2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa
= 0;
93 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
97 module_param(ata_probe_timeout
, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
100 int libata_noacpi
= 1;
101 module_param_named(noacpi
, libata_noacpi
, int, 0444);
102 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION
);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
125 fis
[0] = 0x27; /* Register - Host to Device FIS */
126 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis
[2] = tf
->command
;
129 fis
[3] = tf
->feature
;
136 fis
[8] = tf
->hob_lbal
;
137 fis
[9] = tf
->hob_lbam
;
138 fis
[10] = tf
->hob_lbah
;
139 fis
[11] = tf
->hob_feature
;
142 fis
[13] = tf
->hob_nsect
;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
165 tf
->command
= fis
[2]; /* status */
166 tf
->feature
= fis
[3]; /* error */
173 tf
->hob_lbal
= fis
[8];
174 tf
->hob_lbam
= fis
[9];
175 tf
->hob_lbah
= fis
[10];
178 tf
->hob_nsect
= fis
[13];
181 static const u8 ata_rw_cmds
[] = {
185 ATA_CMD_READ_MULTI_EXT
,
186 ATA_CMD_WRITE_MULTI_EXT
,
190 ATA_CMD_WRITE_MULTI_FUA_EXT
,
194 ATA_CMD_PIO_READ_EXT
,
195 ATA_CMD_PIO_WRITE_EXT
,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
222 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
226 int index
, fua
, lba48
, write
;
228 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
229 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
230 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
232 if (dev
->flags
& ATA_DFLAG_PIO
) {
233 tf
->protocol
= ATA_PROT_PIO
;
234 index
= dev
->multi_count
? 0 : 8;
235 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
236 /* Unable to use DMA due to host limitation */
237 tf
->protocol
= ATA_PROT_PIO
;
238 index
= dev
->multi_count
? 0 : 8;
240 tf
->protocol
= ATA_PROT_DMA
;
244 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
265 * Block address read from @tf.
267 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
271 if (tf
->flags
& ATA_TFLAG_LBA
) {
272 if (tf
->flags
& ATA_TFLAG_LBA48
) {
273 block
|= (u64
)tf
->hob_lbah
<< 40;
274 block
|= (u64
)tf
->hob_lbam
<< 32;
275 block
|= tf
->hob_lbal
<< 24;
277 block
|= (tf
->device
& 0xf) << 24;
279 block
|= tf
->lbah
<< 16;
280 block
|= tf
->lbam
<< 8;
285 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
286 head
= tf
->device
& 0xf;
289 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
316 u64 block
, u32 n_block
, unsigned int tf_flags
,
319 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
320 tf
->flags
|= tf_flags
;
322 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
324 if (!lba_48_ok(block
, n_block
))
327 tf
->protocol
= ATA_PROT_NCQ
;
328 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
330 if (tf
->flags
& ATA_TFLAG_WRITE
)
331 tf
->command
= ATA_CMD_FPDMA_WRITE
;
333 tf
->command
= ATA_CMD_FPDMA_READ
;
335 tf
->nsect
= tag
<< 3;
336 tf
->hob_feature
= (n_block
>> 8) & 0xff;
337 tf
->feature
= n_block
& 0xff;
339 tf
->hob_lbah
= (block
>> 40) & 0xff;
340 tf
->hob_lbam
= (block
>> 32) & 0xff;
341 tf
->hob_lbal
= (block
>> 24) & 0xff;
342 tf
->lbah
= (block
>> 16) & 0xff;
343 tf
->lbam
= (block
>> 8) & 0xff;
344 tf
->lbal
= block
& 0xff;
347 if (tf
->flags
& ATA_TFLAG_FUA
)
348 tf
->device
|= 1 << 7;
349 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
350 tf
->flags
|= ATA_TFLAG_LBA
;
352 if (lba_28_ok(block
, n_block
)) {
354 tf
->device
|= (block
>> 24) & 0xf;
355 } else if (lba_48_ok(block
, n_block
)) {
356 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
360 tf
->flags
|= ATA_TFLAG_LBA48
;
362 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
364 tf
->hob_lbah
= (block
>> 40) & 0xff;
365 tf
->hob_lbam
= (block
>> 32) & 0xff;
366 tf
->hob_lbal
= (block
>> 24) & 0xff;
368 /* request too large even for LBA48 */
371 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
374 tf
->nsect
= n_block
& 0xff;
376 tf
->lbah
= (block
>> 16) & 0xff;
377 tf
->lbam
= (block
>> 8) & 0xff;
378 tf
->lbal
= block
& 0xff;
380 tf
->device
|= ATA_LBA
;
383 u32 sect
, head
, cyl
, track
;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block
, n_block
))
389 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
392 /* Convert LBA to CHS */
393 track
= (u32
)block
/ dev
->sectors
;
394 cyl
= track
/ dev
->heads
;
395 head
= track
% dev
->heads
;
396 sect
= (u32
)block
% dev
->sectors
+ 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32
)block
, track
, cyl
, head
, sect
);
401 /* Check whether the converted CHS can fit.
405 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
408 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
434 unsigned int mwdma_mask
,
435 unsigned int udma_mask
)
437 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
438 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
439 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask
,
453 unsigned int *pio_mask
,
454 unsigned int *mwdma_mask
,
455 unsigned int *udma_mask
)
458 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
460 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
462 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
465 static const struct ata_xfer_ent
{
469 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
470 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
471 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
486 * Matching XFER_* value, 0 if no match found.
488 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
490 int highbit
= fls(xfer_mask
) - 1;
491 const struct ata_xfer_ent
*ent
;
493 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
494 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
495 return ent
->base
+ highbit
- ent
->shift
;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
513 const struct ata_xfer_ent
*ent
;
515 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
516 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
517 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
535 const struct ata_xfer_ent
*ent
;
537 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
538 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask
)
559 static const char * const xfer_mode_str
[] = {
583 highbit
= fls(xfer_mask
) - 1;
584 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
585 return xfer_mode_str
[highbit
];
589 static const char *sata_spd_string(unsigned int spd
)
591 static const char * const spd_str
[] = {
596 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
598 return spd_str
[spd
- 1];
601 void ata_dev_disable(struct ata_device
*dev
)
603 if (ata_dev_enabled(dev
)) {
604 if (ata_msg_drv(dev
->ap
))
605 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
606 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
613 * ata_devchk - PATA device presence detection
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
630 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
632 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
635 ap
->ops
->dev_select(ap
, device
);
637 iowrite8(0x55, ioaddr
->nsect_addr
);
638 iowrite8(0xaa, ioaddr
->lbal_addr
);
640 iowrite8(0xaa, ioaddr
->nsect_addr
);
641 iowrite8(0x55, ioaddr
->lbal_addr
);
643 iowrite8(0x55, ioaddr
->nsect_addr
);
644 iowrite8(0xaa, ioaddr
->lbal_addr
);
646 nsect
= ioread8(ioaddr
->nsect_addr
);
647 lbal
= ioread8(ioaddr
->lbal_addr
);
649 if ((nsect
== 0x55) && (lbal
== 0xaa))
650 return 1; /* we found a device */
652 return 0; /* nothing found */
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
671 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
678 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
679 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
684 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
685 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI
;
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN
;
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
698 * @r_err: Value of error register on completion
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
717 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
719 struct ata_taskfile tf
;
723 ap
->ops
->dev_select(ap
, device
);
725 memset(&tf
, 0, sizeof(tf
));
727 ap
->ops
->tf_read(ap
, &tf
);
732 /* see if device passed diags: if master then continue and warn later */
733 if (err
== 0 && device
== 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
738 else if ((device
== 0) && (err
== 0x81))
743 /* determine if device is ATA or ATAPI */
744 class = ata_dev_classify(&tf
);
746 if (class == ATA_DEV_UNKNOWN
)
748 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
754 * ata_id_string - Convert IDENTIFY DEVICE page into string
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
768 void ata_id_string(const u16
*id
, unsigned char *s
,
769 unsigned int ofs
, unsigned int len
)
788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
794 * This function is identical to ata_id_string except that it
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
801 void ata_id_c_string(const u16
*id
, unsigned char *s
,
802 unsigned int ofs
, unsigned int len
)
808 ata_id_string(id
, s
, ofs
, len
- 1);
810 p
= s
+ strnlen(s
, len
- 1);
811 while (p
> s
&& p
[-1] == ' ')
816 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
820 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
821 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
822 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
823 sectors
|= (tf
->lbah
& 0xff) << 16;
824 sectors
|= (tf
->lbam
& 0xff) << 8;
825 sectors
|= (tf
->lbal
& 0xff);
830 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
834 sectors
|= (tf
->device
& 0x0f) << 24;
835 sectors
|= (tf
->lbah
& 0xff) << 16;
836 sectors
|= (tf
->lbam
& 0xff) << 8;
837 sectors
|= (tf
->lbal
& 0xff);
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
850 static u64
ata_read_native_max_address_ext(struct ata_device
*dev
)
853 struct ata_taskfile tf
;
855 ata_tf_init(dev
, &tf
);
857 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
858 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
859 tf
.protocol
|= ATA_PROT_NODATA
;
862 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
866 return ata_tf_to_lba48(&tf
);
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
877 static u64
ata_read_native_max_address(struct ata_device
*dev
)
880 struct ata_taskfile tf
;
882 ata_tf_init(dev
, &tf
);
884 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
885 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
886 tf
.protocol
|= ATA_PROT_NODATA
;
889 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
893 return ata_tf_to_lba(&tf
);
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
899 * @new_sectors: new max sectors value to set for the device
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
905 static u64
ata_set_native_max_address_ext(struct ata_device
*dev
, u64 new_sectors
)
908 struct ata_taskfile tf
;
912 ata_tf_init(dev
, &tf
);
914 tf
.command
= ATA_CMD_SET_MAX_EXT
;
915 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
916 tf
.protocol
|= ATA_PROT_NODATA
;
919 tf
.lbal
= (new_sectors
>> 0) & 0xff;
920 tf
.lbam
= (new_sectors
>> 8) & 0xff;
921 tf
.lbah
= (new_sectors
>> 16) & 0xff;
923 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
924 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
925 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
927 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
931 return ata_tf_to_lba48(&tf
);
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
937 * @new_sectors: new max sectors value to set for the device
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
943 static u64
ata_set_native_max_address(struct ata_device
*dev
, u64 new_sectors
)
946 struct ata_taskfile tf
;
950 ata_tf_init(dev
, &tf
);
952 tf
.command
= ATA_CMD_SET_MAX
;
953 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
954 tf
.protocol
|= ATA_PROT_NODATA
;
956 tf
.lbal
= (new_sectors
>> 0) & 0xff;
957 tf
.lbam
= (new_sectors
>> 8) & 0xff;
958 tf
.lbah
= (new_sectors
>> 16) & 0xff;
959 tf
.device
|= ((new_sectors
>> 24) & 0x0f) | 0x40;
961 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
965 return ata_tf_to_lba(&tf
);
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
977 static u64
ata_hpa_resize(struct ata_device
*dev
)
979 u64 sectors
= dev
->n_sectors
;
982 if (ata_id_has_lba48(dev
->id
))
983 hpa_sectors
= ata_read_native_max_address_ext(dev
);
985 hpa_sectors
= ata_read_native_max_address(dev
);
987 if (hpa_sectors
> sectors
) {
988 ata_dev_printk(dev
, KERN_INFO
,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
992 (long long)sectors
, (long long)hpa_sectors
);
994 if (ata_ignore_hpa
) {
995 if (ata_id_has_lba48(dev
->id
))
996 hpa_sectors
= ata_set_native_max_address_ext(dev
, hpa_sectors
);
998 hpa_sectors
= ata_set_native_max_address(dev
,
1002 ata_dev_printk(dev
, KERN_INFO
, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors
);
1008 } else if (hpa_sectors
< sectors
)
1009 ata_dev_printk(dev
, KERN_WARNING
, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__
,
1011 (long long)hpa_sectors
, (long long)sectors
);
1016 static u64
ata_id_n_sectors(const u16
*id
)
1018 if (ata_id_has_lba(id
)) {
1019 if (ata_id_has_lba48(id
))
1020 return ata_id_u64(id
, 100);
1022 return ata_id_u32(id
, 60);
1024 if (ata_id_current_chs_valid(id
))
1025 return ata_id_u32(id
, 57);
1027 return id
[1] * id
[3] * id
[6];
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1046 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
1051 /* Pack the DMA modes */
1052 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
1053 if (dev
->id
[53] & 0x04)
1054 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
1056 /* Select the mode in use */
1057 mode
= ata_xfer_mask2mode(mask
);
1060 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
1061 ata_mode_string(mask
));
1063 /* SWDMA perhaps ? */
1065 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
1068 /* Configure the device reporting */
1069 dev
->xfer_mode
= mode
;
1070 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1078 * This function performs no actual function.
1080 * May be used as the dev_select() entry in ata_port_operations.
1085 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1099 * May be used as the dev_select() entry in ata_port_operations.
1105 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
1110 tmp
= ATA_DEVICE_OBS
;
1112 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1114 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1115 ata_pause(ap
); /* needed; also flushes, for mmio */
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1137 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1138 unsigned int wait
, unsigned int can_sleep
)
1140 if (ata_msg_probe(ap
))
1141 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device
, wait
);
1147 ap
->ops
->dev_select(ap
, device
);
1150 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1167 static inline void ata_dump_id(const u16
*id
)
1169 DPRINTK("49==0x%04x "
1179 DPRINTK("80==0x%04x "
1189 DPRINTK("88==0x%04x "
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1202 * FIXME: pre IDE drive timing (do we care ?).
1210 static unsigned int ata_id_xfermask(const u16
*id
)
1212 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1216 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1224 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1225 if (mode
< 5) /* Valid PIO range */
1226 pio_mask
= (2 << mode
) - 1;
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1238 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1240 if (ata_id_is_cfa(id
)) {
1242 * Process compact flash extended modes
1244 int pio
= id
[163] & 0x7;
1245 int dma
= (id
[163] >> 3) & 7;
1248 pio_mask
|= (1 << 5);
1250 pio_mask
|= (1 << 6);
1252 mwdma_mask
|= (1 << 3);
1254 mwdma_mask
|= (1 << 4);
1258 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1259 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1261 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * Inherited from caller.
1283 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1284 unsigned long delay
)
1288 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1291 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1292 ap
->port_task_data
= data
;
1294 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1296 /* rc == 0 means that another user is using port task */
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1308 * Kernel thread context (may sleep)
1310 void ata_port_flush_task(struct ata_port
*ap
)
1312 unsigned long flags
;
1316 spin_lock_irqsave(ap
->lock
, flags
);
1317 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1318 spin_unlock_irqrestore(ap
->lock
, flags
);
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap
->port_task
.work
); /* akpm: seems unneeded */
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1328 if (!cancel_delayed_work(&ap
->port_task
)) {
1329 if (ata_msg_ctl(ap
))
1330 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1332 cancel_work_sync(&ap
->port_task
.work
);
1335 spin_lock_irqsave(ap
->lock
, flags
);
1336 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1337 spin_unlock_irqrestore(ap
->lock
, flags
);
1339 if (ata_msg_ctl(ap
))
1340 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1343 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1345 struct completion
*waiting
= qc
->private_data
;
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1366 * None. Should be called with kernel context, might sleep.
