2332 if (udev->speed == USB_SPEED_HIGH)
2333 normalized_interval = ep_bw->ep_interval;
2334 else
2335 normalized_interval = ep_bw->ep_interval - 3;
2337 if (normalized_interval == 0)
2338 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2339 interval_bw = &bw_table->interval_bw[normalized_interval];
2340 interval_bw->num_packets -= ep_bw->num_packets;
2341 switch (udev->speed) {
2342 case USB_SPEED_LOW:
2343 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2344 break;
2345 case USB_SPEED_FULL:
2346 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2347 break;
2348 case USB_SPEED_HIGH:
2349 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2350 break;
2351 case USB_SPEED_SUPER:
2352 case USB_SPEED_SUPER_PLUS:
2353 case USB_SPEED_UNKNOWN:
2354 case USB_SPEED_WIRELESS:
2355 /* Should never happen because only LS/FS/HS endpoints will get
2356 * added to the endpoint list.
2358 return;
2360 if (tt_info)
2361 tt_info->active_eps -= 1;
2362 list_del_init(&virt_ep->bw_endpoint_list);
2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2366 struct xhci_bw_info *ep_bw,
2367 struct xhci_interval_bw_table *bw_table,
2368 struct usb_device *udev,
2369 struct xhci_virt_ep *virt_ep,
2370 struct xhci_tt_bw_info *tt_info)
2372 struct xhci_interval_bw *interval_bw;
2373 struct xhci_virt_ep *smaller_ep;
2374 int normalized_interval;
2376 if (xhci_is_async_ep(ep_bw->type))
2377 return;
2379 if (udev->speed == USB_SPEED_SUPER) {
2380 if (xhci_is_sync_in_ep(ep_bw->type))
2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2382 xhci_get_ss_bw_consumed(ep_bw);
2383 else
2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2385 xhci_get_ss_bw_consumed(ep_bw);
2386 return;
2389 /* For LS/FS devices, we need to translate the interval expressed in
2390 * microframes to frames.
2392 if (udev->speed == USB_SPEED_HIGH)
2393 normalized_interval = ep_bw->ep_interval;
2394 else
2395 normalized_interval = ep_bw->ep_interval - 3;
2397 if (normalized_interval == 0)
2398 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2399 interval_bw = &bw_table->interval_bw[normalized_interval];
2400 interval_bw->num_packets += ep_bw->num_packets;
2401 switch (udev->speed) {
2402 case USB_SPEED_LOW:
2403 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2404 break;
2405 case USB_SPEED_FULL:
2406 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2407 break;
2408 case USB_SPEED_HIGH:
2409 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2410 break;
2411 case USB_SPEED_SUPER:
2412 case USB_SPEED_SUPER_PLUS:
2413 case USB_SPEED_UNKNOWN:
2414 case USB_SPEED_WIRELESS:
2415 /* Should never happen because only LS/FS/HS endpoints will get
2416 * added to the endpoint list.
2418 return;
2421 if (tt_info)
2422 tt_info->active_eps += 1;
2423 /* Insert the endpoint into the list, largest max packet size first. */
2424 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2425 bw_endpoint_list) {
2426 if (ep_bw->max_packet_size >=
2427 smaller_ep->bw_info.max_packet_size) {
2428 /* Add the new ep before the smaller endpoint */
2429 list_add_tail(&virt_ep->bw_endpoint_list,
2430 &smaller_ep->bw_endpoint_list);
2431 return;
2434 /* Add the new endpoint at the end of the list. */
2435 list_add_tail(&virt_ep->bw_endpoint_list,
2436 &interval_bw->endpoints);
2439 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2440 struct xhci_virt_device *virt_dev,
2441 int old_active_eps)
2443 struct xhci_root_port_bw_info *rh_bw_info;
2444 if (!virt_dev->tt_info)
2445 return;
2447 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2448 if (old_active_eps == 0 &&
2449 virt_dev->tt_info->active_eps != 0) {
2450 rh_bw_info->num_active_tts += 1;
2451 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2452 } else if (old_active_eps != 0 &&
2453 virt_dev->tt_info->active_eps == 0) {
2454 rh_bw_info->num_active_tts -= 1;
2455 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2459 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2460 struct xhci_virt_device *virt_dev,
2461 struct xhci_container_ctx *in_ctx)
2463 struct xhci_bw_info ep_bw_info[31];
2464 int i;
2465 struct xhci_input_control_ctx *ctrl_ctx;
2466 int old_active_eps = 0;
2468 if (virt_dev->tt_info)
2469 old_active_eps = virt_dev->tt_info->active_eps;
2471 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2472 if (!ctrl_ctx) {
2473 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2474 __func__);
2475 return -ENOMEM;
2478 for (i = 0; i < 31; i++) {
2479 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2480 continue;
2482 /* Make a copy of the BW info in case we need to revert this */
2483 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2484 sizeof(ep_bw_info[i]));
2485 /* Drop the endpoint from the interval table if the endpoint is
2486 * being dropped or changed.
2488 if (EP_IS_DROPPED(ctrl_ctx, i))
2489 xhci_drop_ep_from_interval_table(xhci,
2490 &virt_dev->eps[i].bw_info,
2491 virt_dev->bw_table,
2492 virt_dev->udev,
2493 &virt_dev->eps[i],
2494 virt_dev->tt_info);
2496 /* Overwrite the information stored in the endpoints' bw_info */
2497 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2498 for (i = 0; i < 31; i++) {
2499 /* Add any changed or added endpoints to the interval table */
2500 if (EP_IS_ADDED(ctrl_ctx, i))
2501 xhci_add_ep_to_interval_table(xhci,
2502 &virt_dev->eps[i].bw_info,
2503 virt_dev->bw_table,
2504 virt_dev->udev,
2505 &virt_dev->eps[i],
2506 virt_dev->tt_info);
2509 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2510 /* Ok, this fits in the bandwidth we have.
2511 * Update the number of active TTs.
2513 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2514 return 0;
2517 /* We don't have enough bandwidth for this, revert the stored info. */
2518 for (i = 0; i < 31; i++) {
2519 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2520 continue;
2522 /* Drop the new copies of any added or changed endpoints from
2523 * the interval table.
2525 if (EP_IS_ADDED(ctrl_ctx, i)) {
2526 xhci_drop_ep_from_interval_table(xhci,
2527 &virt_dev->eps[i].bw_info,
2528 virt_dev->bw_table,
2529 virt_dev->udev,
2530 &virt_dev->eps[i],
2531 virt_dev->tt_info);
2533 /* Revert the endpoint back to its old information */
2534 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2535 sizeof(ep_bw_info[i]));
2536 /* Add any changed or dropped endpoints back into the table */
2537 if (EP_IS_DROPPED(ctrl_ctx, i))
2538 xhci_add_ep_to_interval_table(xhci,
2539 &virt_dev->eps[i].bw_info,
2540 virt_dev->bw_table,
2541 virt_dev->udev,
2542 &virt_dev->eps[i],
2543 virt_dev->tt_info);
2545 return -ENOMEM;
2549 /* Issue a configure endpoint command or evaluate context command
2550 * and wait for it to finish.
2552 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2553 struct usb_device *udev,
2554 struct xhci_command *command,
2555 bool ctx_change, bool must_succeed)
2557 int ret;
2558 unsigned long flags;
2559 struct xhci_input_control_ctx *ctrl_ctx;
2560 struct xhci_virt_device *virt_dev;
2562 if (!command)
2563 return -EINVAL;
2565 spin_lock_irqsave(&xhci->lock, flags);
2567 if (xhci->xhc_state & XHCI_STATE_DYING) {
2568 spin_unlock_irqrestore(&xhci->lock, flags);
2569 return -ESHUTDOWN;
2572 virt_dev = xhci->devs[udev->slot_id];
2574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575 if (!ctrl_ctx) {
2576 spin_unlock_irqrestore(&xhci->lock, flags);
2577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578 __func__);
2579 return -ENOMEM;
2582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_warn(xhci, "Not enough host resources, "
2586 "active endpoint contexts = %u\n",
2587 xhci->num_active_eps);
2588 return -ENOMEM;
2590 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593 xhci_free_host_resources(xhci, ctrl_ctx);
2594 spin_unlock_irqrestore(&xhci->lock, flags);
2595 xhci_warn(xhci, "Not enough bandwidth\n");
2596 return -ENOMEM;
2599 if (!ctx_change)
2600 ret = xhci_queue_configure_endpoint(xhci, command,
2601 command->in_ctx->dma,
2602 udev->slot_id, must_succeed);
2603 else
2604 ret = xhci_queue_evaluate_context(xhci, command,
2605 command->in_ctx->dma,
2606 udev->slot_id, must_succeed);
2607 if (ret < 0) {
2608 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2609 xhci_free_host_resources(xhci, ctrl_ctx);
2610 spin_unlock_irqrestore(&xhci->lock, flags);
2611 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2612 "FIXME allocate a new ring segment");
2613 return -ENOMEM;
2615 xhci_ring_cmd_db(xhci);
2616 spin_unlock_irqrestore(&xhci->lock, flags);
2618 /* Wait for the configure endpoint command to complete */
2619 wait_for_completion(command->completion);
2621 if (!ctx_change)
2622 ret = xhci_configure_endpoint_result(xhci, udev,
2623 &command->status);
2624 else
2625 ret = xhci_evaluate_context_result(xhci, udev,
2626 &command->status);
2628 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2629 spin_lock_irqsave(&xhci->lock, flags);
2630 /* If the command failed, remove the reserved resources.
