6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
34 #include <asm/mmu_context.h>
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags) (0)
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len) (addr)
46 static void unmap_region(struct mm_struct
*mm
,
47 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
48 unsigned long start
, unsigned long end
);
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map
[16] = {
72 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
73 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
76 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
78 return __pgprot(pgprot_val(protection_map
[vm_flags
&
79 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
82 EXPORT_SYMBOL(vm_get_page_prot
);
84 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
85 int sysctl_overcommit_ratio
= 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
87 atomic_long_t vm_committed_space
= ATOMIC_LONG_INIT(0);
90 * Check that a process has enough memory to allocate a new virtual
91 * mapping. 0 means there is enough memory for the allocation to
92 * succeed and -ENOMEM implies there is not.
94 * We currently support three overcommit policies, which are set via the
95 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98 * Additional code 2002 Jul 20 by Robert Love.
100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 * Note this is a helper function intended to be used by LSMs which
103 * wish to use this logic.
105 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
107 unsigned long free
, allowed
;
109 vm_acct_memory(pages
);
112 * Sometimes we want to use more memory than we have
114 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
117 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
120 free
= global_page_state(NR_FILE_PAGES
);
121 free
+= nr_swap_pages
;
124 * Any slabs which are created with the
125 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126 * which are reclaimable, under pressure. The dentry
127 * cache and most inode caches should fall into this
129 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
132 * Leave the last 3% for root
141 * nr_free_pages() is very expensive on large systems,
142 * only call if we're about to fail.
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (n
<= totalreserve_pages
)
152 n
-= totalreserve_pages
;
155 * Leave the last 3% for root
167 allowed
= (totalram_pages
- hugetlb_total_pages())
168 * sysctl_overcommit_ratio
/ 100;
170 * Leave the last 3% for root
173 allowed
-= allowed
/ 32;
174 allowed
+= total_swap_pages
;
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
179 allowed
-= mm
->total_vm
/ 32;
182 * cast `allowed' as a signed long because vm_committed_space
183 * sometimes has a negative value
185 if (atomic_long_read(&vm_committed_space
) < (long)allowed
)
188 vm_unacct_memory(pages
);
194 * Requires inode->i_mapping->i_mmap_lock
196 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
197 struct file
*file
, struct address_space
*mapping
)
199 if (vma
->vm_flags
& VM_DENYWRITE
)
200 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
201 if (vma
->vm_flags
& VM_SHARED
)
202 mapping
->i_mmap_writable
--;
204 flush_dcache_mmap_lock(mapping
);
205 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
206 list_del_init(&vma
->shared
.vm_set
.list
);
208 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
209 flush_dcache_mmap_unlock(mapping
);
213 * Unlink a file-based vm structure from its prio_tree, to hide
214 * vma from rmap and vmtruncate before freeing its page tables.
216 void unlink_file_vma(struct vm_area_struct
*vma
)
218 struct file
*file
= vma
->vm_file
;
221 struct address_space
*mapping
= file
->f_mapping
;
222 spin_lock(&mapping
->i_mmap_lock
);
223 __remove_shared_vm_struct(vma
, file
, mapping
);
224 spin_unlock(&mapping
->i_mmap_lock
);
229 * Close a vm structure and free it, returning the next.
231 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
233 struct vm_area_struct
*next
= vma
->vm_next
;
236 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
237 vma
->vm_ops
->close(vma
);
240 if (vma
->vm_flags
& VM_EXECUTABLE
)
241 removed_exe_file_vma(vma
->vm_mm
);
243 mpol_put(vma_policy(vma
));
244 kmem_cache_free(vm_area_cachep
, vma
);
248 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
250 unsigned long rlim
, retval
;
251 unsigned long newbrk
, oldbrk
;
252 struct mm_struct
*mm
= current
->mm
;
253 unsigned long min_brk
;
255 down_write(&mm
->mmap_sem
);
257 #ifdef CONFIG_COMPAT_BRK
258 min_brk
= mm
->end_code
;
260 min_brk
= mm
->start_brk
;
266 * Check against rlimit here. If this check is done later after the test
267 * of oldbrk with newbrk then it can escape the test and let the data
268 * segment grow beyond its set limit the in case where the limit is
269 * not page aligned -Ram Gupta
271 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
272 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
273 (mm
->end_data
- mm
->start_data
) > rlim
)
276 newbrk
= PAGE_ALIGN(brk
);
277 oldbrk
= PAGE_ALIGN(mm
->brk
);
278 if (oldbrk
== newbrk
)
281 /* Always allow shrinking brk. */
282 if (brk
<= mm
->brk
) {
283 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
288 /* Check against existing mmap mappings. */
289 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
292 /* Ok, looks good - let it rip. */
293 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
299 up_write(&mm
->mmap_sem
);
304 static int browse_rb(struct rb_root
*root
)
307 struct rb_node
*nd
, *pn
= NULL
;
308 unsigned long prev
= 0, pend
= 0;
310 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
311 struct vm_area_struct
*vma
;
312 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
313 if (vma
->vm_start
< prev
)
314 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
315 if (vma
->vm_start
< pend
)
316 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
317 if (vma
->vm_start
> vma
->vm_end
)
318 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
321 prev
= vma
->vm_start
;
325 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
329 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
333 void validate_mm(struct mm_struct
*mm
)
337 struct vm_area_struct
*tmp
= mm
->mmap
;
342 if (i
!= mm
->map_count
)
343 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
344 i
= browse_rb(&mm
->mm_rb
);
345 if (i
!= mm
->map_count
)
346 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
350 #define validate_mm(mm) do { } while (0)
353 static struct vm_area_struct
*
354 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
355 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
356 struct rb_node
** rb_parent
)
358 struct vm_area_struct
* vma
;
359 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
361 __rb_link
= &mm
->mm_rb
.rb_node
;
362 rb_prev
= __rb_parent
= NULL
;
366 struct vm_area_struct
*vma_tmp
;
368 __rb_parent
= *__rb_link
;
369 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
371 if (vma_tmp
->vm_end
> addr
) {
373 if (vma_tmp
->vm_start
<= addr
)
375 __rb_link
= &__rb_parent
->rb_left
;
377 rb_prev
= __rb_parent
;
378 __rb_link
= &__rb_parent
->rb_right
;
384 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
385 *rb_link
= __rb_link
;
386 *rb_parent
= __rb_parent
;
391 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
392 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
395 vma
->vm_next
= prev
->vm_next
;
400 vma
->vm_next
= rb_entry(rb_parent
,
401 struct vm_area_struct
, vm_rb
);
407 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
408 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
410 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
411 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
414 static void __vma_link_file(struct vm_area_struct
*vma
)
420 struct address_space
*mapping
= file
->f_mapping
;
422 if (vma
->vm_flags
& VM_DENYWRITE
)
423 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
424 if (vma
->vm_flags
& VM_SHARED
)
425 mapping
->i_mmap_writable
++;
427 flush_dcache_mmap_lock(mapping
);
428 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
429 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
431 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
432 flush_dcache_mmap_unlock(mapping
);
437 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
438 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
439 struct rb_node
*rb_parent
)
441 __vma_link_list(mm
, vma
, prev
, rb_parent
);
442 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
443 __anon_vma_link(vma
);
446 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
447 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
448 struct rb_node
*rb_parent
)
450 struct address_space
*mapping
= NULL
;
453 mapping
= vma
->vm_file
->f_mapping
;
456 spin_lock(&mapping
->i_mmap_lock
);
457 vma
->vm_truncate_count
= mapping
->truncate_count
;
461 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
462 __vma_link_file(vma
);
464 anon_vma_unlock(vma
);
466 spin_unlock(&mapping
->i_mmap_lock
);
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
477 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
479 struct vm_area_struct
*__vma
, *prev
;
480 struct rb_node
**rb_link
, *rb_parent
;
482 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
483 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
484 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
489 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
490 struct vm_area_struct
*prev
)
492 prev
->vm_next
= vma
->vm_next
;
493 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
494 if (mm
->mmap_cache
== vma
)
495 mm
->mmap_cache
= prev
;
499 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
500 * is already present in an i_mmap tree without adjusting the tree.
