Make 'repair' actually work for raid1.
[linux/fpc-iii.git] / drivers / md / raid1.c
blob59cd546cdecbbd90896843466e17bfa91ffc15ae
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t *mddev);
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
65 unplug_slaves(pi->mddev);
67 return r1_bio;
70 static void r1bio_pool_free(void *r1_bio, void *data)
72 kfree(r1_bio);
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
105 * Allocate RESYNC_PAGES data pages and attach them to
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
121 bio->bi_io_vec[i].bv_page = page;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
132 r1_bio->master_bio = NULL;
134 return r1_bio;
136 out_free_pages:
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 j = -1;
141 out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
148 static void r1buf_pool_free(void *__r1_bio, void *data)
150 struct pool_info *pi = data;
151 int i,j;
152 r1bio_t *r1bio = __r1_bio;
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
164 r1bio_pool_free(r1bio, data);
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 int i;
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r1bio(r1bio_t *r1_bio)
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
193 static void put_buf(r1bio_t *r1_bio)
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 int i;
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 mempool_free(r1_bio, conf->r1buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r1bio_t *r1_bio)
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r1bio_t *r1_bio)
231 struct bio *bio = r1_bio->master_bio;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
241 bio_endio(bio, bio->bi_size,
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 free_r1bio(r1_bio);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 if (bio->bi_size)
266 return 1;
268 mirror = r1_bio->read_disk;
270 * this branch is our 'one mirror IO has finished' event handler:
272 update_head_pos(mirror, r1_bio);
274 if (uptodate || conf->working_disks <= 1) {
276 * Set R1BIO_Uptodate in our master bio, so that
277 * we will return a good error code for to the higher
278 * levels even if IO on some other mirrored buffer fails.
280 * The 'master' represents the composite IO operation to
281 * user-side. So if something waits for IO, then it will
282 * wait for the 'master' bio.
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
287 raid_end_bio_io(r1_bio);
288 } else {
290 * oops, read error:
292 char b[BDEVNAME_SIZE];
293 if (printk_ratelimit())
294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 reschedule_retry(r1_bio);
299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 return 0;
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 struct bio *to_put = NULL;
311 if (bio->bi_size)
312 return 1;
314 for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 if (r1_bio->bios[mirror] == bio)
316 break;
318 if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 r1_bio->mddev->barriers_work = 0;
322 } else {
324 * this branch is our 'one mirror IO has finished' event handler:
326 r1_bio->bios[mirror] = NULL;
327 to_put = bio;
328 if (!uptodate) {
329 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330 /* an I/O failed, we can't clear the bitmap */
331 set_bit(R1BIO_Degraded, &r1_bio->state);
332 } else
334 * Set R1BIO_Uptodate in our master bio, so that
335 * we will return a good error code for to the higher
336 * levels even if IO on some other mirrored buffer fails.
338 * The 'master' represents the composite IO operation to
339 * user-side. So if something waits for IO, then it will
340 * wait for the 'master' bio.
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
344 update_head_pos(mirror, r1_bio);
346 if (behind) {
347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 atomic_dec(&r1_bio->behind_remaining);
350 /* In behind mode, we ACK the master bio once the I/O has safely
351 * reached all non-writemostly disks. Setting the Returned bit
352 * ensures that this gets done only once -- we don't ever want to
353 * return -EIO here, instead we'll wait */
355 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357 /* Maybe we can return now */
358 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359 struct bio *mbio = r1_bio->master_bio;
360 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361 (unsigned long long) mbio->bi_sector,
362 (unsigned long long) mbio->bi_sector +
363 (mbio->bi_size >> 9) - 1);
364 bio_endio(mbio, mbio->bi_size, 0);
371 * Let's see if all mirrored write operations have finished
372 * already.
374 if (atomic_dec_and_test(&r1_bio->remaining)) {
375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
376 reschedule_retry(r1_bio);
377 /* Don't dec_pending yet, we want to hold
378 * the reference over the retry
380 goto out;
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 /* free extra copy of the data pages */
384 int i = bio->bi_vcnt;
385 while (i--)
386 safe_put_page(bio->bi_io_vec[i].bv_page);
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 r1_bio->sectors,
391 !test_bit(R1BIO_Degraded, &r1_bio->state),
392 behind);
393 md_write_end(r1_bio->mddev);
394 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
398 out:
399 if (to_put)
400 bio_put(to_put);
402 return 0;
407 * This routine returns the disk from which the requested read should
408 * be done. There is a per-array 'next expected sequential IO' sector
409 * number - if this matches on the next IO then we use the last disk.