2631 * Otherwise, clean up the estimate to include dropped eps.
2633 if (ret)
2634 xhci_free_host_resources(xhci, ctrl_ctx);
2635 else
2636 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2637 spin_unlock_irqrestore(&xhci->lock, flags);
2639 return ret;
2642 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2643 struct xhci_virt_device *vdev, int i)
2645 struct xhci_virt_ep *ep = &vdev->eps[i];
2647 if (ep->ep_state & EP_HAS_STREAMS) {
2648 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2649 xhci_get_endpoint_address(i));
2650 xhci_free_stream_info(xhci, ep->stream_info);
2651 ep->stream_info = NULL;
2652 ep->ep_state &= ~EP_HAS_STREAMS;
2656 /* Called after one or more calls to xhci_add_endpoint() or
2657 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2658 * to call xhci_reset_bandwidth().
2660 * Since we are in the middle of changing either configuration or
2661 * installing a new alt setting, the USB core won't allow URBs to be
2662 * enqueued for any endpoint on the old config or interface. Nothing
2663 * else should be touching the xhci->devs[slot_id] structure, so we
2664 * don't need to take the xhci->lock for manipulating that.
2666 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2668 int i;
2669 int ret = 0;
2670 struct xhci_hcd *xhci;
2671 struct xhci_virt_device *virt_dev;
2672 struct xhci_input_control_ctx *ctrl_ctx;
2673 struct xhci_slot_ctx *slot_ctx;
2674 struct xhci_command *command;
2676 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2677 if (ret <= 0)
2678 return ret;
2679 xhci = hcd_to_xhci(hcd);
2680 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2681 (xhci->xhc_state & XHCI_STATE_REMOVING))
2682 return -ENODEV;
2684 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2685 virt_dev = xhci->devs[udev->slot_id];
2687 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2688 if (!command)
2689 return -ENOMEM;
2691 command->in_ctx = virt_dev->in_ctx;
2693 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2694 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2695 if (!ctrl_ctx) {
2696 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2697 __func__);
2698 ret = -ENOMEM;
2699 goto command_cleanup;
2701 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2702 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2703 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2705 /* Don't issue the command if there's no endpoints to update. */
2706 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2707 ctrl_ctx->drop_flags == 0) {
2708 ret = 0;
2709 goto command_cleanup;
2711 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2712 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2713 for (i = 31; i >= 1; i--) {
2714 __le32 le32 = cpu_to_le32(BIT(i));
2716 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2717 || (ctrl_ctx->add_flags & le32) || i == 1) {
2718 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2719 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2720 break;
2724 ret = xhci_configure_endpoint(xhci, udev, command,
2725 false, false);
2726 if (ret)
2727 /* Callee should call reset_bandwidth() */
2728 goto command_cleanup;
2730 /* Free any rings that were dropped, but not changed. */
2731 for (i = 1; i < 31; i++) {
2732 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2733 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2734 xhci_free_endpoint_ring(xhci, virt_dev, i);
2735 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2738 xhci_zero_in_ctx(xhci, virt_dev);
2740 * Install any rings for completely new endpoints or changed endpoints,
2741 * and free any old rings from changed endpoints.
2743 for (i = 1; i < 31; i++) {
2744 if (!virt_dev->eps[i].new_ring)
2745 continue;
2746 /* Only free the old ring if it exists.
2747 * It may not if this is the first add of an endpoint.
2749 if (virt_dev->eps[i].ring) {
2750 xhci_free_endpoint_ring(xhci, virt_dev, i);
2752 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2753 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2754 virt_dev->eps[i].new_ring = NULL;
2756 command_cleanup:
2757 kfree(command->completion);
2758 kfree(command);
2760 return ret;
2763 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2765 struct xhci_hcd *xhci;
2766 struct xhci_virt_device *virt_dev;
2767 int i, ret;
2769 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770 if (ret <= 0)
2771 return;
2772 xhci = hcd_to_xhci(hcd);
2774 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775 virt_dev = xhci->devs[udev->slot_id];
2776 /* Free any rings allocated for added endpoints */
2777 for (i = 0; i < 31; i++) {
2778 if (virt_dev->eps[i].new_ring) {
2779 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2780 virt_dev->eps[i].new_ring = NULL;
2783 xhci_zero_in_ctx(xhci, virt_dev);
2786 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2787 struct xhci_container_ctx *in_ctx,
2788 struct xhci_container_ctx *out_ctx,
2789 struct xhci_input_control_ctx *ctrl_ctx,
2790 u32 add_flags, u32 drop_flags)
2792 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2793 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2794 xhci_slot_copy(xhci, in_ctx, out_ctx);
2795 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2798 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2799 unsigned int slot_id, unsigned int ep_index,
2800 struct xhci_dequeue_state *deq_state)
2802 struct xhci_input_control_ctx *ctrl_ctx;
2803 struct xhci_container_ctx *in_ctx;
2804 struct xhci_ep_ctx *ep_ctx;
2805 u32 added_ctxs;
2806 dma_addr_t addr;
2808 in_ctx = xhci->devs[slot_id]->in_ctx;
2809 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2810 if (!ctrl_ctx) {
2811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812 __func__);
2813 return;
2816 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2817 xhci->devs[slot_id]->out_ctx, ep_index);
2818 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2819 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2820 deq_state->new_deq_ptr);
2821 if (addr == 0) {
2822 xhci_warn(xhci, "WARN Cannot submit config ep after "
2823 "reset ep command\n");
2824 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2825 deq_state->new_deq_seg,
2826 deq_state->new_deq_ptr);
2827 return;
2829 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2831 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2832 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2833 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2834 added_ctxs, added_ctxs);
2837 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2838 unsigned int stream_id, struct xhci_td *td)
2840 struct xhci_dequeue_state deq_state;
2841 struct xhci_virt_ep *ep;
2842 struct usb_device *udev = td->urb->dev;
2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 "Cleaning up stalled endpoint ring");
2846 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847 /* We need to move the HW's dequeue pointer past this TD,
2848 * or it will attempt to resend it on the next doorbell ring.
2850 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851 ep_index, stream_id, td, &deq_state);
2853 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2854 return;
2856 /* HW with the reset endpoint quirk will use the saved dequeue state to
2857 * issue a configure endpoint command later.
2859 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2860 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2861 "Queueing new dequeue state");
2862 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2863 ep_index, &deq_state);
2864 } else {
2865 /* Better hope no one uses the input context between now and the
2866 * reset endpoint completion!
2867 * XXX: No idea how this hardware will react when stream rings
2868 * are enabled.
2870 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2871 "Setting up input context for "
2872 "configure endpoint command");
2873 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2874 ep_index, &deq_state);
2878 /* Called when clearing halted device. The core should have sent the control
2879 * message to clear the device halt condition. The host side of the halt should
2880 * already be cleared with a reset endpoint command issued when the STALL tx
2881 * event was received.
2883 * Context: in_interrupt
2886 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2887 struct usb_host_endpoint *ep)
2889 struct xhci_hcd *xhci;
2891 xhci = hcd_to_xhci(hcd);
2894 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2895 * The Reset Endpoint Command may only be issued to endpoints in the
2896 * Halted state. If software wishes reset the Data Toggle or Sequence
2897 * Number of an endpoint that isn't in the Halted state, then software
2898 * may issue a Configure Endpoint Command with the Drop and Add bits set
2899 * for the target endpoint. that is in the Stopped state.
2902 /* For now just print debug to follow the situation */
2903 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2904 ep->desc.bEndpointAddress);
2907 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2908 struct usb_device *udev, struct usb_host_endpoint *ep,
2909 unsigned int slot_id)
2911 int ret;
2912 unsigned int ep_index;
2913 unsigned int ep_state;
2915 if (!ep)
2916 return -EINVAL;
2917 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2918 if (ret <= 0)
2919 return -EINVAL;
2920 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2921 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2922 " descriptor for ep 0x%x does not support streams\n",
2923 ep->desc.bEndpointAddress);
2924 return -EINVAL;
2927 ep_index = xhci_get_endpoint_index(&ep->desc);
2928 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2929 if (ep_state & EP_HAS_STREAMS ||
2930 ep_state & EP_GETTING_STREAMS) {
2931 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2932 "already has streams set up.\n",
2933 ep->desc.bEndpointAddress);
2934 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2935 "dynamic stream context array reallocation.\n");
2936 return -EINVAL;
2938 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2939 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2940 "endpoint 0x%x; URBs are pending.\n",
2941 ep->desc.bEndpointAddress);
2942 return -EINVAL;
2944 return 0;
2947 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2948 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2950 unsigned int max_streams;
2952 /* The stream context array size must be a power of two */
2953 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2955 * Find out how many primary stream array entries the host controller
2956 * supports. Later we may use secondary stream arrays (similar to 2nd
2957 * level page entries), but that's an optional feature for xHCI host
2958 * controllers. xHCs must support at least 4 stream IDs.
2960 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2961 if (*num_stream_ctxs > max_streams) {
2962 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2963 max_streams);
2964 *num_stream_ctxs = max_streams;
2965 *num_streams = max_streams;
2969 /* Returns an error code if one of the endpoint already has streams.
2970 * This does not change any data structures, it only checks and gathers
2971 * information.