501 * The following helper function should be used when such adjustments
502 * are necessary. The "insert" vma (if any) is to be inserted
503 * before we drop the necessary locks.
505 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
506 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
508 struct mm_struct
*mm
= vma
->vm_mm
;
509 struct vm_area_struct
*next
= vma
->vm_next
;
510 struct vm_area_struct
*importer
= NULL
;
511 struct address_space
*mapping
= NULL
;
512 struct prio_tree_root
*root
= NULL
;
513 struct file
*file
= vma
->vm_file
;
514 struct anon_vma
*anon_vma
= NULL
;
515 long adjust_next
= 0;
518 if (next
&& !insert
) {
519 if (end
>= next
->vm_end
) {
521 * vma expands, overlapping all the next, and
522 * perhaps the one after too (mprotect case 6).
524 again
: remove_next
= 1 + (end
> next
->vm_end
);
526 anon_vma
= next
->anon_vma
;
528 } else if (end
> next
->vm_start
) {
530 * vma expands, overlapping part of the next:
531 * mprotect case 5 shifting the boundary up.
533 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
534 anon_vma
= next
->anon_vma
;
536 } else if (end
< vma
->vm_end
) {
538 * vma shrinks, and !insert tells it's not
539 * split_vma inserting another: so it must be
540 * mprotect case 4 shifting the boundary down.
542 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
543 anon_vma
= next
->anon_vma
;
549 mapping
= file
->f_mapping
;
550 if (!(vma
->vm_flags
& VM_NONLINEAR
))
551 root
= &mapping
->i_mmap
;
552 spin_lock(&mapping
->i_mmap_lock
);
554 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
556 * unmap_mapping_range might be in progress:
557 * ensure that the expanding vma is rescanned.
559 importer
->vm_truncate_count
= 0;
562 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
564 * Put into prio_tree now, so instantiated pages
565 * are visible to arm/parisc __flush_dcache_page
566 * throughout; but we cannot insert into address
567 * space until vma start or end is updated.
569 __vma_link_file(insert
);
574 * When changing only vma->vm_end, we don't really need
575 * anon_vma lock: but is that case worth optimizing out?
578 anon_vma
= vma
->anon_vma
;
580 spin_lock(&anon_vma
->lock
);
582 * Easily overlooked: when mprotect shifts the boundary,
583 * make sure the expanding vma has anon_vma set if the
584 * shrinking vma had, to cover any anon pages imported.
586 if (importer
&& !importer
->anon_vma
) {
587 importer
->anon_vma
= anon_vma
;
588 __anon_vma_link(importer
);
593 flush_dcache_mmap_lock(mapping
);
594 vma_prio_tree_remove(vma
, root
);
596 vma_prio_tree_remove(next
, root
);
599 vma
->vm_start
= start
;
601 vma
->vm_pgoff
= pgoff
;
603 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
604 next
->vm_pgoff
+= adjust_next
;
609 vma_prio_tree_insert(next
, root
);
610 vma_prio_tree_insert(vma
, root
);
611 flush_dcache_mmap_unlock(mapping
);
616 * vma_merge has merged next into vma, and needs
617 * us to remove next before dropping the locks.
619 __vma_unlink(mm
, next
, vma
);
621 __remove_shared_vm_struct(next
, file
, mapping
);
623 __anon_vma_merge(vma
, next
);
626 * split_vma has split insert from vma, and needs
627 * us to insert it before dropping the locks
628 * (it may either follow vma or precede it).
630 __insert_vm_struct(mm
, insert
);
634 spin_unlock(&anon_vma
->lock
);
636 spin_unlock(&mapping
->i_mmap_lock
);
641 if (next
->vm_flags
& VM_EXECUTABLE
)
642 removed_exe_file_vma(mm
);
645 mpol_put(vma_policy(next
));
646 kmem_cache_free(vm_area_cachep
, next
);
648 * In mprotect's case 6 (see comments on vma_merge),
649 * we must remove another next too. It would clutter
650 * up the code too much to do both in one go.
652 if (remove_next
== 2) {
661 /* Flags that can be inherited from an existing mapping when merging */
662 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
665 * If the vma has a ->close operation then the driver probably needs to release
666 * per-vma resources, so we don't attempt to merge those.
668 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
669 struct file
*file
, unsigned long vm_flags
)
671 if ((vma
->vm_flags
^ vm_flags
) & ~VM_MERGEABLE_FLAGS
)
673 if (vma
->vm_file
!= file
)
675 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
680 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
681 struct anon_vma
*anon_vma2
)
683 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
687 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
688 * in front of (at a lower virtual address and file offset than) the vma.
690 * We cannot merge two vmas if they have differently assigned (non-NULL)
691 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693 * We don't check here for the merged mmap wrapping around the end of pagecache
694 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
695 * wrap, nor mmaps which cover the final page at index -1UL.
698 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
699 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
701 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
702 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
703 if (vma
->vm_pgoff
== vm_pgoff
)
710 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
711 * beyond (at a higher virtual address and file offset than) the vma.
713 * We cannot merge two vmas if they have differently assigned (non-NULL)
714 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
717 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
718 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
720 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
721 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
723 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
724 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
731 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
732 * whether that can be merged with its predecessor or its successor.
733 * Or both (it neatly fills a hole).
