3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/uaccess.h>
23 * DOC: bitmap introduction
25 * bitmaps provide an array of bits, implemented using an an
26 * array of unsigned longs. The number of valid bits in a
27 * given bitmap does _not_ need to be an exact multiple of
30 * The possible unused bits in the last, partially used word
31 * of a bitmap are 'don't care'. The implementation makes
32 * no particular effort to keep them zero. It ensures that
33 * their value will not affect the results of any operation.
34 * The bitmap operations that return Boolean (bitmap_empty,
35 * for example) or scalar (bitmap_weight, for example) results
36 * carefully filter out these unused bits from impacting their
39 * These operations actually hold to a slightly stronger rule:
40 * if you don't input any bitmaps to these ops that have some
41 * unused bits set, then they won't output any set unused bits
44 * The byte ordering of bitmaps is more natural on little
45 * endian architectures. See the big-endian headers
46 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
47 * for the best explanations of this ordering.
50 int __bitmap_equal(const unsigned long *bitmap1
,
51 const unsigned long *bitmap2
, unsigned int bits
)
53 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
54 for (k
= 0; k
< lim
; ++k
)
55 if (bitmap1
[k
] != bitmap2
[k
])
58 if (bits
% BITS_PER_LONG
)
59 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
64 EXPORT_SYMBOL(__bitmap_equal
);
66 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
68 unsigned int k
, lim
= BITS_TO_LONGS(bits
);
69 for (k
= 0; k
< lim
; ++k
)
72 EXPORT_SYMBOL(__bitmap_complement
);
75 * __bitmap_shift_right - logical right shift of the bits in a bitmap
76 * @dst : destination bitmap
77 * @src : source bitmap
78 * @shift : shift by this many bits
79 * @nbits : bitmap size, in bits
81 * Shifting right (dividing) means moving bits in the MS -> LS bit
82 * direction. Zeros are fed into the vacated MS positions and the
83 * LS bits shifted off the bottom are lost.
85 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
86 unsigned shift
, unsigned nbits
)
88 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
89 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
90 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
91 for (k
= 0; off
+ k
< lim
; ++k
) {
92 unsigned long upper
, lower
;
95 * If shift is not word aligned, take lower rem bits of
96 * word above and make them the top rem bits of result.
98 if (!rem
|| off
+ k
+ 1 >= lim
)
101 upper
= src
[off
+ k
+ 1];
102 if (off
+ k
+ 1 == lim
- 1)
104 upper
<<= (BITS_PER_LONG
- rem
);
106 lower
= src
[off
+ k
];
107 if (off
+ k
== lim
- 1)
110 dst
[k
] = lower
| upper
;
113 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
115 EXPORT_SYMBOL(__bitmap_shift_right
);
119 * __bitmap_shift_left - logical left shift of the bits in a bitmap
120 * @dst : destination bitmap
121 * @src : source bitmap
122 * @shift : shift by this many bits
123 * @nbits : bitmap size, in bits
125 * Shifting left (multiplying) means moving bits in the LS -> MS
126 * direction. Zeros are fed into the vacated LS bit positions
127 * and those MS bits shifted off the top are lost.
130 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
131 unsigned int shift
, unsigned int nbits
)
134 unsigned int lim
= BITS_TO_LONGS(nbits
);
135 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
136 for (k
= lim
- off
- 1; k
>= 0; --k
) {
137 unsigned long upper
, lower
;
140 * If shift is not word aligned, take upper rem bits of
141 * word below and make them the bottom rem bits of result.