410 * There is also a per-disk 'last know head position' sector that is
411 * maintained from IRQ contexts, both the normal and the resync IO
412 * completion handlers update this position correctly. If there is no
413 * perfect sequential match then we pick the disk whose head is closest.
415 * If there are 2 mirrors in the same 2 devices, performance degrades
416 * because position is mirror, not device based.
418 * The rdev for the device selected will have nr_pending incremented.
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
422 const unsigned long this_sector = r1_bio->sector;
423 int new_disk = conf->last_used, disk = new_disk;
424 int wonly_disk = -1;
425 const int sectors = r1_bio->sectors;
426 sector_t new_distance, current_distance;
427 mdk_rdev_t *rdev;
429 rcu_read_lock();
431 * Check if we can balance. We can balance on the whole
432 * device if no resync is going on, or below the resync window.
433 * We take the first readable disk when above the resync window.
435 retry:
436 if (conf->mddev->recovery_cp < MaxSector &&
437 (this_sector + sectors >= conf->next_resync)) {
438 /* Choose the first operation device, for consistancy */
439 new_disk = 0;
441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442 r1_bio->bios[new_disk] == IO_BLOCKED ||
443 !rdev || !test_bit(In_sync, &rdev->flags)
444 || test_bit(WriteMostly, &rdev->flags);
445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
447 if (rdev && test_bit(In_sync, &rdev->flags) &&
448 r1_bio->bios[new_disk] != IO_BLOCKED)
449 wonly_disk = new_disk;
451 if (new_disk == conf->raid_disks - 1) {
452 new_disk = wonly_disk;
453 break;
456 goto rb_out;
460 /* make sure the disk is operational */
461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462 r1_bio->bios[new_disk] == IO_BLOCKED ||
463 !rdev || !test_bit(In_sync, &rdev->flags) ||
464 test_bit(WriteMostly, &rdev->flags);
465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
467 if (rdev && test_bit(In_sync, &rdev->flags) &&
468 r1_bio->bios[new_disk] != IO_BLOCKED)
469 wonly_disk = new_disk;
471 if (new_disk <= 0)
472 new_disk = conf->raid_disks;
473 new_disk--;
474 if (new_disk == disk) {
475 new_disk = wonly_disk;
476 break;
480 if (new_disk < 0)
481 goto rb_out;
483 disk = new_disk;
484 /* now disk == new_disk == starting point for search */
487 * Don't change to another disk for sequential reads:
489 if (conf->next_seq_sect == this_sector)
490 goto rb_out;
491 if (this_sector == conf->mirrors[new_disk].head_position)
492 goto rb_out;
494 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 /* Find the disk whose head is closest */
498 do {
499 if (disk <= 0)
500 disk = conf->raid_disks;
501 disk--;
503 rdev = rcu_dereference(conf->mirrors[disk].rdev);
505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506 !test_bit(In_sync, &rdev->flags) ||
507 test_bit(WriteMostly, &rdev->flags))
508 continue;
510 if (!atomic_read(&rdev->nr_pending)) {
511 new_disk = disk;
512 break;
514 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515 if (new_distance < current_distance) {
516 current_distance = new_distance;
517 new_disk = disk;
519 } while (disk != conf->last_used);
521 rb_out:
524 if (new_disk >= 0) {
525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526 if (!rdev)
527 goto retry;
528 atomic_inc(&rdev->nr_pending);
529 if (!test_bit(In_sync, &rdev->flags)) {
530 /* cannot risk returning a device that failed
531 * before we inc'ed nr_pending
533 rdev_dec_pending(rdev, conf->mddev);
534 goto retry;
536 conf->next_seq_sect = this_sector + sectors;
537 conf->last_used = new_disk;
539 rcu_read_unlock();
541 return new_disk;
544 static void unplug_slaves(mddev_t *mddev)
546 conf_t *conf = mddev_to_conf(mddev);
547 int i;
549 rcu_read_lock();
550 for (i=0; i<mddev->raid_disks; i++) {
551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
555 atomic_inc(&rdev->nr_pending);
556 rcu_read_unlock();
558 if (r_queue->unplug_fn)
559 r_queue->unplug_fn(r_queue);
561 rdev_dec_pending(rdev, mddev);
562 rcu_read_lock();
565 rcu_read_unlock();
568 static void raid1_unplug(request_queue_t *q)
570 mddev_t *mddev = q->queuedata;
572 unplug_slaves(mddev);
573 md_wakeup_thread(mddev->thread);
576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
577 sector_t *error_sector)
579 mddev_t *mddev = q->queuedata;
580 conf_t *conf = mddev_to_conf(mddev);
581 int i, ret = 0;
583 rcu_read_lock();
584 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 if (rdev && !test_bit(Faulty, &rdev->flags)) {
587 struct block_device *bdev = rdev->bdev;
588 request_queue_t *r_queue = bdev_get_queue(bdev);
590 if (!r_queue->issue_flush_fn)
591 ret = -EOPNOTSUPP;
592 else {
593 atomic_inc(&rdev->nr_pending);
594 rcu_read_unlock();
595 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
596 error_sector);
597 rdev_dec_pending(rdev, mddev);
598 rcu_read_lock();
602 rcu_read_unlock();
603 return ret;
606 /* Barriers....
