2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
65 else if (S_ISREG(mode
))
66 return flags
& ~FS_DIRSYNC_FL
;
68 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
76 unsigned int iflags
= 0;
78 if (flags
& BTRFS_INODE_SYNC
)
80 if (flags
& BTRFS_INODE_IMMUTABLE
)
81 iflags
|= FS_IMMUTABLE_FL
;
82 if (flags
& BTRFS_INODE_APPEND
)
83 iflags
|= FS_APPEND_FL
;
84 if (flags
& BTRFS_INODE_NODUMP
)
85 iflags
|= FS_NODUMP_FL
;
86 if (flags
& BTRFS_INODE_NOATIME
)
87 iflags
|= FS_NOATIME_FL
;
88 if (flags
& BTRFS_INODE_DIRSYNC
)
89 iflags
|= FS_DIRSYNC_FL
;
90 if (flags
& BTRFS_INODE_NODATACOW
)
91 iflags
|= FS_NOCOW_FL
;
93 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
94 iflags
|= FS_COMPR_FL
;
95 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
96 iflags
|= FS_NOCOMP_FL
;
102 * Update inode->i_flags based on the btrfs internal flags.
104 void btrfs_update_iflags(struct inode
*inode
)
106 struct btrfs_inode
*ip
= BTRFS_I(inode
);
108 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
110 if (ip
->flags
& BTRFS_INODE_SYNC
)
111 inode
->i_flags
|= S_SYNC
;
112 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
113 inode
->i_flags
|= S_IMMUTABLE
;
114 if (ip
->flags
& BTRFS_INODE_APPEND
)
115 inode
->i_flags
|= S_APPEND
;
116 if (ip
->flags
& BTRFS_INODE_NOATIME
)
117 inode
->i_flags
|= S_NOATIME
;
118 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
119 inode
->i_flags
|= S_DIRSYNC
;
123 * Inherit flags from the parent inode.
125 * Currently only the compression flags and the cow flags are inherited.
127 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
134 flags
= BTRFS_I(dir
)->flags
;
136 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
137 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
138 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
139 } else if (flags
& BTRFS_INODE_COMPRESS
) {
140 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
141 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
144 if (flags
& BTRFS_INODE_NODATACOW
) {
145 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
146 if (S_ISREG(inode
->i_mode
))
147 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
150 btrfs_update_iflags(inode
);
153 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
155 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
156 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
158 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
163 static int check_flags(unsigned int flags
)
165 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
166 FS_NOATIME_FL
| FS_NODUMP_FL
| \
167 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
168 FS_NOCOMP_FL
| FS_COMPR_FL
|
172 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
178 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
180 struct inode
*inode
= file_inode(file
);
181 struct btrfs_inode
*ip
= BTRFS_I(inode
);
182 struct btrfs_root
*root
= ip
->root
;
183 struct btrfs_trans_handle
*trans
;
184 unsigned int flags
, oldflags
;
187 unsigned int i_oldflags
;
190 if (btrfs_root_readonly(root
))
193 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
196 ret
= check_flags(flags
);
200 if (!inode_owner_or_capable(inode
))
203 ret
= mnt_want_write_file(file
);
207 mutex_lock(&inode
->i_mutex
);
209 ip_oldflags
= ip
->flags
;
210 i_oldflags
= inode
->i_flags
;
211 mode
= inode
->i_mode
;
213 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
214 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
215 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
216 if (!capable(CAP_LINUX_IMMUTABLE
)) {
222 if (flags
& FS_SYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_SYNC
;
225 ip
->flags
&= ~BTRFS_INODE_SYNC
;
226 if (flags
& FS_IMMUTABLE_FL
)
227 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
229 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
230 if (flags
& FS_APPEND_FL
)
231 ip
->flags
|= BTRFS_INODE_APPEND
;
233 ip
->flags
&= ~BTRFS_INODE_APPEND
;
234 if (flags
& FS_NODUMP_FL
)
235 ip
->flags
|= BTRFS_INODE_NODUMP
;
237 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
238 if (flags
& FS_NOATIME_FL
)
239 ip
->flags
|= BTRFS_INODE_NOATIME
;
241 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
242 if (flags
& FS_DIRSYNC_FL
)
243 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
245 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
246 if (flags
& FS_NOCOW_FL
) {
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
253 if (inode
->i_size
== 0)
254 ip
->flags
|= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM
;
257 ip
->flags
|= BTRFS_INODE_NODATACOW
;
261 * Revert back under same assuptions as above
264 if (inode
->i_size
== 0)
265 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM
);
268 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
277 if (flags
& FS_NOCOMP_FL
) {
278 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
279 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
280 } else if (flags
& FS_COMPR_FL
) {
281 ip
->flags
|= BTRFS_INODE_COMPRESS
;
282 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
284 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
287 trans
= btrfs_start_transaction(root
, 1);
289 ret
= PTR_ERR(trans
);
293 btrfs_update_iflags(inode
);
294 inode_inc_iversion(inode
);
295 inode
->i_ctime
= CURRENT_TIME
;
296 ret
= btrfs_update_inode(trans
, root
, inode
);
298 btrfs_end_transaction(trans
, root
);
301 ip
->flags
= ip_oldflags
;
302 inode
->i_flags
= i_oldflags
;
306 mutex_unlock(&inode
->i_mutex
);
307 mnt_drop_write_file(file
);
311 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
313 struct inode
*inode
= file_inode(file
);
315 return put_user(inode
->i_generation
, arg
);
318 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
320 struct btrfs_fs_info
*fs_info
= btrfs_sb(fdentry(file
)->d_sb
);
321 struct btrfs_device
*device
;
322 struct request_queue
*q
;
323 struct fstrim_range range
;
324 u64 minlen
= ULLONG_MAX
;
326 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
329 if (!capable(CAP_SYS_ADMIN
))
333 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
337 q
= bdev_get_queue(device
->bdev
);
338 if (blk_queue_discard(q
)) {
340 minlen
= min((u64
)q
->limits
.discard_granularity
,
348 if (copy_from_user(&range
, arg
, sizeof(range
)))
350 if (range
.start
> total_bytes
||
351 range
.len
< fs_info
->sb
->s_blocksize
)
354 range
.len
= min(range
.len
, total_bytes
- range
.start
);
355 range
.minlen
= max(range
.minlen
, minlen
);
356 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
360 if (copy_to_user(arg
, &range
, sizeof(range
)))
366 static noinline
int create_subvol(struct inode
*dir
,
367 struct dentry
*dentry
,
368 char *name
, int namelen
,
370 struct btrfs_qgroup_inherit
*inherit
)
372 struct btrfs_trans_handle
*trans
;
373 struct btrfs_key key
;
374 struct btrfs_root_item root_item
;
375 struct btrfs_inode_item
*inode_item
;
376 struct extent_buffer
*leaf
;
377 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
378 struct btrfs_root
*new_root
;
379 struct btrfs_block_rsv block_rsv
;
380 struct timespec cur_time
= CURRENT_TIME
;
384 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
389 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
393 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
398 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
399 7, &qgroup_reserved
);
403 trans
= btrfs_start_transaction(root
, 0);
405 ret
= PTR_ERR(trans
);
408 trans
->block_rsv
= &block_rsv
;
409 trans
->bytes_reserved
= block_rsv
.size
;
411 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
415 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
416 0, objectid
, NULL
, 0, 0, 0);
422 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
423 btrfs_set_header_bytenr(leaf
, leaf
->start
);
424 btrfs_set_header_generation(leaf
, trans
->transid
);
425 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
426 btrfs_set_header_owner(leaf
, objectid
);
428 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
429 (unsigned long)btrfs_header_fsid(leaf
),
431 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
434 btrfs_mark_buffer_dirty(leaf
);
436 memset(&root_item
, 0, sizeof(root_item
));
438 inode_item
= &root_item
.inode
;
439 inode_item
->generation
= cpu_to_le64(1);
440 inode_item
->size
= cpu_to_le64(3);
441 inode_item
->nlink
= cpu_to_le32(1);
442 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
443 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
446 root_item
.byte_limit
= 0;
447 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
449 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
450 btrfs_set_root_generation(&root_item
, trans
->transid
);
451 btrfs_set_root_level(&root_item
, 0);
452 btrfs_set_root_refs(&root_item
, 1);
453 btrfs_set_root_used(&root_item
, leaf
->len
);
454 btrfs_set_root_last_snapshot(&root_item
, 0);
456 btrfs_set_root_generation_v2(&root_item
,
457 btrfs_root_generation(&root_item
));
458 uuid_le_gen(&new_uuid
);
459 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
460 root_item
.otime
.sec
= cpu_to_le64(cur_time
.tv_sec
);
461 root_item
.otime
.nsec
= cpu_to_le32(cur_time
.tv_nsec
);
462 root_item
.ctime
= root_item
.otime
;
463 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
464 btrfs_set_root_otransid(&root_item
, trans
->transid
);
466 btrfs_tree_unlock(leaf
);
467 free_extent_buffer(leaf
);
470 btrfs_set_root_dirid(&root_item
, new_dirid
);
472 key
.objectid
= objectid
;
474 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
475 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
480 key
.offset
= (u64
)-1;
481 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
482 if (IS_ERR(new_root
)) {
483 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
484 ret
= PTR_ERR(new_root
);
488 btrfs_record_root_in_trans(trans
, new_root
);
490 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans
, root
, ret
);
498 * insert the directory item
500 ret
= btrfs_set_inode_index(dir
, &index
);
502 btrfs_abort_transaction(trans
, root
, ret
);
506 ret
= btrfs_insert_dir_item(trans
, root
,
507 name
, namelen
, dir
, &key
,
508 BTRFS_FT_DIR
, index
);
510 btrfs_abort_transaction(trans
, root
, ret
);
514 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
515 ret
= btrfs_update_inode(trans
, root
, dir
);
518 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
519 objectid
, root
->root_key
.objectid
,
520 btrfs_ino(dir
), index
, name
, namelen
);
525 trans
->block_rsv
= NULL
;
526 trans
->bytes_reserved
= 0;
528 *async_transid
= trans
->transid
;
529 err
= btrfs_commit_transaction_async(trans
, root
, 1);
531 err
= btrfs_commit_transaction(trans
, root
);
533 err
= btrfs_commit_transaction(trans
, root
);
539 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
541 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
545 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
546 struct dentry
*dentry
, char *name
, int namelen
,
547 u64
*async_transid
, bool readonly
,
548 struct btrfs_qgroup_inherit
*inherit
)
551 struct btrfs_pending_snapshot
*pending_snapshot
;
552 struct btrfs_trans_handle
*trans
;
558 ret
= btrfs_start_delalloc_inodes(root
, 0);
562 btrfs_wait_ordered_extents(root
, 0);
564 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
565 if (!pending_snapshot
)
568 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
569 BTRFS_BLOCK_RSV_TEMP
);
571 * 1 - parent dir inode
574 * 2 - root ref/backref
575 * 1 - root of snapshot
577 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
578 &pending_snapshot
->block_rsv
, 7,
579 &pending_snapshot
->qgroup_reserved
);
583 pending_snapshot
->dentry
= dentry
;
584 pending_snapshot
->root
= root
;
585 pending_snapshot
->readonly
= readonly
;
586 pending_snapshot
->dir
= dir
;
587 pending_snapshot
->inherit
= inherit
;
589 trans
= btrfs_start_transaction(root
, 0);
591 ret
= PTR_ERR(trans
);
595 spin_lock(&root
->fs_info
->trans_lock
);
596 list_add(&pending_snapshot
->list
,
597 &trans
->transaction
->pending_snapshots
);
598 spin_unlock(&root
->fs_info
->trans_lock
);
600 *async_transid
= trans
->transid
;
601 ret
= btrfs_commit_transaction_async(trans
,
602 root
->fs_info
->extent_root
, 1);
604 ret
= btrfs_commit_transaction(trans
, root
);
606 ret
= btrfs_commit_transaction(trans
,
607 root
->fs_info
->extent_root
);
612 ret
= pending_snapshot
->error
;
616 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
620 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
622 ret
= PTR_ERR(inode
);
626 d_instantiate(dentry
, inode
);
629 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
630 &pending_snapshot
->block_rsv
,
631 pending_snapshot
->qgroup_reserved
);
633 kfree(pending_snapshot
);
637 /* copy of check_sticky in fs/namei.c()
638 * It's inline, so penalty for filesystems that don't use sticky bit is
641 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
643 kuid_t fsuid
= current_fsuid();
645 if (!(dir
->i_mode
& S_ISVTX
))
647 if (uid_eq(inode
->i_uid
, fsuid
))
649 if (uid_eq(dir
->i_uid
, fsuid
))
651 return !capable(CAP_FOWNER
);
654 /* copy of may_delete in fs/namei.c()
655 * Check whether we can remove a link victim from directory dir, check
656 * whether the type of victim is right.