144 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
147 upper
= src
[k
] << rem
;
148 dst
[k
+ off
] = lower
| upper
;
151 memset(dst
, 0, off
*sizeof(unsigned long));
153 EXPORT_SYMBOL(__bitmap_shift_left
);
155 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
156 const unsigned long *bitmap2
, unsigned int bits
)
159 unsigned int lim
= bits
/BITS_PER_LONG
;
160 unsigned long result
= 0;
162 for (k
= 0; k
< lim
; k
++)
163 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
164 if (bits
% BITS_PER_LONG
)
165 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
166 BITMAP_LAST_WORD_MASK(bits
));
169 EXPORT_SYMBOL(__bitmap_and
);
171 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
172 const unsigned long *bitmap2
, unsigned int bits
)
175 unsigned int nr
= BITS_TO_LONGS(bits
);
177 for (k
= 0; k
< nr
; k
++)
178 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
180 EXPORT_SYMBOL(__bitmap_or
);
182 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
183 const unsigned long *bitmap2
, unsigned int bits
)
186 unsigned int nr
= BITS_TO_LONGS(bits
);
188 for (k
= 0; k
< nr
; k
++)
189 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
191 EXPORT_SYMBOL(__bitmap_xor
);
193 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
194 const unsigned long *bitmap2
, unsigned int bits
)
197 unsigned int lim
= bits
/BITS_PER_LONG
;
198 unsigned long result
= 0;
200 for (k
= 0; k
< lim
; k
++)
201 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
202 if (bits
% BITS_PER_LONG
)
203 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
204 BITMAP_LAST_WORD_MASK(bits
));
207 EXPORT_SYMBOL(__bitmap_andnot
);
209 int __bitmap_intersects(const unsigned long *bitmap1
,
210 const unsigned long *bitmap2
, unsigned int bits
)
212 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
213 for (k
= 0; k
< lim
; ++k
)
214 if (bitmap1
[k
] & bitmap2
[k
])
217 if (bits
% BITS_PER_LONG
)
218 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
222 EXPORT_SYMBOL(__bitmap_intersects
);
224 int __bitmap_subset(const unsigned long *bitmap1
,
225 const unsigned long *bitmap2
, unsigned int bits
)
227 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
228 for (k
= 0; k
< lim
; ++k
)
229 if (bitmap1
[k
] & ~bitmap2
[k
])
232 if (bits
% BITS_PER_LONG
)
233 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
237 EXPORT_SYMBOL(__bitmap_subset
);
239 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
241 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
244 for (k
= 0; k
< lim
; k
++)
245 w
+= hweight_long(bitmap
[k
]);
247 if (bits
% BITS_PER_LONG
)
248 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
252 EXPORT_SYMBOL(__bitmap_weight
);
254 void __bitmap_set(unsigned long *map
, unsigned int start
, int len
)
256 unsigned long *p
= map
+ BIT_WORD(start
);
257 const unsigned int size
= start
+ len
;
258 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
259 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
261 while (len
- bits_to_set
>= 0) {
264 bits_to_set
= BITS_PER_LONG
;
269 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
273 EXPORT_SYMBOL(__bitmap_set
);
275 void __bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
277 unsigned long *p
= map
+ BIT_WORD(start
);
278 const unsigned int size
= start
+ len
;
279 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
280 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
282 while (len
- bits_to_clear
>= 0) {
283 *p
&= ~mask_to_clear
;
284 len
-= bits_to_clear
;
285 bits_to_clear
= BITS_PER_LONG
;
286 mask_to_clear
= ~0UL;
290 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
291 *p
&= ~mask_to_clear
;
294 EXPORT_SYMBOL(__bitmap_clear
);
297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
298 * @map: The address to base the search on
299 * @size: The bitmap size in bits
300 * @start: The bitnumber to start searching at
301 * @nr: The number of zeroed bits we're looking for
302 * @align_mask: Alignment mask for zero area
303 * @align_offset: Alignment offset for zero area.
305 * The @align_mask should be one less than a power of 2; the effect is that
306 * the bit offset of all zero areas this function finds plus @align_offset
307 * is multiple of that power of 2.
309 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
313 unsigned long align_mask
,
314 unsigned long align_offset
)
316 unsigned long index
, end
, i
;
318 index
= find_next_zero_bit(map
, size
, start
);
320 /* Align allocation */
321 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
326 i
= find_next_bit(map
, end
, index
);
333 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
337 * second version by Paul Jackson, third by Joe Korty.