1369 * Zero on success, AC_ERR_* mask on failure
1371 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1372 struct ata_taskfile
*tf
, const u8
*cdb
,
1373 int dma_dir
, struct scatterlist
*sg
,
1374 unsigned int n_elem
)
1376 struct ata_port
*ap
= dev
->ap
;
1377 u8 command
= tf
->command
;
1378 struct ata_queued_cmd
*qc
;
1379 unsigned int tag
, preempted_tag
;
1380 u32 preempted_sactive
, preempted_qc_active
;
1381 DECLARE_COMPLETION_ONSTACK(wait
);
1382 unsigned long flags
;
1383 unsigned int err_mask
;
1386 spin_lock_irqsave(ap
->lock
, flags
);
1388 /* no internal command while frozen */
1389 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1390 spin_unlock_irqrestore(ap
->lock
, flags
);
1391 return AC_ERR_SYSTEM
;
1394 /* initialize internal qc */
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1401 if (ap
->ops
->error_handler
)
1402 tag
= ATA_TAG_INTERNAL
;
1406 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1408 qc
= __ata_qc_from_tag(ap
, tag
);
1416 preempted_tag
= ap
->active_tag
;
1417 preempted_sactive
= ap
->sactive
;
1418 preempted_qc_active
= ap
->qc_active
;
1419 ap
->active_tag
= ATA_TAG_POISON
;
1423 /* prepare & issue qc */
1426 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1427 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1428 qc
->dma_dir
= dma_dir
;
1429 if (dma_dir
!= DMA_NONE
) {
1430 unsigned int i
, buflen
= 0;
1432 for (i
= 0; i
< n_elem
; i
++)
1433 buflen
+= sg
[i
].length
;
1435 ata_sg_init(qc
, sg
, n_elem
);
1436 qc
->nbytes
= buflen
;
1439 qc
->private_data
= &wait
;
1440 qc
->complete_fn
= ata_qc_complete_internal
;
1444 spin_unlock_irqrestore(ap
->lock
, flags
);
1446 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1448 ata_port_flush_task(ap
);
1451 spin_lock_irqsave(ap
->lock
, flags
);
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1458 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1459 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1461 if (ap
->ops
->error_handler
)
1462 ata_port_freeze(ap
);
1464 ata_qc_complete(qc
);
1466 if (ata_msg_warn(ap
))
1467 ata_dev_printk(dev
, KERN_WARNING
,
1468 "qc timeout (cmd 0x%x)\n", command
);
1471 spin_unlock_irqrestore(ap
->lock
, flags
);
1474 /* do post_internal_cmd */
1475 if (ap
->ops
->post_internal_cmd
)
1476 ap
->ops
->post_internal_cmd(qc
);
1478 /* perform minimal error analysis */
1479 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1480 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1481 qc
->err_mask
|= AC_ERR_DEV
;
1484 qc
->err_mask
|= AC_ERR_OTHER
;
1486 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1487 qc
->err_mask
&= ~AC_ERR_OTHER
;
1491 spin_lock_irqsave(ap
->lock
, flags
);
1493 *tf
= qc
->result_tf
;
1494 err_mask
= qc
->err_mask
;
1497 ap
->active_tag
= preempted_tag
;
1498 ap
->sactive
= preempted_sactive
;
1499 ap
->qc_active
= preempted_qc_active
;
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1510 * Kill the following code as soon as those drivers are fixed.
1512 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1513 err_mask
|= AC_ERR_SYSTEM
;
1517 spin_unlock_irqrestore(ap
->lock
, flags
);
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1535 * None. Should be called with kernel context, might sleep.
1538 * Zero on success, AC_ERR_* mask on failure
1540 unsigned ata_exec_internal(struct ata_device
*dev
,
1541 struct ata_taskfile
*tf
, const u8
*cdb
,
1542 int dma_dir
, void *buf
, unsigned int buflen
)
1544 struct scatterlist
*psg
= NULL
, sg
;
1545 unsigned int n_elem
= 0;
1547 if (dma_dir
!= DMA_NONE
) {
1549 sg_init_one(&sg
, buf
, buflen
);
1554 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1566 * Kernel thread context (may sleep).
1569 * Zero on success, AC_ERR_* mask on failure
1571 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1573 struct ata_taskfile tf
;
1575 ata_tf_init(dev
, &tf
);
1578 tf
.flags
|= ATA_TFLAG_DEVICE
;
1579 tf
.protocol
= ATA_PROT_NODATA
;
1581 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1585 * ata_pio_need_iordy - check if iordy needed
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1592 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1598 /* PIO3 and higher it is mandatory */
1599 if (adev
->pio_mode
> XFER_PIO_2
)
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev
->id
))
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1615 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1619 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio
> 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO
;
1625 return 7 << ATA_SHIFT_PIO
;
1628 return 3 << ATA_SHIFT_PIO
;
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1644 * Kernel thread context (may sleep)
1647 * 0 on success, -errno otherwise.
1649 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1650 unsigned int flags
, u16
*id
)
1652 struct ata_port
*ap
= dev
->ap
;
1653 unsigned int class = *p_class
;
1654 struct ata_taskfile tf
;
1655 unsigned int err_mask
= 0;
1657 int may_fallback
= 1, tried_spinup
= 0;
1660 if (ata_msg_ctl(ap
))
1661 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1663 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1665 ata_tf_init(dev
, &tf
);
1669 tf
.command
= ATA_CMD_ID_ATA
;
1672 tf
.command
= ATA_CMD_ID_ATAPI
;
1676 reason
= "unsupported class";
1680 tf
.protocol
= ATA_PROT_PIO
;
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1685 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1690 tf
.flags
|= ATA_TFLAG_POLLING
;
1692 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1693 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1695 if (err_mask
& AC_ERR_NODEV_HINT
) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap
->print_id
, dev
->devno
);
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1706 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1709 if (class == ATA_DEV_ATA
)
1710 class = ATA_DEV_ATAPI
;
1712 class = ATA_DEV_ATA
;
1717 reason
= "I/O error";
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1726 swap_buf_le16(id
, ATA_ID_WORDS
);
1730 reason
= "device reports invalid type";
1732 if (class == ATA_DEV_ATA
) {
1733 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1736 if (ata_id_is_ata(id
))
1740 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1747 ata_tf_init(dev
, &tf
);
1748 tf
.command
= ATA_CMD_SET_FEATURES
;
1749 tf
.feature
= SETFEATURES_SPINUP
;
1750 tf
.protocol
= ATA_PROT_NODATA
;
1751 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1752 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1755 reason
= "SPINUP failed";
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1762 if (id
[2] == 0x37c8)
1766 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1771 * INITIALIZE DEVICE PARAMETERS
1773 * Some drives were very specific about that exact sequence.
1775 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1776 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1779 reason
= "INIT_DEV_PARAMS failed";
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1786 flags
&= ~ATA_READID_POSTRESET
;
1796 if (ata_msg_warn(ap
))
1797 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1802 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1804 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1807 static void ata_dev_config_ncq(struct ata_device
*dev
,
1808 char *desc
, size_t desc_sz
)
1810 struct ata_port
*ap
= dev
->ap
;
1811 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1813 if (!ata_id_has_ncq(dev
->id
)) {
1817 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1818 snprintf(desc
, desc_sz
, "NCQ (not used)");
1821 if (ap
->flags
& ATA_FLAG_NCQ
) {
1822 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1823 dev
->flags
|= ATA_DFLAG_NCQ
;
1826 if (hdepth
>= ddepth
)
1827 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1829 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1840 * Kernel thread context (may sleep)
1843 * 0 on success, -errno otherwise
1845 int ata_dev_configure(struct ata_device
*dev
)
1847 struct ata_port
*ap
= dev
->ap
;
1848 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1849 const u16
*id
= dev
->id
;
1850 unsigned int xfer_mask
;
1851 char revbuf
[7]; /* XYZ-99\0 */
1852 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1853 char modelbuf
[ATA_ID_PROD_LEN
+1];
1856 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1857 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1862 if (ata_msg_probe(ap
))
1863 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1866 rc
= ata_acpi_push_id(dev
);
1868 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap
);
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap
))
1877 ata_dev_printk(dev
, KERN_DEBUG
,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1881 id
[49], id
[82], id
[83], id
[84],
1882 id
[85], id
[86], id
[87], id
[88]);
1884 /* initialize to-be-configured parameters */
1885 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1886 dev
->max_sectors
= 0;
1894 * common ATA, ATAPI feature tests
1897 /* find max transfer mode; for printk only */
1898 xfer_mask
= ata_id_xfermask(id
);
1900 if (ata_msg_probe(ap
))
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1907 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1910 /* ATA-specific feature tests */
1911 if (dev
->class == ATA_DEV_ATA
) {
1912 if (ata_id_is_cfa(id
)) {
1913 if (id
[162] & 1) /* CPRM may make this media unusable */
1914 ata_dev_printk(dev
, KERN_WARNING
,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
1917 snprintf(revbuf
, 7, "CFA");
1920 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1922 dev
->n_sectors
= ata_id_n_sectors(id
);
1924 if (dev
->id
[59] & 0x100)
1925 dev
->multi_count
= dev
->id
[59] & 0xff;
1927 if (ata_id_has_lba(id
)) {
1928 const char *lba_desc
;
1932 dev
->flags
|= ATA_DFLAG_LBA
;
1933 if (ata_id_has_lba48(id
)) {
1934 dev
->flags
|= ATA_DFLAG_LBA48
;
1937 if (dev
->n_sectors
>= (1UL << 28) &&
1938 ata_id_has_flush_ext(id
))
1939 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1942 if (ata_id_hpa_enabled(dev
->id
))
1943 dev
->n_sectors
= ata_hpa_resize(dev
);
1946 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap
) && print_info
) {
1950 ata_dev_printk(dev
, KERN_INFO
,
1951 "%s: %s, %s, max %s\n",
1952 revbuf
, modelbuf
, fwrevbuf
,
1953 ata_mode_string(xfer_mask
));
1954 ata_dev_printk(dev
, KERN_INFO
,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev
->n_sectors
,
1957 dev
->multi_count
, lba_desc
, ncq_desc
);
1962 /* Default translation */
1963 dev
->cylinders
= id
[1];
1965 dev
->sectors
= id
[6];
1967 if (ata_id_current_chs_valid(id
)) {
1968 /* Current CHS translation is valid. */
1969 dev
->cylinders
= id
[54];
1970 dev
->heads
= id
[55];
1971 dev
->sectors
= id
[56];
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap
) && print_info
) {
1976 ata_dev_printk(dev
, KERN_INFO
,
1977 "%s: %s, %s, max %s\n",
1978 revbuf
, modelbuf
, fwrevbuf
,
1979 ata_mode_string(xfer_mask
));
1980 ata_dev_printk(dev
, KERN_INFO
,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev
->n_sectors
,
1983 dev
->multi_count
, dev
->cylinders
,
1984 dev
->heads
, dev
->sectors
);
1991 /* ATAPI-specific feature tests */
1992 else if (dev
->class == ATA_DEV_ATAPI
) {
1993 char *cdb_intr_string
= "";
1995 rc
= atapi_cdb_len(id
);
1996 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1997 if (ata_msg_warn(ap
))
1998 ata_dev_printk(dev
, KERN_WARNING
,
1999 "unsupported CDB len\n");
2003 dev
->cdb_len
= (unsigned int) rc
;
2005 if (ata_id_cdb_intr(dev
->id
)) {
2006 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2007 cdb_intr_string
= ", CDB intr";
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap
) && print_info
)
2012 ata_dev_printk(dev
, KERN_INFO
,
2013 "ATAPI: %s, %s, max %s%s\n",
2015 ata_mode_string(xfer_mask
),
2019 /* determine max_sectors */
2020 dev
->max_sectors
= ATA_MAX_SECTORS
;
2021 if (dev
->flags
& ATA_DFLAG_LBA48
)
2022 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2024 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2029 ata_dev_printk(dev
, KERN_WARNING
,
2030 "Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev
, KERN_WARNING
,
2032 "fault or invalid emulation. Contact drive vendor for information.\n");
2036 /* limit bridge transfers to udma5, 200 sectors */
2037 if (ata_dev_knobble(dev
)) {
2038 if (ata_msg_drv(ap
) && print_info
)
2039 ata_dev_printk(dev
, KERN_INFO
,
2040 "applying bridge limits\n");
2041 dev
->udma_mask
&= ATA_UDMA5
;
2042 dev
->max_sectors
= ATA_MAX_SECTORS
;
2045 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_MAX_SEC_128
)
2046 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2049 if (ap
->ops
->dev_config
)
2050 ap
->ops
->dev_config(dev
);
2052 if (ata_msg_probe(ap
))
2053 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2054 __FUNCTION__
, ata_chk_status(ap
));
2058 if (ata_msg_probe(ap
))
2059 ata_dev_printk(dev
, KERN_DEBUG
,
2060 "%s: EXIT, err\n", __FUNCTION__
);
2065 * ata_cable_40wire - return 40 wire cable type
2068 * Helper method for drivers which want to hardwire 40 wire cable
2072 int ata_cable_40wire(struct ata_port
*ap
)
2074 return ATA_CBL_PATA40
;
2078 * ata_cable_80wire - return 80 wire cable type
2081 * Helper method for drivers which want to hardwire 80 wire cable
2085 int ata_cable_80wire(struct ata_port
*ap
)
2087 return ATA_CBL_PATA80
;
2091 * ata_cable_unknown - return unknown PATA cable.
2094 * Helper method for drivers which have no PATA cable detection.
2097 int ata_cable_unknown(struct ata_port
*ap
)
2099 return ATA_CBL_PATA_UNK
;
2103 * ata_cable_sata - return SATA cable type
2106 * Helper method for drivers which have SATA cables
2109 int ata_cable_sata(struct ata_port
*ap
)
2111 return ATA_CBL_SATA
;
2115 * ata_bus_probe - Reset and probe ATA bus
2118 * Master ATA bus probing function. Initiates a hardware-dependent
2119 * bus reset, then attempts to identify any devices found on
2123 * PCI/etc. bus probe sem.
2126 * Zero on success, negative errno otherwise.
2129 int ata_bus_probe(struct ata_port
*ap
)
2131 unsigned int classes
[ATA_MAX_DEVICES
];
2132 int tries
[ATA_MAX_DEVICES
];
2134 struct ata_device
*dev
;
2138 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2139 tries
[i
] = ATA_PROBE_MAX_TRIES
;
2142 /* reset and determine device classes */
2143 ap
->ops
->phy_reset(ap
);
2145 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2146 dev
= &ap
->device
[i
];
2148 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2149 dev
->class != ATA_DEV_UNKNOWN
)
2150 classes
[dev
->devno
] = dev
->class;
2152 classes
[dev
->devno
] = ATA_DEV_NONE
;
2154 dev
->class = ATA_DEV_UNKNOWN
;
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2162 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2163 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2169 for (i
= ATA_MAX_DEVICES
- 1; i
>= 0; i
--) {
2170 dev
= &ap
->device
[i
];
2173 dev
->class = classes
[i
];
2175 if (!ata_dev_enabled(dev
))
2178 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2184 /* Now ask for the cable type as PDIAG- should have been released */
2185 if (ap
->ops
->cable_detect
)
2186 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2188 /* After the identify sequence we can now set up the devices. We do
2189 this in the normal order so that the user doesn't get confused */
2191 for(i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2192 dev
= &ap
->device
[i
];
2193 if (!ata_dev_enabled(dev
))
2196 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2197 rc
= ata_dev_configure(dev
);
2198 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2203 /* configure transfer mode */
2204 rc
= ata_set_mode(ap
, &dev
);
2208 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2209 if (ata_dev_enabled(&ap
->device
[i
]))
2212 /* no device present, disable port */
2213 ata_port_disable(ap
);
2214 ap
->ops
->port_disable(ap
);
2218 tries
[dev
->devno
]--;
2222 /* eeek, something went very wrong, give up */
2223 tries
[dev
->devno
] = 0;
2227 /* give it just one more chance */
2228 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2230 if (tries
[dev
->devno
] == 1) {
2231 /* This is the last chance, better to slow
2232 * down than lose it.
2234 sata_down_spd_limit(ap
);
2235 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2239 if (!tries
[dev
->devno
])
2240 ata_dev_disable(dev
);
2246 * ata_port_probe - Mark port as enabled
2247 * @ap: Port for which we indicate enablement
2249 * Modify @ap data structure such that the system
2250 * thinks that the entire port is enabled.
2252 * LOCKING: host lock, or some other form of
2256 void ata_port_probe(struct ata_port
*ap
)
2258 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2262 * sata_print_link_status - Print SATA link status
2263 * @ap: SATA port to printk link status about
2265 * This function prints link speed and status of a SATA link.
2270 void sata_print_link_status(struct ata_port
*ap
)
2272 u32 sstatus
, scontrol
, tmp
;
2274 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
2276 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
2278 if (ata_port_online(ap
)) {
2279 tmp
= (sstatus
>> 4) & 0xf;
2280 ata_port_printk(ap
, KERN_INFO
,
2281 "SATA link up %s (SStatus %X SControl %X)\n",
2282 sata_spd_string(tmp
), sstatus
, scontrol
);
2284 ata_port_printk(ap
, KERN_INFO
,
2285 "SATA link down (SStatus %X SControl %X)\n",
2291 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2292 * @ap: SATA port associated with target SATA PHY.