735 * In most cases - when called for mmap, brk or mremap - [addr,end) is
736 * certain not to be mapped by the time vma_merge is called; but when
737 * called for mprotect, it is certain to be already mapped (either at
738 * an offset within prev, or at the start of next), and the flags of
739 * this area are about to be changed to vm_flags - and the no-change
740 * case has already been eliminated.
742 * The following mprotect cases have to be considered, where AAAA is
743 * the area passed down from mprotect_fixup, never extending beyond one
744 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
746 * AAAA AAAA AAAA AAAA
747 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
748 * cannot merge might become might become might become
749 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
750 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
751 * mremap move: PPPPNNNNNNNN 8
753 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
754 * might become case 1 below case 2 below case 3 below
756 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
757 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
759 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
760 struct vm_area_struct
*prev
, unsigned long addr
,
761 unsigned long end
, unsigned long vm_flags
,
762 struct anon_vma
*anon_vma
, struct file
*file
,
763 pgoff_t pgoff
, struct mempolicy
*policy
)
765 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
766 struct vm_area_struct
*area
, *next
;
769 * We later require that vma->vm_flags == vm_flags,
770 * so this tests vma->vm_flags & VM_SPECIAL, too.
772 if (vm_flags
& VM_SPECIAL
)
776 next
= prev
->vm_next
;
780 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
781 next
= next
->vm_next
;
784 * Can it merge with the predecessor?
786 if (prev
&& prev
->vm_end
== addr
&&
787 mpol_equal(vma_policy(prev
), policy
) &&
788 can_vma_merge_after(prev
, vm_flags
,
789 anon_vma
, file
, pgoff
)) {
791 * OK, it can. Can we now merge in the successor as well?
793 if (next
&& end
== next
->vm_start
&&
794 mpol_equal(policy
, vma_policy(next
)) &&
795 can_vma_merge_before(next
, vm_flags
,
796 anon_vma
, file
, pgoff
+pglen
) &&
797 is_mergeable_anon_vma(prev
->anon_vma
,
800 vma_adjust(prev
, prev
->vm_start
,
801 next
->vm_end
, prev
->vm_pgoff
, NULL
);
802 } else /* cases 2, 5, 7 */
803 vma_adjust(prev
, prev
->vm_start
,
804 end
, prev
->vm_pgoff
, NULL
);
809 * Can this new request be merged in front of next?
811 if (next
&& end
== next
->vm_start
&&
812 mpol_equal(policy
, vma_policy(next
)) &&
813 can_vma_merge_before(next
, vm_flags
,
814 anon_vma
, file
, pgoff
+pglen
)) {
815 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
816 vma_adjust(prev
, prev
->vm_start
,
817 addr
, prev
->vm_pgoff
, NULL
);
818 else /* cases 3, 8 */
819 vma_adjust(area
, addr
, next
->vm_end
,
820 next
->vm_pgoff
- pglen
, NULL
);
828 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
829 * neighbouring vmas for a suitable anon_vma, before it goes off
830 * to allocate a new anon_vma. It checks because a repetitive
831 * sequence of mprotects and faults may otherwise lead to distinct
832 * anon_vmas being allocated, preventing vma merge in subsequent
835 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
837 struct vm_area_struct
*near
;
838 unsigned long vm_flags
;
845 * Since only mprotect tries to remerge vmas, match flags
846 * which might be mprotected into each other later on.
847 * Neither mlock nor madvise tries to remerge at present,
848 * so leave their flags as obstructing a merge.
850 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
851 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
853 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
854 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
855 can_vma_merge_before(near
, vm_flags
,
856 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
857 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
858 return near
->anon_vma
;
861 * It is potentially slow to have to call find_vma_prev here.
862 * But it's only on the first write fault on the vma, not
863 * every time, and we could devise a way to avoid it later
864 * (e.g. stash info in next's anon_vma_node when assigning
865 * an anon_vma, or when trying vma_merge). Another time.
867 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
871 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
872 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
874 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
875 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
876 can_vma_merge_after(near
, vm_flags
,
877 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
878 return near
->anon_vma
;
881 * There's no absolute need to look only at touching neighbours:
882 * we could search further afield for "compatible" anon_vmas.
883 * But it would probably just be a waste of time searching,
884 * or lead to too many vmas hanging off the same anon_vma.
885 * We're trying to allow mprotect remerging later on,
886 * not trying to minimize memory used for anon_vmas.
891 #ifdef CONFIG_PROC_FS
892 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
893 struct file
*file
, long pages
)
895 const unsigned long stack_flags
896 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
899 mm
->shared_vm
+= pages
;
900 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
901 mm
->exec_vm
+= pages
;
902 } else if (flags
& stack_flags
)
903 mm
->stack_vm
+= pages
;
904 if (flags
& (VM_RESERVED
|VM_IO
))
905 mm
->reserved_vm
+= pages
;
907 #endif /* CONFIG_PROC_FS */
910 * The caller must hold down_write(current->mm->mmap_sem).
913 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
914 unsigned long len
, unsigned long prot
,
915 unsigned long flags
, unsigned long pgoff
)
917 struct mm_struct
* mm
= current
->mm
;
919 unsigned int vm_flags
;
922 unsigned long reqprot
= prot
;
925 * Does the application expect PROT_READ to imply PROT_EXEC?
927 * (the exception is when the underlying filesystem is noexec
928 * mounted, in which case we dont add PROT_EXEC.)
930 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
931 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
937 if (!(flags
& MAP_FIXED
))
938 addr
= round_hint_to_min(addr
);
940 error
= arch_mmap_check(addr
, len
, flags
);
944 /* Careful about overflows.. */
945 len
= PAGE_ALIGN(len
);
946 if (!len
|| len
> TASK_SIZE
)
949 /* offset overflow? */
950 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
953 /* Too many mappings? */
954 if (mm
->map_count
> sysctl_max_map_count
)
957 /* Obtain the address to map to. we verify (or select) it and ensure
958 * that it represents a valid section of the address space.
960 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
961 if (addr
& ~PAGE_MASK
)
964 /* Do simple checking here so the lower-level routines won't have
965 * to. we assume access permissions have been handled by the open
966 * of the memory object, so we don't do any here.
968 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
969 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
971 if (flags
& MAP_LOCKED
) {
974 vm_flags
|= VM_LOCKED
;
977 /* mlock MCL_FUTURE? */
978 if (vm_flags
& VM_LOCKED
) {
979 unsigned long locked
, lock_limit
;
980 locked
= len
>> PAGE_SHIFT
;
981 locked
+= mm
->locked_vm
;
982 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
983 lock_limit
>>= PAGE_SHIFT
;
984 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
988 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
991 switch (flags
& MAP_TYPE
) {
993 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
997 * Make sure we don't allow writing to an append-only
1000 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1004 * Make sure there are no mandatory locks on the file.