341 #define nbits_to_hold_value(val) fls(val)
342 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
345 * __bitmap_parse - convert an ASCII hex string into a bitmap.
346 * @buf: pointer to buffer containing string.
347 * @buflen: buffer size in bytes. If string is smaller than this
348 * then it must be terminated with a \0.
349 * @is_user: location of buffer, 0 indicates kernel space
350 * @maskp: pointer to bitmap array that will contain result.
351 * @nmaskbits: size of bitmap, in bits.
353 * Commas group hex digits into chunks. Each chunk defines exactly 32
354 * bits of the resultant bitmask. No chunk may specify a value larger
355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
356 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
357 * characters and for grouping errors such as "1,,5", ",44", "," and "".
358 * Leading and trailing whitespace accepted, but not embedded whitespace.
360 int __bitmap_parse(const char *buf
, unsigned int buflen
,
361 int is_user
, unsigned long *maskp
,
364 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
366 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
368 bitmap_zero(maskp
, nmaskbits
);
370 nchunks
= nbits
= totaldigits
= c
= 0;
373 ndigits
= totaldigits
;
375 /* Get the next chunk of the bitmap */
379 if (__get_user(c
, ubuf
++))
389 * If the last character was a space and the current
390 * character isn't '\0', we've got embedded whitespace.
391 * This is a no-no, so throw an error.
393 if (totaldigits
&& c
&& isspace(old_c
))
396 /* A '\0' or a ',' signal the end of the chunk */
397 if (c
== '\0' || c
== ',')
404 * Make sure there are at least 4 free bits in 'chunk'.
405 * If not, this hexdigit will overflow 'chunk', so
408 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
411 chunk
= (chunk
<< 4) | hex_to_bin(c
);
414 if (ndigits
== totaldigits
)
416 if (nchunks
== 0 && chunk
== 0)
419 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
422 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
423 if (nbits
> nmaskbits
)
425 } while (buflen
&& c
== ',');
429 EXPORT_SYMBOL(__bitmap_parse
);
432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
434 * @ubuf: pointer to user buffer containing string.
435 * @ulen: buffer size in bytes. If string is smaller than this
436 * then it must be terminated with a \0.
437 * @maskp: pointer to bitmap array that will contain result.
438 * @nmaskbits: size of bitmap, in bits.
440 * Wrapper for __bitmap_parse(), providing it with user buffer.
442 * We cannot have this as an inline function in bitmap.h because it needs
443 * linux/uaccess.h to get the access_ok() declaration and this causes
444 * cyclic dependencies.
446 int bitmap_parse_user(const char __user
*ubuf
,
447 unsigned int ulen
, unsigned long *maskp
,
450 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
452 return __bitmap_parse((const char __force
*)ubuf
,
453 ulen
, 1, maskp
, nmaskbits
);
456 EXPORT_SYMBOL(bitmap_parse_user
);
459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
460 * @list: indicates whether the bitmap must be list
461 * @buf: page aligned buffer into which string is placed
462 * @maskp: pointer to bitmap to convert
463 * @nmaskbits: size of bitmap, in bits
465 * Output format is a comma-separated list of decimal numbers and
466 * ranges if list is specified or hex digits grouped into comma-separated
467 * sets of 8 digits/set. Returns the number of characters written to buf.
469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
470 * sufficient storage remains at @buf to accommodate the
471 * bitmap_print_to_pagebuf() output.
473 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
476 ptrdiff_t len
= PTR_ALIGN(buf
+ PAGE_SIZE
- 1, PAGE_SIZE
) - buf
;
480 n
= list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
481 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
484 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
487 * __bitmap_parselist - convert list format ASCII string to bitmap
488 * @buf: read nul-terminated user string from this buffer
489 * @buflen: buffer size in bytes. If string is smaller than this
490 * then it must be terminated with a \0.