657 * 1. We can't do it if dir is read-only (done in permission())
658 * 2. We should have write and exec permissions on dir
659 * 3. We can't remove anything from append-only dir
660 * 4. We can't do anything with immutable dir (done in permission())
661 * 5. If the sticky bit on dir is set we should either
662 * a. be owner of dir, or
663 * b. be owner of victim, or
664 * c. have CAP_FOWNER capability
665 * 6. If the victim is append-only or immutable we can't do antyhing with
666 * links pointing to it.
667 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
668 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
669 * 9. We can't remove a root or mountpoint.
670 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
671 * nfs_async_unlink().
674 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
678 if (!victim
->d_inode
)
681 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
682 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
684 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
689 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
690 IS_APPEND(victim
->d_inode
)||
691 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
694 if (!S_ISDIR(victim
->d_inode
->i_mode
))
698 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
702 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
707 /* copy of may_create in fs/namei.c() */
708 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
714 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
718 * Create a new subvolume below @parent. This is largely modeled after
719 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
720 * inside this filesystem so it's quite a bit simpler.
722 static noinline
int btrfs_mksubvol(struct path
*parent
,
723 char *name
, int namelen
,
724 struct btrfs_root
*snap_src
,
725 u64
*async_transid
, bool readonly
,
726 struct btrfs_qgroup_inherit
*inherit
)
728 struct inode
*dir
= parent
->dentry
->d_inode
;
729 struct dentry
*dentry
;
732 error
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
736 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
737 error
= PTR_ERR(dentry
);
745 error
= btrfs_may_create(dir
, dentry
);
750 * even if this name doesn't exist, we may get hash collisions.
751 * check for them now when we can safely fail
753 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
759 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
761 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
765 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
766 async_transid
, readonly
, inherit
);
768 error
= create_subvol(dir
, dentry
, name
, namelen
,
769 async_transid
, inherit
);
772 fsnotify_mkdir(dir
, dentry
);
774 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
778 mutex_unlock(&dir
->i_mutex
);
783 * When we're defragging a range, we don't want to kick it off again
784 * if it is really just waiting for delalloc to send it down.
785 * If we find a nice big extent or delalloc range for the bytes in the
786 * file you want to defrag, we return 0 to let you know to skip this
789 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
791 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
792 struct extent_map
*em
= NULL
;
793 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
796 read_lock(&em_tree
->lock
);
797 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
798 read_unlock(&em_tree
->lock
);
801 end
= extent_map_end(em
);
803 if (end
- offset
> thresh
)
806 /* if we already have a nice delalloc here, just stop */
808 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
809 thresh
, EXTENT_DELALLOC
, 1);
816 * helper function to walk through a file and find extents
817 * newer than a specific transid, and smaller than thresh.
819 * This is used by the defragging code to find new and small
822 static int find_new_extents(struct btrfs_root
*root
,
823 struct inode
*inode
, u64 newer_than
,
824 u64
*off
, int thresh
)
826 struct btrfs_path
*path
;
827 struct btrfs_key min_key
;
828 struct btrfs_key max_key
;
829 struct extent_buffer
*leaf
;
830 struct btrfs_file_extent_item
*extent
;
833 u64 ino
= btrfs_ino(inode
);
835 path
= btrfs_alloc_path();
839 min_key
.objectid
= ino
;
840 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
841 min_key
.offset
= *off
;
843 max_key
.objectid
= ino
;
844 max_key
.type
= (u8
)-1;
845 max_key
.offset
= (u64
)-1;
847 path
->keep_locks
= 1;
850 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
854 if (min_key
.objectid
!= ino
)
856 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
859 leaf
= path
->nodes
[0];
860 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
861 struct btrfs_file_extent_item
);
863 type
= btrfs_file_extent_type(leaf
, extent
);
864 if (type
== BTRFS_FILE_EXTENT_REG
&&
865 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
866 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
867 *off
= min_key
.offset
;
868 btrfs_free_path(path
);
872 if (min_key
.offset
== (u64
)-1)
876 btrfs_release_path(path
);
879 btrfs_free_path(path
);
883 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
885 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
886 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
887 struct extent_map
*em
;
888 u64 len
= PAGE_CACHE_SIZE
;
891 * hopefully we have this extent in the tree already, try without
892 * the full extent lock
894 read_lock(&em_tree
->lock
);
895 em
= lookup_extent_mapping(em_tree
, start
, len
);
896 read_unlock(&em_tree
->lock
);
899 /* get the big lock and read metadata off disk */
900 lock_extent(io_tree
, start
, start
+ len
- 1);
901 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
902 unlock_extent(io_tree
, start
, start
+ len
- 1);
911 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
913 struct extent_map
*next
;
916 /* this is the last extent */
917 if (em
->start
+ em
->len
>= i_size_read(inode
))
920 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
921 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
924 free_extent_map(next
);
928 static int should_defrag_range(struct inode
*inode
, u64 start
, int thresh
,
929 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
932 struct extent_map
*em
;
934 bool next_mergeable
= true;
937 * make sure that once we start defragging an extent, we keep on
940 if (start
< *defrag_end
)
945 em
= defrag_lookup_extent(inode
, start
);
949 /* this will cover holes, and inline extents */
950 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
955 next_mergeable
= defrag_check_next_extent(inode
, em
);
958 * we hit a real extent, if it is big or the next extent is not a
959 * real extent, don't bother defragging it
961 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
962 (em
->len
>= thresh
|| !next_mergeable
))
966 * last_len ends up being a counter of how many bytes we've defragged.
967 * every time we choose not to defrag an extent, we reset *last_len
968 * so that the next tiny extent will force a defrag.
970 * The end result of this is that tiny extents before a single big
971 * extent will force at least part of that big extent to be defragged.
974 *defrag_end
= extent_map_end(em
);
977 *skip
= extent_map_end(em
);
986 * it doesn't do much good to defrag one or two pages
987 * at a time. This pulls in a nice chunk of pages
990 * It also makes sure the delalloc code has enough
991 * dirty data to avoid making new small extents as part
994 * It's a good idea to start RA on this range
995 * before calling this.
997 static int cluster_pages_for_defrag(struct inode
*inode
,
999 unsigned long start_index
,
1002 unsigned long file_end
;
1003 u64 isize
= i_size_read(inode
);
1010 struct btrfs_ordered_extent
*ordered
;
1011 struct extent_state
*cached_state
= NULL
;
1012 struct extent_io_tree
*tree
;
1013 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1015 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1016 if (!isize
|| start_index
> file_end
)
1019 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1021 ret
= btrfs_delalloc_reserve_space(inode
,
1022 page_cnt
<< PAGE_CACHE_SHIFT
);
1026 tree
= &BTRFS_I(inode
)->io_tree
;
1028 /* step one, lock all the pages */
1029 for (i
= 0; i
< page_cnt
; i
++) {
1032 page
= find_or_create_page(inode
->i_mapping
,
1033 start_index
+ i
, mask
);
1037 page_start
= page_offset(page
);
1038 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1040 lock_extent(tree
, page_start
, page_end
);
1041 ordered
= btrfs_lookup_ordered_extent(inode
,
1043 unlock_extent(tree
, page_start
, page_end
);
1048 btrfs_start_ordered_extent(inode
, ordered
, 1);
1049 btrfs_put_ordered_extent(ordered
);
1052 * we unlocked the page above, so we need check if
1053 * it was released or not.