2973 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2974 struct usb_device *udev,
2975 struct usb_host_endpoint **eps, unsigned int num_eps,
2976 unsigned int *num_streams, u32 *changed_ep_bitmask)
2978 unsigned int max_streams;
2979 unsigned int endpoint_flag;
2980 int i;
2981 int ret;
2983 for (i = 0; i < num_eps; i++) {
2984 ret = xhci_check_streams_endpoint(xhci, udev,
2985 eps[i], udev->slot_id);
2986 if (ret < 0)
2987 return ret;
2989 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2990 if (max_streams < (*num_streams - 1)) {
2991 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2992 eps[i]->desc.bEndpointAddress,
2993 max_streams);
2994 *num_streams = max_streams+1;
2997 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2998 if (*changed_ep_bitmask & endpoint_flag)
2999 return -EINVAL;
3000 *changed_ep_bitmask |= endpoint_flag;
3002 return 0;
3005 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3006 struct usb_device *udev,
3007 struct usb_host_endpoint **eps, unsigned int num_eps)
3009 u32 changed_ep_bitmask = 0;
3010 unsigned int slot_id;
3011 unsigned int ep_index;
3012 unsigned int ep_state;
3013 int i;
3015 slot_id = udev->slot_id;
3016 if (!xhci->devs[slot_id])
3017 return 0;
3019 for (i = 0; i < num_eps; i++) {
3020 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3021 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3022 /* Are streams already being freed for the endpoint? */
3023 if (ep_state & EP_GETTING_NO_STREAMS) {
3024 xhci_warn(xhci, "WARN Can't disable streams for "
3025 "endpoint 0x%x, "
3026 "streams are being disabled already\n",
3027 eps[i]->desc.bEndpointAddress);
3028 return 0;
3030 /* Are there actually any streams to free? */
3031 if (!(ep_state & EP_HAS_STREAMS) &&
3032 !(ep_state & EP_GETTING_STREAMS)) {
3033 xhci_warn(xhci, "WARN Can't disable streams for "
3034 "endpoint 0x%x, "
3035 "streams are already disabled!\n",
3036 eps[i]->desc.bEndpointAddress);
3037 xhci_warn(xhci, "WARN xhci_free_streams() called "
3038 "with non-streams endpoint\n");
3039 return 0;
3041 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3043 return changed_ep_bitmask;
3047 * The USB device drivers use this function (through the HCD interface in USB
3048 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3049 * coordinate mass storage command queueing across multiple endpoints (basically
3050 * a stream ID == a task ID).
3052 * Setting up streams involves allocating the same size stream context array
3053 * for each endpoint and issuing a configure endpoint command for all endpoints.
3055 * Don't allow the call to succeed if one endpoint only supports one stream
3056 * (which means it doesn't support streams at all).
3058 * Drivers may get less stream IDs than they asked for, if the host controller
3059 * hardware or endpoints claim they can't support the number of requested
3060 * stream IDs.
3062 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3063 struct usb_host_endpoint **eps, unsigned int num_eps,
3064 unsigned int num_streams, gfp_t mem_flags)
3066 int i, ret;
3067 struct xhci_hcd *xhci;
3068 struct xhci_virt_device *vdev;
3069 struct xhci_command *config_cmd;
3070 struct xhci_input_control_ctx *ctrl_ctx;
3071 unsigned int ep_index;
3072 unsigned int num_stream_ctxs;
3073 unsigned int max_packet;
3074 unsigned long flags;
3075 u32 changed_ep_bitmask = 0;
3077 if (!eps)
3078 return -EINVAL;
3080 /* Add one to the number of streams requested to account for
3081 * stream 0 that is reserved for xHCI usage.
3083 num_streams += 1;
3084 xhci = hcd_to_xhci(hcd);
3085 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3086 num_streams);
3088 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3089 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3090 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3091 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3092 return -ENOSYS;
3095 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3096 if (!config_cmd)
3097 return -ENOMEM;
3099 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3100 if (!ctrl_ctx) {
3101 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3102 __func__);
3103 xhci_free_command(xhci, config_cmd);
3104 return -ENOMEM;
3107 /* Check to make sure all endpoints are not already configured for
3108 * streams. While we're at it, find the maximum number of streams that
3109 * all the endpoints will support and check for duplicate endpoints.
3111 spin_lock_irqsave(&xhci->lock, flags);
3112 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3113 num_eps, &num_streams, &changed_ep_bitmask);
3114 if (ret < 0) {
3115 xhci_free_command(xhci, config_cmd);
3116 spin_unlock_irqrestore(&xhci->lock, flags);
3117 return ret;
3119 if (num_streams <= 1) {
3120 xhci_warn(xhci, "WARN: endpoints can't handle "
3121 "more than one stream.\n");
3122 xhci_free_command(xhci, config_cmd);
3123 spin_unlock_irqrestore(&xhci->lock, flags);
3124 return -EINVAL;
3126 vdev = xhci->devs[udev->slot_id];
3127 /* Mark each endpoint as being in transition, so
3128 * xhci_urb_enqueue() will reject all URBs.
3130 for (i = 0; i < num_eps; i++) {
3131 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3132 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3134 spin_unlock_irqrestore(&xhci->lock, flags);
3136 /* Setup internal data structures and allocate HW data structures for
3137 * streams (but don't install the HW structures in the input context
3138 * until we're sure all memory allocation succeeded).
3140 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3141 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3142 num_stream_ctxs, num_streams);
3144 for (i = 0; i < num_eps; i++) {
3145 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3147 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3148 num_stream_ctxs,
3149 num_streams,
3150 max_packet, mem_flags);
3151 if (!vdev->eps[ep_index].stream_info)
3152 goto cleanup;
3153 /* Set maxPstreams in endpoint context and update deq ptr to
3154 * point to stream context array. FIXME
3158 /* Set up the input context for a configure endpoint command. */
3159 for (i = 0; i < num_eps; i++) {
3160 struct xhci_ep_ctx *ep_ctx;
3162 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3163 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3165 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3166 vdev->out_ctx, ep_index);
3167 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3168 vdev->eps[ep_index].stream_info);
3170 /* Tell the HW to drop its old copy of the endpoint context info
3171 * and add the updated copy from the input context.
3173 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3174 vdev->out_ctx, ctrl_ctx,
3175 changed_ep_bitmask, changed_ep_bitmask);
3177 /* Issue and wait for the configure endpoint command */
3178 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3179 false, false);
3181 /* xHC rejected the configure endpoint command for some reason, so we
3182 * leave the old ring intact and free our internal streams data
3183 * structure.
3185 if (ret < 0)
3186 goto cleanup;
3188 spin_lock_irqsave(&xhci->lock, flags);
3189 for (i = 0; i < num_eps; i++) {
3190 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3193 udev->slot_id, ep_index);
3194 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3196 xhci_free_command(xhci, config_cmd);
3197 spin_unlock_irqrestore(&xhci->lock, flags);
3199 /* Subtract 1 for stream 0, which drivers can't use */
3200 return num_streams - 1;
3202 cleanup:
3203 /* If it didn't work, free the streams! */
3204 for (i = 0; i < num_eps; i++) {
3205 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3207 vdev->eps[ep_index].stream_info = NULL;
3208 /* FIXME Unset maxPstreams in endpoint context and
3209 * update deq ptr to point to normal string ring.
3211 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3213 xhci_endpoint_zero(xhci, vdev, eps[i]);
3215 xhci_free_command(xhci, config_cmd);
3216 return -ENOMEM;
3219 /* Transition the endpoint from using streams to being a "normal" endpoint
3220 * without streams.
3222 * Modify the endpoint context state, submit a configure endpoint command,
3223 * and free all endpoint rings for streams if that completes successfully.
3225 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3226 struct usb_host_endpoint **eps, unsigned int num_eps,
3227 gfp_t mem_flags)
3229 int i, ret;
3230 struct xhci_hcd *xhci;
3231 struct xhci_virt_device *vdev;
3232 struct xhci_command *command;
3233 struct xhci_input_control_ctx *ctrl_ctx;
3234 unsigned int ep_index;
3235 unsigned long flags;
3236 u32 changed_ep_bitmask;
3238 xhci = hcd_to_xhci(hcd);
3239 vdev = xhci->devs[udev->slot_id];
3241 /* Set up a configure endpoint command to remove the streams rings */
3242 spin_lock_irqsave(&xhci->lock, flags);
3243 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3244 udev, eps, num_eps);
3245 if (changed_ep_bitmask == 0) {
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247 return -EINVAL;
3250 /* Use the xhci_command structure from the first endpoint. We may have
3251 * allocated too many, but the driver may call xhci_free_streams() for
3252 * each endpoint it grouped into one call to xhci_alloc_streams().
3254 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3255 command = vdev->eps[ep_index].stream_info->free_streams_command;
3256 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3257 if (!ctrl_ctx) {
3258 spin_unlock_irqrestore(&xhci->lock, flags);
3259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3260 __func__);
3261 return -EINVAL;
3264 for (i = 0; i < num_eps; i++) {
3265 struct xhci_ep_ctx *ep_ctx;
3267 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3269 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3270 EP_GETTING_NO_STREAMS;
3272 xhci_endpoint_copy(xhci, command->in_ctx,
3273 vdev->out_ctx, ep_index);
3274 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3275 &vdev->eps[ep_index]);
3277 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3278 vdev->out_ctx, ctrl_ctx,
3279 changed_ep_bitmask, changed_ep_bitmask);
3280 spin_unlock_irqrestore(&xhci->lock, flags);
3282 /* Issue and wait for the configure endpoint command,
3283 * which must succeed.