491 * @is_user: location of buffer, 0 indicates kernel space
492 * @maskp: write resulting mask here
493 * @nmaskbits: number of bits in mask to be written
495 * Input format is a comma-separated list of decimal numbers and
496 * ranges. Consecutively set bits are shown as two hyphen-separated
497 * decimal numbers, the smallest and largest bit numbers set in
499 * Optionally each range can be postfixed to denote that only parts of it
500 * should be set. The range will divided to groups of specific size.
501 * From each group will be used only defined amount of bits.
502 * Syntax: range:used_size/group_size
503 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
505 * Returns: 0 on success, -errno on invalid input strings. Error values:
507 * - ``-EINVAL``: second number in range smaller than first
508 * - ``-EINVAL``: invalid character in string
509 * - ``-ERANGE``: bit number specified too large for mask
511 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
512 int is_user
, unsigned long *maskp
,
515 unsigned int a
, b
, old_a
, old_b
;
516 unsigned int group_size
, used_size
, off
;
517 int c
, old_c
, totaldigits
, ndigits
;
518 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
519 int at_start
, in_range
, in_partial_range
;
523 group_size
= used_size
= 0;
524 bitmap_zero(maskp
, nmaskbits
);
528 in_partial_range
= 0;
530 ndigits
= totaldigits
;
532 /* Get the next cpu# or a range of cpu#'s */
536 if (__get_user(c
, ubuf
++))
544 /* A '\0' or a ',' signal the end of a cpu# or range */
545 if (c
== '\0' || c
== ',')
548 * whitespaces between digits are not allowed,
549 * but it's ok if whitespaces are on head or tail.
550 * when old_c is whilespace,
551 * if totaldigits == ndigits, whitespace is on head.
552 * if whitespace is on tail, it should not run here.
553 * as c was ',' or '\0',
554 * the last code line has broken the current loop.
556 if ((totaldigits
!= ndigits
) && isspace(old_c
))
572 in_partial_range
= 1;
578 if (at_start
|| in_range
)
589 b
= b
* 10 + (c
- '0');
595 if (ndigits
== totaldigits
)
597 if (in_partial_range
) {
603 used_size
= group_size
= b
- a
+ 1;
605 /* if no digit is after '-', it's wrong*/
606 if (at_start
&& in_range
)
608 if (!(a
<= b
) || group_size
== 0 || !(used_size
<= group_size
))
613 off
= min(b
- a
+ 1, used_size
);
614 bitmap_set(maskp
, a
, off
);
617 } while (buflen
&& c
== ',');
621 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
623 char *nl
= strchrnul(bp
, '\n');
626 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
628 EXPORT_SYMBOL(bitmap_parselist
);
632 * bitmap_parselist_user()
634 * @ubuf: pointer to user buffer containing string.
635 * @ulen: buffer size in bytes. If string is smaller than this
636 * then it must be terminated with a \0.
637 * @maskp: pointer to bitmap array that will contain result.
638 * @nmaskbits: size of bitmap, in bits.
640 * Wrapper for bitmap_parselist(), providing it with user buffer.
642 * We cannot have this as an inline function in bitmap.h because it needs
643 * linux/uaccess.h to get the access_ok() declaration and this causes
644 * cyclic dependencies.
646 int bitmap_parselist_user(const char __user
*ubuf
,
647 unsigned int ulen
, unsigned long *maskp
,
650 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
652 return __bitmap_parselist((const char __force
*)ubuf
,
653 ulen
, 1, maskp
, nmaskbits
);
655 EXPORT_SYMBOL(bitmap_parselist_user
);
659 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
660 * @buf: pointer to a bitmap
661 * @pos: a bit position in @buf (0 <= @pos < @nbits)
662 * @nbits: number of valid bit positions in @buf
664 * Map the bit at position @pos in @buf (of length @nbits) to the
665 * ordinal of which set bit it is. If it is not set or if @pos
666 * is not a valid bit position, map to -1.
668 * If for example, just bits 4 through 7 are set in @buf, then @pos
669 * values 4 through 7 will get mapped to 0 through 3, respectively,
670 * and other @pos values will get mapped to -1. When @pos value 7
671 * gets mapped to (returns) @ord value 3 in this example, that means
672 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
674 * The bit positions 0 through @bits are valid positions in @buf.