607 * Sometimes we need to suspend IO while we do something else,
608 * either some resync/recovery, or reconfigure the array.
609 * To do this we raise a 'barrier'.
610 * The 'barrier' is a counter that can be raised multiple times
611 * to count how many activities are happening which preclude
612 * normal IO.
613 * We can only raise the barrier if there is no pending IO.
614 * i.e. if nr_pending == 0.
615 * We choose only to raise the barrier if no-one is waiting for the
616 * barrier to go down. This means that as soon as an IO request
617 * is ready, no other operations which require a barrier will start
618 * until the IO request has had a chance.
620 * So: regular IO calls 'wait_barrier'. When that returns there
621 * is no backgroup IO happening, It must arrange to call
622 * allow_barrier when it has finished its IO.
623 * backgroup IO calls must call raise_barrier. Once that returns
624 * there is no normal IO happeing. It must arrange to call
625 * lower_barrier when the particular background IO completes.
627 #define RESYNC_DEPTH 32
629 static void raise_barrier(conf_t *conf)
631 spin_lock_irq(&conf->resync_lock);
633 /* Wait until no block IO is waiting */
634 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
635 conf->resync_lock,
636 raid1_unplug(conf->mddev->queue));
638 /* block any new IO from starting */
639 conf->barrier++;
641 /* No wait for all pending IO to complete */
642 wait_event_lock_irq(conf->wait_barrier,
643 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
644 conf->resync_lock,
645 raid1_unplug(conf->mddev->queue));
647 spin_unlock_irq(&conf->resync_lock);
650 static void lower_barrier(conf_t *conf)
652 unsigned long flags;
653 spin_lock_irqsave(&conf->resync_lock, flags);
654 conf->barrier--;
655 spin_unlock_irqrestore(&conf->resync_lock, flags);
656 wake_up(&conf->wait_barrier);
659 static void wait_barrier(conf_t *conf)
661 spin_lock_irq(&conf->resync_lock);
662 if (conf->barrier) {
663 conf->nr_waiting++;
664 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
665 conf->resync_lock,
666 raid1_unplug(conf->mddev->queue));
667 conf->nr_waiting--;
669 conf->nr_pending++;
670 spin_unlock_irq(&conf->resync_lock);
673 static void allow_barrier(conf_t *conf)
675 unsigned long flags;
676 spin_lock_irqsave(&conf->resync_lock, flags);
677 conf->nr_pending--;
678 spin_unlock_irqrestore(&conf->resync_lock, flags);
679 wake_up(&conf->wait_barrier);
682 static void freeze_array(conf_t *conf)
684 /* stop syncio and normal IO and wait for everything to
685 * go quite.