3285 ret = xhci_configure_endpoint(xhci, udev, command,
3286 false, true);
3288 /* xHC rejected the configure endpoint command for some reason, so we
3289 * leave the streams rings intact.
3291 if (ret < 0)
3292 return ret;
3294 spin_lock_irqsave(&xhci->lock, flags);
3295 for (i = 0; i < num_eps; i++) {
3296 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3297 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3298 vdev->eps[ep_index].stream_info = NULL;
3299 /* FIXME Unset maxPstreams in endpoint context and
3300 * update deq ptr to point to normal string ring.
3302 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3303 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3305 spin_unlock_irqrestore(&xhci->lock, flags);
3307 return 0;
3311 * Deletes endpoint resources for endpoints that were active before a Reset
3312 * Device command, or a Disable Slot command. The Reset Device command leaves
3313 * the control endpoint intact, whereas the Disable Slot command deletes it.
3315 * Must be called with xhci->lock held.
3317 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3318 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3320 int i;
3321 unsigned int num_dropped_eps = 0;
3322 unsigned int drop_flags = 0;
3324 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3325 if (virt_dev->eps[i].ring) {
3326 drop_flags |= 1 << i;
3327 num_dropped_eps++;
3330 xhci->num_active_eps -= num_dropped_eps;
3331 if (num_dropped_eps)
3332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3333 "Dropped %u ep ctxs, flags = 0x%x, "
3334 "%u now active.",
3335 num_dropped_eps, drop_flags,
3336 xhci->num_active_eps);
3340 * This submits a Reset Device Command, which will set the device state to 0,
3341 * set the device address to 0, and disable all the endpoints except the default
3342 * control endpoint. The USB core should come back and call
3343 * xhci_address_device(), and then re-set up the configuration. If this is
3344 * called because of a usb_reset_and_verify_device(), then the old alternate
3345 * settings will be re-installed through the normal bandwidth allocation
3346 * functions.
3348 * Wait for the Reset Device command to finish. Remove all structures
3349 * associated with the endpoints that were disabled. Clear the input device
3350 * structure? Reset the control endpoint 0 max packet size?
3352 * If the virt_dev to be reset does not exist or does not match the udev,
3353 * it means the device is lost, possibly due to the xHC restore error and
3354 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3355 * re-allocate the device.
3357 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3358 struct usb_device *udev)
3360 int ret, i;
3361 unsigned long flags;
3362 struct xhci_hcd *xhci;
3363 unsigned int slot_id;
3364 struct xhci_virt_device *virt_dev;
3365 struct xhci_command *reset_device_cmd;
3366 int last_freed_endpoint;
3367 struct xhci_slot_ctx *slot_ctx;
3368 int old_active_eps = 0;
3370 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3371 if (ret <= 0)
3372 return ret;
3373 xhci = hcd_to_xhci(hcd);
3374 slot_id = udev->slot_id;
3375 virt_dev = xhci->devs[slot_id];
3376 if (!virt_dev) {
3377 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3378 "not exist. Re-allocate the device\n", slot_id);
3379 ret = xhci_alloc_dev(hcd, udev);
3380 if (ret == 1)
3381 return 0;
3382 else
3383 return -EINVAL;
3386 if (virt_dev->tt_info)
3387 old_active_eps = virt_dev->tt_info->active_eps;
3389 if (virt_dev->udev != udev) {
3390 /* If the virt_dev and the udev does not match, this virt_dev
3391 * may belong to another udev.
3392 * Re-allocate the device.
3394 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3395 "not match the udev. Re-allocate the device\n",
3396 slot_id);
3397 ret = xhci_alloc_dev(hcd, udev);
3398 if (ret == 1)
3399 return 0;
3400 else
3401 return -EINVAL;
3404 /* If device is not setup, there is no point in resetting it */
3405 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3406 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3407 SLOT_STATE_DISABLED)
3408 return 0;
3410 trace_xhci_discover_or_reset_device(slot_ctx);
3412 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3413 /* Allocate the command structure that holds the struct completion.
3414 * Assume we're in process context, since the normal device reset
3415 * process has to wait for the device anyway. Storage devices are
3416 * reset as part of error handling, so use GFP_NOIO instead of
3417 * GFP_KERNEL.
3419 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3420 if (!reset_device_cmd) {
3421 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3422 return -ENOMEM;
3425 /* Attempt to submit the Reset Device command to the command ring */
3426 spin_lock_irqsave(&xhci->lock, flags);
3428 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3429 if (ret) {
3430 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3431 spin_unlock_irqrestore(&xhci->lock, flags);
3432 goto command_cleanup;
3434 xhci_ring_cmd_db(xhci);
3435 spin_unlock_irqrestore(&xhci->lock, flags);
3437 /* Wait for the Reset Device command to finish */
3438 wait_for_completion(reset_device_cmd->completion);
3440 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3441 * unless we tried to reset a slot ID that wasn't enabled,
3442 * or the device wasn't in the addressed or configured state.
3444 ret = reset_device_cmd->status;
3445 switch (ret) {
3446 case COMP_COMMAND_ABORTED:
3447 case COMP_COMMAND_RING_STOPPED:
3448 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3449 ret = -ETIME;
3450 goto command_cleanup;
3451 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3452 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3453 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3454 slot_id,
3455 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3456 xhci_dbg(xhci, "Not freeing device rings.\n");
3457 /* Don't treat this as an error. May change my mind later. */
3458 ret = 0;
3459 goto command_cleanup;
3460 case COMP_SUCCESS:
3461 xhci_dbg(xhci, "Successful reset device command.\n");
3462 break;
3463 default:
3464 if (xhci_is_vendor_info_code(xhci, ret))
3465 break;
3466 xhci_warn(xhci, "Unknown completion code %u for "
3467 "reset device command.\n", ret);
3468 ret = -EINVAL;
3469 goto command_cleanup;
3472 /* Free up host controller endpoint resources */
3473 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3474 spin_lock_irqsave(&xhci->lock, flags);
3475 /* Don't delete the default control endpoint resources */
3476 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3477 spin_unlock_irqrestore(&xhci->lock, flags);
3480 /* Everything but endpoint 0 is disabled, so free the rings. */
3481 last_freed_endpoint = 1;
3482 for (i = 1; i < 31; i++) {
3483 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3485 if (ep->ep_state & EP_HAS_STREAMS) {
3486 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3487 xhci_get_endpoint_address(i));
3488 xhci_free_stream_info(xhci, ep->stream_info);
3489 ep->stream_info = NULL;
3490 ep->ep_state &= ~EP_HAS_STREAMS;
3493 if (ep->ring) {
3494 xhci_free_endpoint_ring(xhci, virt_dev, i);
3495 last_freed_endpoint = i;
3497 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3498 xhci_drop_ep_from_interval_table(xhci,
3499 &virt_dev->eps[i].bw_info,
3500 virt_dev->bw_table,
3501 udev,
3502 &virt_dev->eps[i],
3503 virt_dev->tt_info);
3504 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3506 /* If necessary, update the number of active TTs on this root port */
3507 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3508 ret = 0;
3510 command_cleanup:
3511 xhci_free_command(xhci, reset_device_cmd);
3512 return ret;
3516 * At this point, the struct usb_device is about to go away, the device has
3517 * disconnected, and all traffic has been stopped and the endpoints have been
3518 * disabled. Free any HC data structures associated with that device.
3520 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3522 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3523 struct xhci_virt_device *virt_dev;
3524 struct xhci_slot_ctx *slot_ctx;
3525 int i, ret;
3527 #ifndef CONFIG_USB_DEFAULT_PERSIST
3529 * We called pm_runtime_get_noresume when the device was attached.
3530 * Decrement the counter here to allow controller to runtime suspend
3531 * if no devices remain.
3533 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3534 pm_runtime_put_noidle(hcd->self.controller);
3535 #endif
3537 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3538 /* If the host is halted due to driver unload, we still need to free the
3539 * device.
3541 if (ret <= 0 && ret != -ENODEV)
3542 return;
3544 virt_dev = xhci->devs[udev->slot_id];
3545 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3546 trace_xhci_free_dev(slot_ctx);
3548 /* Stop any wayward timer functions (which may grab the lock) */
3549 for (i = 0; i < 31; i++) {
3550 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3551 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3554 xhci_disable_slot(xhci, udev->slot_id);
3556 * Event command completion handler will free any data structures
3557 * associated with the slot. XXX Can free sleep?
3561 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3563 struct xhci_command *command;
3564 unsigned long flags;
3565 u32 state;
3566 int ret = 0;
3568 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3569 if (!command)
3570 return -ENOMEM;
3572 spin_lock_irqsave(&xhci->lock, flags);
3573 /* Don't disable the slot if the host controller is dead. */
3574 state = readl(&xhci->op_regs->status);
3575 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3576 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3577 spin_unlock_irqrestore(&xhci->lock, flags);
3578 kfree(command);
3579 return -ENODEV;
3582 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3583 slot_id);
3584 if (ret) {
3585 spin_unlock_irqrestore(&xhci->lock, flags);
3586 kfree(command);
3587 return ret;
3589 xhci_ring_cmd_db(xhci);
3590 spin_unlock_irqrestore(&xhci->lock, flags);
3591 return ret;
3595 * Checks if we have enough host controller resources for the default control
3596 * endpoint.
3598 * Must be called with xhci->lock held.