1006 if (locks_verify_locked(inode
))
1009 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1010 if (!(file
->f_mode
& FMODE_WRITE
))
1011 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1015 if (!(file
->f_mode
& FMODE_READ
))
1017 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1018 if (vm_flags
& VM_EXEC
)
1020 vm_flags
&= ~VM_MAYEXEC
;
1022 if (is_file_hugepages(file
))
1025 if (!file
->f_op
|| !file
->f_op
->mmap
)
1033 switch (flags
& MAP_TYPE
) {
1039 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1043 * Set pgoff according to addr for anon_vma.
1045 pgoff
= addr
>> PAGE_SHIFT
;
1052 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1056 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
,
1059 EXPORT_SYMBOL(do_mmap_pgoff
);
1062 * Some shared mappigns will want the pages marked read-only
1063 * to track write events. If so, we'll downgrade vm_page_prot
1064 * to the private version (using protection_map[] without the
1067 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1069 unsigned int vm_flags
= vma
->vm_flags
;
1071 /* If it was private or non-writable, the write bit is already clear */
1072 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1075 /* The backer wishes to know when pages are first written to? */
1076 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1079 /* The open routine did something to the protections already? */
1080 if (pgprot_val(vma
->vm_page_prot
) !=
1081 pgprot_val(vm_get_page_prot(vm_flags
)))
1084 /* Specialty mapping? */
1085 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1088 /* Can the mapping track the dirty pages? */
1089 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1090 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1093 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1094 unsigned long len
, unsigned long flags
,
1095 unsigned int vm_flags
, unsigned long pgoff
,
1098 struct mm_struct
*mm
= current
->mm
;
1099 struct vm_area_struct
*vma
, *prev
;
1100 int correct_wcount
= 0;
1102 struct rb_node
**rb_link
, *rb_parent
;
1103 unsigned long charged
= 0;
1104 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1106 /* Clear old maps */
1109 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1110 if (vma
&& vma
->vm_start
< addr
+ len
) {
1111 if (do_munmap(mm
, addr
, len
))
1116 /* Check against address space limit. */
1117 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1120 if (flags
& MAP_NORESERVE
)
1121 vm_flags
|= VM_NORESERVE
;
1123 if (accountable
&& (!(flags
& MAP_NORESERVE
) ||
1124 sysctl_overcommit_memory
== OVERCOMMIT_NEVER
)) {
1125 if (vm_flags
& VM_SHARED
) {
1126 /* Check memory availability in shmem_file_setup? */
1127 vm_flags
|= VM_ACCOUNT
;
1128 } else if (vm_flags
& VM_WRITE
) {
1130 * Private writable mapping: check memory availability
1132 charged
= len
>> PAGE_SHIFT
;
1133 if (security_vm_enough_memory(charged
))
1135 vm_flags
|= VM_ACCOUNT
;
1140 * Can we just expand an old mapping?
1142 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1147 * Determine the object being mapped and call the appropriate
1148 * specific mapper. the address has already been validated, but
1149 * not unmapped, but the maps are removed from the list.
1151 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1158 vma
->vm_start
= addr
;
1159 vma
->vm_end
= addr
+ len
;
1160 vma
->vm_flags
= vm_flags
;
1161 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1162 vma
->vm_pgoff
= pgoff
;
1166 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1168 if (vm_flags
& VM_DENYWRITE
) {
1169 error
= deny_write_access(file
);
1174 vma
->vm_file
= file
;
1176 error
= file
->f_op
->mmap(file
, vma
);
1178 goto unmap_and_free_vma
;
1179 if (vm_flags
& VM_EXECUTABLE
)
1180 added_exe_file_vma(mm
);
1181 } else if (vm_flags
& VM_SHARED
) {
1182 error
= shmem_zero_setup(vma
);
1187 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1188 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1189 * that memory reservation must be checked; but that reservation
1190 * belongs to shared memory object, not to vma: so now clear it.
1192 if ((vm_flags
& (VM_SHARED
|VM_ACCOUNT
)) == (VM_SHARED
|VM_ACCOUNT
))
1193 vma
->vm_flags
&= ~VM_ACCOUNT
;
1195 /* Can addr have changed??
1197 * Answer: Yes, several device drivers can do it in their
1198 * f_op->mmap method. -DaveM
1200 addr
= vma
->vm_start
;
1201 pgoff
= vma
->vm_pgoff
;
1202 vm_flags
= vma
->vm_flags
;
1204 if (vma_wants_writenotify(vma
))
1205 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1207 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1208 file
= vma
->vm_file
;
1210 /* Once vma denies write, undo our temporary denial count */
1212 atomic_inc(&inode
->i_writecount
);
1214 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1215 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1216 if (vm_flags
& VM_LOCKED
) {
1218 * makes pages present; downgrades, drops, reacquires mmap_sem
1220 long nr_pages
= mlock_vma_pages_range(vma
, addr
, addr
+ len
);
1222 return nr_pages
; /* vma gone! */
1223 mm
->locked_vm
+= (len
>> PAGE_SHIFT
) - nr_pages
;
1224 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1225 make_pages_present(addr
, addr
+ len
);
1230 atomic_inc(&inode
->i_writecount
);
1231 vma
->vm_file
= NULL
;
1234 /* Undo any partial mapping done by a device driver. */
1235 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1238 kmem_cache_free(vm_area_cachep
, vma
);
1241 vm_unacct_memory(charged
);
1245 /* Get an address range which is currently unmapped.
1246 * For shmat() with addr=0.
1248 * Ugly calling convention alert:
1249 * Return value with the low bits set means error value,
1251 * if (ret & ~PAGE_MASK)
1254 * This function "knows" that -ENOMEM has the bits set.
1256 #ifndef HAVE_ARCH_UNMAPPED_AREA
1258 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1259 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1261 struct mm_struct
*mm
= current
->mm
;
1262 struct vm_area_struct
*vma
;
1263 unsigned long start_addr
;
1265 if (len
> TASK_SIZE
)
1268 if (flags
& MAP_FIXED
)
1272 addr
= PAGE_ALIGN(addr
);
1273 vma
= find_vma(mm
, addr
);
1274 if (TASK_SIZE
- len
>= addr
&&
1275 (!vma
|| addr
+ len
<= vma
->vm_start
))
1278 if (len
> mm
->cached_hole_size
) {
1279 start_addr
= addr
= mm
->free_area_cache
;
1281 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1282 mm
->cached_hole_size
= 0;
1286 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1287 /* At this point: (!vma || addr < vma->vm_end). */
1288 if (TASK_SIZE
- len
< addr
) {
1290 * Start a new search - just in case we missed
1293 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1294 addr
= TASK_UNMAPPED_BASE
;
1296 mm
->cached_hole_size
= 0;
1301 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1303 * Remember the place where we stopped the search:
1305 mm
->free_area_cache
= addr
+ len
;
1308 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1309 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1315 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1318 * Is this a new hole at the lowest possible address?