2294 * This function issues commands to standard SATA Sxxx
2295 * PHY registers, to wake up the phy (and device), and
2296 * clear any reset condition.
2299 * PCI/etc. bus probe sem.
2302 void __sata_phy_reset(struct ata_port
*ap
)
2305 unsigned long timeout
= jiffies
+ (HZ
* 5);
2307 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
2308 /* issue phy wake/reset */
2309 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2310 /* Couldn't find anything in SATA I/II specs, but
2311 * AHCI-1.1 10.4.2 says at least 1 ms. */
2314 /* phy wake/clear reset */
2315 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2317 /* wait for phy to become ready, if necessary */
2320 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2321 if ((sstatus
& 0xf) != 1)
2323 } while (time_before(jiffies
, timeout
));
2325 /* print link status */
2326 sata_print_link_status(ap
);
2328 /* TODO: phy layer with polling, timeouts, etc. */
2329 if (!ata_port_offline(ap
))
2332 ata_port_disable(ap
);
2334 if (ap
->flags
& ATA_FLAG_DISABLED
)
2337 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2338 ata_port_disable(ap
);
2342 ap
->cbl
= ATA_CBL_SATA
;
2346 * sata_phy_reset - Reset SATA bus.
2347 * @ap: SATA port associated with target SATA PHY.
2349 * This function resets the SATA bus, and then probes
2350 * the bus for devices.
2353 * PCI/etc. bus probe sem.
2356 void sata_phy_reset(struct ata_port
*ap
)
2358 __sata_phy_reset(ap
);
2359 if (ap
->flags
& ATA_FLAG_DISABLED
)
2365 * ata_dev_pair - return other device on cable
2368 * Obtain the other device on the same cable, or if none is
2369 * present NULL is returned
2372 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2374 struct ata_port
*ap
= adev
->ap
;
2375 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2376 if (!ata_dev_enabled(pair
))
2382 * ata_port_disable - Disable port.
2383 * @ap: Port to be disabled.
2385 * Modify @ap data structure such that the system
2386 * thinks that the entire port is disabled, and should
2387 * never attempt to probe or communicate with devices
2390 * LOCKING: host lock, or some other form of
2394 void ata_port_disable(struct ata_port
*ap
)
2396 ap
->device
[0].class = ATA_DEV_NONE
;
2397 ap
->device
[1].class = ATA_DEV_NONE
;
2398 ap
->flags
|= ATA_FLAG_DISABLED
;
2402 * sata_down_spd_limit - adjust SATA spd limit downward
2403 * @ap: Port to adjust SATA spd limit for
2405 * Adjust SATA spd limit of @ap downward. Note that this
2406 * function only adjusts the limit. The change must be applied
2407 * using sata_set_spd().
2410 * Inherited from caller.
2413 * 0 on success, negative errno on failure
2415 int sata_down_spd_limit(struct ata_port
*ap
)
2417 u32 sstatus
, spd
, mask
;
2420 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2424 mask
= ap
->sata_spd_limit
;
2427 highbit
= fls(mask
) - 1;
2428 mask
&= ~(1 << highbit
);
2430 spd
= (sstatus
>> 4) & 0xf;
2434 mask
&= (1 << spd
) - 1;
2438 ap
->sata_spd_limit
= mask
;
2440 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2441 sata_spd_string(fls(mask
)));
2446 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2450 if (ap
->sata_spd_limit
== UINT_MAX
)
2453 limit
= fls(ap
->sata_spd_limit
);
2455 spd
= (*scontrol
>> 4) & 0xf;
2456 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2458 return spd
!= limit
;
2462 * sata_set_spd_needed - is SATA spd configuration needed
2463 * @ap: Port in question
2465 * Test whether the spd limit in SControl matches
2466 * @ap->sata_spd_limit. This function is used to determine
2467 * whether hardreset is necessary to apply SATA spd
2471 * Inherited from caller.
2474 * 1 if SATA spd configuration is needed, 0 otherwise.
2476 int sata_set_spd_needed(struct ata_port
*ap
)
2480 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2483 return __sata_set_spd_needed(ap
, &scontrol
);
2487 * sata_set_spd - set SATA spd according to spd limit
2488 * @ap: Port to set SATA spd for
2490 * Set SATA spd of @ap according to sata_spd_limit.
2493 * Inherited from caller.
2496 * 0 if spd doesn't need to be changed, 1 if spd has been
2497 * changed. Negative errno if SCR registers are inaccessible.
2499 int sata_set_spd(struct ata_port
*ap
)
2504 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2507 if (!__sata_set_spd_needed(ap
, &scontrol
))
2510 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2517 * This mode timing computation functionality is ported over from
2518 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2521 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2522 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2523 * for UDMA6, which is currently supported only by Maxtor drives.
2525 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2528 static const struct ata_timing ata_timing
[] = {
2530 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2531 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2532 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2533 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2535 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2536 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2537 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2538 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2539 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2541 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2543 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2544 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2545 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2547 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2548 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2549 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2551 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2552 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2553 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2554 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2556 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2557 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2558 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2560 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2565 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2566 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2568 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2570 q
->setup
= EZ(t
->setup
* 1000, T
);
2571 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2572 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2573 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2574 q
->active
= EZ(t
->active
* 1000, T
);
2575 q
->recover
= EZ(t
->recover
* 1000, T
);
2576 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2577 q
->udma
= EZ(t
->udma
* 1000, UT
);
2580 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2581 struct ata_timing
*m
, unsigned int what
)
2583 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2584 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2585 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2586 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2587 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2588 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2589 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2590 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2593 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2595 const struct ata_timing
*t
;
2597 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2598 if (t
->mode
== 0xFF)
2603 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2604 struct ata_timing
*t
, int T
, int UT
)
2606 const struct ata_timing
*s
;
2607 struct ata_timing p
;
2613 if (!(s
= ata_timing_find_mode(speed
)))
2616 memcpy(t
, s
, sizeof(*s
));
2619 * If the drive is an EIDE drive, it can tell us it needs extended
2620 * PIO/MW_DMA cycle timing.
2623 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2624 memset(&p
, 0, sizeof(p
));
2625 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2626 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2627 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2628 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2629 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2631 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2635 * Convert the timing to bus clock counts.
2638 ata_timing_quantize(t
, t
, T
, UT
);
2641 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2642 * S.M.A.R.T * and some other commands. We have to ensure that the
2643 * DMA cycle timing is slower/equal than the fastest PIO timing.
2646 if (speed
> XFER_PIO_6
) {
2647 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2648 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2652 * Lengthen active & recovery time so that cycle time is correct.
2655 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2656 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2657 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2660 if (t
->active
+ t
->recover
< t
->cycle
) {
2661 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2662 t
->recover
= t
->cycle
- t
->active
;
2665 /* In a few cases quantisation may produce enough errors to
2666 leave t->cycle too low for the sum of active and recovery
2667 if so we must correct this */
2668 if (t
->active
+ t
->recover
> t
->cycle
)
2669 t
->cycle
= t
->active
+ t
->recover
;
2675 * ata_down_xfermask_limit - adjust dev xfer masks downward
2676 * @dev: Device to adjust xfer masks
2677 * @sel: ATA_DNXFER_* selector
2679 * Adjust xfer masks of @dev downward. Note that this function
2680 * does not apply the change. Invoking ata_set_mode() afterwards
2681 * will apply the limit.
2684 * Inherited from caller.
2687 * 0 on success, negative errno on failure
2689 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2692 unsigned int orig_mask
, xfer_mask
;
2693 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2696 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2697 sel
&= ~ATA_DNXFER_QUIET
;
2699 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2702 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2705 case ATA_DNXFER_PIO
:
2706 highbit
= fls(pio_mask
) - 1;
2707 pio_mask
&= ~(1 << highbit
);
2710 case ATA_DNXFER_DMA
:
2712 highbit
= fls(udma_mask
) - 1;
2713 udma_mask
&= ~(1 << highbit
);
2716 } else if (mwdma_mask
) {
2717 highbit
= fls(mwdma_mask
) - 1;
2718 mwdma_mask
&= ~(1 << highbit
);
2724 case ATA_DNXFER_40C
:
2725 udma_mask
&= ATA_UDMA_MASK_40C
;
2728 case ATA_DNXFER_FORCE_PIO0
:
2730 case ATA_DNXFER_FORCE_PIO
:
2739 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2741 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2745 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2746 snprintf(buf
, sizeof(buf
), "%s:%s",
2747 ata_mode_string(xfer_mask
),
2748 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2750 snprintf(buf
, sizeof(buf
), "%s",
2751 ata_mode_string(xfer_mask
));
2753 ata_dev_printk(dev
, KERN_WARNING
,
2754 "limiting speed to %s\n", buf
);
2757 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2763 static int ata_dev_set_mode(struct ata_device
*dev
)
2765 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2766 unsigned int err_mask
;
2769 dev
->flags
&= ~ATA_DFLAG_PIO
;
2770 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2771 dev
->flags
|= ATA_DFLAG_PIO
;
2773 err_mask
= ata_dev_set_xfermode(dev
);
2774 /* Old CFA may refuse this command, which is just fine */
2775 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2776 err_mask
&= ~AC_ERR_DEV
;
2779 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2780 "(err_mask=0x%x)\n", err_mask
);
2784 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2785 rc
= ata_dev_revalidate(dev
, 0);
2786 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2790 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2791 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2793 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2794 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2799 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2800 * @ap: port on which timings will be programmed
2801 * @r_failed_dev: out paramter for failed device
2803 * Standard implementation of the function used to tune and set
2804 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2805 * ata_dev_set_mode() fails, pointer to the failing device is
2806 * returned in @r_failed_dev.
2809 * PCI/etc. bus probe sem.
2812 * 0 on success, negative errno otherwise
2815 int ata_do_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2817 struct ata_device
*dev
;
2818 int i
, rc
= 0, used_dma
= 0, found
= 0;
2821 /* step 1: calculate xfer_mask */
2822 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2823 unsigned int pio_mask
, dma_mask
;
2825 dev
= &ap
->device
[i
];
2827 if (!ata_dev_enabled(dev
))
2830 ata_dev_xfermask(dev
);
2832 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2833 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2834 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2835 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2844 /* step 2: always set host PIO timings */
2845 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2846 dev
= &ap
->device
[i
];
2847 if (!ata_dev_enabled(dev
))
2850 if (!dev
->pio_mode
) {
2851 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2856 dev
->xfer_mode
= dev
->pio_mode
;
2857 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2858 if (ap
->ops
->set_piomode
)
2859 ap
->ops
->set_piomode(ap
, dev
);
2862 /* step 3: set host DMA timings */
2863 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2864 dev
= &ap
->device
[i
];
2866 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2869 dev
->xfer_mode
= dev
->dma_mode
;
2870 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2871 if (ap
->ops
->set_dmamode
)
2872 ap
->ops
->set_dmamode(ap
, dev
);
2875 /* step 4: update devices' xfer mode */
2876 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2877 dev
= &ap
->device
[i
];
2879 /* don't update suspended devices' xfer mode */
2880 if (!ata_dev_enabled(dev
))
2883 rc
= ata_dev_set_mode(dev
);
2888 /* Record simplex status. If we selected DMA then the other
2889 * host channels are not permitted to do so.
2891 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2892 ap
->host
->simplex_claimed
= ap
;
2896 *r_failed_dev
= dev
;
2901 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2902 * @ap: port on which timings will be programmed
2903 * @r_failed_dev: out paramter for failed device
2905 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2906 * ata_set_mode() fails, pointer to the failing device is
2907 * returned in @r_failed_dev.
2910 * PCI/etc. bus probe sem.
2913 * 0 on success, negative errno otherwise
2915 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2917 /* has private set_mode? */
2918 if (ap
->ops
->set_mode
)
2919 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2920 return ata_do_set_mode(ap
, r_failed_dev
);
2924 * ata_tf_to_host - issue ATA taskfile to host controller
2925 * @ap: port to which command is being issued
2926 * @tf: ATA taskfile register set
2928 * Issues ATA taskfile register set to ATA host controller,
2929 * with proper synchronization with interrupt handler and
2933 * spin_lock_irqsave(host lock)
2936 static inline void ata_tf_to_host(struct ata_port
*ap
,
2937 const struct ata_taskfile
*tf
)
2939 ap
->ops
->tf_load(ap
, tf
);
2940 ap
->ops
->exec_command(ap
, tf
);
2944 * ata_busy_sleep - sleep until BSY clears, or timeout
2945 * @ap: port containing status register to be polled
2946 * @tmout_pat: impatience timeout
2947 * @tmout: overall timeout
2949 * Sleep until ATA Status register bit BSY clears,
2950 * or a timeout occurs.
2953 * Kernel thread context (may sleep).
2956 * 0 on success, -errno otherwise.
2958 int ata_busy_sleep(struct ata_port
*ap
,
2959 unsigned long tmout_pat
, unsigned long tmout
)
2961 unsigned long timer_start
, timeout
;
2964 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2965 timer_start
= jiffies
;
2966 timeout
= timer_start
+ tmout_pat
;
2967 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2968 time_before(jiffies
, timeout
)) {
2970 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2973 if (status
!= 0xff && (status
& ATA_BUSY
))
2974 ata_port_printk(ap
, KERN_WARNING
,
2975 "port is slow to respond, please be patient "
2976 "(Status 0x%x)\n", status
);
2978 timeout
= timer_start
+ tmout
;
2979 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2980 time_before(jiffies
, timeout
)) {
2982 status
= ata_chk_status(ap
);
2988 if (status
& ATA_BUSY
) {
2989 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2990 "(%lu secs, Status 0x%x)\n",
2991 tmout
/ HZ
, status
);
2999 * ata_wait_ready - sleep until BSY clears, or timeout
3000 * @ap: port containing status register to be polled
3001 * @deadline: deadline jiffies for the operation
3003 * Sleep until ATA Status register bit BSY clears, or timeout
3007 * Kernel thread context (may sleep).
3010 * 0 on success, -errno otherwise.
3012 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3014 unsigned long start
= jiffies
;
3018 u8 status
= ata_chk_status(ap
);
3019 unsigned long now
= jiffies
;
3021 if (!(status
& ATA_BUSY
))
3023 if (!ata_port_online(ap
) && status
== 0xff)
3025 if (time_after(now
, deadline
))
3028 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3029 (deadline
- now
> 3 * HZ
)) {
3030 ata_port_printk(ap
, KERN_WARNING
,
3031 "port is slow to respond, please be patient "
3032 "(Status 0x%x)\n", status
);
3040 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3041 unsigned long deadline
)
3043 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3044 unsigned int dev0
= devmask
& (1 << 0);
3045 unsigned int dev1
= devmask
& (1 << 1);
3048 /* if device 0 was found in ata_devchk, wait for its
3052 rc
= ata_wait_ready(ap
, deadline
);
3060 /* if device 1 was found in ata_devchk, wait for register
3061 * access briefly, then wait for BSY to clear.
3066 ap
->ops
->dev_select(ap
, 1);
3068 /* Wait for register access. Some ATAPI devices fail
3069 * to set nsect/lbal after reset, so don't waste too
3070 * much time on it. We're gonna wait for !BSY anyway.
3072 for (i
= 0; i
< 2; i
++) {
3075 nsect
= ioread8(ioaddr
->nsect_addr
);
3076 lbal
= ioread8(ioaddr
->lbal_addr
);
3077 if ((nsect
== 1) && (lbal
== 1))
3079 msleep(50); /* give drive a breather */
3082 rc
= ata_wait_ready(ap
, deadline
);
3090 /* is all this really necessary? */
3091 ap
->ops
->dev_select(ap
, 0);
3093 ap
->ops
->dev_select(ap
, 1);
3095 ap
->ops
->dev_select(ap
, 0);
3100 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3101 unsigned long deadline
)
3103 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3105 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3107 /* software reset. causes dev0 to be selected */
3108 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3111 udelay(20); /* FIXME: flush */
3112 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3114 /* spec mandates ">= 2ms" before checking status.
3115 * We wait 150ms, because that was the magic delay used for
3116 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3117 * between when the ATA command register is written, and then
3118 * status is checked. Because waiting for "a while" before
3119 * checking status is fine, post SRST, we perform this magic
3120 * delay here as well.