686 * We increment barrier and nr_waiting, and then
687 * wait until barrier+nr_pending match nr_queued+2
689 spin_lock_irq(&conf->resync_lock);
690 conf->barrier++;
691 conf->nr_waiting++;
692 wait_event_lock_irq(conf->wait_barrier,
693 conf->barrier+conf->nr_pending == conf->nr_queued+2,
694 conf->resync_lock,
695 raid1_unplug(conf->mddev->queue));
696 spin_unlock_irq(&conf->resync_lock);
698 static void unfreeze_array(conf_t *conf)
700 /* reverse the effect of the freeze */
701 spin_lock_irq(&conf->resync_lock);
702 conf->barrier--;
703 conf->nr_waiting--;
704 wake_up(&conf->wait_barrier);
705 spin_unlock_irq(&conf->resync_lock);
709 /* duplicate the data pages for behind I/O */
710 static struct page **alloc_behind_pages(struct bio *bio)
712 int i;
713 struct bio_vec *bvec;
714 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
715 GFP_NOIO);
716 if (unlikely(!pages))
717 goto do_sync_io;
719 bio_for_each_segment(bvec, bio, i) {
720 pages[i] = alloc_page(GFP_NOIO);
721 if (unlikely(!pages[i]))
722 goto do_sync_io;
723 memcpy(kmap(pages[i]) + bvec->bv_offset,
724 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
725 kunmap(pages[i]);
726 kunmap(bvec->bv_page);
729 return pages;
731 do_sync_io:
732 if (pages)
733 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
734 put_page(pages[i]);
735 kfree(pages);
736 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
737 return NULL;
740 static int make_request(request_queue_t *q, struct bio * bio)
742 mddev_t *mddev = q->queuedata;
743 conf_t *conf = mddev_to_conf(mddev);
744 mirror_info_t *mirror;
745 r1bio_t *r1_bio;
746 struct bio *read_bio;
747 int i, targets = 0, disks;
748 mdk_rdev_t *rdev;
749 struct bitmap *bitmap = mddev->bitmap;
750 unsigned long flags;
751 struct bio_list bl;
752 struct page **behind_pages = NULL;
753 const int rw = bio_data_dir(bio);
754 int do_barriers;
756 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
757 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
758 return 0;
762 * Register the new request and wait if the reconstruction
763 * thread has put up a bar for new requests.
764 * Continue immediately if no resync is active currently.
766 md_write_start(mddev, bio); /* wait on superblock update early */
768 wait_barrier(conf);
770 disk_stat_inc(mddev->gendisk, ios[rw]);
771 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
774 * make_request() can abort the operation when READA is being
775 * used and no empty request is available.
778 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
780 r1_bio->master_bio = bio;
781 r1_bio->sectors = bio->bi_size >> 9;
782 r1_bio->state = 0;
783 r1_bio->mddev = mddev;
784 r1_bio->sector = bio->bi_sector;
786 if (rw == READ) {
788 * read balancing logic:
790 int rdisk = read_balance(conf, r1_bio);
792 if (rdisk < 0) {
793 /* couldn't find anywhere to read from */
794 raid_end_bio_io(r1_bio);
795 return 0;
797 mirror = conf->mirrors + rdisk;
799 r1_bio->read_disk = rdisk;
801 read_bio = bio_clone(bio, GFP_NOIO);
803 r1_bio->bios[rdisk] = read_bio;
805 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
806 read_bio->bi_bdev = mirror->rdev->bdev;
807 read_bio->bi_end_io = raid1_end_read_request;
808 read_bio->bi_rw = READ;
809 read_bio->bi_private = r1_bio;
811 generic_make_request(read_bio);
812 return 0;
816 * WRITE:
818 /* first select target devices under spinlock and
819 * inc refcount on their rdev. Record them by setting
820 * bios[x] to bio
822 disks = conf->raid_disks;
823 #if 0
824 { static int first=1;
825 if (first) printk("First Write sector %llu disks %d\n",
826 (unsigned long long)r1_bio->sector, disks);
827 first = 0;
829 #endif
830 rcu_read_lock();
831 for (i = 0; i < disks; i++) {
832 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
833 !test_bit(Faulty, &rdev->flags)) {
834 atomic_inc(&rdev->nr_pending);
835 if (test_bit(Faulty, &rdev->flags)) {
836 rdev_dec_pending(rdev, mddev);
837 r1_bio->bios[i] = NULL;
838 } else
839 r1_bio->bios[i] = bio;
840 targets++;
841 } else
842 r1_bio->bios[i] = NULL;
844 rcu_read_unlock();
846 BUG_ON(targets == 0); /* we never fail the last device */
848 if (targets < conf->raid_disks) {
849 /* array is degraded, we will not clear the bitmap
850 * on I/O completion (see raid1_end_write_request) */
851 set_bit(R1BIO_Degraded, &r1_bio->state);
854 /* do behind I/O ? */
855 if (bitmap &&
856 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
857 (behind_pages = alloc_behind_pages(bio)) != NULL)
858 set_bit(R1BIO_BehindIO, &r1_bio->state);
860 atomic_set(&r1_bio->remaining, 0);
861 atomic_set(&r1_bio->behind_remaining, 0);
863 do_barriers = bio_barrier(bio);