1320 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1321 mm
->free_area_cache
= addr
;
1322 mm
->cached_hole_size
= ~0UL;
1327 * This mmap-allocator allocates new areas top-down from below the
1328 * stack's low limit (the base):
1330 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1332 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1333 const unsigned long len
, const unsigned long pgoff
,
1334 const unsigned long flags
)
1336 struct vm_area_struct
*vma
;
1337 struct mm_struct
*mm
= current
->mm
;
1338 unsigned long addr
= addr0
;
1340 /* requested length too big for entire address space */
1341 if (len
> TASK_SIZE
)
1344 if (flags
& MAP_FIXED
)
1347 /* requesting a specific address */
1349 addr
= PAGE_ALIGN(addr
);
1350 vma
= find_vma(mm
, addr
);
1351 if (TASK_SIZE
- len
>= addr
&&
1352 (!vma
|| addr
+ len
<= vma
->vm_start
))
1356 /* check if free_area_cache is useful for us */
1357 if (len
<= mm
->cached_hole_size
) {
1358 mm
->cached_hole_size
= 0;
1359 mm
->free_area_cache
= mm
->mmap_base
;
1362 /* either no address requested or can't fit in requested address hole */
1363 addr
= mm
->free_area_cache
;
1365 /* make sure it can fit in the remaining address space */
1367 vma
= find_vma(mm
, addr
-len
);
1368 if (!vma
|| addr
<= vma
->vm_start
)
1369 /* remember the address as a hint for next time */
1370 return (mm
->free_area_cache
= addr
-len
);
1373 if (mm
->mmap_base
< len
)
1376 addr
= mm
->mmap_base
-len
;
1380 * Lookup failure means no vma is above this address,
1381 * else if new region fits below vma->vm_start,
1382 * return with success:
1384 vma
= find_vma(mm
, addr
);
1385 if (!vma
|| addr
+len
<= vma
->vm_start
)
1386 /* remember the address as a hint for next time */
1387 return (mm
->free_area_cache
= addr
);
1389 /* remember the largest hole we saw so far */
1390 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1391 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1393 /* try just below the current vma->vm_start */
1394 addr
= vma
->vm_start
-len
;
1395 } while (len
< vma
->vm_start
);
1399 * A failed mmap() very likely causes application failure,
1400 * so fall back to the bottom-up function here. This scenario
1401 * can happen with large stack limits and large mmap()
1404 mm
->cached_hole_size
= ~0UL;
1405 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1406 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1408 * Restore the topdown base:
1410 mm
->free_area_cache
= mm
->mmap_base
;
1411 mm
->cached_hole_size
= ~0UL;
1417 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1420 * Is this a new hole at the highest possible address?
1422 if (addr
> mm
->free_area_cache
)
1423 mm
->free_area_cache
= addr
;
1425 /* dont allow allocations above current base */
1426 if (mm
->free_area_cache
> mm
->mmap_base
)
1427 mm
->free_area_cache
= mm
->mmap_base
;
1431 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1432 unsigned long pgoff
, unsigned long flags
)
1434 unsigned long (*get_area
)(struct file
*, unsigned long,
1435 unsigned long, unsigned long, unsigned long);
1437 get_area
= current
->mm
->get_unmapped_area
;
1438 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1439 get_area
= file
->f_op
->get_unmapped_area
;
1440 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1441 if (IS_ERR_VALUE(addr
))
1444 if (addr
> TASK_SIZE
- len
)
1446 if (addr
& ~PAGE_MASK
)
1449 return arch_rebalance_pgtables(addr
, len
);
1452 EXPORT_SYMBOL(get_unmapped_area
);
1454 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1455 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1457 struct vm_area_struct
*vma
= NULL
;
1460 /* Check the cache first. */
1461 /* (Cache hit rate is typically around 35%.) */
1462 vma
= mm
->mmap_cache
;
1463 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1464 struct rb_node
* rb_node
;
1466 rb_node
= mm
->mm_rb
.rb_node
;
1470 struct vm_area_struct
* vma_tmp
;
1472 vma_tmp
= rb_entry(rb_node
,
1473 struct vm_area_struct
, vm_rb
);
1475 if (vma_tmp
->vm_end
> addr
) {
1477 if (vma_tmp
->vm_start
<= addr
)
1479 rb_node
= rb_node
->rb_left
;
1481 rb_node
= rb_node
->rb_right
;
1484 mm
->mmap_cache
= vma
;
1490 EXPORT_SYMBOL(find_vma
);
1492 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1493 struct vm_area_struct
*
1494 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1495 struct vm_area_struct
**pprev
)
1497 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1498 struct rb_node
*rb_node
;
1502 /* Guard against addr being lower than the first VMA */
1505 /* Go through the RB tree quickly. */
1506 rb_node
= mm
->mm_rb
.rb_node
;
1509 struct vm_area_struct
*vma_tmp
;
1510 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1512 if (addr
< vma_tmp
->vm_end
) {
1513 rb_node
= rb_node
->rb_left
;
1516 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1518 rb_node
= rb_node
->rb_right
;
1524 return prev
? prev
->vm_next
: vma
;
1528 * Verify that the stack growth is acceptable and
1529 * update accounting. This is shared with both the
1530 * grow-up and grow-down cases.
1532 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1534 struct mm_struct
*mm
= vma
->vm_mm
;
1535 struct rlimit
*rlim
= current
->signal
->rlim
;
1536 unsigned long new_start
;
1538 /* address space limit tests */
1539 if (!may_expand_vm(mm
, grow
))
1542 /* Stack limit test */
1543 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1546 /* mlock limit tests */
1547 if (vma
->vm_flags
& VM_LOCKED
) {
1548 unsigned long locked
;
1549 unsigned long limit
;
1550 locked
= mm
->locked_vm
+ grow
;
1551 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1552 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1556 /* Check to ensure the stack will not grow into a hugetlb-only region */
1557 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1559 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1563 * Overcommit.. This must be the final test, as it will
1564 * update security statistics.
1566 if (security_vm_enough_memory(grow
))
1569 /* Ok, everything looks good - let it rip */
1570 mm
->total_vm
+= grow
;
1571 if (vma
->vm_flags
& VM_LOCKED
)
1572 mm
->locked_vm
+= grow
;
1573 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1577 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1579 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1580 * vma is the last one with address > vma->vm_end. Have to extend vma.
1585 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1589 if (!(vma
->vm_flags
& VM_GROWSUP
))
1593 * We must make sure the anon_vma is allocated
1594 * so that the anon_vma locking is not a noop.