1055 if (page
->mapping
!= inode
->i_mapping
) {
1057 page_cache_release(page
);
1062 if (!PageUptodate(page
)) {
1063 btrfs_readpage(NULL
, page
);
1065 if (!PageUptodate(page
)) {
1067 page_cache_release(page
);
1073 if (page
->mapping
!= inode
->i_mapping
) {
1075 page_cache_release(page
);
1085 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1089 * so now we have a nice long stream of locked
1090 * and up to date pages, lets wait on them
1092 for (i
= 0; i
< i_done
; i
++)
1093 wait_on_page_writeback(pages
[i
]);
1095 page_start
= page_offset(pages
[0]);
1096 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1098 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1099 page_start
, page_end
- 1, 0, &cached_state
);
1100 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1101 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1102 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1103 &cached_state
, GFP_NOFS
);
1105 if (i_done
!= page_cnt
) {
1106 spin_lock(&BTRFS_I(inode
)->lock
);
1107 BTRFS_I(inode
)->outstanding_extents
++;
1108 spin_unlock(&BTRFS_I(inode
)->lock
);
1109 btrfs_delalloc_release_space(inode
,
1110 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1114 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1115 &cached_state
, GFP_NOFS
);
1117 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1118 page_start
, page_end
- 1, &cached_state
,
1121 for (i
= 0; i
< i_done
; i
++) {
1122 clear_page_dirty_for_io(pages
[i
]);
1123 ClearPageChecked(pages
[i
]);
1124 set_page_extent_mapped(pages
[i
]);
1125 set_page_dirty(pages
[i
]);
1126 unlock_page(pages
[i
]);
1127 page_cache_release(pages
[i
]);
1131 for (i
= 0; i
< i_done
; i
++) {
1132 unlock_page(pages
[i
]);
1133 page_cache_release(pages
[i
]);
1135 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1140 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1141 struct btrfs_ioctl_defrag_range_args
*range
,
1142 u64 newer_than
, unsigned long max_to_defrag
)
1144 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1145 struct file_ra_state
*ra
= NULL
;
1146 unsigned long last_index
;
1147 u64 isize
= i_size_read(inode
);
1151 u64 newer_off
= range
->start
;
1153 unsigned long ra_index
= 0;
1155 int defrag_count
= 0;
1156 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1157 int extent_thresh
= range
->extent_thresh
;
1158 int max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1159 int cluster
= max_cluster
;
1160 u64 new_align
= ~((u64
)128 * 1024 - 1);
1161 struct page
**pages
= NULL
;
1166 if (range
->start
>= isize
)
1169 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1170 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1172 if (range
->compress_type
)
1173 compress_type
= range
->compress_type
;
1176 if (extent_thresh
== 0)
1177 extent_thresh
= 256 * 1024;
1180 * if we were not given a file, allocate a readahead
1184 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1187 file_ra_state_init(ra
, inode
->i_mapping
);
1192 pages
= kmalloc(sizeof(struct page
*) * max_cluster
,
1199 /* find the last page to defrag */
1200 if (range
->start
+ range
->len
> range
->start
) {
1201 last_index
= min_t(u64
, isize
- 1,
1202 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1204 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1208 ret
= find_new_extents(root
, inode
, newer_than
,
1209 &newer_off
, 64 * 1024);
1211 range
->start
= newer_off
;
1213 * we always align our defrag to help keep
1214 * the extents in the file evenly spaced
1216 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1220 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1223 max_to_defrag
= last_index
+ 1;
1226 * make writeback starts from i, so the defrag range can be
1227 * written sequentially.
1229 if (i
< inode
->i_mapping
->writeback_index
)
1230 inode
->i_mapping
->writeback_index
= i
;
1232 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1233 (i
< (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
1234 PAGE_CACHE_SHIFT
)) {
1236 * make sure we stop running if someone unmounts
1239 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1242 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1243 printk(KERN_DEBUG
"btrfs: defrag_file cancelled\n");
1248 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1249 extent_thresh
, &last_len
, &skip
,
1250 &defrag_end
, range
->flags
&
1251 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1254 * the should_defrag function tells us how much to skip
1255 * bump our counter by the suggested amount
1257 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1258 i
= max(i
+ 1, next
);
1263 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1264 PAGE_CACHE_SHIFT
) - i
;
1265 cluster
= min(cluster
, max_cluster
);
1267 cluster
= max_cluster
;
1270 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1271 BTRFS_I(inode
)->force_compress
= compress_type
;
1273 if (i
+ cluster
> ra_index
) {
1274 ra_index
= max(i
, ra_index
);
1275 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1277 ra_index
+= max_cluster
;
1280 mutex_lock(&inode
->i_mutex
);
1281 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1283 mutex_unlock(&inode
->i_mutex
);
1287 defrag_count
+= ret
;
1288 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1289 mutex_unlock(&inode
->i_mutex
);
1292 if (newer_off
== (u64
)-1)
1298 newer_off
= max(newer_off
+ 1,
1299 (u64
)i
<< PAGE_CACHE_SHIFT
);
1301 ret
= find_new_extents(root
, inode
,
1302 newer_than
, &newer_off
,
1305 range
->start
= newer_off
;
1306 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1313 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1321 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1322 filemap_flush(inode
->i_mapping
);
1324 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1325 /* the filemap_flush will queue IO into the worker threads, but
1326 * we have to make sure the IO is actually started and that
1327 * ordered extents get created before we return
1329 atomic_inc(&root
->fs_info
->async_submit_draining
);
1330 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1331 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1332 wait_event(root
->fs_info
->async_submit_wait
,
1333 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1334 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1336 atomic_dec(&root
->fs_info
->async_submit_draining
);
1338 mutex_lock(&inode
->i_mutex
);
1339 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1340 mutex_unlock(&inode
->i_mutex
);
1343 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1344 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1356 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1362 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1363 struct btrfs_ioctl_vol_args
*vol_args
;
1364 struct btrfs_trans_handle
*trans
;
1365 struct btrfs_device
*device
= NULL
;
1367 char *devstr
= NULL
;
1371 if (!capable(CAP_SYS_ADMIN
))
1374 ret
= mnt_want_write_file(file
);
1378 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1380 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1381 mnt_drop_write_file(file
);
1385 mutex_lock(&root
->fs_info
->volume_mutex
);
1386 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1387 if (IS_ERR(vol_args
)) {
1388 ret
= PTR_ERR(vol_args
);
1392 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1394 sizestr
= vol_args
->name
;
1395 devstr
= strchr(sizestr
, ':');
1398 sizestr
= devstr
+ 1;
1400 devstr
= vol_args
->name
;
1401 devid
= simple_strtoull(devstr
, &end
, 10);
1406 printk(KERN_INFO
"btrfs: resizing devid %llu\n",
1407 (unsigned long long)devid
);
1410 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1412 printk(KERN_INFO
"btrfs: resizer unable to find device %llu\n",
1413 (unsigned long long)devid
);
1418 if (!device
->writeable
) {
1419 printk(KERN_INFO
"btrfs: resizer unable to apply on "
1420 "readonly device %llu\n",
1421 (unsigned long long)devid
);
1426 if (!strcmp(sizestr
, "max"))
1427 new_size
= device
->bdev
->bd_inode
->i_size
;
1429 if (sizestr
[0] == '-') {
1432 } else if (sizestr
[0] == '+') {
1436 new_size
= memparse(sizestr
, NULL
);
1437 if (new_size
== 0) {
1443 if (device
->is_tgtdev_for_dev_replace
) {
1448 old_size
= device
->total_bytes
;
1451 if (new_size
> old_size
) {
1455 new_size
= old_size
- new_size
;
1456 } else if (mod
> 0) {
1457 new_size
= old_size
+ new_size
;
1460 if (new_size
< 256 * 1024 * 1024) {
1464 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1469 do_div(new_size
, root
->sectorsize
);
1470 new_size
*= root
->sectorsize
;
1472 printk_in_rcu(KERN_INFO
"btrfs: new size for %s is %llu\n",
1473 rcu_str_deref(device
->name
),
1474 (unsigned long long)new_size
);
1476 if (new_size
> old_size
) {
1477 trans
= btrfs_start_transaction(root
, 0);
1478 if (IS_ERR(trans
)) {
1479 ret
= PTR_ERR(trans
);
1482 ret
= btrfs_grow_device(trans
, device
, new_size
);
1483 btrfs_commit_transaction(trans
, root
);
1484 } else if (new_size
< old_size
) {
1485 ret
= btrfs_shrink_device(device
, new_size
);
1486 } /* equal, nothing need to do */
1491 mutex_unlock(&root
->fs_info
->volume_mutex
);
1492 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1493 mnt_drop_write_file(file
);
1497 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1498 char *name
, unsigned long fd
, int subvol
,
1499 u64
*transid
, bool readonly
,
1500 struct btrfs_qgroup_inherit
*inherit
)
1505 ret
= mnt_want_write_file(file
);
1509 namelen
= strlen(name
);
1510 if (strchr(name
, '/')) {
1512 goto out_drop_write
;
1515 if (name
[0] == '.' &&
1516 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1518 goto out_drop_write
;
1522 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1523 NULL
, transid
, readonly
, inherit
);
1525 struct fd src
= fdget(fd
);
1526 struct inode
*src_inode
;
1529 goto out_drop_write
;
1532 src_inode
= file_inode(src
.file
);
1533 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1534 printk(KERN_INFO
"btrfs: Snapshot src from "
1538 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1539 BTRFS_I(src_inode
)->root
,
1540 transid
, readonly
, inherit
);
1545 mnt_drop_write_file(file
);
1550 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1551 void __user
*arg
, int subvol
)
1553 struct btrfs_ioctl_vol_args
*vol_args
;
1556 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1557 if (IS_ERR(vol_args
))
1558 return PTR_ERR(vol_args
);
1559 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1561 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1562 vol_args
->fd
, subvol
,
1569 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1570 void __user
*arg
, int subvol
)
1572 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1576 bool readonly