864 if (do_barriers)
865 set_bit(R1BIO_Barrier, &r1_bio->state);
867 bio_list_init(&bl);
868 for (i = 0; i < disks; i++) {
869 struct bio *mbio;
870 if (!r1_bio->bios[i])
871 continue;
873 mbio = bio_clone(bio, GFP_NOIO);
874 r1_bio->bios[i] = mbio;
876 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
877 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
878 mbio->bi_end_io = raid1_end_write_request;
879 mbio->bi_rw = WRITE | do_barriers;
880 mbio->bi_private = r1_bio;
882 if (behind_pages) {
883 struct bio_vec *bvec;
884 int j;
886 /* Yes, I really want the '__' version so that
887 * we clear any unused pointer in the io_vec, rather
888 * than leave them unchanged. This is important
889 * because when we come to free the pages, we won't
890 * know the originial bi_idx, so we just free
891 * them all
893 __bio_for_each_segment(bvec, mbio, j, 0)
894 bvec->bv_page = behind_pages[j];
895 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
896 atomic_inc(&r1_bio->behind_remaining);
899 atomic_inc(&r1_bio->remaining);
901 bio_list_add(&bl, mbio);
903 kfree(behind_pages); /* the behind pages are attached to the bios now */
905 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
906 test_bit(R1BIO_BehindIO, &r1_bio->state));
907 spin_lock_irqsave(&conf->device_lock, flags);
908 bio_list_merge(&conf->pending_bio_list, &bl);
909 bio_list_init(&bl);
911 blk_plug_device(mddev->queue);
912 spin_unlock_irqrestore(&conf->device_lock, flags);
914 #if 0
915 while ((bio = bio_list_pop(&bl)) != NULL)
916 generic_make_request(bio);
917 #endif
919 return 0;
922 static void status(struct seq_file *seq, mddev_t *mddev)
924 conf_t *conf = mddev_to_conf(mddev);
925 int i;
927 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
928 conf->working_disks);
929 for (i = 0; i < conf->raid_disks; i++)
930 seq_printf(seq, "%s",
931 conf->mirrors[i].rdev &&
932 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
933 seq_printf(seq, "]");
937 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
939 char b[BDEVNAME_SIZE];
940 conf_t *conf = mddev_to_conf(mddev);
943 * If it is not operational, then we have already marked it as dead
944 * else if it is the last working disks, ignore the error, let the
945 * next level up know.
946 * else mark the drive as failed
948 if (test_bit(In_sync, &rdev->flags)
949 && conf->working_disks == 1)
951 * Don't fail the drive, act as though we were just a
952 * normal single drive
954 return;
955 if (test_bit(In_sync, &rdev->flags)) {
956 mddev->degraded++;
957 conf->working_disks--;
959 * if recovery is running, make sure it aborts.
961 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
963 clear_bit(In_sync, &rdev->flags);
964 set_bit(Faulty, &rdev->flags);
965 mddev->sb_dirty = 1;
966 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
967 " Operation continuing on %d devices\n",
968 bdevname(rdev->bdev,b), conf->working_disks);
971 static void print_conf(conf_t *conf)
973 int i;
974 mirror_info_t *tmp;
976 printk("RAID1 conf printout:\n");
977 if (!conf) {
978 printk("(!conf)\n");
979 return;
981 printk(" --- wd:%d rd:%d\n", conf->working_disks,
982 conf->raid_disks);
984 for (i = 0; i < conf->raid_disks; i++) {
985 char b[BDEVNAME_SIZE];
986 tmp = conf->mirrors + i;
987 if (tmp->rdev)
988 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
989 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
990 bdevname(tmp->rdev->bdev,b));
994 static void close_sync(conf_t *conf)
996 wait_barrier(conf);
997 allow_barrier(conf);
999 mempool_destroy(conf->r1buf_pool);
1000 conf->r1buf_pool = NULL;
1003 static int raid1_spare_active(mddev_t *mddev)
1005 int i;
1006 conf_t *conf = mddev->private;
1007 mirror_info_t *tmp;
1010 * Find all failed disks within the RAID1 configuration
1011 * and mark them readable
1013 for (i = 0; i < conf->raid_disks; i++) {
1014 tmp = conf->mirrors + i;
1015 if (tmp->rdev
1016 && !test_bit(Faulty, &tmp->rdev->flags)
1017 && !test_bit(In_sync, &tmp->rdev->flags)) {
1018 conf->working_disks++;
1019 mddev->degraded--;
1020 set_bit(In_sync, &tmp->rdev->flags);
1024 print_conf(conf);
1025 return 0;
1029 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1031 conf_t *conf = mddev->private;
1032 int found = 0;
1033 int mirror = 0;
1034 mirror_info_t *p;
1036 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1037 if ( !(p=conf->mirrors+mirror)->rdev) {
1039 blk_queue_stack_limits(mddev->queue,
1040 rdev->bdev->bd_disk->queue);
1041 /* as we don't honour merge_bvec_fn, we must never risk
1042 * violating it, so limit ->max_sector to one PAGE, as
1043 * a one page request is never in violation.