1596 if (unlikely(anon_vma_prepare(vma
)))
1601 * vma->vm_start/vm_end cannot change under us because the caller
1602 * is required to hold the mmap_sem in read mode. We need the
1603 * anon_vma lock to serialize against concurrent expand_stacks.
1604 * Also guard against wrapping around to address 0.
1606 if (address
< PAGE_ALIGN(address
+4))
1607 address
= PAGE_ALIGN(address
+4);
1609 anon_vma_unlock(vma
);
1614 /* Somebody else might have raced and expanded it already */
1615 if (address
> vma
->vm_end
) {
1616 unsigned long size
, grow
;
1618 size
= address
- vma
->vm_start
;
1619 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1621 error
= acct_stack_growth(vma
, size
, grow
);
1623 vma
->vm_end
= address
;
1625 anon_vma_unlock(vma
);
1628 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1631 * vma is the first one with address < vma->vm_start. Have to extend vma.
1633 static int expand_downwards(struct vm_area_struct
*vma
,
1634 unsigned long address
)
1639 * We must make sure the anon_vma is allocated
1640 * so that the anon_vma locking is not a noop.
1642 if (unlikely(anon_vma_prepare(vma
)))
1645 address
&= PAGE_MASK
;
1646 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1653 * vma->vm_start/vm_end cannot change under us because the caller
1654 * is required to hold the mmap_sem in read mode. We need the
1655 * anon_vma lock to serialize against concurrent expand_stacks.
1658 /* Somebody else might have raced and expanded it already */
1659 if (address
< vma
->vm_start
) {
1660 unsigned long size
, grow
;
1662 size
= vma
->vm_end
- address
;
1663 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1665 error
= acct_stack_growth(vma
, size
, grow
);
1667 vma
->vm_start
= address
;
1668 vma
->vm_pgoff
-= grow
;
1671 anon_vma_unlock(vma
);
1675 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1677 return expand_downwards(vma
, address
);
1680 #ifdef CONFIG_STACK_GROWSUP
1681 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1683 return expand_upwards(vma
, address
);
1686 struct vm_area_struct
*
1687 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1689 struct vm_area_struct
*vma
, *prev
;
1692 vma
= find_vma_prev(mm
, addr
, &prev
);
1693 if (vma
&& (vma
->vm_start
<= addr
))
1695 if (!prev
|| expand_stack(prev
, addr
))
1697 if (prev
->vm_flags
& VM_LOCKED
) {
1698 if (mlock_vma_pages_range(prev
, addr
, prev
->vm_end
) < 0)
1699 return NULL
; /* vma gone! */
1704 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1706 return expand_downwards(vma
, address
);
1709 struct vm_area_struct
*
1710 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1712 struct vm_area_struct
* vma
;
1713 unsigned long start
;
1716 vma
= find_vma(mm
,addr
);
1719 if (vma
->vm_start
<= addr
)
1721 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1723 start
= vma
->vm_start
;
1724 if (expand_stack(vma
, addr
))
1726 if (vma
->vm_flags
& VM_LOCKED
) {
1727 if (mlock_vma_pages_range(vma
, addr
, start
) < 0)
1728 return NULL
; /* vma gone! */
1735 * Ok - we have the memory areas we should free on the vma list,
1736 * so release them, and do the vma updates.
1738 * Called with the mm semaphore held.
1740 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1742 /* Update high watermark before we lower total_vm */
1743 update_hiwater_vm(mm
);
1745 long nrpages
= vma_pages(vma
);
1747 mm
->total_vm
-= nrpages
;
1748 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1749 vma
= remove_vma(vma
);
1755 * Get rid of page table information in the indicated region.
1757 * Called with the mm semaphore held.
1759 static void unmap_region(struct mm_struct
*mm
,
1760 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1761 unsigned long start
, unsigned long end
)
1763 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1764 struct mmu_gather
*tlb
;
1765 unsigned long nr_accounted
= 0;
1768 tlb
= tlb_gather_mmu(mm
, 0);
1769 update_hiwater_rss(mm
);
1770 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1771 vm_unacct_memory(nr_accounted
);
1772 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1773 next
? next
->vm_start
: 0);
1774 tlb_finish_mmu(tlb
, start
, end
);
1778 * Create a list of vma's touched by the unmap, removing them from the mm's
1779 * vma list as we go..
1782 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1783 struct vm_area_struct
*prev
, unsigned long end
)
1785 struct vm_area_struct
**insertion_point
;
1786 struct vm_area_struct
*tail_vma
= NULL
;
1789 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1791 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1795 } while (vma
&& vma
->vm_start
< end
);
1796 *insertion_point
= vma
;
1797 tail_vma
->vm_next
= NULL
;
1798 if (mm
->unmap_area
== arch_unmap_area
)
1799 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1801 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1802 mm
->unmap_area(mm
, addr
);
1803 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1807 * Split a vma into two pieces at address 'addr', a new vma is allocated
1808 * either for the first part or the tail.
1810 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1811 unsigned long addr
, int new_below
)
1813 struct mempolicy
*pol
;
1814 struct vm_area_struct
*new;
1816 if (is_vm_hugetlb_page(vma
) && (addr
&
1817 ~(huge_page_mask(hstate_vma(vma
)))))
1820 if (mm
->map_count
>= sysctl_max_map_count
)
1823 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1827 /* most fields are the same, copy all, and then fixup */
1833 new->vm_start
= addr
;
1834 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1837 pol
= mpol_dup(vma_policy(vma
));
1839 kmem_cache_free(vm_area_cachep
, new);
1840 return PTR_ERR(pol
);
1842 vma_set_policy(new, pol
);
1845 get_file(new->vm_file
);
1846 if (vma
->vm_flags
& VM_EXECUTABLE
)
1847 added_exe_file_vma(mm
);
1850 if (new->vm_ops
&& new->vm_ops
->open
)
1851 new->vm_ops
->open(new);
1854 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1855 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1857 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1862 /* Munmap is split into 2 main parts -- this part which finds
1863 * what needs doing, and the areas themselves, which do the
1864 * work. This now handles partial unmappings.
1865 * Jeremy Fitzhardinge <jeremy@goop.org>
1867 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1870 struct vm_area_struct
*vma
, *prev
, *last
;
1872 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1875 if ((len
= PAGE_ALIGN(len
)) == 0)
1878 /* Find the first overlapping VMA */
1879 vma
= find_vma_prev(mm
, start
, &prev
);
1882 /* we have start < vma->vm_end */
1884 /* if it doesn't overlap, we have nothing.. */
1886 if (vma
->vm_start
>= end
)
1890 * If we need to split any vma, do it now to save pain later.