676 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
678 if (pos
>= nbits
|| !test_bit(pos
, buf
))
681 return __bitmap_weight(buf
, pos
);
685 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
686 * @buf: pointer to bitmap
687 * @ord: ordinal bit position (n-th set bit, n >= 0)
688 * @nbits: number of valid bit positions in @buf
690 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
691 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
692 * >= weight(buf), returns @nbits.
694 * If for example, just bits 4 through 7 are set in @buf, then @ord
695 * values 0 through 3 will get mapped to 4 through 7, respectively,
696 * and all other @ord values returns @nbits. When @ord value 3
697 * gets mapped to (returns) @pos value 7 in this example, that means
698 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
700 * The bit positions 0 through @nbits-1 are valid positions in @buf.
702 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
706 for (pos
= find_first_bit(buf
, nbits
);
708 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
715 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
716 * @dst: remapped result
717 * @src: subset to be remapped
718 * @old: defines domain of map
719 * @new: defines range of map
720 * @nbits: number of bits in each of these bitmaps
722 * Let @old and @new define a mapping of bit positions, such that
723 * whatever position is held by the n-th set bit in @old is mapped
724 * to the n-th set bit in @new. In the more general case, allowing
725 * for the possibility that the weight 'w' of @new is less than the
726 * weight of @old, map the position of the n-th set bit in @old to
727 * the position of the m-th set bit in @new, where m == n % w.
729 * If either of the @old and @new bitmaps are empty, or if @src and
730 * @dst point to the same location, then this routine copies @src
733 * The positions of unset bits in @old are mapped to themselves
734 * (the identify map).
736 * Apply the above specified mapping to @src, placing the result in
737 * @dst, clearing any bits previously set in @dst.
739 * For example, lets say that @old has bits 4 through 7 set, and
740 * @new has bits 12 through 15 set. This defines the mapping of bit
741 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
742 * bit positions unchanged. So if say @src comes into this routine
743 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
746 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
747 const unsigned long *old
, const unsigned long *new,
750 unsigned int oldbit
, w
;
752 if (dst
== src
) /* following doesn't handle inplace remaps */
754 bitmap_zero(dst
, nbits
);
756 w
= bitmap_weight(new, nbits
);
757 for_each_set_bit(oldbit
, src
, nbits
) {
758 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
761 set_bit(oldbit
, dst
); /* identity map */
763 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
766 EXPORT_SYMBOL(bitmap_remap
);
769 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
770 * @oldbit: bit position to be mapped
771 * @old: defines domain of map
772 * @new: defines range of map
773 * @bits: number of bits in each of these bitmaps
775 * Let @old and @new define a mapping of bit positions, such that
776 * whatever position is held by the n-th set bit in @old is mapped
777 * to the n-th set bit in @new. In the more general case, allowing
778 * for the possibility that the weight 'w' of @new is less than the
779 * weight of @old, map the position of the n-th set bit in @old to
780 * the position of the m-th set bit in @new, where m == n % w.
782 * The positions of unset bits in @old are mapped to themselves
783 * (the identify map).
785 * Apply the above specified mapping to bit position @oldbit, returning
786 * the new bit position.
788 * For example, lets say that @old has bits 4 through 7 set, and
789 * @new has bits 12 through 15 set. This defines the mapping of bit
790 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
791 * bit positions unchanged. So if say @oldbit is 5, then this routine
794 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
795 const unsigned long *new, int bits
)
797 int w
= bitmap_weight(new, bits
);
798 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
802 return bitmap_ord_to_pos(new, n
% w
, bits
);
804 EXPORT_SYMBOL(bitmap_bitremap
);
807 * bitmap_onto - translate one bitmap relative to another
808 * @dst: resulting translated bitmap
809 * @orig: original untranslated bitmap
810 * @relmap: bitmap relative to which translated
811 * @bits: number of bits in each of these bitmaps
813 * Set the n-th bit of @dst iff there exists some m such that the
814 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
815 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
816 * (If you understood the previous sentence the first time your
817 * read it, you're overqualified for your current job.)