= false;
1577 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1579 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1580 if (IS_ERR(vol_args
))
1581 return PTR_ERR(vol_args
);
1582 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1584 if (vol_args
->flags
&
1585 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1586 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1591 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1593 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1595 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1596 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1600 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1601 if (IS_ERR(inherit
)) {
1602 ret
= PTR_ERR(inherit
);
1607 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1608 vol_args
->fd
, subvol
, ptr
,
1611 if (ret
== 0 && ptr
&&
1613 offsetof(struct btrfs_ioctl_vol_args_v2
,
1614 transid
), ptr
, sizeof(*ptr
)))
1622 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1625 struct inode
*inode
= file_inode(file
);
1626 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1630 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1633 down_read(&root
->fs_info
->subvol_sem
);
1634 if (btrfs_root_readonly(root
))
1635 flags
|= BTRFS_SUBVOL_RDONLY
;
1636 up_read(&root
->fs_info
->subvol_sem
);
1638 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1644 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1647 struct inode
*inode
= file_inode(file
);
1648 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1649 struct btrfs_trans_handle
*trans
;
1654 ret
= mnt_want_write_file(file
);
1658 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1660 goto out_drop_write
;
1663 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1665 goto out_drop_write
;
1668 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1670 goto out_drop_write
;
1673 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1675 goto out_drop_write
;
1678 if (!inode_owner_or_capable(inode
)) {
1680 goto out_drop_write
;
1683 down_write(&root
->fs_info
->subvol_sem
);
1686 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1689 root_flags
= btrfs_root_flags(&root
->root_item
);
1690 if (flags
& BTRFS_SUBVOL_RDONLY
)
1691 btrfs_set_root_flags(&root
->root_item
,
1692 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1694 btrfs_set_root_flags(&root
->root_item
,
1695 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1697 trans
= btrfs_start_transaction(root
, 1);
1698 if (IS_ERR(trans
)) {
1699 ret
= PTR_ERR(trans
);
1703 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1704 &root
->root_key
, &root
->root_item
);
1706 btrfs_commit_transaction(trans
, root
);
1709 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1711 up_write(&root
->fs_info
->subvol_sem
);
1713 mnt_drop_write_file(file
);
1719 * helper to check if the subvolume references other subvolumes
1721 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1723 struct btrfs_path
*path
;
1724 struct btrfs_key key
;
1727 path
= btrfs_alloc_path();
1731 key
.objectid
= root
->root_key
.objectid
;
1732 key
.type
= BTRFS_ROOT_REF_KEY
;
1733 key
.offset
= (u64
)-1;
1735 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1742 if (path
->slots
[0] > 0) {
1744 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1745 if (key
.objectid
== root
->root_key
.objectid
&&
1746 key
.type
== BTRFS_ROOT_REF_KEY
)
1750 btrfs_free_path(path
);
1754 static noinline
int key_in_sk(struct btrfs_key
*key
,
1755 struct btrfs_ioctl_search_key
*sk
)
1757 struct btrfs_key test
;
1760 test
.objectid
= sk
->min_objectid
;
1761 test
.type
= sk
->min_type
;
1762 test
.offset
= sk
->min_offset
;
1764 ret
= btrfs_comp_cpu_keys(key
, &test
);
1768 test
.objectid
= sk
->max_objectid
;
1769 test
.type
= sk
->max_type
;
1770 test
.offset
= sk
->max_offset
;
1772 ret
= btrfs_comp_cpu_keys(key
, &test
);
1778 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1779 struct btrfs_path
*path
,
1780 struct btrfs_key
*key
,
1781 struct btrfs_ioctl_search_key
*sk
,
1783 unsigned long *sk_offset
,
1787 struct extent_buffer
*leaf
;
1788 struct btrfs_ioctl_search_header sh
;
1789 unsigned long item_off
;
1790 unsigned long item_len
;
1796 leaf
= path
->nodes
[0];
1797 slot
= path
->slots
[0];
1798 nritems
= btrfs_header_nritems(leaf
);
1800 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1804 found_transid
= btrfs_header_generation(leaf
);
1806 for (i
= slot
; i
< nritems
; i
++) {
1807 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1808 item_len
= btrfs_item_size_nr(leaf
, i
);
1810 btrfs_item_key_to_cpu(leaf
, key
, i
);
1811 if (!key_in_sk(key
, sk
))
1814 if (sizeof(sh
) + item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1817 if (sizeof(sh
) + item_len
+ *sk_offset
>
1818 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1823 sh
.objectid
= key
->objectid
;
1824 sh
.offset
= key
->offset
;
1825 sh
.type
= key
->type
;
1827 sh
.transid
= found_transid
;
1829 /* copy search result header */
1830 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1831 *sk_offset
+= sizeof(sh
);
1834 char *p
= buf
+ *sk_offset
;
1836 read_extent_buffer(leaf
, p
,
1837 item_off
, item_len
);
1838 *sk_offset
+= item_len
;
1842 if (*num_found
>= sk
->nr_items
)
1847 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1849 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1852 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1862 static noinline
int search_ioctl(struct inode
*inode
,
1863 struct btrfs_ioctl_search_args
*args
)
1865 struct btrfs_root
*root
;
1866 struct btrfs_key key
;
1867 struct btrfs_key max_key
;
1868 struct btrfs_path
*path
;
1869 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1870 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1873 unsigned long sk_offset
= 0;
1875 path
= btrfs_alloc_path();
1879 if (sk
->tree_id
== 0) {
1880 /* search the root of the inode that was passed */
1881 root
= BTRFS_I(inode
)->root
;
1883 key
.objectid
= sk
->tree_id
;
1884 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1885 key
.offset
= (u64
)-1;
1886 root
= btrfs_read_fs_root_no_name(info
, &key
);
1888 printk(KERN_ERR
"could not find root %llu\n",
1890 btrfs_free_path(path
);
1895 key
.objectid
= sk
->min_objectid
;
1896 key
.type
= sk
->min_type
;
1897 key
.offset
= sk
->min_offset
;
1899 max_key
.objectid
= sk
->max_objectid
;
1900 max_key
.type
= sk
->max_type
;
1901 max_key
.offset
= sk
->max_offset
;
1903 path
->keep_locks
= 1;
1906 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
,
1913 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1914 &sk_offset
, &num_found
);
1915 btrfs_release_path(path
);
1916 if (ret
|| num_found
>= sk
->nr_items
)
1922 sk
->nr_items
= num_found
;
1923 btrfs_free_path(path
);
1927 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1930 struct btrfs_ioctl_search_args
*args
;
1931 struct inode
*inode
;
1934 if (!capable(CAP_SYS_ADMIN
))
1937 args
= memdup_user(argp
, sizeof(*args
));
1939 return PTR_ERR(args
);
1941 inode
= file_inode(file
);
1942 ret
= search_ioctl(inode
, args
);
1943 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1950 * Search INODE_REFs to identify path name of 'dirid' directory
1951 * in a 'tree_id' tree. and sets path name to 'name'.
1953 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1954 u64 tree_id
, u64 dirid
, char *name
)
1956 struct btrfs_root
*root
;
1957 struct btrfs_key key
;
1963 struct btrfs_inode_ref
*iref
;
1964 struct extent_buffer
*l
;
1965 struct btrfs_path
*path
;
1967 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1972 path
= btrfs_alloc_path();
1976 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1978 key
.objectid
= tree_id
;
1979 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1980 key
.offset
= (u64
)-1;
1981 root
= btrfs_read_fs_root_no_name(info
, &key
);
1983 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1988 key
.objectid
= dirid
;
1989 key
.type
= BTRFS_INODE_REF_KEY
;
1990 key
.offset
= (u64
)-1;
1993 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1998 slot
= path
->slots
[0];
1999 if (ret
> 0 && slot
> 0)
2001 btrfs_item_key_to_cpu(l
, &key
, slot
);
2003 if (ret
> 0 && (key
.objectid
!= dirid
||
2004 key
.type
!= BTRFS_INODE_REF_KEY
)) {
2009 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2010 len
= btrfs_inode_ref_name_len(l
, iref
);
2012 total_len
+= len
+ 1;
2017 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
2019 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2022 btrfs_release_path(path
);
2023 key
.objectid
= key
.offset
;
2024 key
.offset
= (u64
)-1;
2025 dirid
= key
.objectid
;
2029 memmove(name
, ptr
, total_len
);
2030 name
[total_len
]='\0';
2033 btrfs_free_path(path
);
2037 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2040 struct btrfs_ioctl_ino_lookup_args
*args
;
2041 struct inode
*inode
;
2044 if (!capable(CAP_SYS_ADMIN
))
2047 args
= memdup_user(argp
, sizeof(*args
));
2049 return PTR_ERR(args
);
2051 inode
= file_inode(file
);
2053 if (args
->treeid
== 0)
2054 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2056 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2057 args
->treeid
, args
->objectid
,
2060 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2067 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2070 struct dentry
*parent
= fdentry(file
);
2071 struct dentry
*dentry
;
2072 struct inode
*dir
= parent
->d_inode
;
2073 struct inode
*inode
;
2074 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2075 struct btrfs_root
*dest
= NULL
;
2076 struct btrfs_ioctl_vol_args
*vol_args
;
2077 struct btrfs_trans_handle
*trans
;
2078 struct btrfs_block_rsv block_rsv
;
2079 u64 qgroup_reserved
;
2084 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2085 if (IS_ERR(vol_args
))
2086 return PTR_ERR(vol_args
);
2088 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2089 namelen
= strlen(vol_args
->name
);
2090 if (strchr(vol_args
->name
, '/') ||
2091 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2096 err
= mnt_want_write_file(file
);
2100 err
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2103 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2104 if (IS_ERR(dentry
)) {
2105 err
= PTR_ERR(dentry
);
2106 goto out_unlock_dir
;
2109 if (!dentry
->d_inode
) {
2114 inode
= dentry
->d_inode
;
2115 dest
= BTRFS_I(inode
)->root
;
2116 if (!capable(CAP_SYS_ADMIN
)){
2118 * Regular user. Only allow this with a special mount
2119 * option, when the user has write+exec access to the
2120 * subvol root, and when rmdir(2) would have been
2123 * Note that this is _not_ check that the subvol is
2124 * empty or doesn't contain data that we wouldn't
2125 * otherwise be able to delete.