1045 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1046 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1047 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1049 p->head_position = 0;
1050 rdev->raid_disk = mirror;
1051 found = 1;
1052 /* As all devices are equivalent, we don't need a full recovery
1053 * if this was recently any drive of the array
1055 if (rdev->saved_raid_disk < 0)
1056 conf->fullsync = 1;
1057 rcu_assign_pointer(p->rdev, rdev);
1058 break;
1061 print_conf(conf);
1062 return found;
1065 static int raid1_remove_disk(mddev_t *mddev, int number)
1067 conf_t *conf = mddev->private;
1068 int err = 0;
1069 mdk_rdev_t *rdev;
1070 mirror_info_t *p = conf->mirrors+ number;
1072 print_conf(conf);
1073 rdev = p->rdev;
1074 if (rdev) {
1075 if (test_bit(In_sync, &rdev->flags) ||
1076 atomic_read(&rdev->nr_pending)) {
1077 err = -EBUSY;
1078 goto abort;
1080 p->rdev = NULL;
1081 synchronize_rcu();
1082 if (atomic_read(&rdev->nr_pending)) {
1083 /* lost the race, try later */
1084 err = -EBUSY;
1085 p->rdev = rdev;
1088 abort:
1090 print_conf(conf);
1091 return err;
1095 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1097 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1098 int i;
1100 if (bio->bi_size)
1101 return 1;
1103 for (i=r1_bio->mddev->raid_disks; i--; )
1104 if (r1_bio->bios[i] == bio)
1105 break;
1106 BUG_ON(i < 0);
1107 update_head_pos(i, r1_bio);
1109 * we have read a block, now it needs to be re-written,
1110 * or re-read if the read failed.
1111 * We don't do much here, just schedule handling by raid1d
1113 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1114 set_bit(R1BIO_Uptodate, &r1_bio->state);
1116 if (atomic_dec_and_test(&r1_bio->remaining))
1117 reschedule_retry(r1_bio);
1118 return 0;
1121 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1123 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1124 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1125 mddev_t *mddev = r1_bio->mddev;
1126 conf_t *conf = mddev_to_conf(mddev);
1127 int i;
1128 int mirror=0;
1130 if (bio->bi_size)
1131 return 1;
1133 for (i = 0; i < conf->raid_disks; i++)
1134 if (r1_bio->bios[i] == bio) {
1135 mirror = i;
1136 break;
1138 if (!uptodate)
1139 md_error(mddev, conf->mirrors[mirror].rdev);
1141 update_head_pos(mirror, r1_bio);
1143 if (atomic_dec_and_test(&r1_bio->remaining)) {
1144 md_done_sync(mddev, r1_bio->sectors, uptodate);
1145 put_buf(r1_bio);
1147 return 0;
1150 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1152 conf_t *conf = mddev_to_conf(mddev);
1153 int i;
1154 int disks = conf->raid_disks;
1155 struct bio *bio, *wbio;
1157 bio = r1_bio->bios[r1_bio->read_disk];
1160 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1161 /* We have read all readable devices. If we haven't
1162 * got the block, then there is no hope left.
1163 * If we have, then we want to do a comparison
1164 * and skip the write if everything is the same.