3122 * Old drivers/ide uses the 2mS rule and then waits for ready
3126 /* Before we perform post reset processing we want to see if
3127 * the bus shows 0xFF because the odd clown forgets the D7
3128 * pulldown resistor.
3130 if (ata_check_status(ap
) == 0xFF)
3133 return ata_bus_post_reset(ap
, devmask
, deadline
);
3137 * ata_bus_reset - reset host port and associated ATA channel
3138 * @ap: port to reset
3140 * This is typically the first time we actually start issuing
3141 * commands to the ATA channel. We wait for BSY to clear, then
3142 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3143 * result. Determine what devices, if any, are on the channel
3144 * by looking at the device 0/1 error register. Look at the signature
3145 * stored in each device's taskfile registers, to determine if
3146 * the device is ATA or ATAPI.
3149 * PCI/etc. bus probe sem.
3150 * Obtains host lock.
3153 * Sets ATA_FLAG_DISABLED if bus reset fails.
3156 void ata_bus_reset(struct ata_port
*ap
)
3158 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3159 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3161 unsigned int dev0
, dev1
= 0, devmask
= 0;
3164 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3166 /* determine if device 0/1 are present */
3167 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3170 dev0
= ata_devchk(ap
, 0);
3172 dev1
= ata_devchk(ap
, 1);
3176 devmask
|= (1 << 0);
3178 devmask
|= (1 << 1);
3180 /* select device 0 again */
3181 ap
->ops
->dev_select(ap
, 0);
3183 /* issue bus reset */
3184 if (ap
->flags
& ATA_FLAG_SRST
) {
3185 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3186 if (rc
&& rc
!= -ENODEV
)
3191 * determine by signature whether we have ATA or ATAPI devices
3193 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
3194 if ((slave_possible
) && (err
!= 0x81))
3195 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
3197 /* re-enable interrupts */
3198 ap
->ops
->irq_on(ap
);
3200 /* is double-select really necessary? */
3201 if (ap
->device
[1].class != ATA_DEV_NONE
)
3202 ap
->ops
->dev_select(ap
, 1);
3203 if (ap
->device
[0].class != ATA_DEV_NONE
)
3204 ap
->ops
->dev_select(ap
, 0);
3206 /* if no devices were detected, disable this port */
3207 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
3208 (ap
->device
[1].class == ATA_DEV_NONE
))
3211 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3212 /* set up device control for ATA_FLAG_SATA_RESET */
3213 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3220 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3221 ap
->ops
->port_disable(ap
);
3227 * sata_phy_debounce - debounce SATA phy status
3228 * @ap: ATA port to debounce SATA phy status for
3229 * @params: timing parameters { interval, duratinon, timeout } in msec
3230 * @deadline: deadline jiffies for the operation
3232 * Make sure SStatus of @ap reaches stable state, determined by
3233 * holding the same value where DET is not 1 for @duration polled
3234 * every @interval, before @timeout. Timeout constraints the
3235 * beginning of the stable state. Because DET gets stuck at 1 on
3236 * some controllers after hot unplugging, this functions waits
3237 * until timeout then returns 0 if DET is stable at 1.
3239 * @timeout is further limited by @deadline. The sooner of the
3243 * Kernel thread context (may sleep)
3246 * 0 on success, -errno on failure.
3248 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
,
3249 unsigned long deadline
)
3251 unsigned long interval_msec
= params
[0];
3252 unsigned long duration
= msecs_to_jiffies(params
[1]);
3253 unsigned long last_jiffies
, t
;
3257 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3258 if (time_before(t
, deadline
))
3261 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3266 last_jiffies
= jiffies
;
3269 msleep(interval_msec
);
3270 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3276 if (cur
== 1 && time_before(jiffies
, deadline
))
3278 if (time_after(jiffies
, last_jiffies
+ duration
))
3283 /* unstable, start over */
3285 last_jiffies
= jiffies
;
3287 /* check deadline */
3288 if (time_after(jiffies
, deadline
))
3294 * sata_phy_resume - resume SATA phy
3295 * @ap: ATA port to resume SATA phy for
3296 * @params: timing parameters { interval, duratinon, timeout } in msec
3297 * @deadline: deadline jiffies for the operation
3299 * Resume SATA phy of @ap and debounce it.
3302 * Kernel thread context (may sleep)
3305 * 0 on success, -errno on failure.
3307 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
,
3308 unsigned long deadline
)
3313 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3316 scontrol
= (scontrol
& 0x0f0) | 0x300;
3318 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3321 /* Some PHYs react badly if SStatus is pounded immediately
3322 * after resuming. Delay 200ms before debouncing.
3326 return sata_phy_debounce(ap
, params
, deadline
);
3330 * ata_std_prereset - prepare for reset
3331 * @ap: ATA port to be reset
3332 * @deadline: deadline jiffies for the operation
3334 * @ap is about to be reset. Initialize it. Failure from
3335 * prereset makes libata abort whole reset sequence and give up
3336 * that port, so prereset should be best-effort. It does its
3337 * best to prepare for reset sequence but if things go wrong, it
3338 * should just whine, not fail.
3341 * Kernel thread context (may sleep)
3344 * 0 on success, -errno otherwise.
3346 int ata_std_prereset(struct ata_port
*ap
, unsigned long deadline
)
3348 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3349 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3352 /* handle link resume */
3353 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3354 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
3355 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3357 /* if we're about to do hardreset, nothing more to do */
3358 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3361 /* if SATA, resume phy */
3362 if (ap
->cbl
== ATA_CBL_SATA
) {
3363 rc
= sata_phy_resume(ap
, timing
, deadline
);
3364 /* whine about phy resume failure but proceed */
3365 if (rc
&& rc
!= -EOPNOTSUPP
)
3366 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
3367 "link for reset (errno=%d)\n", rc
);
3370 /* Wait for !BSY if the controller can wait for the first D2H
3371 * Reg FIS and we don't know that no device is attached.
3373 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
)) {
3374 rc
= ata_wait_ready(ap
, deadline
);
3375 if (rc
&& rc
!= -ENODEV
) {
3376 ata_port_printk(ap
, KERN_WARNING
, "device not ready "
3377 "(errno=%d), forcing hardreset\n", rc
);
3378 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3386 * ata_std_softreset - reset host port via ATA SRST
3387 * @ap: port to reset
3388 * @classes: resulting classes of attached devices
3389 * @deadline: deadline jiffies for the operation
3391 * Reset host port using ATA SRST.
3394 * Kernel thread context (may sleep)
3397 * 0 on success, -errno otherwise.
3399 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
,
3400 unsigned long deadline
)
3402 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3403 unsigned int devmask
= 0;
3409 if (ata_port_offline(ap
)) {
3410 classes
[0] = ATA_DEV_NONE
;
3414 /* determine if device 0/1 are present */
3415 if (ata_devchk(ap
, 0))
3416 devmask
|= (1 << 0);
3417 if (slave_possible
&& ata_devchk(ap
, 1))
3418 devmask
|= (1 << 1);
3420 /* select device 0 again */
3421 ap
->ops
->dev_select(ap
, 0);
3423 /* issue bus reset */
3424 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3425 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3426 /* if link is occupied, -ENODEV too is an error */
3427 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(ap
))) {
3428 ata_port_printk(ap
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3432 /* determine by signature whether we have ATA or ATAPI devices */
3433 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3434 if (slave_possible
&& err
!= 0x81)
3435 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3443 * sata_port_hardreset - reset port via SATA phy reset
3444 * @ap: port to reset
3445 * @timing: timing parameters { interval, duratinon, timeout } in msec
3446 * @deadline: deadline jiffies for the operation
3448 * SATA phy-reset host port using DET bits of SControl register.
3451 * Kernel thread context (may sleep)
3454 * 0 on success, -errno otherwise.
3456 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
,
3457 unsigned long deadline
)
3464 if (sata_set_spd_needed(ap
)) {
3465 /* SATA spec says nothing about how to reconfigure
3466 * spd. To be on the safe side, turn off phy during
3467 * reconfiguration. This works for at least ICH7 AHCI
3470 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3473 scontrol
= (scontrol
& 0x0f0) | 0x304;
3475 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3481 /* issue phy wake/reset */
3482 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3485 scontrol
= (scontrol
& 0x0f0) | 0x301;
3487 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3491 * 10.4.2 says at least 1 ms.
3495 /* bring phy back */
3496 rc
= sata_phy_resume(ap
, timing
, deadline
);
3498 DPRINTK("EXIT, rc=%d\n", rc
);
3503 * sata_std_hardreset - reset host port via SATA phy reset
3504 * @ap: port to reset
3505 * @class: resulting class of attached device
3506 * @deadline: deadline jiffies for the operation
3508 * SATA phy-reset host port using DET bits of SControl register,
3509 * wait for !BSY and classify the attached device.
3512 * Kernel thread context (may sleep)
3515 * 0 on success, -errno otherwise.
3517 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class,
3518 unsigned long deadline
)
3520 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3526 rc
= sata_port_hardreset(ap
, timing
, deadline
);
3528 ata_port_printk(ap
, KERN_ERR
,
3529 "COMRESET failed (errno=%d)\n", rc
);
3533 /* TODO: phy layer with polling, timeouts, etc. */
3534 if (ata_port_offline(ap
)) {
3535 *class = ATA_DEV_NONE
;
3536 DPRINTK("EXIT, link offline\n");
3540 /* wait a while before checking status, see SRST for more info */
3543 rc
= ata_wait_ready(ap
, deadline
);
3544 /* link occupied, -ENODEV too is an error */
3546 ata_port_printk(ap
, KERN_ERR
,
3547 "COMRESET failed (errno=%d)\n", rc
);
3551 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3553 *class = ata_dev_try_classify(ap
, 0, NULL
);
3555 DPRINTK("EXIT, class=%u\n", *class);
3560 * ata_std_postreset - standard postreset callback
3561 * @ap: the target ata_port
3562 * @classes: classes of attached devices
3564 * This function is invoked after a successful reset. Note that
3565 * the device might have been reset more than once using
3566 * different reset methods before postreset is invoked.
3569 * Kernel thread context (may sleep)
3571 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3577 /* print link status */
3578 sata_print_link_status(ap
);
3581 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3582 sata_scr_write(ap
, SCR_ERROR
, serror
);
3584 /* re-enable interrupts */
3585 if (!ap
->ops
->error_handler
)
3586 ap
->ops
->irq_on(ap
);
3588 /* is double-select really necessary? */
3589 if (classes
[0] != ATA_DEV_NONE
)
3590 ap
->ops
->dev_select(ap
, 1);
3591 if (classes
[1] != ATA_DEV_NONE
)
3592 ap
->ops
->dev_select(ap
, 0);
3594 /* bail out if no device is present */
3595 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3596 DPRINTK("EXIT, no device\n");
3600 /* set up device control */
3601 if (ap
->ioaddr
.ctl_addr
)
3602 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3608 * ata_dev_same_device - Determine whether new ID matches configured device
3609 * @dev: device to compare against
3610 * @new_class: class of the new device
3611 * @new_id: IDENTIFY page of the new device
3613 * Compare @new_class and @new_id against @dev and determine
3614 * whether @dev is the device indicated by @new_class and
3621 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3623 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3626 const u16
*old_id
= dev
->id
;
3627 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3628 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3630 if (dev
->class != new_class
) {
3631 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3632 dev
->class, new_class
);
3636 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3637 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3638 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3639 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3641 if (strcmp(model
[0], model
[1])) {
3642 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3643 "'%s' != '%s'\n", model
[0], model
[1]);
3647 if (strcmp(serial
[0], serial
[1])) {
3648 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3649 "'%s' != '%s'\n", serial
[0], serial
[1]);
3657 * ata_dev_reread_id - Re-read IDENTIFY data
3658 * @dev: target ATA device
3659 * @readid_flags: read ID flags
3661 * Re-read IDENTIFY page and make sure @dev is still attached to
3665 * Kernel thread context (may sleep)
3668 * 0 on success, negative errno otherwise
3670 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3672 unsigned int class = dev
->class;
3673 u16
*id
= (void *)dev
->ap
->sector_buf
;
3677 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3681 /* is the device still there? */
3682 if (!ata_dev_same_device(dev
, class, id
))
3685 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3690 * ata_dev_revalidate - Revalidate ATA device
3691 * @dev: device to revalidate
3692 * @readid_flags: read ID flags
3694 * Re-read IDENTIFY page, make sure @dev is still attached to the
3695 * port and reconfigure it according to the new IDENTIFY page.
3698 * Kernel thread context (may sleep)
3701 * 0 on success, negative errno otherwise
3703 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3705 u64 n_sectors
= dev
->n_sectors
;
3708 if (!ata_dev_enabled(dev
))
3712 rc
= ata_dev_reread_id(dev
, readid_flags
);
3716 /* configure device according to the new ID */
3717 rc
= ata_dev_configure(dev
);
3721 /* verify n_sectors hasn't changed */
3722 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= n_sectors
) {
3723 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3725 (unsigned long long)n_sectors
,
3726 (unsigned long long)dev
->n_sectors
);
3734 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3738 struct ata_blacklist_entry
{
3739 const char *model_num
;
3740 const char *model_rev
;
3741 unsigned long horkage
;
3744 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3745 /* Devices with DMA related problems under Linux */
3746 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3747 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3748 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3749 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3750 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3751 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3752 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3753 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3754 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3755 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3756 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3757 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3758 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3759 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3760 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3761 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3762 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3763 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3764 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3765 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3766 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3767 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3768 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3769 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3770 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3771 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3772 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3773 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3774 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3775 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
3776 { "IOMEGA ZIP 250 ATAPI", NULL
, ATA_HORKAGE_NODMA
}, /* temporary fix */
3778 /* Weird ATAPI devices */
3779 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
3781 /* Devices we expect to fail diagnostics */
3783 /* Devices where NCQ should be avoided */
3785 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3786 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3787 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3789 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3790 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ
},
3791 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3792 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3793 /* Blacklist entries taken from Silicon Image 3124/3132
3794 Windows driver .inf file - also several Linux problem reports */
3795 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3796 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3797 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3798 /* Drives which do spurious command completion */
3799 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ
, },
3800 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ
, },
3801 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
3803 /* Devices with NCQ limits */
3809 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3811 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3812 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3813 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3815 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3816 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3818 while (ad
->model_num
) {
3819 if (!strcmp(ad
->model_num
, model_num
)) {
3820 if (ad
->model_rev
== NULL
)
3822 if (!strcmp(ad
->model_rev
, model_rev
))
3830 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3832 /* We don't support polling DMA.
3833 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3834 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3837 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3839 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3843 * ata_dev_xfermask - Compute supported xfermask of the given device
3844 * @dev: Device to compute xfermask for
3846 * Compute supported xfermask of @dev and store it in
3847 * dev->*_mask. This function is responsible for applying all
3848 * known limits including host controller limits, device
3854 static void ata_dev_xfermask(struct ata_device
*dev
)
3856 struct ata_port
*ap
= dev
->ap
;
3857 struct ata_host
*host
= ap
->host
;
3858 unsigned long xfer_mask
;
3860 /* controller modes available */
3861 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3862 ap
->mwdma_mask
, ap
->udma_mask
);
3864 /* drive modes available */
3865 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3866 dev
->mwdma_mask
, dev
->udma_mask
);
3867 xfer_mask
&= ata_id_xfermask(dev
->id
);
3870 * CFA Advanced TrueIDE timings are not allowed on a shared
3873 if (ata_dev_pair(dev
)) {
3874 /* No PIO5 or PIO6 */
3875 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3876 /* No MWDMA3 or MWDMA 4 */
3877 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3880 if (ata_dma_blacklisted(dev
)) {
3881 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3882 ata_dev_printk(dev
, KERN_WARNING
,
3883 "device is on DMA blacklist, disabling DMA\n");
3886 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
3887 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
3888 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3889 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3890 "other device, disabling DMA\n");
3893 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
3894 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
3896 if (ap
->ops
->mode_filter
)
3897 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
3899 /* Apply cable rule here. Don't apply it early because when
3900 * we handle hot plug the cable type can itself change.
3901 * Check this last so that we know if the transfer rate was
3902 * solely limited by the cable.
3903 * Unknown or 80 wire cables reported host side are checked
3904 * drive side as well. Cases where we know a 40wire cable
3905 * is used safely for 80 are not checked here.