1892 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1893 * unmapped vm_area_struct will remain in use: so lower split_vma
1894 * places tmp vma above, and higher split_vma places tmp vma below.
1896 if (start
> vma
->vm_start
) {
1897 int error
= split_vma(mm
, vma
, start
, 0);
1903 /* Does it split the last one? */
1904 last
= find_vma(mm
, end
);
1905 if (last
&& end
> last
->vm_start
) {
1906 int error
= split_vma(mm
, last
, end
, 1);
1910 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1913 * unlock any mlock()ed ranges before detaching vmas
1915 if (mm
->locked_vm
) {
1916 struct vm_area_struct
*tmp
= vma
;
1917 while (tmp
&& tmp
->vm_start
< end
) {
1918 if (tmp
->vm_flags
& VM_LOCKED
) {
1919 mm
->locked_vm
-= vma_pages(tmp
);
1920 munlock_vma_pages_all(tmp
);
1927 * Remove the vma's, and unmap the actual pages
1929 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1930 unmap_region(mm
, vma
, prev
, start
, end
);
1932 /* Fix up all other VM information */
1933 remove_vma_list(mm
, vma
);
1938 EXPORT_SYMBOL(do_munmap
);
1940 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1943 struct mm_struct
*mm
= current
->mm
;
1945 profile_munmap(addr
);
1947 down_write(&mm
->mmap_sem
);
1948 ret
= do_munmap(mm
, addr
, len
);
1949 up_write(&mm
->mmap_sem
);
1953 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
1955 #ifdef CONFIG_DEBUG_VM
1956 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
1958 up_read(&mm
->mmap_sem
);
1964 * this is really a simplified "do_mmap". it only handles
1965 * anonymous maps. eventually we may be able to do some
1966 * brk-specific accounting here.
1968 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1970 struct mm_struct
* mm
= current
->mm
;
1971 struct vm_area_struct
* vma
, * prev
;
1972 unsigned long flags
;
1973 struct rb_node
** rb_link
, * rb_parent
;
1974 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1977 len
= PAGE_ALIGN(len
);
1981 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1984 if (is_hugepage_only_range(mm
, addr
, len
))
1987 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
1991 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
1993 error
= arch_mmap_check(addr
, len
, flags
);
2000 if (mm
->def_flags
& VM_LOCKED
) {
2001 unsigned long locked
, lock_limit
;
2002 locked
= len
>> PAGE_SHIFT
;
2003 locked
+= mm
->locked_vm
;
2004 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2005 lock_limit
>>= PAGE_SHIFT
;
2006 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2011 * mm->mmap_sem is required to protect against another thread
2012 * changing the mappings in case we sleep.
2014 verify_mm_writelocked(mm
);
2017 * Clear old maps. this also does some error checking for us
2020 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2021 if (vma
&& vma
->vm_start
< addr
+ len
) {
2022 if (do_munmap(mm
, addr
, len
))
2027 /* Check against address space limits *after* clearing old maps... */
2028 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2031 if (mm
->map_count
> sysctl_max_map_count
)
2034 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2037 /* Can we just expand an old private anonymous mapping? */
2038 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2039 NULL
, NULL
, pgoff
, NULL
);
2044 * create a vma struct for an anonymous mapping
2046 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2048 vm_unacct_memory(len
>> PAGE_SHIFT
);
2053 vma
->vm_start
= addr
;
2054 vma
->vm_end
= addr
+ len
;
2055 vma
->vm_pgoff
= pgoff
;
2056 vma
->vm_flags
= flags
;
2057 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2058 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2060 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2061 if (flags
& VM_LOCKED
) {
2062 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2063 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2068 EXPORT_SYMBOL(do_brk
);
2070 /* Release all mmaps. */
2071 void exit_mmap(struct mm_struct
*mm
)
2073 struct mmu_gather
*tlb
;
2074 struct vm_area_struct
*vma
;
2075 unsigned long nr_accounted
= 0;
2078 /* mm's last user has gone, and its about to be pulled down */
2080 mmu_notifier_release(mm
);
2082 if (!mm
->mmap
) /* Can happen if dup_mmap() received an OOM */
2085 if (mm
->locked_vm
) {
2088 if (vma
->vm_flags
& VM_LOCKED
)
2089 munlock_vma_pages_all(vma
);
2096 tlb
= tlb_gather_mmu(mm
, 1);
2097 /* update_hiwater_rss(mm) here? but nobody should be looking */
2098 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2099 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2100 vm_unacct_memory(nr_accounted
);
2101 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2102 tlb_finish_mmu(tlb
, 0, end
);
2105 * Walk the list again, actually closing and freeing it,
2106 * with preemption enabled, without holding any MM locks.
2109 vma
= remove_vma(vma
);
2111 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2114 /* Insert vm structure into process list sorted by address
2115 * and into the inode's i_mmap tree. If vm_file is non-NULL
2116 * then i_mmap_lock is taken here.
2118 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2120 struct vm_area_struct
* __vma
, * prev
;
2121 struct rb_node
** rb_link
, * rb_parent
;
2124 * The vm_pgoff of a purely anonymous vma should be irrelevant
2125 * until its first write fault, when page's anon_vma and index
2126 * are set. But now set the vm_pgoff it will almost certainly
2127 * end up with (unless mremap moves it elsewhere before that
2128 * first wfault), so /proc/pid/maps tells a consistent story.
2130 * By setting it to reflect the virtual start address of the
2131 * vma, merges and splits can happen in a seamless way, just
2132 * using the existing file pgoff checks and manipulations.
2133 * Similarly in do_mmap_pgoff and in do_brk.
2135 if (!vma
->vm_file
) {
2136 BUG_ON(vma
->anon_vma
);
2137 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2139 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2140 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2142 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2143 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2145 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2150 * Copy the vma structure to a new location in the same mm,
2151 * prior to moving page table entries, to effect an mremap move.
2153 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2154 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2156 struct vm_area_struct
*vma
= *vmap
;
2157 unsigned long vma_start
= vma
->vm_start
;
2158 struct mm_struct
*mm
= vma
->vm_mm
;
2159 struct vm_area_struct
*new_vma
, *prev
;
2160 struct rb_node
**rb_link
, *rb_parent
;
2161 struct mempolicy
*pol
;
2164 * If anonymous vma has not yet been faulted, update new pgoff
2165 * to match new location, to increase its chance of merging.