819 * In other words, @orig is mapped onto (surjectively) @dst,
820 * using the map { <n, m> | the n-th bit of @relmap is the
821 * m-th set bit of @relmap }.
823 * Any set bits in @orig above bit number W, where W is the
824 * weight of (number of set bits in) @relmap are mapped nowhere.
825 * In particular, if for all bits m set in @orig, m >= W, then
826 * @dst will end up empty. In situations where the possibility
827 * of such an empty result is not desired, one way to avoid it is
828 * to use the bitmap_fold() operator, below, to first fold the
829 * @orig bitmap over itself so that all its set bits x are in the
830 * range 0 <= x < W. The bitmap_fold() operator does this by
831 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
833 * Example [1] for bitmap_onto():
834 * Let's say @relmap has bits 30-39 set, and @orig has bits
835 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
836 * @dst will have bits 31, 33, 35, 37 and 39 set.
838 * When bit 0 is set in @orig, it means turn on the bit in
839 * @dst corresponding to whatever is the first bit (if any)
840 * that is turned on in @relmap. Since bit 0 was off in the
841 * above example, we leave off that bit (bit 30) in @dst.
843 * When bit 1 is set in @orig (as in the above example), it
844 * means turn on the bit in @dst corresponding to whatever
845 * is the second bit that is turned on in @relmap. The second
846 * bit in @relmap that was turned on in the above example was
847 * bit 31, so we turned on bit 31 in @dst.
849 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
850 * because they were the 4th, 6th, 8th and 10th set bits
851 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
852 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
854 * When bit 11 is set in @orig, it means turn on the bit in
855 * @dst corresponding to whatever is the twelfth bit that is
856 * turned on in @relmap. In the above example, there were
857 * only ten bits turned on in @relmap (30..39), so that bit
858 * 11 was set in @orig had no affect on @dst.
860 * Example [2] for bitmap_fold() + bitmap_onto():
861 * Let's say @relmap has these ten bits set::
863 * 40 41 42 43 45 48 53 61 74 95
865 * (for the curious, that's 40 plus the first ten terms of the
866 * Fibonacci sequence.)
868 * Further lets say we use the following code, invoking
869 * bitmap_fold() then bitmap_onto, as suggested above to
870 * avoid the possibility of an empty @dst result::
872 * unsigned long *tmp; // a temporary bitmap's bits
874 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
875 * bitmap_onto(dst, tmp, relmap, bits);
877 * Then this table shows what various values of @dst would be, for
878 * various @orig's. I list the zero-based positions of each set bit.
879 * The tmp column shows the intermediate result, as computed by
880 * using bitmap_fold() to fold the @orig bitmap modulo ten
881 * (the weight of @relmap):
883 * =============== ============== =================
889 * 1 3 5 7 1 3 5 7 41 43 48 61
890 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
891 * 0 9 18 27 0 9 8 7 40 61 74 95
893 * 0 11 22 33 0 1 2 3 40 41 42 43
894 * 0 12 24 36 0 2 4 6 40 42 45 53
895 * 78 102 211 1 2 8 41 42 74 [#f1]_
896 * =============== ============== =================
900 * For these marked lines, if we hadn't first done bitmap_fold()
901 * into tmp, then the @dst result would have been empty.
903 * If either of @orig or @relmap is empty (no set bits), then @dst
904 * will be returned empty.
906 * If (as explained above) the only set bits in @orig are in positions
907 * m where m >= W, (where W is the weight of @relmap) then @dst will
908 * once again be returned empty.
910 * All bits in @dst not set by the above rule are cleared.