3600 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3602 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3603 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3604 "Not enough ep ctxs: "
3605 "%u active, need to add 1, limit is %u.",
3606 xhci->num_active_eps, xhci->limit_active_eps);
3607 return -ENOMEM;
3609 xhci->num_active_eps += 1;
3610 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3611 "Adding 1 ep ctx, %u now active.",
3612 xhci->num_active_eps);
3613 return 0;
3618 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3619 * timed out, or allocating memory failed. Returns 1 on success.
3621 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3623 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3624 struct xhci_virt_device *vdev;
3625 struct xhci_slot_ctx *slot_ctx;
3626 unsigned long flags;
3627 int ret, slot_id;
3628 struct xhci_command *command;
3630 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3631 if (!command)
3632 return 0;
3634 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3635 mutex_lock(&xhci->mutex);
3636 spin_lock_irqsave(&xhci->lock, flags);
3637 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3638 if (ret) {
3639 spin_unlock_irqrestore(&xhci->lock, flags);
3640 mutex_unlock(&xhci->mutex);
3641 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3642 xhci_free_command(xhci, command);
3643 return 0;
3645 xhci_ring_cmd_db(xhci);
3646 spin_unlock_irqrestore(&xhci->lock, flags);
3648 wait_for_completion(command->completion);
3649 slot_id = command->slot_id;
3650 mutex_unlock(&xhci->mutex);
3652 if (!slot_id || command->status != COMP_SUCCESS) {
3653 xhci_err(xhci, "Error while assigning device slot ID\n");
3654 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3655 HCS_MAX_SLOTS(
3656 readl(&xhci->cap_regs->hcs_params1)));
3657 xhci_free_command(xhci, command);
3658 return 0;
3661 xhci_free_command(xhci, command);
3663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664 spin_lock_irqsave(&xhci->lock, flags);
3665 ret = xhci_reserve_host_control_ep_resources(xhci);
3666 if (ret) {
3667 spin_unlock_irqrestore(&xhci->lock, flags);
3668 xhci_warn(xhci, "Not enough host resources, "
3669 "active endpoint contexts = %u\n",
3670 xhci->num_active_eps);
3671 goto disable_slot;
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3675 /* Use GFP_NOIO, since this function can be called from
3676 * xhci_discover_or_reset_device(), which may be called as part of
3677 * mass storage driver error handling.
3679 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3680 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681 goto disable_slot;
3683 vdev = xhci->devs[slot_id];
3684 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3685 trace_xhci_alloc_dev(slot_ctx);
3687 udev->slot_id = slot_id;
3689 #ifndef CONFIG_USB_DEFAULT_PERSIST
3691 * If resetting upon resume, we can't put the controller into runtime
3692 * suspend if there is a device attached.
3694 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3695 pm_runtime_get_noresume(hcd->self.controller);
3696 #endif
3698 /* Is this a LS or FS device under a HS hub? */
3699 /* Hub or peripherial? */
3700 return 1;
3702 disable_slot:
3703 return xhci_disable_slot(xhci, udev->slot_id);
3707 * Issue an Address Device command and optionally send a corresponding
3708 * SetAddress request to the device.
3710 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3711 enum xhci_setup_dev setup)
3713 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3714 unsigned long flags;
3715 struct xhci_virt_device *virt_dev;
3716 int ret = 0;
3717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3718 struct xhci_slot_ctx *slot_ctx;
3719 struct xhci_input_control_ctx *ctrl_ctx;
3720 u64 temp_64;
3721 struct xhci_command *command = NULL;
3723 mutex_lock(&xhci->mutex);
3725 if (xhci->xhc_state) { /* dying, removing or halted */
3726 ret = -ESHUTDOWN;
3727 goto out;
3730 if (!udev->slot_id) {
3731 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3732 "Bad Slot ID %d", udev->slot_id);
3733 ret = -EINVAL;
3734 goto out;
3737 virt_dev = xhci->devs[udev->slot_id];
3739 if (WARN_ON(!virt_dev)) {
3741 * In plug/unplug torture test with an NEC controller,
3742 * a zero-dereference was observed once due to virt_dev = 0.
3743 * Print useful debug rather than crash if it is observed again!
3745 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3746 udev->slot_id);
3747 ret = -EINVAL;
3748 goto out;
3750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751 trace_xhci_setup_device_slot(slot_ctx);
3753 if (setup == SETUP_CONTEXT_ONLY) {
3754 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3755 SLOT_STATE_DEFAULT) {
3756 xhci_dbg(xhci, "Slot already in default state\n");
3757 goto out;
3761 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3762 if (!command) {
3763 ret = -ENOMEM;
3764 goto out;
3767 command->in_ctx = virt_dev->in_ctx;
3769 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3770 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3771 if (!ctrl_ctx) {
3772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3773 __func__);
3774 ret = -EINVAL;
3775 goto out;
3778 * If this is the first Set Address since device plug-in or
3779 * virt_device realloaction after a resume with an xHCI power loss,
3780 * then set up the slot context.
3782 if (!slot_ctx->dev_info)
3783 xhci_setup_addressable_virt_dev(xhci, udev);
3784 /* Otherwise, update the control endpoint ring enqueue pointer. */
3785 else
3786 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3787 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3788 ctrl_ctx->drop_flags = 0;
3790 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3791 le32_to_cpu(slot_ctx->dev_info) >> 27);
3793 spin_lock_irqsave(&xhci->lock, flags);
3794 trace_xhci_setup_device(virt_dev);
3795 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3796 udev->slot_id, setup);
3797 if (ret) {
3798 spin_unlock_irqrestore(&xhci->lock, flags);
3799 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3800 "FIXME: allocate a command ring segment");
3801 goto out;
3803 xhci_ring_cmd_db(xhci);
3804 spin_unlock_irqrestore(&xhci->lock, flags);
3806 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3807 wait_for_completion(command->completion);
3809 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3810 * the SetAddress() "recovery interval" required by USB and aborting the
3811 * command on a timeout.
3813 switch (command->status) {
3814 case COMP_COMMAND_ABORTED:
3815 case COMP_COMMAND_RING_STOPPED:
3816 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3817 ret = -ETIME;
3818 break;
3819 case COMP_CONTEXT_STATE_ERROR:
3820 case COMP_SLOT_NOT_ENABLED_ERROR:
3821 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3822 act, udev->slot_id);
3823 ret = -EINVAL;
3824 break;
3825 case COMP_USB_TRANSACTION_ERROR:
3826 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3827 ret = -EPROTO;
3828 break;
3829 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3830 dev_warn(&udev->dev,
3831 "ERROR: Incompatible device for setup %s command\n", act);
3832 ret = -ENODEV;
3833 break;
3834 case COMP_SUCCESS:
3835 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3836 "Successful setup %s command", act);
3837 break;
3838 default:
3839 xhci_err(xhci,
3840 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3841 act, command->status);
3842 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3843 ret = -EINVAL;
3844 break;
3846 if (ret)
3847 goto out;
3848 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3849 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850 "Op regs DCBAA ptr = %#016llx", temp_64);
3851 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852 "Slot ID %d dcbaa entry @%p = %#016llx",
3853 udev->slot_id,
3854 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3855 (unsigned long long)
3856 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 "Output Context DMA address = %#08llx",
3859 (unsigned long long)virt_dev->out_ctx->dma);
3860 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861 le32_to_cpu(slot_ctx->dev_info) >> 27);
3863 * USB core uses address 1 for the roothubs, so we add one to the
3864 * address given back to us by the HC.
3866 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3867 le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 /* Zero the input context control for later use */
3869 ctrl_ctx->add_flags = 0;
3870 ctrl_ctx->drop_flags = 0;
3872 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3873 "Internal device address = %d",
3874 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3875 out:
3876 mutex_unlock(&xhci->mutex);
3877 if (command) {
3878 kfree(command->completion);
3879 kfree(command);
3881 return ret;
3884 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3886 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3889 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3891 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3895 * Transfer the port index into real index in the HW port status
3896 * registers. Caculate offset between the port's PORTSC register
3897 * and port status base. Divide the number of per port register
3898 * to get the real index. The raw port number bases 1.