2127 * Users who want to delete empty subvols should try
2131 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2135 * Do not allow deletion if the parent dir is the same
2136 * as the dir to be deleted. That means the ioctl
2137 * must be called on the dentry referencing the root
2138 * of the subvol, not a random directory contained
2145 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2150 /* check if subvolume may be deleted by a user */
2151 err
= btrfs_may_delete(dir
, dentry
, 1);
2155 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2160 mutex_lock(&inode
->i_mutex
);
2161 err
= d_invalidate(dentry
);
2165 down_write(&root
->fs_info
->subvol_sem
);
2167 err
= may_destroy_subvol(dest
);
2171 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2173 * One for dir inode, two for dir entries, two for root
2176 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2177 5, &qgroup_reserved
);
2181 trans
= btrfs_start_transaction(root
, 0);
2182 if (IS_ERR(trans
)) {
2183 err
= PTR_ERR(trans
);
2186 trans
->block_rsv
= &block_rsv
;
2187 trans
->bytes_reserved
= block_rsv
.size
;
2189 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2190 dest
->root_key
.objectid
,
2191 dentry
->d_name
.name
,
2192 dentry
->d_name
.len
);
2195 btrfs_abort_transaction(trans
, root
, ret
);
2199 btrfs_record_root_in_trans(trans
, dest
);
2201 memset(&dest
->root_item
.drop_progress
, 0,
2202 sizeof(dest
->root_item
.drop_progress
));
2203 dest
->root_item
.drop_level
= 0;
2204 btrfs_set_root_refs(&dest
->root_item
, 0);
2206 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
2207 ret
= btrfs_insert_orphan_item(trans
,
2208 root
->fs_info
->tree_root
,
2209 dest
->root_key
.objectid
);
2211 btrfs_abort_transaction(trans
, root
, ret
);
2217 trans
->block_rsv
= NULL
;
2218 trans
->bytes_reserved
= 0;
2219 ret
= btrfs_end_transaction(trans
, root
);
2222 inode
->i_flags
|= S_DEAD
;
2224 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2226 up_write(&root
->fs_info
->subvol_sem
);
2228 mutex_unlock(&inode
->i_mutex
);
2230 shrink_dcache_sb(root
->fs_info
->sb
);
2231 btrfs_invalidate_inodes(dest
);
2235 if (dest
->cache_inode
) {
2236 iput(dest
->cache_inode
);
2237 dest
->cache_inode
= NULL
;
2243 mutex_unlock(&dir
->i_mutex
);
2244 mnt_drop_write_file(file
);
2250 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2252 struct inode
*inode
= file_inode(file
);
2253 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2254 struct btrfs_ioctl_defrag_range_args
*range
;
2257 ret
= mnt_want_write_file(file
);
2261 if (btrfs_root_readonly(root
)) {
2266 switch (inode
->i_mode
& S_IFMT
) {
2268 if (!capable(CAP_SYS_ADMIN
)) {
2272 ret
= btrfs_defrag_root(root
);
2275 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2278 if (!(file
->f_mode
& FMODE_WRITE
)) {
2283 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2290 if (copy_from_user(range
, argp
,
2296 /* compression requires us to start the IO */
2297 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2298 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2299 range
->extent_thresh
= (u32
)-1;
2302 /* the rest are all set to zero by kzalloc */
2303 range
->len
= (u64
)-1;
2305 ret
= btrfs_defrag_file(file_inode(file
), file
,
2315 mnt_drop_write_file(file
);
2319 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2321 struct btrfs_ioctl_vol_args
*vol_args
;
2324 if (!capable(CAP_SYS_ADMIN
))
2327 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2329 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2333 mutex_lock(&root
->fs_info
->volume_mutex
);
2334 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2335 if (IS_ERR(vol_args
)) {
2336 ret
= PTR_ERR(vol_args
);
2340 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2341 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2345 mutex_unlock(&root
->fs_info
->volume_mutex
);
2346 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2350 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2352 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2353 struct btrfs_ioctl_vol_args
*vol_args
;
2356 if (!capable(CAP_SYS_ADMIN
))
2359 ret
= mnt_want_write_file(file
);
2363 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2364 if (IS_ERR(vol_args
)) {
2365 ret
= PTR_ERR(vol_args
);
2369 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2371 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2373 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2377 mutex_lock(&root
->fs_info
->volume_mutex
);
2378 ret
= btrfs_rm_device(root
, vol_args
->name
);
2379 mutex_unlock(&root
->fs_info
->volume_mutex
);
2380 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2384 mnt_drop_write_file(file
);
2388 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2390 struct btrfs_ioctl_fs_info_args
*fi_args
;
2391 struct btrfs_device
*device
;
2392 struct btrfs_device
*next
;
2393 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2396 if (!capable(CAP_SYS_ADMIN
))
2399 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2403 fi_args
->num_devices
= fs_devices
->num_devices
;
2404 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2406 mutex_lock(&fs_devices
->device_list_mutex
);
2407 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2408 if (device
->devid
> fi_args
->max_id
)
2409 fi_args
->max_id
= device
->devid
;
2411 mutex_unlock(&fs_devices
->device_list_mutex
);
2413 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2420 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2422 struct btrfs_ioctl_dev_info_args
*di_args
;
2423 struct btrfs_device
*dev
;
2424 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2426 char *s_uuid
= NULL
;
2427 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2429 if (!capable(CAP_SYS_ADMIN
))
2432 di_args
= memdup_user(arg
, sizeof(*di_args
));
2433 if (IS_ERR(di_args
))
2434 return PTR_ERR(di_args
);
2436 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2437 s_uuid
= di_args
->uuid
;
2439 mutex_lock(&fs_devices
->device_list_mutex
);
2440 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2447 di_args
->devid
= dev
->devid
;
2448 di_args
->bytes_used
= dev
->bytes_used
;
2449 di_args
->total_bytes
= dev
->total_bytes
;
2450 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2452 struct rcu_string
*name
;
2455 name
= rcu_dereference(dev
->name
);
2456 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2458 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2460 di_args
->path
[0] = '\0';
2464 mutex_unlock(&fs_devices
->device_list_mutex
);
2465 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2472 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2473 u64 off
, u64 olen
, u64 destoff
)
2475 struct inode
*inode
= file_inode(file
);
2476 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2479 struct btrfs_trans_handle
*trans
;
2480 struct btrfs_path
*path
;
2481 struct extent_buffer
*leaf
;
2483 struct btrfs_key key
;
2488 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2493 * - split compressed inline extents. annoying: we need to
2494 * decompress into destination's address_space (the file offset
2495 * may change, so source mapping won't do), then recompress (or
2496 * otherwise reinsert) a subrange.
2497 * - allow ranges within the same file to be cloned (provided
2498 * they don't overlap)?
2501 /* the destination must be opened for writing */
2502 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2505 if (btrfs_root_readonly(root
))
2508 ret
= mnt_want_write_file(file
);
2512 src_file
= fdget(srcfd
);
2513 if (!src_file
.file
) {
2515 goto out_drop_write
;
2519 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
2522 src
= file_inode(src_file
.file
);
2528 /* the src must be open for reading */
2529 if (!(src_file
.file
->f_mode
& FMODE_READ
))
2532 /* don't make the dst file partly checksummed */
2533 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2534 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
2538 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2542 if (src
->i_sb
!= inode
->i_sb
)
2546 buf
= vmalloc(btrfs_level_size(root
, 0));
2550 path
= btrfs_alloc_path();
2559 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2560 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2562 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2563 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2566 mutex_lock(&src
->i_mutex
);
2569 /* determine range to clone */
2571 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2574 olen
= len
= src
->i_size
- off
;
2575 /* if we extend to eof, continue to block boundary */
2576 if (off
+ len
== src
->i_size
)
2577 len
= ALIGN(src
->i_size
, bs
) - off
;
2579 /* verify the end result is block aligned */
2580 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2581 !IS_ALIGNED(destoff
, bs
))
2584 /* verify if ranges are overlapped within the same file */
2586 if (destoff
+ len
> off
&& destoff
< off
+ len
)
2590 if (destoff
> inode
->i_size
) {
2591 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
2596 /* truncate page cache pages from target inode range */
2597 truncate_inode_pages_range(&inode
->i_data
, destoff
,
2598 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
2600 /* do any pending delalloc/csum calc on src, one way or
2601 another, and lock file content */
2603 struct btrfs_ordered_extent
*ordered
;
2604 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2605 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+ len
- 1);
2607 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1,
2608 EXTENT_DELALLOC
, 0, NULL
))
2610 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2612 btrfs_put_ordered_extent(ordered
);
2613 btrfs_wait_ordered_range(src
, off
, len
);
2617 key
.objectid
= btrfs_ino(src
);
2618 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2623 * note the key will change type as we walk through the
2626 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
2631 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2632 if (path
->slots
[0] >= nritems
) {
2633 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
2638 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2640 leaf
= path
->nodes
[0];
2641 slot
= path
->slots
[0];
2643 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2644 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2645 key
.objectid
!= btrfs_ino(src
))
2648 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2649 struct btrfs_file_extent_item