912 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
913 const unsigned long *relmap
, unsigned int bits
)
915 unsigned int n
, m
; /* same meaning as in above comment */
917 if (dst
== orig
) /* following doesn't handle inplace mappings */
919 bitmap_zero(dst
, bits
);
922 * The following code is a more efficient, but less
923 * obvious, equivalent to the loop:
924 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
925 * n = bitmap_ord_to_pos(orig, m, bits);
926 * if (test_bit(m, orig))
932 for_each_set_bit(n
, relmap
, bits
) {
933 /* m == bitmap_pos_to_ord(relmap, n, bits) */
934 if (test_bit(m
, orig
))
939 EXPORT_SYMBOL(bitmap_onto
);
942 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
943 * @dst: resulting smaller bitmap
944 * @orig: original larger bitmap
945 * @sz: specified size
946 * @nbits: number of bits in each of these bitmaps
948 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
949 * Clear all other bits in @dst. See further the comment and
950 * Example [2] for bitmap_onto() for why and how to use this.
952 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
953 unsigned int sz
, unsigned int nbits
)
957 if (dst
== orig
) /* following doesn't handle inplace mappings */
959 bitmap_zero(dst
, nbits
);
961 for_each_set_bit(oldbit
, orig
, nbits
)
962 set_bit(oldbit
% sz
, dst
);
964 EXPORT_SYMBOL(bitmap_fold
);
967 * Common code for bitmap_*_region() routines.
968 * bitmap: array of unsigned longs corresponding to the bitmap
969 * pos: the beginning of the region
970 * order: region size (log base 2 of number of bits)
971 * reg_op: operation(s) to perform on that region of bitmap
973 * Can set, verify and/or release a region of bits in a bitmap,
974 * depending on which combination of REG_OP_* flag bits is set.
976 * A region of a bitmap is a sequence of bits in the bitmap, of
977 * some size '1 << order' (a power of two), aligned to that same
978 * '1 << order' power of two.
980 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
981 * Returns 0 in all other cases and reg_ops.
985 REG_OP_ISFREE
, /* true if region is all zero bits */
986 REG_OP_ALLOC
, /* set all bits in region */
987 REG_OP_RELEASE
, /* clear all bits in region */
990 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
992 int nbits_reg
; /* number of bits in region */
993 int index
; /* index first long of region in bitmap */
994 int offset
; /* bit offset region in bitmap[index] */
995 int nlongs_reg
; /* num longs spanned by region in bitmap */
996 int nbitsinlong
; /* num bits of region in each spanned long */
997 unsigned long mask
; /* bitmask for one long of region */
998 int i
; /* scans bitmap by longs */
999 int ret
= 0; /* return value */
1002 * Either nlongs_reg == 1 (for small orders that fit in one long)
1003 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1005 nbits_reg
= 1 << order
;
1006 index
= pos
/ BITS_PER_LONG
;
1007 offset
= pos
- (index
* BITS_PER_LONG
);
1008 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1009 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1012 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1013 * overflows if nbitsinlong == BITS_PER_LONG.
1015 mask
= (1UL << (nbitsinlong
- 1));
1021 for (i
= 0; i
< nlongs_reg
; i
++) {
1022 if (bitmap
[index
+ i
] & mask
)
1025 ret
= 1; /* all bits in region free (zero) */
1029 for (i
= 0; i
< nlongs_reg
; i
++)
1030 bitmap
[index
+ i
] |= mask
;
1033 case REG_OP_RELEASE
:
1034 for (i
= 0; i
< nlongs_reg
; i
++)
1035 bitmap
[index
+ i
] &= ~mask
;
1043 * bitmap_find_free_region - find a contiguous aligned mem region
1044 * @bitmap: array of unsigned longs corresponding to the bitmap
1045 * @bits: number of bits in the bitmap
1046 * @order: region size (log base 2 of number of bits) to find
1048 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1049 * allocate them (set them to one). Only consider regions of length
1050 * a power (@order) of two, aligned to that power of two, which
1051 * makes the search algorithm much faster.
1053 * Return the bit offset in bitmap of the allocated region,
1054 * or -errno on failure.
1056 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1058 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1060 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1061 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1063 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1068 EXPORT_SYMBOL(bitmap_find_free_region
);
1071 * bitmap_release_region - release allocated bitmap region
1072 * @bitmap: array of unsigned longs corresponding to the bitmap
1073 * @pos: beginning of bit region to release
1074 * @order: region size (log base 2 of number of bits) to release
1076 * This is the complement to __bitmap_find_free_region() and releases
1077 * the found region (by clearing it in the bitmap).