3900 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3902 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3903 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3904 __le32 __iomem *addr;
3905 int raw_port;
3907 if (hcd->speed < HCD_USB3)
3908 addr = xhci->usb2_ports[port1 - 1];
3909 else
3910 addr = xhci->usb3_ports[port1 - 1];
3912 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3913 return raw_port;
3917 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3918 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3920 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3921 struct usb_device *udev, u16 max_exit_latency)
3923 struct xhci_virt_device *virt_dev;
3924 struct xhci_command *command;
3925 struct xhci_input_control_ctx *ctrl_ctx;
3926 struct xhci_slot_ctx *slot_ctx;
3927 unsigned long flags;
3928 int ret;
3930 spin_lock_irqsave(&xhci->lock, flags);
3932 virt_dev = xhci->devs[udev->slot_id];
3935 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3936 * xHC was re-initialized. Exit latency will be set later after
3937 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3940 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3941 spin_unlock_irqrestore(&xhci->lock, flags);
3942 return 0;
3945 /* Attempt to issue an Evaluate Context command to change the MEL. */
3946 command = xhci->lpm_command;
3947 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3948 if (!ctrl_ctx) {
3949 spin_unlock_irqrestore(&xhci->lock, flags);
3950 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3951 __func__);
3952 return -ENOMEM;
3955 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3956 spin_unlock_irqrestore(&xhci->lock, flags);
3958 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3959 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3960 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3961 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3962 slot_ctx->dev_state = 0;
3964 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3965 "Set up evaluate context for LPM MEL change.");
3967 /* Issue and wait for the evaluate context command. */
3968 ret = xhci_configure_endpoint(xhci, udev, command,
3969 true, true);
3971 if (!ret) {
3972 spin_lock_irqsave(&xhci->lock, flags);
3973 virt_dev->current_mel = max_exit_latency;
3974 spin_unlock_irqrestore(&xhci->lock, flags);
3976 return ret;
3979 #ifdef CONFIG_PM
3981 /* BESL to HIRD Encoding array for USB2 LPM */
3982 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3983 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3985 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3986 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3987 struct usb_device *udev)
3989 int u2del, besl, besl_host;
3990 int besl_device = 0;
3991 u32 field;
3993 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3994 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3996 if (field & USB_BESL_SUPPORT) {
3997 for (besl_host = 0; besl_host < 16; besl_host++) {
3998 if (xhci_besl_encoding[besl_host] >= u2del)
3999 break;
4001 /* Use baseline BESL value as default */
4002 if (field & USB_BESL_BASELINE_VALID)
4003 besl_device = USB_GET_BESL_BASELINE(field);
4004 else if (field & USB_BESL_DEEP_VALID)
4005 besl_device = USB_GET_BESL_DEEP(field);
4006 } else {
4007 if (u2del <= 50)
4008 besl_host = 0;
4009 else
4010 besl_host = (u2del - 51) / 75 + 1;
4013 besl = besl_host + besl_device;
4014 if (besl > 15)
4015 besl = 15;
4017 return besl;
4020 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4021 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4023 u32 field;
4024 int l1;
4025 int besld = 0;
4026 int hirdm = 0;
4028 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4030 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4031 l1 = udev->l1_params.timeout / 256;
4033 /* device has preferred BESLD */
4034 if (field & USB_BESL_DEEP_VALID) {
4035 besld = USB_GET_BESL_DEEP(field);
4036 hirdm = 1;
4039 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4042 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4043 struct usb_device *udev, int enable)
4045 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4046 __le32 __iomem **port_array;
4047 __le32 __iomem *pm_addr, *hlpm_addr;
4048 u32 pm_val, hlpm_val, field;
4049 unsigned int port_num;
4050 unsigned long flags;
4051 int hird, exit_latency;
4052 int ret;
4054 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4055 !udev->lpm_capable)
4056 return -EPERM;
4058 if (!udev->parent || udev->parent->parent ||
4059 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4060 return -EPERM;
4062 if (udev->usb2_hw_lpm_capable != 1)
4063 return -EPERM;
4065 spin_lock_irqsave(&xhci->lock, flags);
4067 port_array = xhci->usb2_ports;
4068 port_num = udev->portnum - 1;
4069 pm_addr = port_array[port_num] + PORTPMSC;
4070 pm_val = readl(pm_addr);
4071 hlpm_addr = port_array[port_num] + PORTHLPMC;
4072 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4075 enable ? "enable" : "disable", port_num + 1);
4077 if (enable) {
4078 /* Host supports BESL timeout instead of HIRD */
4079 if (udev->usb2_hw_lpm_besl_capable) {
4080 /* if device doesn't have a preferred BESL value use a
4081 * default one which works with mixed HIRD and BESL
4082 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4084 if ((field & USB_BESL_SUPPORT) &&
4085 (field & USB_BESL_BASELINE_VALID))
4086 hird = USB_GET_BESL_BASELINE(field);
4087 else
4088 hird = udev->l1_params.besl;
4090 exit_latency = xhci_besl_encoding[hird];
4091 spin_unlock_irqrestore(&xhci->lock, flags);
4093 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4094 * input context for link powermanagement evaluate
4095 * context commands. It is protected by hcd->bandwidth
4096 * mutex and is shared by all devices. We need to set
4097 * the max ext latency in USB 2 BESL LPM as well, so
4098 * use the same mutex and xhci_change_max_exit_latency()
4100 mutex_lock(hcd->bandwidth_mutex);
4101 ret = xhci_change_max_exit_latency(xhci, udev,
4102 exit_latency);
4103 mutex_unlock(hcd->bandwidth_mutex);
4105 if (ret < 0)
4106 return ret;
4107 spin_lock_irqsave(&xhci->lock, flags);
4109 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4110 writel(hlpm_val, hlpm_addr);
4111 /* flush write */
4112 readl(hlpm_addr);
4113 } else {
4114 hird = xhci_calculate_hird_besl(xhci, udev);
4117 pm_val &= ~PORT_HIRD_MASK;
4118 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4119 writel(pm_val, pm_addr);
4120 pm_val = readl(pm_addr);
4121 pm_val |= PORT_HLE;
4122 writel(pm_val, pm_addr);
4123 /* flush write */
4124 readl(pm_addr);
4125 } else {
4126 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4127 writel(pm_val, pm_addr);
4128 /* flush write */
4129 readl(pm_addr);
4130 if (udev->usb2_hw_lpm_besl_capable) {
4131 spin_unlock_irqrestore(&xhci->lock, flags);
4132 mutex_lock(hcd->bandwidth_mutex);
4133 xhci_change_max_exit_latency(xhci, udev, 0);
4134 mutex_unlock(hcd->bandwidth_mutex);
4135 return 0;
4139 spin_unlock_irqrestore(&xhci->lock, flags);
4140 return 0;
4143 /* check if a usb2 port supports a given extened capability protocol
4144 * only USB2 ports extended protocol capability values are cached.
4145 * Return 1 if capability is supported
4147 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4148 unsigned capability)
4150 u32 port_offset, port_count;
4151 int i;
4153 for (i = 0; i < xhci->num_ext_caps; i++) {
4154 if (xhci->ext_caps[i] & capability) {
4155 /* port offsets starts at 1 */
4156 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4157 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4158 if (port >= port_offset &&
4159 port < port_offset + port_count)
4160 return 1;
4163 return 0;
4166 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4168 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4169 int portnum = udev->portnum - 1;
4171 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4172 !udev->lpm_capable)
4173 return 0;
4175 /* we only support lpm for non-hub device connected to root hub yet */
4176 if (!udev->parent || udev->parent->parent ||
4177 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4178 return 0;
4180 if (xhci->hw_lpm_support == 1 &&
4181 xhci_check_usb2_port_capability(
4182 xhci, portnum, XHCI_HLC)) {
4183 udev->usb2_hw_lpm_capable = 1;
4184 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4185 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4186 if (xhci_check_usb2_port_capability(xhci, portnum,
4187 XHCI_BLC))
4188 udev->usb2_hw_lpm_besl_capable = 1;
4191 return 0;
4194 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4196 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4197 static unsigned long long xhci_service_interval_to_ns(
4198 struct usb_endpoint_descriptor *desc)
4200 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4203 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4204 enum usb3_link_state state)
4206 unsigned long long sel;
4207 unsigned long long pel;
4208 unsigned int max_sel_pel;
4209 char *state_name;
4211 switch (state) {
4212 case USB3_LPM_U1:
4213 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4214 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4215 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4216 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4217 state_name = "U1";
4218 break;
4219 case USB3_LPM_U2:
4220 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4221 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4222 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4223 state_name = "U2";
4224 break;
4225 default:
4226 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4227 __func__);
4228 return USB3_LPM_DISABLED;
4231 if (sel <= max_sel_pel && pel <= max_sel_pel)
4232 return USB3_LPM_DEVICE_INITIATED;
4234 if (sel > max_sel_pel)
4235 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4236 "due to long SEL %llu ms\n",
4237 state_name, sel);
4238 else
4239 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4240 "due to long PEL %llu ms\n",
4241 state_name, pel);
4242 return USB3_LPM_DISABLED;
4245 /* The U1 timeout should be the maximum of the following values:
4246 * - For control endpoints, U1 system exit latency (SEL) * 3
4247 * - For bulk endpoints, U1 SEL * 5
4248 * - For interrupt endpoints:
4249 * - Notification EPs, U1 SEL * 3
4250 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4251 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4253 static unsigned long long xhci_calculate_intel_u1_timeout(
4254 struct usb_device *udev,
4255 struct usb_endpoint_descriptor *desc)
4257 unsigned long long timeout_ns;
4258 int ep_type;
4259 int intr_type;
4261 ep_type = usb_endpoint_type(desc);
4262 switch (ep_type) {
4263 case USB_ENDPOINT_XFER_CONTROL:
4264 timeout_ns = udev->u1_params.sel * 3;
4265 break;
4266 case USB_ENDPOINT_XFER_BULK:
4267 timeout_ns = udev->u1_params.sel * 5;
4268 break;
4269 case USB_ENDPOINT_XFER_INT:
4270 intr_type = usb_endpoint_interrupt_type(desc);
4271 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4272 timeout_ns = udev->u1_params.sel * 3;
4273 break;
4275 /* Otherwise the calculation is the same as isoc eps */
4276 case USB_ENDPOINT_XFER_ISOC:
4277 timeout_ns = xhci_service_interval_to_ns(desc);
4278 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4279 if (timeout_ns < udev->u1_params.sel * 2)
4280 timeout_ns = udev->u1_params.sel * 2;
4281 break;
4282 default:
4283 return 0;
4286 return timeout_ns;
4289 /* Returns the hub-encoded U1 timeout value. */
4290 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4291 struct usb_device *udev,
4292 struct usb_endpoint_descriptor *desc)
4294 unsigned long long timeout_ns;
4296 if (xhci->quirks & XHCI_INTEL_HOST)
4297 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4298 else
4299 timeout_ns = udev->u1_params.sel;
4301 /* The U1 timeout is encoded in 1us intervals.