*extent
;
2652 struct btrfs_key new_key
;
2653 u64 disko
= 0, diskl
= 0;
2654 u64 datao
= 0, datal
= 0;
2658 size
= btrfs_item_size_nr(leaf
, slot
);
2659 read_extent_buffer(leaf
, buf
,
2660 btrfs_item_ptr_offset(leaf
, slot
),
2663 extent
= btrfs_item_ptr(leaf
, slot
,
2664 struct btrfs_file_extent_item
);
2665 comp
= btrfs_file_extent_compression(leaf
, extent
);
2666 type
= btrfs_file_extent_type(leaf
, extent
);
2667 if (type
== BTRFS_FILE_EXTENT_REG
||
2668 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2669 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2671 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2673 datao
= btrfs_file_extent_offset(leaf
, extent
);
2674 datal
= btrfs_file_extent_num_bytes(leaf
,
2676 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2677 /* take upper bound, may be compressed */
2678 datal
= btrfs_file_extent_ram_bytes(leaf
,
2681 btrfs_release_path(path
);
2683 if (key
.offset
+ datal
<= off
||
2684 key
.offset
>= off
+ len
- 1)
2687 memcpy(&new_key
, &key
, sizeof(new_key
));
2688 new_key
.objectid
= btrfs_ino(inode
);
2689 if (off
<= key
.offset
)
2690 new_key
.offset
= key
.offset
+ destoff
- off
;
2692 new_key
.offset
= destoff
;
2695 * 1 - adjusting old extent (we may have to split it)
2696 * 1 - add new extent
2699 trans
= btrfs_start_transaction(root
, 3);
2700 if (IS_ERR(trans
)) {
2701 ret
= PTR_ERR(trans
);
2705 if (type
== BTRFS_FILE_EXTENT_REG
||
2706 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2708 * a | --- range to clone ---| b
2709 * | ------------- extent ------------- |
2712 /* substract range b */
2713 if (key
.offset
+ datal
> off
+ len
)
2714 datal
= off
+ len
- key
.offset
;
2716 /* substract range a */
2717 if (off
> key
.offset
) {
2718 datao
+= off
- key
.offset
;
2719 datal
-= off
- key
.offset
;
2722 ret
= btrfs_drop_extents(trans
, root
, inode
,
2724 new_key
.offset
+ datal
,
2727 btrfs_abort_transaction(trans
, root
,
2729 btrfs_end_transaction(trans
, root
);
2733 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2736 btrfs_abort_transaction(trans
, root
,
2738 btrfs_end_transaction(trans
, root
);
2742 leaf
= path
->nodes
[0];
2743 slot
= path
->slots
[0];
2744 write_extent_buffer(leaf
, buf
,
2745 btrfs_item_ptr_offset(leaf
, slot
),
2748 extent
= btrfs_item_ptr(leaf
, slot
,
2749 struct btrfs_file_extent_item
);
2751 /* disko == 0 means it's a hole */
2755 btrfs_set_file_extent_offset(leaf
, extent
,
2757 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2760 inode_add_bytes(inode
, datal
);
2761 ret
= btrfs_inc_extent_ref(trans
, root
,
2763 root
->root_key
.objectid
,
2765 new_key
.offset
- datao
,
2768 btrfs_abort_transaction(trans
,
2771 btrfs_end_transaction(trans
,
2777 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2780 if (off
> key
.offset
) {
2781 skip
= off
- key
.offset
;
2782 new_key
.offset
+= skip
;
2785 if (key
.offset
+ datal
> off
+ len
)
2786 trim
= key
.offset
+ datal
- (off
+ len
);
2788 if (comp
&& (skip
|| trim
)) {
2790 btrfs_end_transaction(trans
, root
);
2793 size
-= skip
+ trim
;
2794 datal
-= skip
+ trim
;
2796 ret
= btrfs_drop_extents(trans
, root
, inode
,
2798 new_key
.offset
+ datal
,
2801 btrfs_abort_transaction(trans
, root
,
2803 btrfs_end_transaction(trans
, root
);
2807 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2810 btrfs_abort_transaction(trans
, root
,
2812 btrfs_end_transaction(trans
, root
);
2818 btrfs_file_extent_calc_inline_size(0);
2819 memmove(buf
+start
, buf
+start
+skip
,
2823 leaf
= path
->nodes
[0];
2824 slot
= path
->slots
[0];
2825 write_extent_buffer(leaf
, buf
,
2826 btrfs_item_ptr_offset(leaf
, slot
),
2828 inode_add_bytes(inode
, datal
);
2831 btrfs_mark_buffer_dirty(leaf
);
2832 btrfs_release_path(path
);
2834 inode_inc_iversion(inode
);
2835 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2838 * we round up to the block size at eof when
2839 * determining which extents to clone above,
2840 * but shouldn't round up the file size
2842 endoff
= new_key
.offset
+ datal
;
2843 if (endoff
> destoff
+olen
)
2844 endoff
= destoff
+olen
;
2845 if (endoff
> inode
->i_size
)
2846 btrfs_i_size_write(inode
, endoff
);
2848 ret
= btrfs_update_inode(trans
, root
, inode
);
2850 btrfs_abort_transaction(trans
, root
, ret
);
2851 btrfs_end_transaction(trans
, root
);
2854 ret
= btrfs_end_transaction(trans
, root
);
2857 btrfs_release_path(path
);
2862 btrfs_release_path(path
);
2863 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2865 mutex_unlock(&src
->i_mutex
);
2867 mutex_unlock(&inode
->i_mutex
);
2869 btrfs_free_path(path
);
2873 mnt_drop_write_file(file
);
2877 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2879 struct btrfs_ioctl_clone_range_args args
;
2881 if (copy_from_user(&args
, argp
, sizeof(args
)))
2883 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2884 args
.src_length
, args
.dest_offset
);
2888 * there are many ways the trans_start and trans_end ioctls can lead
2889 * to deadlocks. They should only be used by applications that
2890 * basically own the machine, and have a very in depth understanding
2891 * of all the possible deadlocks and enospc problems.
2893 static long btrfs_ioctl_trans_start(struct file
*file
)
2895 struct inode
*inode
= file_inode(file
);
2896 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2897 struct btrfs_trans_handle
*trans
;
2901 if (!capable(CAP_SYS_ADMIN
))
2905 if (file
->private_data
)
2909 if (btrfs_root_readonly(root
))
2912 ret
= mnt_want_write_file(file
);
2916 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2919 trans
= btrfs_start_ioctl_transaction(root
);
2923 file
->private_data
= trans
;
2927 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2928 mnt_drop_write_file(file
);
2933 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2935 struct inode
*inode
= file_inode(file
);
2936 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2937 struct btrfs_root
*new_root
;
2938 struct btrfs_dir_item
*di
;
2939 struct btrfs_trans_handle
*trans
;
2940 struct btrfs_path
*path
;
2941 struct btrfs_key location
;
2942 struct btrfs_disk_key disk_key
;
2947 if (!capable(CAP_SYS_ADMIN
))
2950 ret
= mnt_want_write_file(file
);
2954 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
2960 objectid
= root
->root_key
.objectid
;
2962 location
.objectid
= objectid
;
2963 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2964 location
.offset
= (u64
)-1;
2966 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2967 if (IS_ERR(new_root
)) {
2968 ret
= PTR_ERR(new_root
);
2972 path
= btrfs_alloc_path();
2977 path
->leave_spinning
= 1;
2979 trans
= btrfs_start_transaction(root
, 1);
2980 if (IS_ERR(trans
)) {
2981 btrfs_free_path(path
);
2982 ret
= PTR_ERR(trans
);
2986 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
2987 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2988 dir_id
, "default", 7, 1);
2989 if (IS_ERR_OR_NULL(di
)) {
2990 btrfs_free_path(path
);
2991 btrfs_end_transaction(trans
, root
);
2992 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2993 "this isn't going to work\n");
2998 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2999 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
3000 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3001 btrfs_free_path(path
);
3003 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
3004 btrfs_end_transaction(trans
, root
);
3006 mnt_drop_write_file(file
);
3010 void btrfs_get_block_group_info(struct list_head
*groups_list
,
3011 struct btrfs_ioctl_space_info
*space
)
3013 struct btrfs_block_group_cache
*block_group
;
3015 space
->total_bytes
= 0;
3016 space
->used_bytes
= 0;
3018 list_for_each_entry(block_group
, groups_list
, list
) {
3019 space
->flags
= block_group
->flags
;
3020 space
->total_bytes
+= block_group
->key
.offset
;
3021 space
->used_bytes
+=
3022 btrfs_block_group_used(&block_group
->item
);
3026 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
3028 struct btrfs_ioctl_space_args space_args
;
3029 struct btrfs_ioctl_space_info space
;
3030 struct btrfs_ioctl_space_info
*dest
;
3031 struct btrfs_ioctl_space_info
*dest_orig
;
3032 struct btrfs_ioctl_space_info __user
*user_dest
;
3033 struct btrfs_space_info
*info
;
3034 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3035 BTRFS_BLOCK_GROUP_SYSTEM
,
3036 BTRFS_BLOCK_GROUP_METADATA
,
3037 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3044 if (copy_from_user(&space_args
,
3045 (struct btrfs_ioctl_space_args __user
*)arg
,
3046 sizeof(space_args
)))
3049 for (i
= 0; i
< num_types
; i
++) {
3050 struct btrfs_space_info
*tmp
;
3054 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3056 if (tmp
->flags
== types
[i
]) {
3066 down_read(&info
->groups_sem
);
3067 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3068 if (!list_empty(&info
->block_groups
[c
]))
3071 up_read(&info
->groups_sem
);
3074 /* space_slots == 0 means they are asking for a count */
3075 if (space_args
.space_slots
== 0) {
3076 space_args
.total_spaces
= slot_count
;
3080 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
3082 alloc_size
= sizeof(*dest
) * slot_count
;
3084 /* we generally have at most 6 or so space infos, one for each raid
3085 * level. So, a whole page should be more than enough for everyone
3087 if (alloc_size
> PAGE_CACHE_SIZE
)
3090 space_args
.total_spaces
= 0;
3091 dest
= kmalloc(alloc_size
, GFP_NOFS
);
3096 /* now we have a buffer to copy into */
3097 for (i
= 0; i
< num_types
; i
++) {
3098 struct btrfs_space_info
*tmp
;
3105 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3107 if (tmp
->flags
== types
[i
]) {
3116 down_read(&info
->groups_sem
);
3117 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3118 if (!list_empty(&info
->block_groups
[c
])) {
3119 btrfs_get_block_group_info(
3120 &info
->block_groups
[c
], &space
);
3121 memcpy(dest
, &space
, sizeof(space
));
3123 space_args
.total_spaces
++;
3129 up_read(&info
->groups_sem
);
3132 user_dest
= (struct btrfs_ioctl_space_info __user
*)
3133 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
3135 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
3140 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
3147 * there are many ways the trans_start and trans_end ioctls can lead
3148 * to deadlocks. They should only be used by applications that
3149 * basically own the machine, and have a very in depth understanding
3150 * of all the possible deadlocks and enospc problems.