3907 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
3908 /* UDMA/44 or higher would be available */
3909 if((ap
->cbl
== ATA_CBL_PATA40
) ||
3910 (ata_drive_40wire(dev
->id
) &&
3911 (ap
->cbl
== ATA_CBL_PATA_UNK
||
3912 ap
->cbl
== ATA_CBL_PATA80
))) {
3913 ata_dev_printk(dev
, KERN_WARNING
,
3914 "limited to UDMA/33 due to 40-wire cable\n");
3915 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3918 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3919 &dev
->mwdma_mask
, &dev
->udma_mask
);
3923 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3924 * @dev: Device to which command will be sent
3926 * Issue SET FEATURES - XFER MODE command to device @dev
3930 * PCI/etc. bus probe sem.
3933 * 0 on success, AC_ERR_* mask otherwise.
3936 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3938 struct ata_taskfile tf
;
3939 unsigned int err_mask
;
3941 /* set up set-features taskfile */
3942 DPRINTK("set features - xfer mode\n");
3944 /* Some controllers and ATAPI devices show flaky interrupt
3945 * behavior after setting xfer mode. Use polling instead.
3947 ata_tf_init(dev
, &tf
);
3948 tf
.command
= ATA_CMD_SET_FEATURES
;
3949 tf
.feature
= SETFEATURES_XFER
;
3950 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
3951 tf
.protocol
= ATA_PROT_NODATA
;
3952 tf
.nsect
= dev
->xfer_mode
;
3954 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3956 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3961 * ata_dev_init_params - Issue INIT DEV PARAMS command
3962 * @dev: Device to which command will be sent
3963 * @heads: Number of heads (taskfile parameter)
3964 * @sectors: Number of sectors (taskfile parameter)
3967 * Kernel thread context (may sleep)
3970 * 0 on success, AC_ERR_* mask otherwise.
3972 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3973 u16 heads
, u16 sectors
)
3975 struct ata_taskfile tf
;
3976 unsigned int err_mask
;
3978 /* Number of sectors per track 1-255. Number of heads 1-16 */
3979 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3980 return AC_ERR_INVALID
;
3982 /* set up init dev params taskfile */
3983 DPRINTK("init dev params \n");
3985 ata_tf_init(dev
, &tf
);
3986 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3987 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3988 tf
.protocol
= ATA_PROT_NODATA
;
3990 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3992 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3994 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3999 * ata_sg_clean - Unmap DMA memory associated with command
4000 * @qc: Command containing DMA memory to be released
4002 * Unmap all mapped DMA memory associated with this command.
4005 * spin_lock_irqsave(host lock)
4007 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4009 struct ata_port
*ap
= qc
->ap
;
4010 struct scatterlist
*sg
= qc
->__sg
;
4011 int dir
= qc
->dma_dir
;
4012 void *pad_buf
= NULL
;
4014 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
4015 WARN_ON(sg
== NULL
);
4017 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
4018 WARN_ON(qc
->n_elem
> 1);
4020 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4022 /* if we padded the buffer out to 32-bit bound, and data
4023 * xfer direction is from-device, we must copy from the
4024 * pad buffer back into the supplied buffer
4026 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4027 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4029 if (qc
->flags
& ATA_QCFLAG_SG
) {
4031 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4032 /* restore last sg */
4033 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
4035 struct scatterlist
*psg
= &qc
->pad_sgent
;
4036 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4037 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
4038 kunmap_atomic(addr
, KM_IRQ0
);
4042 dma_unmap_single(ap
->dev
,
4043 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
4046 sg
->length
+= qc
->pad_len
;
4048 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4049 pad_buf
, qc
->pad_len
);
4052 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4057 * ata_fill_sg - Fill PCI IDE PRD table
4058 * @qc: Metadata associated with taskfile to be transferred
4060 * Fill PCI IDE PRD (scatter-gather) table with segments
4061 * associated with the current disk command.
4064 * spin_lock_irqsave(host lock)
4067 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4069 struct ata_port
*ap
= qc
->ap
;
4070 struct scatterlist
*sg
;
4073 WARN_ON(qc
->__sg
== NULL
);
4074 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
4077 ata_for_each_sg(sg
, qc
) {
4081 /* determine if physical DMA addr spans 64K boundary.
4082 * Note h/w doesn't support 64-bit, so we unconditionally
4083 * truncate dma_addr_t to u32.
4085 addr
= (u32
) sg_dma_address(sg
);
4086 sg_len
= sg_dma_len(sg
);
4089 offset
= addr
& 0xffff;
4091 if ((offset
+ sg_len
) > 0x10000)
4092 len
= 0x10000 - offset
;
4094 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
4095 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
4096 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
4105 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4109 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4110 * @qc: Metadata associated with taskfile to check
4112 * Allow low-level driver to filter ATA PACKET commands, returning
4113 * a status indicating whether or not it is OK to use DMA for the
4114 * supplied PACKET command.
4117 * spin_lock_irqsave(host lock)
4119 * RETURNS: 0 when ATAPI DMA can be used
4122 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4124 struct ata_port
*ap
= qc
->ap
;
4126 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4127 * few ATAPI devices choke on such DMA requests.
4129 if (unlikely(qc
->nbytes
& 15))
4132 if (ap
->ops
->check_atapi_dma
)
4133 return ap
->ops
->check_atapi_dma(qc
);
4139 * ata_qc_prep - Prepare taskfile for submission
4140 * @qc: Metadata associated with taskfile to be prepared
4142 * Prepare ATA taskfile for submission.
4145 * spin_lock_irqsave(host lock)
4147 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4149 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4155 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4158 * ata_sg_init_one - Associate command with memory buffer
4159 * @qc: Command to be associated
4160 * @buf: Memory buffer
4161 * @buflen: Length of memory buffer, in bytes.
4163 * Initialize the data-related elements of queued_cmd @qc
4164 * to point to a single memory buffer, @buf of byte length @buflen.
4167 * spin_lock_irqsave(host lock)
4170 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
4172 qc
->flags
|= ATA_QCFLAG_SINGLE
;
4174 qc
->__sg
= &qc
->sgent
;
4176 qc
->orig_n_elem
= 1;
4178 qc
->nbytes
= buflen
;
4180 sg_init_one(&qc
->sgent
, buf
, buflen
);
4184 * ata_sg_init - Associate command with scatter-gather table.
4185 * @qc: Command to be associated
4186 * @sg: Scatter-gather table.
4187 * @n_elem: Number of elements in s/g table.
4189 * Initialize the data-related elements of queued_cmd @qc
4190 * to point to a scatter-gather table @sg, containing @n_elem
4194 * spin_lock_irqsave(host lock)
4197 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4198 unsigned int n_elem
)
4200 qc
->flags
|= ATA_QCFLAG_SG
;
4202 qc
->n_elem
= n_elem
;
4203 qc
->orig_n_elem
= n_elem
;
4207 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4208 * @qc: Command with memory buffer to be mapped.
4210 * DMA-map the memory buffer associated with queued_cmd @qc.
4213 * spin_lock_irqsave(host lock)
4216 * Zero on success, negative on error.
4219 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
4221 struct ata_port
*ap
= qc
->ap
;
4222 int dir
= qc
->dma_dir
;
4223 struct scatterlist
*sg
= qc
->__sg
;
4224 dma_addr_t dma_address
;
4227 /* we must lengthen transfers to end on a 32-bit boundary */
4228 qc
->pad_len
= sg
->length
& 3;
4230 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4231 struct scatterlist
*psg
= &qc
->pad_sgent
;
4233 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4235 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4237 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4238 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4241 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4242 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4244 sg
->length
-= qc
->pad_len
;
4245 if (sg
->length
== 0)
4248 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4249 sg
->length
, qc
->pad_len
);
4257 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
4259 if (dma_mapping_error(dma_address
)) {
4261 sg
->length
+= qc
->pad_len
;
4265 sg_dma_address(sg
) = dma_address
;
4266 sg_dma_len(sg
) = sg
->length
;
4269 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
4270 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4276 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4277 * @qc: Command with scatter-gather table to be mapped.
4279 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4282 * spin_lock_irqsave(host lock)
4285 * Zero on success, negative on error.
4289 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4291 struct ata_port
*ap
= qc
->ap
;
4292 struct scatterlist
*sg
= qc
->__sg
;
4293 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
4294 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
4296 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4297 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
4299 /* we must lengthen transfers to end on a 32-bit boundary */
4300 qc
->pad_len
= lsg
->length
& 3;
4302 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4303 struct scatterlist
*psg
= &qc
->pad_sgent
;
4304 unsigned int offset
;
4306 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4308 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4311 * psg->page/offset are used to copy to-be-written
4312 * data in this function or read data in ata_sg_clean.
4314 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4315 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
4316 psg
->offset
= offset_in_page(offset
);
4318 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4319 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4320 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4321 kunmap_atomic(addr
, KM_IRQ0
);
4324 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4325 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4327 lsg
->length
-= qc
->pad_len
;
4328 if (lsg
->length
== 0)
4331 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4332 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
4335 pre_n_elem
= qc
->n_elem
;
4336 if (trim_sg
&& pre_n_elem
)
4345 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
4347 /* restore last sg */
4348 lsg
->length
+= qc
->pad_len
;
4352 DPRINTK("%d sg elements mapped\n", n_elem
);
4355 qc
->n_elem
= n_elem
;
4361 * swap_buf_le16 - swap halves of 16-bit words in place
4362 * @buf: Buffer to swap
4363 * @buf_words: Number of 16-bit words in buffer.
4365 * Swap halves of 16-bit words if needed to convert from
4366 * little-endian byte order to native cpu byte order, or
4370 * Inherited from caller.
4372 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4377 for (i
= 0; i
< buf_words
; i
++)
4378 buf
[i
] = le16_to_cpu(buf
[i
]);
4379 #endif /* __BIG_ENDIAN */
4383 * ata_data_xfer - Transfer data by PIO
4384 * @adev: device to target
4386 * @buflen: buffer length
4387 * @write_data: read/write
4389 * Transfer data from/to the device data register by PIO.
4392 * Inherited from caller.
4394 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
4395 unsigned int buflen
, int write_data
)
4397 struct ata_port
*ap
= adev
->ap
;
4398 unsigned int words
= buflen
>> 1;
4400 /* Transfer multiple of 2 bytes */
4402 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4404 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4406 /* Transfer trailing 1 byte, if any. */
4407 if (unlikely(buflen
& 0x01)) {
4408 u16 align_buf
[1] = { 0 };
4409 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4412 memcpy(align_buf
, trailing_buf
, 1);
4413 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
4415 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
4416 memcpy(trailing_buf
, align_buf
, 1);
4422 * ata_data_xfer_noirq - Transfer data by PIO
4423 * @adev: device to target
4425 * @buflen: buffer length
4426 * @write_data: read/write
4428 * Transfer data from/to the device data register by PIO. Do the
4429 * transfer with interrupts disabled.
4432 * Inherited from caller.
4434 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4435 unsigned int buflen
, int write_data
)
4437 unsigned long flags
;
4438 local_irq_save(flags
);
4439 ata_data_xfer(adev
, buf
, buflen
, write_data
);
4440 local_irq_restore(flags
);
4445 * ata_pio_sector - Transfer a sector of data.
4446 * @qc: Command on going
4448 * Transfer qc->sect_size bytes of data from/to the ATA device.
4451 * Inherited from caller.
4454 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4456 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4457 struct scatterlist
*sg
= qc
->__sg
;
4458 struct ata_port
*ap
= qc
->ap
;
4460 unsigned int offset
;
4463 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
4464 ap
->hsm_task_state
= HSM_ST_LAST
;
4466 page
= sg
[qc
->cursg
].page
;
4467 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
4469 /* get the current page and offset */
4470 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4471 offset
%= PAGE_SIZE
;
4473 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4475 if (PageHighMem(page
)) {
4476 unsigned long flags
;
4478 /* FIXME: use a bounce buffer */
4479 local_irq_save(flags
);
4480 buf
= kmap_atomic(page
, KM_IRQ0
);
4482 /* do the actual data transfer */
4483 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4485 kunmap_atomic(buf
, KM_IRQ0
);
4486 local_irq_restore(flags
);
4488 buf
= page_address(page
);
4489 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4492 qc
->curbytes
+= qc
->sect_size
;
4493 qc
->cursg_ofs
+= qc
->sect_size
;
4495 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4502 * ata_pio_sectors - Transfer one or many sectors.
4503 * @qc: Command on going
4505 * Transfer one or many sectors of data from/to the
4506 * ATA device for the DRQ request.
4509 * Inherited from caller.
4512 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4514 if (is_multi_taskfile(&qc
->tf
)) {
4515 /* READ/WRITE MULTIPLE */
4518 WARN_ON(qc
->dev
->multi_count
== 0);
4520 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
4521 qc
->dev
->multi_count
);
4529 * atapi_send_cdb - Write CDB bytes to hardware
4530 * @ap: Port to which ATAPI device is attached.
4531 * @qc: Taskfile currently active
4533 * When device has indicated its readiness to accept
4534 * a CDB, this function is called. Send the CDB.
4540 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4543 DPRINTK("send cdb\n");
4544 WARN_ON(qc
->dev
->cdb_len
< 12);
4546 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4547 ata_altstatus(ap
); /* flush */
4549 switch (qc
->tf
.protocol
) {
4550 case ATA_PROT_ATAPI
:
4551 ap
->hsm_task_state
= HSM_ST
;
4553 case ATA_PROT_ATAPI_NODATA
:
4554 ap
->hsm_task_state
= HSM_ST_LAST
;
4556 case ATA_PROT_ATAPI_DMA
:
4557 ap
->hsm_task_state
= HSM_ST_LAST
;
4558 /* initiate bmdma */
4559 ap
->ops
->bmdma_start(qc
);
4565 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4566 * @qc: Command on going
4567 * @bytes: number of bytes
4569 * Transfer Transfer data from/to the ATAPI device.
4572 * Inherited from caller.
4576 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4578 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4579 struct scatterlist
*sg
= qc
->__sg
;
4580 struct ata_port
*ap
= qc
->ap
;
4583 unsigned int offset
, count
;
4585 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4586 ap
->hsm_task_state
= HSM_ST_LAST
;
4589 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4591 * The end of qc->sg is reached and the device expects
4592 * more data to transfer. In order not to overrun qc->sg
4593 * and fulfill length specified in the byte count register,
4594 * - for read case, discard trailing data from the device
4595 * - for write case, padding zero data to the device
4597 u16 pad_buf
[1] = { 0 };
4598 unsigned int words
= bytes
>> 1;
4601 if (words
) /* warning if bytes > 1 */
4602 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4603 "%u bytes trailing data\n", bytes
);
4605 for (i
= 0; i
< words
; i
++)
4606 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4608 ap
->hsm_task_state
= HSM_ST_LAST
;
4612 sg
= &qc
->__sg
[qc
->cursg
];
4615 offset
= sg
->offset
+ qc
->cursg_ofs
;
4617 /* get the current page and offset */
4618 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4619 offset
%= PAGE_SIZE
;
4621 /* don't overrun current sg */
4622 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4624 /* don't cross page boundaries */
4625 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4627 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4629 if (PageHighMem(page
)) {
4630 unsigned long flags
;
4632 /* FIXME: use bounce buffer */
4633 local_irq_save(flags
);
4634 buf
= kmap_atomic(page
, KM_IRQ0
);
4636 /* do the actual data transfer */
4637 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4639 kunmap_atomic(buf
, KM_IRQ0
);
4640 local_irq_restore(flags
);
4642 buf
= page_address(page
);
4643 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4647 qc
->curbytes
+= count
;
4648 qc
->cursg_ofs
+= count
;
4650 if (qc
->cursg_ofs
== sg
->length
) {
4660 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4661 * @qc: Command on going
4663 * Transfer Transfer data from/to the ATAPI device.
4666 * Inherited from caller.
4669 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4671 struct ata_port
*ap
= qc
->ap
;
4672 struct ata_device
*dev
= qc
->dev
;
4673 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4674 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4676 /* Abuse qc->result_tf for temp storage of intermediate TF
4677 * here to save some kernel stack usage.
4678 * For normal completion, qc->result_tf is not relevant. For
4679 * error, qc->result_tf is later overwritten by ata_qc_complete().