4302 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4304 if (timeout_ns == USB3_LPM_DISABLED)
4305 timeout_ns = 1;
4306 else
4307 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4309 /* If the necessary timeout value is bigger than what we can set in the
4310 * USB 3.0 hub, we have to disable hub-initiated U1.
4312 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4313 return timeout_ns;
4314 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4315 "due to long timeout %llu ms\n", timeout_ns);
4316 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4319 /* The U2 timeout should be the maximum of:
4320 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4321 * - largest bInterval of any active periodic endpoint (to avoid going
4322 * into lower power link states between intervals).
4323 * - the U2 Exit Latency of the device
4325 static unsigned long long xhci_calculate_intel_u2_timeout(
4326 struct usb_device *udev,
4327 struct usb_endpoint_descriptor *desc)
4329 unsigned long long timeout_ns;
4330 unsigned long long u2_del_ns;
4332 timeout_ns = 10 * 1000 * 1000;
4334 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4335 (xhci_service_interval_to_ns(desc) > timeout_ns))
4336 timeout_ns = xhci_service_interval_to_ns(desc);
4338 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4339 if (u2_del_ns > timeout_ns)
4340 timeout_ns = u2_del_ns;
4342 return timeout_ns;
4345 /* Returns the hub-encoded U2 timeout value. */
4346 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4347 struct usb_device *udev,
4348 struct usb_endpoint_descriptor *desc)
4350 unsigned long long timeout_ns;
4352 if (xhci->quirks & XHCI_INTEL_HOST)
4353 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4354 else
4355 timeout_ns = udev->u2_params.sel;
4357 /* The U2 timeout is encoded in 256us intervals */
4358 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4359 /* If the necessary timeout value is bigger than what we can set in the
4360 * USB 3.0 hub, we have to disable hub-initiated U2.
4362 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4363 return timeout_ns;
4364 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4365 "due to long timeout %llu ms\n", timeout_ns);
4366 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4369 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4370 struct usb_device *udev,
4371 struct usb_endpoint_descriptor *desc,
4372 enum usb3_link_state state,
4373 u16 *timeout)
4375 if (state == USB3_LPM_U1)
4376 return xhci_calculate_u1_timeout(xhci, udev, desc);
4377 else if (state == USB3_LPM_U2)
4378 return xhci_calculate_u2_timeout(xhci, udev, desc);
4380 return USB3_LPM_DISABLED;
4383 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4384 struct usb_device *udev,
4385 struct usb_endpoint_descriptor *desc,
4386 enum usb3_link_state state,
4387 u16 *timeout)
4389 u16 alt_timeout;
4391 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4392 desc, state, timeout);
4394 /* If we found we can't enable hub-initiated LPM, or
4395 * the U1 or U2 exit latency was too high to allow
4396 * device-initiated LPM as well, just stop searching.
4398 if (alt_timeout == USB3_LPM_DISABLED ||
4399 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4400 *timeout = alt_timeout;
4401 return -E2BIG;
4403 if (alt_timeout > *timeout)
4404 *timeout = alt_timeout;
4405 return 0;
4408 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4409 struct usb_device *udev,
4410 struct usb_host_interface *alt,
4411 enum usb3_link_state state,
4412 u16 *timeout)
4414 int j;
4416 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4417 if (xhci_update_timeout_for_endpoint(xhci, udev,
4418 &alt->endpoint[j].desc, state, timeout))
4419 return -E2BIG;
4420 continue;
4422 return 0;
4425 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4426 enum usb3_link_state state)
4428 struct usb_device *parent;
4429 unsigned int num_hubs;
4431 if (state == USB3_LPM_U2)
4432 return 0;
4434 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4435 for (parent = udev->parent, num_hubs = 0; parent->parent;
4436 parent = parent->parent)
4437 num_hubs++;
4439 if (num_hubs < 2)
4440 return 0;
4442 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4443 " below second-tier hub.\n");
4444 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4445 "to decrease power consumption.\n");
4446 return -E2BIG;
4449 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4450 struct usb_device *udev,
4451 enum usb3_link_state state)
4453 if (xhci->quirks & XHCI_INTEL_HOST)
4454 return xhci_check_intel_tier_policy(udev, state);
4455 else
4456 return 0;
4459 /* Returns the U1 or U2 timeout that should be enabled.
4460 * If the tier check or timeout setting functions return with a non-zero exit
4461 * code, that means the timeout value has been finalized and we shouldn't look
4462 * at any more endpoints.
4464 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4465 struct usb_device *udev, enum usb3_link_state state)
4467 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4468 struct usb_host_config *config;
4469 char *state_name;
4470 int i;
4471 u16 timeout = USB3_LPM_DISABLED;
4473 if (state == USB3_LPM_U1)
4474 state_name = "U1";
4475 else if (state == USB3_LPM_U2)
4476 state_name = "U2";
4477 else {
4478 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4479 state);
4480 return timeout;
4483 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4484 return timeout;
4486 /* Gather some information about the currently installed configuration
4487 * and alternate interface settings.
4489 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4490 state, &timeout))
4491 return timeout;
4493 config = udev->actconfig;
4494 if (!config)
4495 return timeout;
4497 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4498 struct usb_driver *driver;
4499 struct usb_interface *intf = config->interface[i];
4501 if (!intf)
4502 continue;
4504 /* Check if any currently bound drivers want hub-initiated LPM
4505 * disabled.
4507 if (intf->dev.driver) {
4508 driver = to_usb_driver(intf->dev.driver);
4509 if (driver && driver->disable_hub_initiated_lpm) {
4510 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4511 "at request of driver %s\n",
4512 state_name, driver->name);
4513 return xhci_get_timeout_no_hub_lpm(udev, state);
4517 /* Not sure how this could happen... */
4518 if (!intf->cur_altsetting)
4519 continue;
4521 if (xhci_update_timeout_for_interface(xhci, udev,
4522 intf->cur_altsetting,
4523 state, &timeout))
4524 return timeout;
4526 return timeout;
4529 static int calculate_max_exit_latency(struct usb_device *udev,
4530 enum usb3_link_state state_changed,
4531 u16 hub_encoded_timeout)
4533 unsigned long long u1_mel_us = 0;
4534 unsigned long long u2_mel_us = 0;
4535 unsigned long long mel_us = 0;
4536 bool disabling_u1;
4537 bool disabling_u2;
4538 bool enabling_u1;
4539 bool enabling_u2;
4541 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4542 hub_encoded_timeout == USB3_LPM_DISABLED);
4543 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4544 hub_encoded_timeout == USB3_LPM_DISABLED);
4546 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4547 hub_encoded_timeout != USB3_LPM_DISABLED);
4548 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4549 hub_encoded_timeout != USB3_LPM_DISABLED);
4551 /* If U1 was already enabled and we're not disabling it,
4552 * or we're going to enable U1, account for the U1 max exit latency.
4554 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4555 enabling_u1)
4556 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4557 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4558 enabling_u2)
4559 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4561 if (u1_mel_us > u2_mel_us)
4562 mel_us = u1_mel_us;
4563 else
4564 mel_us = u2_mel_us;
4565 /* xHCI host controller max exit latency field is only 16 bits wide. */
4566 if (mel_us > MAX_EXIT) {
4567 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4568 "is too big.\n", mel_us);
4569 return -E2BIG;
4571 return mel_us;
4574 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4575 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4576 struct usb_device *udev, enum usb3_link_state state)
4578 struct xhci_hcd *xhci;
4579 u16 hub_encoded_timeout;
4580 int mel;
4581 int ret;
4583 xhci = hcd_to_xhci(hcd);
4584 /* The LPM timeout values are pretty host-controller specific, so don't
4585 * enable hub-initiated timeouts unless the vendor has provided
4586 * information about their timeout algorithm.
4588 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4589 !xhci->devs[udev->slot_id])
4590 return USB3_LPM_DISABLED;
4592 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4593 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4594 if (mel < 0) {
4595 /* Max Exit Latency is too big, disable LPM. */
4596 hub_encoded_timeout = USB3_LPM_DISABLED;
4597 mel = 0;
4600 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4601 if (ret)
4602 return ret;
4603 return hub_encoded_timeout;
4606 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4607 struct usb_device *udev, enum usb3_link_state state)
4609 struct xhci_hcd *xhci;
4610 u16 mel;
4612 xhci = hcd_to_xhci(hcd);
4613 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4614 !xhci->devs[udev->slot_id])
4615 return 0;
4617 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4618 return xhci_change_max_exit_latency(xhci, udev, mel);
4620 #else /* CONFIG_PM */
4622 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4623 struct usb_device *udev, int enable)
4625 return 0;
4628 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4630 return 0;
4633 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4634 struct usb_device *udev, enum usb3_link_state state)
4636 return USB3_LPM_DISABLED;
4639 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 struct usb_device *udev, enum usb3_link_state state)
4642 return 0;
4644 #endif /* CONFIG_PM */
4646 /*-------------------------------------------------------------------------*/
4648 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4649 * internal data structures for the device.