3152 long btrfs_ioctl_trans_end(struct file
*file
)
3154 struct inode
*inode
= file_inode(file
);
3155 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3156 struct btrfs_trans_handle
*trans
;
3158 trans
= file
->private_data
;
3161 file
->private_data
= NULL
;
3163 btrfs_end_transaction(trans
, root
);
3165 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3167 mnt_drop_write_file(file
);
3171 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
3174 struct btrfs_trans_handle
*trans
;
3178 trans
= btrfs_attach_transaction_barrier(root
);
3179 if (IS_ERR(trans
)) {
3180 if (PTR_ERR(trans
) != -ENOENT
)
3181 return PTR_ERR(trans
);
3183 /* No running transaction, don't bother */
3184 transid
= root
->fs_info
->last_trans_committed
;
3187 transid
= trans
->transid
;
3188 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
3190 btrfs_end_transaction(trans
, root
);
3195 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
3200 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
3206 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3209 transid
= 0; /* current trans */
3211 return btrfs_wait_for_commit(root
, transid
);
3214 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
3216 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3217 struct btrfs_ioctl_scrub_args
*sa
;
3220 if (!capable(CAP_SYS_ADMIN
))
3223 sa
= memdup_user(arg
, sizeof(*sa
));
3227 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
3228 ret
= mnt_want_write_file(file
);
3233 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
3234 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
3237 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3240 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
3241 mnt_drop_write_file(file
);
3247 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
3249 if (!capable(CAP_SYS_ADMIN
))
3252 return btrfs_scrub_cancel(root
->fs_info
);
3255 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
3258 struct btrfs_ioctl_scrub_args
*sa
;
3261 if (!capable(CAP_SYS_ADMIN
))
3264 sa
= memdup_user(arg
, sizeof(*sa
));
3268 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
3270 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3277 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
3280 struct btrfs_ioctl_get_dev_stats
*sa
;
3283 sa
= memdup_user(arg
, sizeof(*sa
));
3287 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
3292 ret
= btrfs_get_dev_stats(root
, sa
);
3294 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3301 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
3303 struct btrfs_ioctl_dev_replace_args
*p
;
3306 if (!capable(CAP_SYS_ADMIN
))
3309 p
= memdup_user(arg
, sizeof(*p
));
3314 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
3316 &root
->fs_info
->mutually_exclusive_operation_running
,
3318 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3321 ret
= btrfs_dev_replace_start(root
, p
);
3323 &root
->fs_info
->mutually_exclusive_operation_running
,
3327 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
3328 btrfs_dev_replace_status(root
->fs_info
, p
);
3331 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
3332 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
3339 if (copy_to_user(arg
, p
, sizeof(*p
)))
3346 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3352 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3353 struct inode_fs_paths
*ipath
= NULL
;
3354 struct btrfs_path
*path
;
3356 if (!capable(CAP_DAC_READ_SEARCH
))
3359 path
= btrfs_alloc_path();
3365 ipa
= memdup_user(arg
, sizeof(*ipa
));
3372 size
= min_t(u32
, ipa
->size
, 4096);
3373 ipath
= init_ipath(size
, root
, path
);
3374 if (IS_ERR(ipath
)) {
3375 ret
= PTR_ERR(ipath
);
3380 ret
= paths_from_inode(ipa
->inum
, ipath
);
3384 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3385 rel_ptr
= ipath
->fspath
->val
[i
] -
3386 (u64
)(unsigned long)ipath
->fspath
->val
;
3387 ipath
->fspath
->val
[i
] = rel_ptr
;
3390 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
3391 (void *)(unsigned long)ipath
->fspath
, size
);
3398 btrfs_free_path(path
);
3405 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3407 struct btrfs_data_container
*inodes
= ctx
;
3408 const size_t c
= 3 * sizeof(u64
);
3410 if (inodes
->bytes_left
>= c
) {
3411 inodes
->bytes_left
-= c
;
3412 inodes
->val
[inodes
->elem_cnt
] = inum
;
3413 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3414 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3415 inodes
->elem_cnt
+= 3;
3417 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3418 inodes
->bytes_left
= 0;
3419 inodes
->elem_missed
+= 3;
3425 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
3430 struct btrfs_ioctl_logical_ino_args
*loi
;
3431 struct btrfs_data_container
*inodes
= NULL
;
3432 struct btrfs_path
*path
= NULL
;
3434 if (!capable(CAP_SYS_ADMIN
))
3437 loi
= memdup_user(arg
, sizeof(*loi
));
3444 path
= btrfs_alloc_path();
3450 size
= min_t(u32
, loi
->size
, 64 * 1024);
3451 inodes
= init_data_container(size
);
3452 if (IS_ERR(inodes
)) {
3453 ret
= PTR_ERR(inodes
);
3458 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
3459 build_ino_list
, inodes
);
3465 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
3466 (void *)(unsigned long)inodes
, size
);
3471 btrfs_free_path(path
);
3478 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
3479 struct btrfs_ioctl_balance_args
*bargs
)
3481 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3483 bargs
->flags
= bctl
->flags
;
3485 if (atomic_read(&fs_info
->balance_running
))
3486 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3487 if (atomic_read(&fs_info
->balance_pause_req
))
3488 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3489 if (atomic_read(&fs_info
->balance_cancel_req
))
3490 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3492 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3493 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3494 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3497 spin_lock(&fs_info
->balance_lock
);
3498 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3499 spin_unlock(&fs_info
->balance_lock
);
3501 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3505 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3507 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3508 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3509 struct btrfs_ioctl_balance_args
*bargs
;
3510 struct btrfs_balance_control
*bctl
;
3511 bool need_unlock
; /* for mut. excl. ops lock */
3514 if (!capable(CAP_SYS_ADMIN
))
3517 ret
= mnt_want_write_file(file
);
3522 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
3523 mutex_lock(&fs_info
->volume_mutex
);
3524 mutex_lock(&fs_info
->balance_mutex
);
3530 * mut. excl. ops lock is locked. Three possibilites:
3531 * (1) some other op is running
3532 * (2) balance is running
3533 * (3) balance is paused -- special case (think resume)
3535 mutex_lock(&fs_info
->balance_mutex
);
3536 if (fs_info
->balance_ctl
) {
3537 /* this is either (2) or (3) */
3538 if (!atomic_read(&fs_info
->balance_running
)) {
3539 mutex_unlock(&fs_info
->balance_mutex
);
3540 if (!mutex_trylock(&fs_info
->volume_mutex
))
3542 mutex_lock(&fs_info
->balance_mutex
);
3544 if (fs_info
->balance_ctl
&&
3545 !atomic_read(&fs_info
->balance_running
)) {
3547 need_unlock
= false;
3551 mutex_unlock(&fs_info
->balance_mutex
);
3552 mutex_unlock(&fs_info
->volume_mutex
);
3556 mutex_unlock(&fs_info
->balance_mutex
);
3562 mutex_unlock(&fs_info
->balance_mutex
);
3563 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3569 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
3572 bargs
= memdup_user(arg
, sizeof(*bargs
));
3573 if (IS_ERR(bargs
)) {
3574 ret
= PTR_ERR(bargs
);
3578 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3579 if (!fs_info
->balance_ctl
) {
3584 bctl
= fs_info
->balance_ctl
;
3585 spin_lock(&fs_info
->balance_lock
);
3586 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3587 spin_unlock(&fs_info
->balance_lock
);
3595 if (fs_info
->balance_ctl
) {
3600 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3606 bctl
->fs_info
= fs_info
;
3608 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3609 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3610 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3612 bctl
->flags
= bargs
->flags
;
3614 /* balance everything - no filters */
3615 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3620 * Ownership of bctl and mutually_exclusive_operation_running
3621 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3622 * or, if restriper was paused all the way until unmount, in
3623 * free_fs_info. mutually_exclusive_operation_running is
3624 * cleared in __cancel_balance.
3626 need_unlock
= false;
3628 ret
= btrfs_balance(bctl
, bargs
);
3631 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3638 mutex_unlock(&fs_info
->balance_mutex
);
3639 mutex_unlock(&fs_info
->volume_mutex
);
3641 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3643 mnt_drop_write_file(file
);
3647 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
3649 if (!capable(CAP_SYS_ADMIN
))
3653 case BTRFS_BALANCE_CTL_PAUSE
:
3654 return btrfs_pause_balance(root
->fs_info
);
3655 case BTRFS_BALANCE_CTL_CANCEL
:
3656 return btrfs_cancel_balance(root
->fs_info
);
3662 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
3665 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3666 struct btrfs_ioctl_balance_args
*bargs
;
3669 if (!capable(CAP_SYS_ADMIN
))
3672 mutex_lock(&fs_info
->balance_mutex
);
3673 if (!fs_info
->balance_ctl
) {
3678 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
3684 update_ioctl_balance_args(fs_info
, 1, bargs
);
3686 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3691 mutex_unlock(&fs_info
->balance_mutex
);
3695 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
3697 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3698 struct btrfs_ioctl_quota_ctl_args
*sa
;
3699 struct btrfs_trans_handle
*trans
= NULL
;
3703 if (!capable(CAP_SYS_ADMIN
))
3706 ret
= mnt_want_write_file(file
);
3710 sa
= memdup_user(arg
, sizeof(*sa
));
3716 down_write(&root
->fs_info
->subvol_sem
);
3717 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
3718 if (IS_ERR(trans
)) {
3719 ret
= PTR_ERR(trans
);
3724 case BTRFS_QUOTA_CTL_ENABLE
:
3725 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
3727 case BTRFS_QUOTA_CTL_DISABLE
:
3728 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
3735 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
3740 up_write(&root
->fs_info
->subvol_sem
);
3742 mnt_drop_write_file(file