4680 * So, the correctness of qc->result_tf is not affected.
4682 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4683 ireason
= qc
->result_tf
.nsect
;
4684 bc_lo
= qc
->result_tf
.lbam
;
4685 bc_hi
= qc
->result_tf
.lbah
;
4686 bytes
= (bc_hi
<< 8) | bc_lo
;
4688 /* shall be cleared to zero, indicating xfer of data */
4689 if (ireason
& (1 << 0))
4692 /* make sure transfer direction matches expected */
4693 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4694 if (do_write
!= i_write
)
4697 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4699 __atapi_pio_bytes(qc
, bytes
);
4704 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4705 qc
->err_mask
|= AC_ERR_HSM
;
4706 ap
->hsm_task_state
= HSM_ST_ERR
;
4710 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4711 * @ap: the target ata_port
4715 * 1 if ok in workqueue, 0 otherwise.
4718 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4720 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4723 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4724 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4725 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4728 if (is_atapi_taskfile(&qc
->tf
) &&
4729 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4737 * ata_hsm_qc_complete - finish a qc running on standard HSM
4738 * @qc: Command to complete
4739 * @in_wq: 1 if called from workqueue, 0 otherwise
4741 * Finish @qc which is running on standard HSM.
4744 * If @in_wq is zero, spin_lock_irqsave(host lock).
4745 * Otherwise, none on entry and grabs host lock.
4747 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4749 struct ata_port
*ap
= qc
->ap
;
4750 unsigned long flags
;
4752 if (ap
->ops
->error_handler
) {
4754 spin_lock_irqsave(ap
->lock
, flags
);
4756 /* EH might have kicked in while host lock is
4759 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4761 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4762 ap
->ops
->irq_on(ap
);
4763 ata_qc_complete(qc
);
4765 ata_port_freeze(ap
);
4768 spin_unlock_irqrestore(ap
->lock
, flags
);
4770 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4771 ata_qc_complete(qc
);
4773 ata_port_freeze(ap
);
4777 spin_lock_irqsave(ap
->lock
, flags
);
4778 ap
->ops
->irq_on(ap
);
4779 ata_qc_complete(qc
);
4780 spin_unlock_irqrestore(ap
->lock
, flags
);
4782 ata_qc_complete(qc
);
4785 ata_altstatus(ap
); /* flush */
4789 * ata_hsm_move - move the HSM to the next state.
4790 * @ap: the target ata_port
4792 * @status: current device status
4793 * @in_wq: 1 if called from workqueue, 0 otherwise
4796 * 1 when poll next status needed, 0 otherwise.
4798 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4799 u8 status
, int in_wq
)
4801 unsigned long flags
= 0;
4804 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4806 /* Make sure ata_qc_issue_prot() does not throw things
4807 * like DMA polling into the workqueue. Notice that
4808 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4810 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4813 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4814 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4816 switch (ap
->hsm_task_state
) {
4818 /* Send first data block or PACKET CDB */
4820 /* If polling, we will stay in the work queue after
4821 * sending the data. Otherwise, interrupt handler
4822 * takes over after sending the data.
4824 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4826 /* check device status */
4827 if (unlikely((status
& ATA_DRQ
) == 0)) {
4828 /* handle BSY=0, DRQ=0 as error */
4829 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4830 /* device stops HSM for abort/error */
4831 qc
->err_mask
|= AC_ERR_DEV
;
4833 /* HSM violation. Let EH handle this */
4834 qc
->err_mask
|= AC_ERR_HSM
;
4836 ap
->hsm_task_state
= HSM_ST_ERR
;
4840 /* Device should not ask for data transfer (DRQ=1)
4841 * when it finds something wrong.
4842 * We ignore DRQ here and stop the HSM by
4843 * changing hsm_task_state to HSM_ST_ERR and
4844 * let the EH abort the command or reset the device.
4846 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4847 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4848 "error, dev_stat 0x%X\n", status
);
4849 qc
->err_mask
|= AC_ERR_HSM
;
4850 ap
->hsm_task_state
= HSM_ST_ERR
;
4854 /* Send the CDB (atapi) or the first data block (ata pio out).
4855 * During the state transition, interrupt handler shouldn't
4856 * be invoked before the data transfer is complete and
4857 * hsm_task_state is changed. Hence, the following locking.
4860 spin_lock_irqsave(ap
->lock
, flags
);
4862 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4863 /* PIO data out protocol.
4864 * send first data block.
4867 /* ata_pio_sectors() might change the state
4868 * to HSM_ST_LAST. so, the state is changed here
4869 * before ata_pio_sectors().
4871 ap
->hsm_task_state
= HSM_ST
;
4872 ata_pio_sectors(qc
);
4873 ata_altstatus(ap
); /* flush */
4876 atapi_send_cdb(ap
, qc
);
4879 spin_unlock_irqrestore(ap
->lock
, flags
);
4881 /* if polling, ata_pio_task() handles the rest.
4882 * otherwise, interrupt handler takes over from here.
4887 /* complete command or read/write the data register */
4888 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4889 /* ATAPI PIO protocol */
4890 if ((status
& ATA_DRQ
) == 0) {
4891 /* No more data to transfer or device error.
4892 * Device error will be tagged in HSM_ST_LAST.
4894 ap
->hsm_task_state
= HSM_ST_LAST
;
4898 /* Device should not ask for data transfer (DRQ=1)
4899 * when it finds something wrong.
4900 * We ignore DRQ here and stop the HSM by
4901 * changing hsm_task_state to HSM_ST_ERR and
4902 * let the EH abort the command or reset the device.
4904 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4905 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4906 "device error, dev_stat 0x%X\n",
4908 qc
->err_mask
|= AC_ERR_HSM
;
4909 ap
->hsm_task_state
= HSM_ST_ERR
;
4913 atapi_pio_bytes(qc
);
4915 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4916 /* bad ireason reported by device */
4920 /* ATA PIO protocol */
4921 if (unlikely((status
& ATA_DRQ
) == 0)) {
4922 /* handle BSY=0, DRQ=0 as error */
4923 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4924 /* device stops HSM for abort/error */
4925 qc
->err_mask
|= AC_ERR_DEV
;
4927 /* HSM violation. Let EH handle this.
4928 * Phantom devices also trigger this
4929 * condition. Mark hint.
4931 qc
->err_mask
|= AC_ERR_HSM
|
4934 ap
->hsm_task_state
= HSM_ST_ERR
;
4938 /* For PIO reads, some devices may ask for
4939 * data transfer (DRQ=1) alone with ERR=1.
4940 * We respect DRQ here and transfer one
4941 * block of junk data before changing the
4942 * hsm_task_state to HSM_ST_ERR.
4944 * For PIO writes, ERR=1 DRQ=1 doesn't make
4945 * sense since the data block has been
4946 * transferred to the device.
4948 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4949 /* data might be corrputed */
4950 qc
->err_mask
|= AC_ERR_DEV
;
4952 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4953 ata_pio_sectors(qc
);
4955 status
= ata_wait_idle(ap
);
4958 if (status
& (ATA_BUSY
| ATA_DRQ
))
4959 qc
->err_mask
|= AC_ERR_HSM
;
4961 /* ata_pio_sectors() might change the
4962 * state to HSM_ST_LAST. so, the state
4963 * is changed after ata_pio_sectors().
4965 ap
->hsm_task_state
= HSM_ST_ERR
;
4969 ata_pio_sectors(qc
);
4971 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4972 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4975 status
= ata_wait_idle(ap
);
4980 ata_altstatus(ap
); /* flush */
4985 if (unlikely(!ata_ok(status
))) {
4986 qc
->err_mask
|= __ac_err_mask(status
);
4987 ap
->hsm_task_state
= HSM_ST_ERR
;
4991 /* no more data to transfer */
4992 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4993 ap
->print_id
, qc
->dev
->devno
, status
);
4995 WARN_ON(qc
->err_mask
);
4997 ap
->hsm_task_state
= HSM_ST_IDLE
;
4999 /* complete taskfile transaction */
5000 ata_hsm_qc_complete(qc
, in_wq
);
5006 /* make sure qc->err_mask is available to
5007 * know what's wrong and recover
5009 WARN_ON(qc
->err_mask
== 0);
5011 ap
->hsm_task_state
= HSM_ST_IDLE
;
5013 /* complete taskfile transaction */
5014 ata_hsm_qc_complete(qc
, in_wq
);
5026 static void ata_pio_task(struct work_struct
*work
)
5028 struct ata_port
*ap
=
5029 container_of(work
, struct ata_port
, port_task
.work
);
5030 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5035 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5038 * This is purely heuristic. This is a fast path.
5039 * Sometimes when we enter, BSY will be cleared in
5040 * a chk-status or two. If not, the drive is probably seeking
5041 * or something. Snooze for a couple msecs, then
5042 * chk-status again. If still busy, queue delayed work.
5044 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5045 if (status
& ATA_BUSY
) {
5047 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5048 if (status
& ATA_BUSY
) {
5049 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
5055 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5057 /* another command or interrupt handler
5058 * may be running at this point.
5065 * ata_qc_new - Request an available ATA command, for queueing
5066 * @ap: Port associated with device @dev
5067 * @dev: Device from whom we request an available command structure
5073 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5075 struct ata_queued_cmd
*qc
= NULL
;
5078 /* no command while frozen */
5079 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5082 /* the last tag is reserved for internal command. */
5083 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5084 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5085 qc
= __ata_qc_from_tag(ap
, i
);
5096 * ata_qc_new_init - Request an available ATA command, and initialize it
5097 * @dev: Device from whom we request an available command structure
5103 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5105 struct ata_port
*ap
= dev
->ap
;
5106 struct ata_queued_cmd
*qc
;
5108 qc
= ata_qc_new(ap
);
5121 * ata_qc_free - free unused ata_queued_cmd
5122 * @qc: Command to complete
5124 * Designed to free unused ata_queued_cmd object
5125 * in case something prevents using it.
5128 * spin_lock_irqsave(host lock)
5130 void ata_qc_free(struct ata_queued_cmd
*qc
)
5132 struct ata_port
*ap
= qc
->ap
;
5135 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5139 if (likely(ata_tag_valid(tag
))) {
5140 qc
->tag
= ATA_TAG_POISON
;
5141 clear_bit(tag
, &ap
->qc_allocated
);
5145 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5147 struct ata_port
*ap
= qc
->ap
;
5149 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5150 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5152 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5155 /* command should be marked inactive atomically with qc completion */
5156 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
5157 ap
->sactive
&= ~(1 << qc
->tag
);
5159 ap
->active_tag
= ATA_TAG_POISON
;
5161 /* atapi: mark qc as inactive to prevent the interrupt handler
5162 * from completing the command twice later, before the error handler
5163 * is called. (when rc != 0 and atapi request sense is needed)
5165 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5166 ap
->qc_active
&= ~(1 << qc
->tag
);
5168 /* call completion callback */
5169 qc
->complete_fn(qc
);
5172 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5174 struct ata_port
*ap
= qc
->ap
;
5176 qc
->result_tf
.flags
= qc
->tf
.flags
;
5177 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5181 * ata_qc_complete - Complete an active ATA command
5182 * @qc: Command to complete
5183 * @err_mask: ATA Status register contents
5185 * Indicate to the mid and upper layers that an ATA
5186 * command has completed, with either an ok or not-ok status.
5189 * spin_lock_irqsave(host lock)
5191 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5193 struct ata_port
*ap
= qc
->ap
;
5195 /* XXX: New EH and old EH use different mechanisms to
5196 * synchronize EH with regular execution path.
5198 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5199 * Normal execution path is responsible for not accessing a
5200 * failed qc. libata core enforces the rule by returning NULL
5201 * from ata_qc_from_tag() for failed qcs.
5203 * Old EH depends on ata_qc_complete() nullifying completion
5204 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5205 * not synchronize with interrupt handler. Only PIO task is
5208 if (ap
->ops
->error_handler
) {
5209 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5211 if (unlikely(qc
->err_mask
))
5212 qc
->flags
|= ATA_QCFLAG_FAILED
;
5214 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5215 if (!ata_tag_internal(qc
->tag
)) {
5216 /* always fill result TF for failed qc */
5218 ata_qc_schedule_eh(qc
);
5223 /* read result TF if requested */
5224 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5227 __ata_qc_complete(qc
);
5229 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5232 /* read result TF if failed or requested */
5233 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5236 __ata_qc_complete(qc
);
5241 * ata_qc_complete_multiple - Complete multiple qcs successfully
5242 * @ap: port in question
5243 * @qc_active: new qc_active mask
5244 * @finish_qc: LLDD callback invoked before completing a qc
5246 * Complete in-flight commands. This functions is meant to be
5247 * called from low-level driver's interrupt routine to complete
5248 * requests normally. ap->qc_active and @qc_active is compared
5249 * and commands are completed accordingly.
5252 * spin_lock_irqsave(host lock)
5255 * Number of completed commands on success, -errno otherwise.
5257 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5258 void (*finish_qc
)(struct ata_queued_cmd
*))
5264 done_mask
= ap
->qc_active
^ qc_active
;
5266 if (unlikely(done_mask
& qc_active
)) {
5267 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5268 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5272 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5273 struct ata_queued_cmd
*qc
;
5275 if (!(done_mask
& (1 << i
)))
5278 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5281 ata_qc_complete(qc
);
5289 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
5291 struct ata_port
*ap
= qc
->ap
;
5293 switch (qc
->tf
.protocol
) {
5296 case ATA_PROT_ATAPI_DMA
:
5299 case ATA_PROT_ATAPI
:
5301 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
5314 * ata_qc_issue - issue taskfile to device
5315 * @qc: command to issue to device
5317 * Prepare an ATA command to submission to device.
5318 * This includes mapping the data into a DMA-able
5319 * area, filling in the S/G table, and finally
5320 * writing the taskfile to hardware, starting the command.
5323 * spin_lock_irqsave(host lock)
5325 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5327 struct ata_port
*ap
= qc
->ap
;
5329 /* Make sure only one non-NCQ command is outstanding. The
5330 * check is skipped for old EH because it reuses active qc to
5331 * request ATAPI sense.
5333 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
5335 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5336 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
5337 ap
->sactive
|= 1 << qc
->tag
;
5339 WARN_ON(ap
->sactive
);
5340 ap
->active_tag
= qc
->tag
;
5343 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5344 ap
->qc_active
|= 1 << qc
->tag
;
5346 if (ata_should_dma_map(qc
)) {
5347 if (qc
->flags
& ATA_QCFLAG_SG
) {
5348 if (ata_sg_setup(qc
))
5350 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
5351 if (ata_sg_setup_one(qc
))
5355 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5358 ap
->ops
->qc_prep(qc
);
5360 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5361 if (unlikely(qc
->err_mask
))
5366 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5367 qc
->err_mask
|= AC_ERR_SYSTEM
;
5369 ata_qc_complete(qc
);
5373 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5374 * @qc: command to issue to device
5376 * Using various libata functions and hooks, this function
5377 * starts an ATA command. ATA commands are grouped into
5378 * classes called "protocols", and issuing each type of protocol
5379 * is slightly different.
5381 * May be used as the qc_issue() entry in ata_port_operations.
5384 * spin_lock_irqsave(host lock)
5387 * Zero on success, AC_ERR_* mask on failure
5390 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
5392 struct ata_port
*ap
= qc
->ap
;
5394 /* Use polling pio if the LLD doesn't handle
5395 * interrupt driven pio and atapi CDB interrupt.
5397 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
5398 switch (qc
->tf
.protocol
) {
5400 case ATA_PROT_NODATA
:
5401 case ATA_PROT_ATAPI
:
5402 case ATA_PROT_ATAPI_NODATA
:
5403 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5405 case ATA_PROT_ATAPI_DMA
:
5406 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
5407 /* see ata_dma_blacklisted() */
5415 /* select the device */
5416 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5418 /* start the command */
5419 switch (qc
->tf
.protocol
) {
5420 case ATA_PROT_NODATA
:
5421 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5422 ata_qc_set_polling(qc
);
5424 ata_tf_to_host(ap
, &qc
->tf
);
5425 ap
->hsm_task_state
= HSM_ST_LAST
;
5427 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5428 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5433 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5435 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5436 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5437 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5438 ap
->hsm_task_state
= HSM_ST_LAST
;
5442 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5443 ata_qc_set_polling(qc
);
5445 ata_tf_to_host(ap
, &qc
->tf
);
5447 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5448 /* PIO data out protocol */
5449 ap
->hsm_task_state
= HSM_ST_FIRST
;
5450 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5452 /* always send first data block using
5453 * the ata_pio_task() codepath.