2167 if (!vma
->vm_file
&& !vma
->anon_vma
)
2168 pgoff
= addr
>> PAGE_SHIFT
;
2170 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2171 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2172 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2175 * Source vma may have been merged into new_vma
2177 if (vma_start
>= new_vma
->vm_start
&&
2178 vma_start
< new_vma
->vm_end
)
2181 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2184 pol
= mpol_dup(vma_policy(vma
));
2186 kmem_cache_free(vm_area_cachep
, new_vma
);
2189 vma_set_policy(new_vma
, pol
);
2190 new_vma
->vm_start
= addr
;
2191 new_vma
->vm_end
= addr
+ len
;
2192 new_vma
->vm_pgoff
= pgoff
;
2193 if (new_vma
->vm_file
) {
2194 get_file(new_vma
->vm_file
);
2195 if (vma
->vm_flags
& VM_EXECUTABLE
)
2196 added_exe_file_vma(mm
);
2198 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2199 new_vma
->vm_ops
->open(new_vma
);
2200 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2207 * Return true if the calling process may expand its vm space by the passed
2210 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2212 unsigned long cur
= mm
->total_vm
; /* pages */
2215 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2217 if (cur
+ npages
> lim
)
2223 static int special_mapping_fault(struct vm_area_struct
*vma
,
2224 struct vm_fault
*vmf
)
2227 struct page
**pages
;
2230 * special mappings have no vm_file, and in that case, the mm
2231 * uses vm_pgoff internally. So we have to subtract it from here.
2232 * We are allowed to do this because we are the mm; do not copy
2233 * this code into drivers!
2235 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2237 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2241 struct page
*page
= *pages
;
2247 return VM_FAULT_SIGBUS
;
2251 * Having a close hook prevents vma merging regardless of flags.
2253 static void special_mapping_close(struct vm_area_struct
*vma
)
2257 static struct vm_operations_struct special_mapping_vmops
= {
2258 .close
= special_mapping_close
,
2259 .fault
= special_mapping_fault
,
2263 * Called with mm->mmap_sem held for writing.
2264 * Insert a new vma covering the given region, with the given flags.
2265 * Its pages are supplied by the given array of struct page *.
2266 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2267 * The region past the last page supplied will always produce SIGBUS.
2268 * The array pointer and the pages it points to are assumed to stay alive
2269 * for as long as this mapping might exist.
2271 int install_special_mapping(struct mm_struct
*mm
,
2272 unsigned long addr
, unsigned long len
,
2273 unsigned long vm_flags
, struct page
**pages
)
2275 struct vm_area_struct
*vma
;
2277 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2278 if (unlikely(vma
== NULL
))
2282 vma
->vm_start
= addr
;
2283 vma
->vm_end
= addr
+ len
;
2285 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2286 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2288 vma
->vm_ops
= &special_mapping_vmops
;
2289 vma
->vm_private_data
= pages
;
2291 if (unlikely(insert_vm_struct(mm
, vma
))) {
2292 kmem_cache_free(vm_area_cachep
, vma
);
2296 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2301 static DEFINE_MUTEX(mm_all_locks_mutex
);
2303 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2305 if (!test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2307 * The LSB of head.next can't change from under us
2308 * because we hold the mm_all_locks_mutex.
2310 spin_lock_nest_lock(&anon_vma
->lock
, &mm
->mmap_sem
);
2312 * We can safely modify head.next after taking the
2313 * anon_vma->lock. If some other vma in this mm shares
2314 * the same anon_vma we won't take it again.
2316 * No need of atomic instructions here, head.next
2317 * can't change from under us thanks to the
2320 if (__test_and_set_bit(0, (unsigned long *)
2321 &anon_vma
->head
.next
))
2326 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2328 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2330 * AS_MM_ALL_LOCKS can't change from under us because
2331 * we hold the mm_all_locks_mutex.
2333 * Operations on ->flags have to be atomic because
2334 * even if AS_MM_ALL_LOCKS is stable thanks to the
2335 * mm_all_locks_mutex, there may be other cpus
2336 * changing other bitflags in parallel to us.
2338 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2340 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2345 * This operation locks against the VM for all pte/vma/mm related
2346 * operations that could ever happen on a certain mm. This includes
2347 * vmtruncate, try_to_unmap, and all page faults.
2349 * The caller must take the mmap_sem in write mode before calling
2350 * mm_take_all_locks(). The caller isn't allowed to release the
2351 * mmap_sem until mm_drop_all_locks() returns.
2353 * mmap_sem in write mode is required in order to block all operations
2354 * that could modify pagetables and free pages without need of
2355 * altering the vma layout (for example populate_range() with
2356 * nonlinear vmas). It's also needed in write mode to avoid new
2357 * anon_vmas to be associated with existing vmas.
2359 * A single task can't take more than one mm_take_all_locks() in a row
2360 * or it would deadlock.
2362 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2363 * mapping->flags avoid to take the same lock twice, if more than one
2364 * vma in this mm is backed by the same anon_vma or address_space.
2366 * We can take all the locks in random order because the VM code
2367 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2368 * takes more than one of them in a row. Secondly we're protected
2369 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2371 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2372 * that may have to take thousand of locks.
2374 * mm_take_all_locks() can fail if it's interrupted by signals.
2376 int mm_take_all_locks(struct mm_struct
*mm
)
2378 struct vm_area_struct
*vma
;
2381 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2383 mutex_lock(&mm_all_locks_mutex
);
2385 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2386 if (signal_pending(current
))
2388 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2389 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2392 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2393 if (signal_pending(current
))
2396 vm_lock_anon_vma(mm
, vma
->anon_vma
);
2403 mm_drop_all_locks(mm
);
2408 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2410 if (test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2412 * The LSB of head.next can't change to 0 from under
2413 * us because we hold the mm_all_locks_mutex.
2415 * We must however clear the bitflag before unlocking
2416 * the vma so the users using the anon_vma->head will
2417 * never see our bitflag.
2419 * No need of atomic instructions here, head.next
2420 * can't change from under us until we release the
2423 if (!__test_and_clear_bit(0, (unsigned long *)
2424 &anon_vma
->head
.next
))
2426 spin_unlock(&anon_vma
->lock
);
2430 static void vm_unlock_mapping(struct address_space
*mapping
)
2432 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2434 * AS_MM_ALL_LOCKS can't change to 0 from under us
2435 * because we hold the mm_all_locks_mutex.
2437 spin_unlock(&mapping
->i_mmap_lock
);
2438 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2445 * The mmap_sem cannot be released by the caller until
2446 * mm_drop_all_locks() returns.
2448 void mm_drop_all_locks(struct mm_struct
*mm
)
2450 struct vm_area_struct
*vma
;
2452 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2453 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2455 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2457 vm_unlock_anon_vma(vma
->anon_vma
);
2458 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2459 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2462 mutex_unlock(&mm_all_locks_mutex
);
2466 * initialise the VMA slab
2468 void __init
mmap_init(void)
2470 vm_area_cachep
= kmem_cache_create("vm_area_struct",
2471 sizeof(struct vm_area_struct
), 0,