);
3746 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
3748 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3749 struct btrfs_ioctl_qgroup_assign_args
*sa
;
3750 struct btrfs_trans_handle
*trans
;
3754 if (!capable(CAP_SYS_ADMIN
))
3757 ret
= mnt_want_write_file(file
);
3761 sa
= memdup_user(arg
, sizeof(*sa
));
3767 trans
= btrfs_join_transaction(root
);
3768 if (IS_ERR(trans
)) {
3769 ret
= PTR_ERR(trans
);
3773 /* FIXME: check if the IDs really exist */
3775 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
3778 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
3782 err
= btrfs_end_transaction(trans
, root
);
3789 mnt_drop_write_file(file
);
3793 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
3795 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3796 struct btrfs_ioctl_qgroup_create_args
*sa
;
3797 struct btrfs_trans_handle
*trans
;
3801 if (!capable(CAP_SYS_ADMIN
))
3804 ret
= mnt_want_write_file(file
);
3808 sa
= memdup_user(arg
, sizeof(*sa
));
3814 if (!sa
->qgroupid
) {
3819 trans
= btrfs_join_transaction(root
);
3820 if (IS_ERR(trans
)) {
3821 ret
= PTR_ERR(trans
);
3825 /* FIXME: check if the IDs really exist */
3827 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
,
3830 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
3833 err
= btrfs_end_transaction(trans
, root
);
3840 mnt_drop_write_file(file
);
3844 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
3846 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3847 struct btrfs_ioctl_qgroup_limit_args
*sa
;
3848 struct btrfs_trans_handle
*trans
;
3853 if (!capable(CAP_SYS_ADMIN
))
3856 ret
= mnt_want_write_file(file
);
3860 sa
= memdup_user(arg
, sizeof(*sa
));
3866 trans
= btrfs_join_transaction(root
);
3867 if (IS_ERR(trans
)) {
3868 ret
= PTR_ERR(trans
);
3872 qgroupid
= sa
->qgroupid
;
3874 /* take the current subvol as qgroup */
3875 qgroupid
= root
->root_key
.objectid
;
3878 /* FIXME: check if the IDs really exist */
3879 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
3881 err
= btrfs_end_transaction(trans
, root
);
3888 mnt_drop_write_file(file
);
3892 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
3894 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3895 struct btrfs_ioctl_quota_rescan_args
*qsa
;
3898 if (!capable(CAP_SYS_ADMIN
))
3901 ret
= mnt_want_write_file(file
);
3905 qsa
= memdup_user(arg
, sizeof(*qsa
));
3916 ret
= btrfs_qgroup_rescan(root
->fs_info
);
3921 mnt_drop_write_file(file
);
3925 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
3927 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3928 struct btrfs_ioctl_quota_rescan_args
*qsa
;
3931 if (!capable(CAP_SYS_ADMIN
))
3934 qsa
= kzalloc(sizeof(*qsa
), GFP_NOFS
);
3938 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
3940 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
3943 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
3950 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
3952 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3954 if (!capable(CAP_SYS_ADMIN
))
3957 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
3960 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
3963 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
3964 struct inode
*inode
= file_inode(file
);
3965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3966 struct btrfs_root_item
*root_item
= &root
->root_item
;
3967 struct btrfs_trans_handle
*trans
;
3968 struct timespec ct
= CURRENT_TIME
;
3971 ret
= mnt_want_write_file(file
);
3975 down_write(&root
->fs_info
->subvol_sem
);
3977 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
3982 if (btrfs_root_readonly(root
)) {
3987 if (!inode_owner_or_capable(inode
)) {
3992 sa
= memdup_user(arg
, sizeof(*sa
));
3999 trans
= btrfs_start_transaction(root
, 1);
4000 if (IS_ERR(trans
)) {
4001 ret
= PTR_ERR(trans
);
4006 sa
->rtransid
= trans
->transid
;
4007 sa
->rtime
.sec
= ct
.tv_sec
;
4008 sa
->rtime
.nsec
= ct
.tv_nsec
;
4010 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
4011 btrfs_set_root_stransid(root_item
, sa
->stransid
);
4012 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
4013 root_item
->stime
.sec
= cpu_to_le64(sa
->stime
.sec
);
4014 root_item
->stime
.nsec
= cpu_to_le32(sa
->stime
.nsec
);
4015 root_item
->rtime
.sec
= cpu_to_le64(sa
->rtime
.sec
);
4016 root_item
->rtime
.nsec
= cpu_to_le32(sa
->rtime
.nsec
);
4018 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
4019 &root
->root_key
, &root
->root_item
);
4021 btrfs_end_transaction(trans
, root
);
4025 ret
= btrfs_commit_transaction(trans
, root
);
4030 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
4036 up_write(&root
->fs_info
->subvol_sem
);
4037 mnt_drop_write_file(file
);
4041 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
4043 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4044 const char *label
= root
->fs_info
->super_copy
->label
;
4045 size_t len
= strnlen(label
, BTRFS_LABEL_SIZE
);
4048 if (len
== BTRFS_LABEL_SIZE
) {
4049 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4053 mutex_lock(&root
->fs_info
->volume_mutex
);
4054 ret
= copy_to_user(arg
, label
, len
);
4055 mutex_unlock(&root
->fs_info
->volume_mutex
);
4057 return ret
? -EFAULT
: 0;
4060 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
4062 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4063 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
4064 struct btrfs_trans_handle
*trans
;
4065 char label
[BTRFS_LABEL_SIZE
];
4068 if (!capable(CAP_SYS_ADMIN
))
4071 if (copy_from_user(label
, arg
, sizeof(label
)))
4074 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
4075 pr_err("btrfs: unable to set label with more than %d bytes\n",
4076 BTRFS_LABEL_SIZE
- 1);
4080 ret
= mnt_want_write_file(file
);
4084 mutex_lock(&root
->fs_info
->volume_mutex
);
4085 trans
= btrfs_start_transaction(root
, 0);
4086 if (IS_ERR(trans
)) {
4087 ret
= PTR_ERR(trans
);
4091 strcpy(super_block
->label
, label
);
4092 ret
= btrfs_end_transaction(trans
, root
);
4095 mutex_unlock(&root
->fs_info
->volume_mutex
);
4096 mnt_drop_write_file(file
);
4100 long btrfs_ioctl(struct file
*file
, unsigned int
4101 cmd
, unsigned long arg
)
4103 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4104 void __user
*argp
= (void __user
*)arg
;
4107 case FS_IOC_GETFLAGS
:
4108 return btrfs_ioctl_getflags(file
, argp
);
4109 case FS_IOC_SETFLAGS
:
4110 return btrfs_ioctl_setflags(file
, argp
);
4111 case FS_IOC_GETVERSION
:
4112 return btrfs_ioctl_getversion(file
, argp
);
4114 return btrfs_ioctl_fitrim(file
, argp
);
4115 case BTRFS_IOC_SNAP_CREATE
:
4116 return btrfs_ioctl_snap_create(file
, argp
, 0);
4117 case BTRFS_IOC_SNAP_CREATE_V2
:
4118 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
4119 case BTRFS_IOC_SUBVOL_CREATE
:
4120 return btrfs_ioctl_snap_create(file
, argp
, 1);
4121 case BTRFS_IOC_SUBVOL_CREATE_V2
:
4122 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
4123 case BTRFS_IOC_SNAP_DESTROY
:
4124 return btrfs_ioctl_snap_destroy(file
, argp
);
4125 case BTRFS_IOC_SUBVOL_GETFLAGS
:
4126 return btrfs_ioctl_subvol_getflags(file
, argp
);
4127 case BTRFS_IOC_SUBVOL_SETFLAGS
:
4128 return btrfs_ioctl_subvol_setflags(file
, argp
);
4129 case BTRFS_IOC_DEFAULT_SUBVOL
:
4130 return btrfs_ioctl_default_subvol(file
, argp
);
4131 case BTRFS_IOC_DEFRAG
:
4132 return btrfs_ioctl_defrag(file
, NULL
);
4133 case BTRFS_IOC_DEFRAG_RANGE
:
4134 return btrfs_ioctl_defrag(file
, argp
);
4135 case BTRFS_IOC_RESIZE
:
4136 return btrfs_ioctl_resize(file
, argp
);
4137 case BTRFS_IOC_ADD_DEV
:
4138 return btrfs_ioctl_add_dev(root
, argp
);
4139 case BTRFS_IOC_RM_DEV
:
4140 return btrfs_ioctl_rm_dev(file
, argp
);
4141 case BTRFS_IOC_FS_INFO
:
4142 return btrfs_ioctl_fs_info(root
, argp
);
4143 case BTRFS_IOC_DEV_INFO
:
4144 return btrfs_ioctl_dev_info(root
, argp
);
4145 case BTRFS_IOC_BALANCE
:
4146 return btrfs_ioctl_balance(file
, NULL
);
4147 case BTRFS_IOC_CLONE
:
4148 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
4149 case BTRFS_IOC_CLONE_RANGE
:
4150 return btrfs_ioctl_clone_range(file
, argp
);
4151 case BTRFS_IOC_TRANS_START
:
4152 return btrfs_ioctl_trans_start(file
);
4153 case BTRFS_IOC_TRANS_END
:
4154 return btrfs_ioctl_trans_end(file
);
4155 case BTRFS_IOC_TREE_SEARCH
:
4156 return btrfs_ioctl_tree_search(file
, argp
);
4157 case BTRFS_IOC_INO_LOOKUP
:
4158 return btrfs_ioctl_ino_lookup(file
, argp
);
4159 case BTRFS_IOC_INO_PATHS
:
4160 return btrfs_ioctl_ino_to_path(root
, argp
);
4161 case BTRFS_IOC_LOGICAL_INO
:
4162 return btrfs_ioctl_logical_to_ino(root
, argp
);
4163 case BTRFS_IOC_SPACE_INFO
:
4164 return btrfs_ioctl_space_info(root
, argp
);
4165 case BTRFS_IOC_SYNC
:
4166 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
4168 case BTRFS_IOC_START_SYNC
:
4169 return btrfs_ioctl_start_sync(root
, argp
);
4170 case BTRFS_IOC_WAIT_SYNC
:
4171 return btrfs_ioctl_wait_sync(root
, argp
);
4172 case BTRFS_IOC_SCRUB
:
4173 return btrfs_ioctl_scrub(file
, argp
);
4174 case BTRFS_IOC_SCRUB_CANCEL
:
4175 return btrfs_ioctl_scrub_cancel(root
, argp
);
4176 case BTRFS_IOC_SCRUB_PROGRESS
:
4177 return btrfs_ioctl_scrub_progress(root
, argp
);
4178 case BTRFS_IOC_BALANCE_V2
:
4179 return btrfs_ioctl_balance(file
, argp
);
4180 case BTRFS_IOC_BALANCE_CTL
:
4181 return btrfs_ioctl_balance_ctl(root
, arg
);
4182 case BTRFS_IOC_BALANCE_PROGRESS
:
4183 return btrfs_ioctl_balance_progress(root
, argp
);
4184 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
4185 return btrfs_ioctl_set_received_subvol(file
, argp
);
4186 case BTRFS_IOC_SEND
:
4187 return btrfs_ioctl_send(file
, argp
);
4188 case BTRFS_IOC_GET_DEV_STATS
:
4189 return btrfs_ioctl_get_dev_stats(root
, argp
);
4190 case BTRFS_IOC_QUOTA_CTL
:
4191 return btrfs_ioctl_quota_ctl(file
, argp
);
4192 case BTRFS_IOC_QGROUP_ASSIGN
:
4193 return btrfs_ioctl_qgroup_assign(file
, argp
);
4194 case BTRFS_IOC_QGROUP_CREATE
:
4195 return btrfs_ioctl_qgroup_create(file
, argp
);
4196 case BTRFS_IOC_QGROUP_LIMIT
:
4197 return btrfs_ioctl_qgroup_limit(file
, argp
);
4198 case BTRFS_IOC_QUOTA_RESCAN
:
4199 return btrfs_ioctl_quota_rescan(file
, argp
);
4200 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
4201 return btrfs_ioctl_quota_rescan_status(file
, argp
);
4202 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
4203 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
4204 case BTRFS_IOC_DEV_REPLACE
:
4205 return btrfs_ioctl_dev_replace(root
, argp
);
4206 case BTRFS_IOC_GET_FSLABEL
:
4207 return btrfs_ioctl_get_fslabel(file
, argp
);
4208 case BTRFS_IOC_SET_FSLABEL
:
4209 return btrfs_ioctl_set_fslabel(file
, argp
);