5456 /* PIO data in protocol */
5457 ap
->hsm_task_state
= HSM_ST
;
5459 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5460 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5462 /* if polling, ata_pio_task() handles the rest.
5463 * otherwise, interrupt handler takes over from here.
5469 case ATA_PROT_ATAPI
:
5470 case ATA_PROT_ATAPI_NODATA
:
5471 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5472 ata_qc_set_polling(qc
);
5474 ata_tf_to_host(ap
, &qc
->tf
);
5476 ap
->hsm_task_state
= HSM_ST_FIRST
;
5478 /* send cdb by polling if no cdb interrupt */
5479 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5480 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5481 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5484 case ATA_PROT_ATAPI_DMA
:
5485 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5487 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5488 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5489 ap
->hsm_task_state
= HSM_ST_FIRST
;
5491 /* send cdb by polling if no cdb interrupt */
5492 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5493 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5498 return AC_ERR_SYSTEM
;
5505 * ata_host_intr - Handle host interrupt for given (port, task)
5506 * @ap: Port on which interrupt arrived (possibly...)
5507 * @qc: Taskfile currently active in engine
5509 * Handle host interrupt for given queued command. Currently,
5510 * only DMA interrupts are handled. All other commands are
5511 * handled via polling with interrupts disabled (nIEN bit).
5514 * spin_lock_irqsave(host lock)
5517 * One if interrupt was handled, zero if not (shared irq).
5520 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5521 struct ata_queued_cmd
*qc
)
5523 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5524 u8 status
, host_stat
= 0;
5526 VPRINTK("ata%u: protocol %d task_state %d\n",
5527 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5529 /* Check whether we are expecting interrupt in this state */
5530 switch (ap
->hsm_task_state
) {
5532 /* Some pre-ATAPI-4 devices assert INTRQ
5533 * at this state when ready to receive CDB.
5536 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5537 * The flag was turned on only for atapi devices.
5538 * No need to check is_atapi_taskfile(&qc->tf) again.
5540 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5544 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5545 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5546 /* check status of DMA engine */
5547 host_stat
= ap
->ops
->bmdma_status(ap
);
5548 VPRINTK("ata%u: host_stat 0x%X\n",
5549 ap
->print_id
, host_stat
);
5551 /* if it's not our irq... */
5552 if (!(host_stat
& ATA_DMA_INTR
))
5555 /* before we do anything else, clear DMA-Start bit */
5556 ap
->ops
->bmdma_stop(qc
);
5558 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5559 /* error when transfering data to/from memory */
5560 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5561 ap
->hsm_task_state
= HSM_ST_ERR
;
5571 /* check altstatus */
5572 status
= ata_altstatus(ap
);
5573 if (status
& ATA_BUSY
)
5576 /* check main status, clearing INTRQ */
5577 status
= ata_chk_status(ap
);
5578 if (unlikely(status
& ATA_BUSY
))
5581 /* ack bmdma irq events */
5582 ap
->ops
->irq_clear(ap
);
5584 ata_hsm_move(ap
, qc
, status
, 0);
5586 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5587 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5588 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5590 return 1; /* irq handled */
5593 ap
->stats
.idle_irq
++;
5596 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5597 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5598 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5602 return 0; /* irq not handled */
5606 * ata_interrupt - Default ATA host interrupt handler
5607 * @irq: irq line (unused)
5608 * @dev_instance: pointer to our ata_host information structure
5610 * Default interrupt handler for PCI IDE devices. Calls
5611 * ata_host_intr() for each port that is not disabled.
5614 * Obtains host lock during operation.
5617 * IRQ_NONE or IRQ_HANDLED.
5620 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5622 struct ata_host
*host
= dev_instance
;
5624 unsigned int handled
= 0;
5625 unsigned long flags
;
5627 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5628 spin_lock_irqsave(&host
->lock
, flags
);
5630 for (i
= 0; i
< host
->n_ports
; i
++) {
5631 struct ata_port
*ap
;
5633 ap
= host
->ports
[i
];
5635 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5636 struct ata_queued_cmd
*qc
;
5638 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5639 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5640 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5641 handled
|= ata_host_intr(ap
, qc
);
5645 spin_unlock_irqrestore(&host
->lock
, flags
);
5647 return IRQ_RETVAL(handled
);
5651 * sata_scr_valid - test whether SCRs are accessible
5652 * @ap: ATA port to test SCR accessibility for
5654 * Test whether SCRs are accessible for @ap.
5660 * 1 if SCRs are accessible, 0 otherwise.
5662 int sata_scr_valid(struct ata_port
*ap
)
5664 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5668 * sata_scr_read - read SCR register of the specified port
5669 * @ap: ATA port to read SCR for
5671 * @val: Place to store read value
5673 * Read SCR register @reg of @ap into *@val. This function is
5674 * guaranteed to succeed if the cable type of the port is SATA
5675 * and the port implements ->scr_read.
5681 * 0 on success, negative errno on failure.
5683 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5685 if (sata_scr_valid(ap
)) {
5686 *val
= ap
->ops
->scr_read(ap
, reg
);
5693 * sata_scr_write - write SCR register of the specified port
5694 * @ap: ATA port to write SCR for
5695 * @reg: SCR to write
5696 * @val: value to write
5698 * Write @val to SCR register @reg of @ap. This function is
5699 * guaranteed to succeed if the cable type of the port is SATA
5700 * and the port implements ->scr_read.
5706 * 0 on success, negative errno on failure.
5708 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5710 if (sata_scr_valid(ap
)) {
5711 ap
->ops
->scr_write(ap
, reg
, val
);
5718 * sata_scr_write_flush - write SCR register of the specified port and flush
5719 * @ap: ATA port to write SCR for
5720 * @reg: SCR to write
5721 * @val: value to write
5723 * This function is identical to sata_scr_write() except that this
5724 * function performs flush after writing to the register.
5730 * 0 on success, negative errno on failure.
5732 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5734 if (sata_scr_valid(ap
)) {
5735 ap
->ops
->scr_write(ap
, reg
, val
);
5736 ap
->ops
->scr_read(ap
, reg
);
5743 * ata_port_online - test whether the given port is online
5744 * @ap: ATA port to test
5746 * Test whether @ap is online. Note that this function returns 0
5747 * if online status of @ap cannot be obtained, so
5748 * ata_port_online(ap) != !ata_port_offline(ap).
5754 * 1 if the port online status is available and online.
5756 int ata_port_online(struct ata_port
*ap
)
5760 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5766 * ata_port_offline - test whether the given port is offline
5767 * @ap: ATA port to test
5769 * Test whether @ap is offline. Note that this function returns
5770 * 0 if offline status of @ap cannot be obtained, so
5771 * ata_port_online(ap) != !ata_port_offline(ap).
5777 * 1 if the port offline status is available and offline.
5779 int ata_port_offline(struct ata_port
*ap
)
5783 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5788 int ata_flush_cache(struct ata_device
*dev
)
5790 unsigned int err_mask
;
5793 if (!ata_try_flush_cache(dev
))
5796 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5797 cmd
= ATA_CMD_FLUSH_EXT
;
5799 cmd
= ATA_CMD_FLUSH
;
5801 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5803 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5811 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5812 unsigned int action
, unsigned int ehi_flags
,
5815 unsigned long flags
;
5818 for (i
= 0; i
< host
->n_ports
; i
++) {
5819 struct ata_port
*ap
= host
->ports
[i
];
5821 /* Previous resume operation might still be in
5822 * progress. Wait for PM_PENDING to clear.
5824 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5825 ata_port_wait_eh(ap
);
5826 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5829 /* request PM ops to EH */
5830 spin_lock_irqsave(ap
->lock
, flags
);
5835 ap
->pm_result
= &rc
;
5838 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5839 ap
->eh_info
.action
|= action
;
5840 ap
->eh_info
.flags
|= ehi_flags
;
5842 ata_port_schedule_eh(ap
);
5844 spin_unlock_irqrestore(ap
->lock
, flags
);
5846 /* wait and check result */
5848 ata_port_wait_eh(ap
);
5849 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5859 * ata_host_suspend - suspend host
5860 * @host: host to suspend
5863 * Suspend @host. Actual operation is performed by EH. This
5864 * function requests EH to perform PM operations and waits for EH
5868 * Kernel thread context (may sleep).
5871 * 0 on success, -errno on failure.
5873 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5877 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5879 host
->dev
->power
.power_state
= mesg
;
5884 * ata_host_resume - resume host
5885 * @host: host to resume
5887 * Resume @host. Actual operation is performed by EH. This
5888 * function requests EH to perform PM operations and returns.
5889 * Note that all resume operations are performed parallely.
5892 * Kernel thread context (may sleep).
5894 void ata_host_resume(struct ata_host
*host
)
5896 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5897 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5898 host
->dev
->power
.power_state
= PMSG_ON
;
5903 * ata_port_start - Set port up for dma.
5904 * @ap: Port to initialize
5906 * Called just after data structures for each port are
5907 * initialized. Allocates space for PRD table.
5909 * May be used as the port_start() entry in ata_port_operations.
5912 * Inherited from caller.
5914 int ata_port_start(struct ata_port
*ap
)
5916 struct device
*dev
= ap
->dev
;
5919 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5924 rc
= ata_pad_alloc(ap
, dev
);
5928 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5929 (unsigned long long)ap
->prd_dma
);
5934 * ata_dev_init - Initialize an ata_device structure
5935 * @dev: Device structure to initialize
5937 * Initialize @dev in preparation for probing.
5940 * Inherited from caller.
5942 void ata_dev_init(struct ata_device
*dev
)
5944 struct ata_port
*ap
= dev
->ap
;
5945 unsigned long flags
;
5947 /* SATA spd limit is bound to the first device */
5948 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5950 /* High bits of dev->flags are used to record warm plug
5951 * requests which occur asynchronously. Synchronize using
5954 spin_lock_irqsave(ap
->lock
, flags
);
5955 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5956 spin_unlock_irqrestore(ap
->lock
, flags
);
5958 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5959 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5960 dev
->pio_mask
= UINT_MAX
;
5961 dev
->mwdma_mask
= UINT_MAX
;
5962 dev
->udma_mask
= UINT_MAX
;
5966 * ata_port_alloc - allocate and initialize basic ATA port resources
5967 * @host: ATA host this allocated port belongs to
5969 * Allocate and initialize basic ATA port resources.
5972 * Allocate ATA port on success, NULL on failure.
5975 * Inherited from calling layer (may sleep).
5977 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5979 struct ata_port
*ap
;
5984 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5988 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5989 ap
->lock
= &host
->lock
;
5990 ap
->flags
= ATA_FLAG_DISABLED
;
5992 ap
->ctl
= ATA_DEVCTL_OBS
;
5994 ap
->dev
= host
->dev
;
5996 ap
->hw_sata_spd_limit
= UINT_MAX
;
5997 ap
->active_tag
= ATA_TAG_POISON
;
5998 ap
->last_ctl
= 0xFF;
6000 #if defined(ATA_VERBOSE_DEBUG)
6001 /* turn on all debugging levels */
6002 ap
->msg_enable
= 0x00FF;
6003 #elif defined(ATA_DEBUG)
6004 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6006 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6009 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
6010 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6011 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6012 INIT_LIST_HEAD(&ap
->eh_done_q
);
6013 init_waitqueue_head(&ap
->eh_wait_q
);
6015 ap
->cbl
= ATA_CBL_NONE
;
6017 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6018 struct ata_device
*dev
= &ap
->device
[i
];
6025 ap
->stats
.unhandled_irq
= 1;
6026 ap
->stats
.idle_irq
= 1;
6031 static void ata_host_release(struct device
*gendev
, void *res
)
6033 struct ata_host
*host
= dev_get_drvdata(gendev
);
6036 for (i
= 0; i
< host
->n_ports
; i
++) {
6037 struct ata_port
*ap
= host
->ports
[i
];
6042 if ((host
->flags
& ATA_HOST_STARTED
) && ap
->ops
->port_stop
)
6043 ap
->ops
->port_stop(ap
);
6046 if ((host
->flags
& ATA_HOST_STARTED
) && host
->ops
->host_stop
)
6047 host
->ops
->host_stop(host
);
6049 for (i
= 0; i
< host
->n_ports
; i
++) {
6050 struct ata_port
*ap
= host
->ports
[i
];
6056 scsi_host_put(ap
->scsi_host
);
6059 host
->ports
[i
] = NULL
;
6062 dev_set_drvdata(gendev
, NULL
);
6066 * ata_host_alloc - allocate and init basic ATA host resources
6067 * @dev: generic device this host is associated with
6068 * @max_ports: maximum number of ATA ports associated with this host
6070 * Allocate and initialize basic ATA host resources. LLD calls
6071 * this function to allocate a host, initializes it fully and
6072 * attaches it using ata_host_register().
6074 * @max_ports ports are allocated and host->n_ports is
6075 * initialized to @max_ports. The caller is allowed to decrease
6076 * host->n_ports before calling ata_host_register(). The unused
6077 * ports will be automatically freed on registration.
6080 * Allocate ATA host on success, NULL on failure.
6083 * Inherited from calling layer (may sleep).
6085 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6087 struct ata_host
*host
;
6093 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6096 /* alloc a container for our list of ATA ports (buses) */
6097 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6098 /* alloc a container for our list of ATA ports (buses) */
6099 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6103 devres_add(dev
, host
);
6104 dev_set_drvdata(dev
, host
);
6106 spin_lock_init(&host
->lock
);
6108 host
->n_ports
= max_ports
;
6110 /* allocate ports bound to this host */
6111 for (i
= 0; i
< max_ports
; i
++) {
6112 struct ata_port
*ap
;
6114 ap
= ata_port_alloc(host
);
6119 host
->ports
[i
] = ap
;
6122 devres_remove_group(dev
, NULL
);
6126 devres_release_group(dev
, NULL
);
6131 * ata_host_alloc_pinfo - alloc host and init with port_info array
6132 * @dev: generic device this host is associated with
6133 * @ppi: array of ATA port_info to initialize host with
6134 * @n_ports: number of ATA ports attached to this host
6136 * Allocate ATA host and initialize with info from @ppi. If NULL
6137 * terminated, @ppi may contain fewer entries than @n_ports. The
6138 * last entry will be used for the remaining ports.
6141 * Allocate ATA host on success, NULL on failure.
6144 * Inherited from calling layer (may sleep).
6146 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6147 const struct ata_port_info
* const * ppi
,
6150 const struct ata_port_info
*pi
;
6151 struct ata_host
*host
;
6154 host
= ata_host_alloc(dev
, n_ports
);
6158 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6159 struct ata_port
*ap
= host
->ports
[i
];
6164 ap
->pio_mask
= pi
->pio_mask
;
6165 ap
->mwdma_mask
= pi
->mwdma_mask
;
6166 ap
->udma_mask
= pi
->udma_mask
;
6167 ap
->flags
|= pi
->flags
;
6168 ap
->ops
= pi
->port_ops
;
6170 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6171 host
->ops
= pi
->port_ops
;
6172 if (!host
->private_data
&& pi
->private_data
)
6173 host
->private_data
= pi
->private_data
;
6180 * ata_host_start - start and freeze ports of an ATA host
6181 * @host: ATA host to start ports for
6183 * Start and then freeze ports of @host. Started status is
6184 * recorded in host->flags, so this function can be called
6185 * multiple times. Ports are guaranteed to get started only
6186 * once. If host->ops isn't initialized yet, its set to the
6187 * first non-dummy port ops.
6190 * Inherited from calling layer (may sleep).
6193 * 0 if all ports are started successfully, -errno otherwise.