1081 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1083 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1085 EXPORT_SYMBOL(bitmap_release_region
);
1088 * bitmap_allocate_region - allocate bitmap region
1089 * @bitmap: array of unsigned longs corresponding to the bitmap
1090 * @pos: beginning of bit region to allocate
1091 * @order: region size (log base 2 of number of bits) to allocate
1093 * Allocate (set bits in) a specified region of a bitmap.
1095 * Return 0 on success, or %-EBUSY if specified region wasn't
1096 * free (not all bits were zero).
1098 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1100 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1102 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1104 EXPORT_SYMBOL(bitmap_allocate_region
);
1107 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1108 * @dst: destination buffer
1109 * @src: bitmap to copy
1110 * @nbits: number of bits in the bitmap
1112 * Require nbits % BITS_PER_LONG == 0.
1115 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1119 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1120 if (BITS_PER_LONG
== 64)
1121 dst
[i
] = cpu_to_le64(src
[i
]);
1123 dst
[i
] = cpu_to_le32(src
[i
]);
1126 EXPORT_SYMBOL(bitmap_copy_le
);
1129 unsigned long *bitmap_alloc(unsigned int nbits
, gfp_t flags
)
1131 return kmalloc_array(BITS_TO_LONGS(nbits
), sizeof(unsigned long),
1134 EXPORT_SYMBOL(bitmap_alloc
);
1136 unsigned long *bitmap_zalloc(unsigned int nbits
, gfp_t flags
)
1138 return bitmap_alloc(nbits
, flags
| __GFP_ZERO
);
1140 EXPORT_SYMBOL(bitmap_zalloc
);
1142 void bitmap_free(const unsigned long *bitmap
)
1146 EXPORT_SYMBOL(bitmap_free
);
1148 #if BITS_PER_LONG == 64
1150 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1151 * @bitmap: array of unsigned longs, the destination bitmap
1152 * @buf: array of u32 (in host byte order), the source bitmap
1153 * @nbits: number of bits in @bitmap
1155 void bitmap_from_arr32(unsigned long *bitmap
, const u32
*buf
, unsigned int nbits
)
1157 unsigned int i
, halfwords
;
1159 halfwords
= DIV_ROUND_UP(nbits
, 32);
1160 for (i
= 0; i
< halfwords
; i
++) {
1161 bitmap
[i
/2] = (unsigned long) buf
[i
];
1162 if (++i
< halfwords
)
1163 bitmap
[i
/2] |= ((unsigned long) buf
[i
]) << 32;
1166 /* Clear tail bits in last word beyond nbits. */
1167 if (nbits
% BITS_PER_LONG
)
1168 bitmap
[(halfwords
- 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits
);
1170 EXPORT_SYMBOL(bitmap_from_arr32
);
1173 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1174 * @buf: array of u32 (in host byte order), the dest bitmap
1175 * @bitmap: array of unsigned longs, the source bitmap
1176 * @nbits: number of bits in @bitmap
1178 void bitmap_to_arr32(u32
*buf
, const unsigned long *bitmap
, unsigned int nbits
)
1180 unsigned int i
, halfwords
;
1182 halfwords
= DIV_ROUND_UP(nbits
, 32);
1183 for (i
= 0; i
< halfwords
; i
++) {
1184 buf
[i
] = (u32
) (bitmap
[i
/2] & UINT_MAX
);
1185 if (++i
< halfwords
)
1186 buf
[i
] = (u32
) (bitmap
[i
/2] >> 32);
1189 /* Clear tail bits in last element of array beyond nbits. */
1190 if (nbits
% BITS_PER_LONG
)
1191 buf
[halfwords
- 1] &= (u32
) (UINT_MAX
>> ((-nbits
) & 31));
1193 EXPORT_SYMBOL(bitmap_to_arr32
);