4651 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4652 struct usb_tt *tt, gfp_t mem_flags)
4654 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4655 struct xhci_virt_device *vdev;
4656 struct xhci_command *config_cmd;
4657 struct xhci_input_control_ctx *ctrl_ctx;
4658 struct xhci_slot_ctx *slot_ctx;
4659 unsigned long flags;
4660 unsigned think_time;
4661 int ret;
4663 /* Ignore root hubs */
4664 if (!hdev->parent)
4665 return 0;
4667 vdev = xhci->devs[hdev->slot_id];
4668 if (!vdev) {
4669 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4670 return -EINVAL;
4673 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4674 if (!config_cmd)
4675 return -ENOMEM;
4677 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4678 if (!ctrl_ctx) {
4679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4680 __func__);
4681 xhci_free_command(xhci, config_cmd);
4682 return -ENOMEM;
4685 spin_lock_irqsave(&xhci->lock, flags);
4686 if (hdev->speed == USB_SPEED_HIGH &&
4687 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4688 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4689 xhci_free_command(xhci, config_cmd);
4690 spin_unlock_irqrestore(&xhci->lock, flags);
4691 return -ENOMEM;
4694 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4695 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4696 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4697 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4699 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4700 * but it may be already set to 1 when setup an xHCI virtual
4701 * device, so clear it anyway.
4703 if (tt->multi)
4704 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4705 else if (hdev->speed == USB_SPEED_FULL)
4706 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4708 if (xhci->hci_version > 0x95) {
4709 xhci_dbg(xhci, "xHCI version %x needs hub "
4710 "TT think time and number of ports\n",
4711 (unsigned int) xhci->hci_version);
4712 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4713 /* Set TT think time - convert from ns to FS bit times.
4714 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4715 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4717 * xHCI 1.0: this field shall be 0 if the device is not a
4718 * High-spped hub.
4720 think_time = tt->think_time;
4721 if (think_time != 0)
4722 think_time = (think_time / 666) - 1;
4723 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4724 slot_ctx->tt_info |=
4725 cpu_to_le32(TT_THINK_TIME(think_time));
4726 } else {
4727 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4728 "TT think time or number of ports\n",
4729 (unsigned int) xhci->hci_version);
4731 slot_ctx->dev_state = 0;
4732 spin_unlock_irqrestore(&xhci->lock, flags);
4734 xhci_dbg(xhci, "Set up %s for hub device.\n",
4735 (xhci->hci_version > 0x95) ?
4736 "configure endpoint" : "evaluate context");
4738 /* Issue and wait for the configure endpoint or
4739 * evaluate context command.
4741 if (xhci->hci_version > 0x95)
4742 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4743 false, false);
4744 else
4745 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4746 true, false);
4748 xhci_free_command(xhci, config_cmd);
4749 return ret;
4752 static int xhci_get_frame(struct usb_hcd *hcd)
4754 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4755 /* EHCI mods by the periodic size. Why? */
4756 return readl(&xhci->run_regs->microframe_index) >> 3;
4759 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4761 struct xhci_hcd *xhci;
4763 * TODO: Check with DWC3 clients for sysdev according to
4764 * quirks
4766 struct device *dev = hcd->self.sysdev;
4767 unsigned int minor_rev;
4768 int retval;
4770 /* Accept arbitrarily long scatter-gather lists */
4771 hcd->self.sg_tablesize = ~0;
4773 /* support to build packet from discontinuous buffers */
4774 hcd->self.no_sg_constraint = 1;
4776 /* XHCI controllers don't stop the ep queue on short packets :| */
4777 hcd->self.no_stop_on_short = 1;
4779 xhci = hcd_to_xhci(hcd);
4781 if (usb_hcd_is_primary_hcd(hcd)) {
4782 xhci->main_hcd = hcd;
4783 /* Mark the first roothub as being USB 2.0.
4784 * The xHCI driver will register the USB 3.0 roothub.
4786 hcd->speed = HCD_USB2;
4787 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4789 * USB 2.0 roothub under xHCI has an integrated TT,
4790 * (rate matching hub) as opposed to having an OHCI/UHCI
4791 * companion controller.
4793 hcd->has_tt = 1;
4794 } else {
4796 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4797 * minor revision instead of sbrn
4799 minor_rev = xhci->usb3_rhub.min_rev;
4800 if (minor_rev) {
4801 hcd->speed = HCD_USB31;
4802 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4804 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4805 minor_rev,
4806 minor_rev ? "Enhanced" : "");
4808 /* xHCI private pointer was set in xhci_pci_probe for the second
4809 * registered roothub.
4811 return 0;
4814 mutex_init(&xhci->mutex);
4815 xhci->cap_regs = hcd->regs;
4816 xhci->op_regs = hcd->regs +
4817 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4818 xhci->run_regs = hcd->regs +
4819 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4820 /* Cache read-only capability registers */
4821 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4822 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4823 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4824 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4825 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4826 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4827 if (xhci->hci_version > 0x100)
4828 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4829 xhci_print_registers(xhci);
4831 xhci->quirks |= quirks;
4833 get_quirks(dev, xhci);
4835 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4836 * success event after a short transfer. This quirk will ignore such
4837 * spurious event.
4839 if (xhci->hci_version > 0x96)
4840 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4842 /* Make sure the HC is halted. */
4843 retval = xhci_halt(xhci);
4844 if (retval)
4845 return retval;
4847 xhci_dbg(xhci, "Resetting HCD\n");
4848 /* Reset the internal HC memory state and registers. */
4849 retval = xhci_reset(xhci);
4850 if (retval)
4851 return retval;
4852 xhci_dbg(xhci, "Reset complete\n");
4855 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4856 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4857 * address memory pointers actually. So, this driver clears the AC64
4858 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4859 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4861 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4862 xhci->hcc_params &= ~BIT(0);
4864 /* Set dma_mask and coherent_dma_mask to 64-bits,
4865 * if xHC supports 64-bit addressing */
4866 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4867 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4868 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4869 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4870 } else {
4872 * This is to avoid error in cases where a 32-bit USB
4873 * controller is used on a 64-bit capable system.
4875 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4876 if (retval)
4877 return retval;
4878 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4879 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4882 xhci_dbg(xhci, "Calling HCD init\n");
4883 /* Initialize HCD and host controller data structures. */
4884 retval = xhci_init(hcd);
4885 if (retval)
4886 return retval;
4887 xhci_dbg(xhci, "Called HCD init\n");
4889 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4890 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4892 return 0;
4894 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4896 static const struct hc_driver xhci_hc_driver = {
4897 .description = "xhci-hcd",
4898 .product_desc = "xHCI Host Controller",
4899 .hcd_priv_size = sizeof(struct xhci_hcd),
4902 * generic hardware linkage
4904 .irq = xhci_irq,
4905 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4908 * basic lifecycle operations
4910 .reset = NULL, /* set in xhci_init_driver() */
4911 .start = xhci_run,
4912 .stop = xhci_stop,
4913 .shutdown = xhci_shutdown,
4916 * managing i/o requests and associated device resources
4918 .urb_enqueue = xhci_urb_enqueue,
4919 .urb_dequeue = xhci_urb_dequeue,
4920 .alloc_dev = xhci_alloc_dev,
4921 .free_dev = xhci_free_dev,
4922 .alloc_streams = xhci_alloc_streams,
4923 .free_streams = xhci_free_streams,
4924 .add_endpoint = xhci_add_endpoint,
4925 .drop_endpoint = xhci_drop_endpoint,
4926 .endpoint_reset = xhci_endpoint_reset,
4927 .check_bandwidth = xhci_check_bandwidth,
4928 .reset_bandwidth = xhci_reset_bandwidth,
4929 .address_device = xhci_address_device,
4930 .enable_device = xhci_enable_device,
4931 .update_hub_device = xhci_update_hub_device,
4932 .reset_device = xhci_discover_or_reset_device,
4935 * scheduling support
4937 .get_frame_number = xhci_get_frame,
4940 * root hub support
4942 .hub_control = xhci_hub_control,
4943 .hub_status_data = xhci_hub_status_data,
4944 .bus_suspend = xhci_bus_suspend,
4945 .bus_resume = xhci_bus_resume,
4948 * call back when device connected and addressed
4950 .update_device = xhci_update_device,
4951 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4952 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4953 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4954 .find_raw_port_number = xhci_find_raw_port_number,
4957 void xhci_init_driver(struct hc_driver *drv,
4958 const struct xhci_driver_overrides *over)
4960 BUG_ON(!over);
4962 /* Copy the generic table to drv then apply the overrides */
4963 *drv = xhci_hc_driver;
4965 if (over) {
4966 drv->hcd_priv_size += over->extra_priv_size;
4967 if (over->reset)
4968 drv->reset = over->reset;
4969 if (over->start)
4970 drv->start = over->start;
4973 EXPORT_SYMBOL_GPL(xhci_init_driver);
4975 MODULE_DESCRIPTION(DRIVER_DESC);
4976 MODULE_AUTHOR(DRIVER_AUTHOR);
4977 MODULE_LICENSE("GPL");
4979 static int __init xhci_hcd_init(void)
4982 * Check the compiler generated sizes of structures that must be laid
4983 * out in specific ways for hardware access.
4985 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4986 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4987 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4988 /* xhci_device_control has eight fields, and also
4989 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4991 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4992 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4993 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4994 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4995 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4996 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4997 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4999 if (usb_disabled())
5000 return -ENODEV;
5002 return 0;
5006 * If an init function is provided, an exit function must also be provided
5007 * to allow module unload.
5009 static void __exit xhci_hcd_fini(void) { }
5011 module_init(xhci_hcd_init);
5012 module_exit(xhci_hcd_fini);