6195 int ata_host_start(struct ata_host
*host
)
6199 if (host
->flags
& ATA_HOST_STARTED
)
6202 for (i
= 0; i
< host
->n_ports
; i
++) {
6203 struct ata_port
*ap
= host
->ports
[i
];
6205 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6206 host
->ops
= ap
->ops
;
6208 if (ap
->ops
->port_start
) {
6209 rc
= ap
->ops
->port_start(ap
);
6211 ata_port_printk(ap
, KERN_ERR
, "failed to "
6212 "start port (errno=%d)\n", rc
);
6217 ata_eh_freeze_port(ap
);
6220 host
->flags
|= ATA_HOST_STARTED
;
6225 struct ata_port
*ap
= host
->ports
[i
];
6227 if (ap
->ops
->port_stop
)
6228 ap
->ops
->port_stop(ap
);
6234 * ata_sas_host_init - Initialize a host struct
6235 * @host: host to initialize
6236 * @dev: device host is attached to
6237 * @flags: host flags
6241 * PCI/etc. bus probe sem.
6244 /* KILLME - the only user left is ipr */
6245 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6246 unsigned long flags
, const struct ata_port_operations
*ops
)
6248 spin_lock_init(&host
->lock
);
6250 host
->flags
= flags
;
6255 * ata_host_register - register initialized ATA host
6256 * @host: ATA host to register
6257 * @sht: template for SCSI host
6259 * Register initialized ATA host. @host is allocated using
6260 * ata_host_alloc() and fully initialized by LLD. This function
6261 * starts ports, registers @host with ATA and SCSI layers and
6262 * probe registered devices.
6265 * Inherited from calling layer (may sleep).
6268 * 0 on success, -errno otherwise.
6270 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6274 /* host must have been started */
6275 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6276 dev_printk(KERN_ERR
, host
->dev
,
6277 "BUG: trying to register unstarted host\n");
6282 /* Blow away unused ports. This happens when LLD can't
6283 * determine the exact number of ports to allocate at
6286 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6287 kfree(host
->ports
[i
]);
6289 /* give ports names and add SCSI hosts */
6290 for (i
= 0; i
< host
->n_ports
; i
++)
6291 host
->ports
[i
]->print_id
= ata_print_id
++;
6293 rc
= ata_scsi_add_hosts(host
, sht
);
6297 /* set cable, sata_spd_limit and report */
6298 for (i
= 0; i
< host
->n_ports
; i
++) {
6299 struct ata_port
*ap
= host
->ports
[i
];
6302 unsigned long xfer_mask
;
6304 /* set SATA cable type if still unset */
6305 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6306 ap
->cbl
= ATA_CBL_SATA
;
6308 /* init sata_spd_limit to the current value */
6309 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
6310 int spd
= (scontrol
>> 4) & 0xf;
6312 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6314 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
6316 /* report the secondary IRQ for second channel legacy */
6317 irq_line
= host
->irq
;
6318 if (i
== 1 && host
->irq2
)
6319 irq_line
= host
->irq2
;
6321 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6324 /* print per-port info to dmesg */
6325 if (!ata_port_is_dummy(ap
))
6326 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
6327 "ctl 0x%p bmdma 0x%p irq %d\n",
6328 ap
->cbl
== ATA_CBL_SATA
? 'S' : 'P',
6329 ata_mode_string(xfer_mask
),
6330 ap
->ioaddr
.cmd_addr
,
6331 ap
->ioaddr
.ctl_addr
,
6332 ap
->ioaddr
.bmdma_addr
,
6335 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6338 /* perform each probe synchronously */
6339 DPRINTK("probe begin\n");
6340 for (i
= 0; i
< host
->n_ports
; i
++) {
6341 struct ata_port
*ap
= host
->ports
[i
];
6345 if (ap
->ops
->error_handler
) {
6346 struct ata_eh_info
*ehi
= &ap
->eh_info
;
6347 unsigned long flags
;
6351 /* kick EH for boot probing */
6352 spin_lock_irqsave(ap
->lock
, flags
);
6354 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
6355 ehi
->action
|= ATA_EH_SOFTRESET
;
6356 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6358 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6359 ap
->pflags
|= ATA_PFLAG_LOADING
;
6360 ata_port_schedule_eh(ap
);
6362 spin_unlock_irqrestore(ap
->lock
, flags
);
6364 /* wait for EH to finish */
6365 ata_port_wait_eh(ap
);
6367 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6368 rc
= ata_bus_probe(ap
);
6369 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6372 /* FIXME: do something useful here?
6373 * Current libata behavior will
6374 * tear down everything when
6375 * the module is removed
6376 * or the h/w is unplugged.
6382 /* probes are done, now scan each port's disk(s) */
6383 DPRINTK("host probe begin\n");
6384 for (i
= 0; i
< host
->n_ports
; i
++) {
6385 struct ata_port
*ap
= host
->ports
[i
];
6387 ata_scsi_scan_host(ap
);
6394 * ata_host_activate - start host, request IRQ and register it
6395 * @host: target ATA host
6396 * @irq: IRQ to request
6397 * @irq_handler: irq_handler used when requesting IRQ
6398 * @irq_flags: irq_flags used when requesting IRQ
6399 * @sht: scsi_host_template to use when registering the host
6401 * After allocating an ATA host and initializing it, most libata
6402 * LLDs perform three steps to activate the host - start host,
6403 * request IRQ and register it. This helper takes necessasry
6404 * arguments and performs the three steps in one go.
6407 * Inherited from calling layer (may sleep).
6410 * 0 on success, -errno otherwise.
6412 int ata_host_activate(struct ata_host
*host
, int irq
,
6413 irq_handler_t irq_handler
, unsigned long irq_flags
,
6414 struct scsi_host_template
*sht
)
6418 rc
= ata_host_start(host
);
6422 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6423 dev_driver_string(host
->dev
), host
);
6427 rc
= ata_host_register(host
, sht
);
6428 /* if failed, just free the IRQ and leave ports alone */
6430 devm_free_irq(host
->dev
, irq
, host
);
6432 /* Used to print device info at probe */
6439 * ata_port_detach - Detach ATA port in prepration of device removal
6440 * @ap: ATA port to be detached
6442 * Detach all ATA devices and the associated SCSI devices of @ap;
6443 * then, remove the associated SCSI host. @ap is guaranteed to
6444 * be quiescent on return from this function.
6447 * Kernel thread context (may sleep).
6449 void ata_port_detach(struct ata_port
*ap
)
6451 unsigned long flags
;
6454 if (!ap
->ops
->error_handler
)
6457 /* tell EH we're leaving & flush EH */
6458 spin_lock_irqsave(ap
->lock
, flags
);
6459 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6460 spin_unlock_irqrestore(ap
->lock
, flags
);
6462 ata_port_wait_eh(ap
);
6464 /* EH is now guaranteed to see UNLOADING, so no new device
6465 * will be attached. Disable all existing devices.
6467 spin_lock_irqsave(ap
->lock
, flags
);
6469 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6470 ata_dev_disable(&ap
->device
[i
]);
6472 spin_unlock_irqrestore(ap
->lock
, flags
);
6474 /* Final freeze & EH. All in-flight commands are aborted. EH
6475 * will be skipped and retrials will be terminated with bad
6478 spin_lock_irqsave(ap
->lock
, flags
);
6479 ata_port_freeze(ap
); /* won't be thawed */
6480 spin_unlock_irqrestore(ap
->lock
, flags
);
6482 ata_port_wait_eh(ap
);
6484 /* Flush hotplug task. The sequence is similar to
6485 * ata_port_flush_task().
6487 cancel_work_sync(&ap
->hotplug_task
.work
); /* akpm: why? */
6488 cancel_delayed_work(&ap
->hotplug_task
);
6489 cancel_work_sync(&ap
->hotplug_task
.work
);
6492 /* remove the associated SCSI host */
6493 scsi_remove_host(ap
->scsi_host
);
6497 * ata_host_detach - Detach all ports of an ATA host
6498 * @host: Host to detach
6500 * Detach all ports of @host.
6503 * Kernel thread context (may sleep).
6505 void ata_host_detach(struct ata_host
*host
)
6509 for (i
= 0; i
< host
->n_ports
; i
++)
6510 ata_port_detach(host
->ports
[i
]);
6514 * ata_std_ports - initialize ioaddr with standard port offsets.
6515 * @ioaddr: IO address structure to be initialized
6517 * Utility function which initializes data_addr, error_addr,
6518 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6519 * device_addr, status_addr, and command_addr to standard offsets
6520 * relative to cmd_addr.
6522 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6525 void ata_std_ports(struct ata_ioports
*ioaddr
)
6527 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6528 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6529 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6530 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6531 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6532 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6533 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6534 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6535 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6536 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6543 * ata_pci_remove_one - PCI layer callback for device removal
6544 * @pdev: PCI device that was removed
6546 * PCI layer indicates to libata via this hook that hot-unplug or
6547 * module unload event has occurred. Detach all ports. Resource
6548 * release is handled via devres.
6551 * Inherited from PCI layer (may sleep).
6553 void ata_pci_remove_one(struct pci_dev
*pdev
)
6555 struct device
*dev
= pci_dev_to_dev(pdev
);
6556 struct ata_host
*host
= dev_get_drvdata(dev
);
6558 ata_host_detach(host
);
6561 /* move to PCI subsystem */
6562 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6564 unsigned long tmp
= 0;
6566 switch (bits
->width
) {
6569 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6575 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6581 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6592 return (tmp
== bits
->val
) ? 1 : 0;
6596 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6598 pci_save_state(pdev
);
6599 pci_disable_device(pdev
);
6601 if (mesg
.event
== PM_EVENT_SUSPEND
)
6602 pci_set_power_state(pdev
, PCI_D3hot
);
6605 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6609 pci_set_power_state(pdev
, PCI_D0
);
6610 pci_restore_state(pdev
);
6612 rc
= pcim_enable_device(pdev
);
6614 dev_printk(KERN_ERR
, &pdev
->dev
,
6615 "failed to enable device after resume (%d)\n", rc
);
6619 pci_set_master(pdev
);
6623 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6625 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6628 rc
= ata_host_suspend(host
, mesg
);
6632 ata_pci_device_do_suspend(pdev
, mesg
);
6637 int ata_pci_device_resume(struct pci_dev
*pdev
)
6639 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6642 rc
= ata_pci_device_do_resume(pdev
);
6644 ata_host_resume(host
);
6647 #endif /* CONFIG_PM */
6649 #endif /* CONFIG_PCI */
6652 static int __init
ata_init(void)
6654 ata_probe_timeout
*= HZ
;
6655 ata_wq
= create_workqueue("ata");
6659 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6661 destroy_workqueue(ata_wq
);
6665 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6669 static void __exit
ata_exit(void)
6671 destroy_workqueue(ata_wq
);
6672 destroy_workqueue(ata_aux_wq
);
6675 subsys_initcall(ata_init
);
6676 module_exit(ata_exit
);
6678 static unsigned long ratelimit_time
;
6679 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6681 int ata_ratelimit(void)
6684 unsigned long flags
;
6686 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6688 if (time_after(jiffies
, ratelimit_time
)) {
6690 ratelimit_time
= jiffies
+ (HZ
/5);
6694 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6700 * ata_wait_register - wait until register value changes
6701 * @reg: IO-mapped register
6702 * @mask: Mask to apply to read register value
6703 * @val: Wait condition
6704 * @interval_msec: polling interval in milliseconds
6705 * @timeout_msec: timeout in milliseconds
6707 * Waiting for some bits of register to change is a common
6708 * operation for ATA controllers. This function reads 32bit LE
6709 * IO-mapped register @reg and tests for the following condition.
6711 * (*@reg & mask) != val
6713 * If the condition is met, it returns; otherwise, the process is
6714 * repeated after @interval_msec until timeout.
6717 * Kernel thread context (may sleep)
6720 * The final register value.
6722 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6723 unsigned long interval_msec
,
6724 unsigned long timeout_msec
)
6726 unsigned long timeout
;
6729 tmp
= ioread32(reg
);
6731 /* Calculate timeout _after_ the first read to make sure
6732 * preceding writes reach the controller before starting to
6733 * eat away the timeout.
6735 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6737 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6738 msleep(interval_msec
);
6739 tmp
= ioread32(reg
);
6748 static void ata_dummy_noret(struct ata_port
*ap
) { }
6749 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6750 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6752 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6757 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6759 return AC_ERR_SYSTEM
;
6762 const struct ata_port_operations ata_dummy_port_ops
= {
6763 .port_disable
= ata_port_disable
,
6764 .check_status
= ata_dummy_check_status
,
6765 .check_altstatus
= ata_dummy_check_status
,
6766 .dev_select
= ata_noop_dev_select
,
6767 .qc_prep
= ata_noop_qc_prep
,
6768 .qc_issue
= ata_dummy_qc_issue
,
6769 .freeze
= ata_dummy_noret
,
6770 .thaw
= ata_dummy_noret
,
6771 .error_handler
= ata_dummy_noret
,
6772 .post_internal_cmd
= ata_dummy_qc_noret
,
6773 .irq_clear
= ata_dummy_noret
,
6774 .port_start
= ata_dummy_ret0
,
6775 .port_stop
= ata_dummy_noret
,
6778 const struct ata_port_info ata_dummy_port_info
= {
6779 .port_ops
= &ata_dummy_port_ops
,
6783 * libata is essentially a library of internal helper functions for
6784 * low-level ATA host controller drivers. As such, the API/ABI is
6785 * likely to change as new drivers are added and updated.
6786 * Do not depend on ABI/API stability.
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6790 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6791 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6792 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6793 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6794 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6795 EXPORT_SYMBOL_GPL(ata_std_ports
);
6796 EXPORT_SYMBOL_GPL(ata_host_init
);
6797 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6798 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6799 EXPORT_SYMBOL_GPL(ata_host_start
);
6800 EXPORT_SYMBOL_GPL(ata_host_register
);
6801 EXPORT_SYMBOL_GPL(ata_host_activate
);
6802 EXPORT_SYMBOL_GPL(ata_host_detach
);
6803 EXPORT_SYMBOL_GPL(ata_sg_init
);
6804 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6805 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6806 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6807 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6808 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6809 EXPORT_SYMBOL_GPL(ata_tf_load
);
6810 EXPORT_SYMBOL_GPL(ata_tf_read
);
6811 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6812 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6813 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6814 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6815 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6816 EXPORT_SYMBOL_GPL(ata_check_status
);
6817 EXPORT_SYMBOL_GPL(ata_altstatus
);
6818 EXPORT_SYMBOL_GPL(ata_exec_command
);
6819 EXPORT_SYMBOL_GPL(ata_port_start
);
6820 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
6821 EXPORT_SYMBOL_GPL(ata_interrupt
);
6822 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6823 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6824 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6825 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6826 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6829 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6830 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6837 EXPORT_SYMBOL_GPL(ata_port_probe
);
6838 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6839 EXPORT_SYMBOL_GPL(sata_set_spd
);
6840 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6841 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6842 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6843 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6844 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6845 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6846 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6847 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6848 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6849 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6850 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6851 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6852 EXPORT_SYMBOL_GPL(ata_port_disable
);
6853 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6854 EXPORT_SYMBOL_GPL(ata_wait_register
);
6855 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6856 EXPORT_SYMBOL_GPL(ata_wait_ready
);
6857 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6858 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6859 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6860 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6861 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6862 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6863 EXPORT_SYMBOL_GPL(ata_host_intr
);
6864 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6865 EXPORT_SYMBOL_GPL(sata_scr_read
);
6866 EXPORT_SYMBOL_GPL(sata_scr_write
);
6867 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6868 EXPORT_SYMBOL_GPL(ata_port_online
);
6869 EXPORT_SYMBOL_GPL(ata_port_offline
);
6871 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6872 EXPORT_SYMBOL_GPL(ata_host_resume
);
6873 #endif /* CONFIG_PM */
6874 EXPORT_SYMBOL_GPL(ata_id_string
);
6875 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6876 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6877 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6878 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6880 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6881 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6882 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6885 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6886 EXPORT_SYMBOL_GPL(ata_pci_init_native_host
);
6887 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
6888 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host
);
6889 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6890 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6892 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6893 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6894 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6895 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6896 #endif /* CONFIG_PM */
6897 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6898 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6899 #endif /* CONFIG_PCI */
6901 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6902 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6903 EXPORT_SYMBOL_GPL(ata_port_abort
);
6904 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6905 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6906 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6907 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6908 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6909 EXPORT_SYMBOL_GPL(ata_do_eh
);
6910 EXPORT_SYMBOL_GPL(ata_irq_on
);
6911 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6912 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6913 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6914 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
6916 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6917 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6918 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6919 EXPORT_SYMBOL_GPL(ata_cable_sata
);