1165 * If any blocks failed to read, then we need to
1166 * attempt an over-write
1168 int primary;
1169 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1170 for (i=0; i<mddev->raid_disks; i++)
1171 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1172 md_error(mddev, conf->mirrors[i].rdev);
1174 md_done_sync(mddev, r1_bio->sectors, 1);
1175 put_buf(r1_bio);
1176 return;
1178 for (primary=0; primary<mddev->raid_disks; primary++)
1179 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1180 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1181 r1_bio->bios[primary]->bi_end_io = NULL;
1182 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1183 break;
1185 r1_bio->read_disk = primary;
1186 for (i=0; i<mddev->raid_disks; i++)
1187 if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1188 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1189 int j;
1190 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1191 struct bio *pbio = r1_bio->bios[primary];
1192 struct bio *sbio = r1_bio->bios[i];
1193 for (j = vcnt; j-- ; )
1194 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1195 page_address(sbio->bi_io_vec[j].bv_page),
1196 PAGE_SIZE))
1197 break;
1198 if (j >= 0)
1199 mddev->resync_mismatches += r1_bio->sectors;
1200 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1201 sbio->bi_end_io = NULL;
1202 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1203 } else {
1204 /* fixup the bio for reuse */
1205 sbio->bi_vcnt = vcnt;
1206 sbio->bi_size = r1_bio->sectors << 9;
1207 sbio->bi_idx = 0;
1208 sbio->bi_phys_segments = 0;
1209 sbio->bi_hw_segments = 0;
1210 sbio->bi_hw_front_size = 0;
1211 sbio->bi_hw_back_size = 0;
1212 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1213 sbio->bi_flags |= 1 << BIO_UPTODATE;
1214 sbio->bi_next = NULL;
1215 sbio->bi_sector = r1_bio->sector +
1216 conf->mirrors[i].rdev->data_offset;
1217 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1218 for (j = 0; j < vcnt ; j++)
1219 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1220 page_address(pbio->bi_io_vec[j].bv_page),
1221 PAGE_SIZE);
1226 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1227 /* ouch - failed to read all of that.
1228 * Try some synchronous reads of other devices to get
1229 * good data, much like with normal read errors. Only
1230 * read into the pages we already have so they we don't
1231 * need to re-issue the read request.
1232 * We don't need to freeze the array, because being in an
1233 * active sync request, there is no normal IO, and
1234 * no overlapping syncs.
1236 sector_t sect = r1_bio->sector;
1237 int sectors = r1_bio->sectors;
1238 int idx = 0;
1240 while(sectors) {
1241 int s = sectors;
1242 int d = r1_bio->read_disk;
1243 int success = 0;
1244 mdk_rdev_t *rdev;
1246 if (s > (PAGE_SIZE>>9))
1247 s = PAGE_SIZE >> 9;
1248 do {
1249 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1250 rdev = conf->mirrors[d].rdev;
1251 if (sync_page_io(rdev->bdev,
1252 sect + rdev->data_offset,
1253 s<<9,
1254 bio->bi_io_vec[idx].bv_page,
1255 READ)) {
1256 success = 1;
1257 break;
1260 d++;
1261 if (d == conf->raid_disks)
1262 d = 0;
1263 } while (!success && d != r1_bio->read_disk);
1265 if (success) {
1266 int start = d;
1267 /* write it back and re-read */
1268 set_bit(R1BIO_Uptodate, &r1_bio->state);
1269 while (d != r1_bio->read_disk) {
1270 if (d == 0)
1271 d = conf->raid_disks;
1272 d--;
1273 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1274 continue;
1275 rdev = conf->mirrors[d].rdev;
1276 atomic_add(s, &rdev->corrected_errors);
1277 if (sync_page_io(rdev->bdev,
1278 sect + rdev->data_offset,
1279 s<<9,
1280 bio->bi_io_vec[idx].bv_page,
1281 WRITE) == 0)
1282 md_error(mddev, rdev);
1284 d = start;
1285 while (d != r1_bio->read_disk) {
1286 if (d == 0)
1287 d = conf->raid_disks;
1288 d--;
1289 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1290 continue;
1291 rdev = conf->mirrors[d].rdev;
1292 if (sync_page_io(rdev->bdev,
1293 sect + rdev->data_offset,
1294 s<<9,
1295 bio->bi_io_vec[idx].bv_page,
1296 READ) == 0)
1297 md_error(mddev, rdev);
1299 } else {
1300 char b[BDEVNAME_SIZE];
1301 /* Cannot read from anywhere, array is toast */
1302 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1303 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1304 " for block %llu\n",
1305 bdevname(bio->bi_bdev,b),
1306 (unsigned long long)r1_bio->sector);
1307 md_done_sync(mddev, r1_bio->sectors, 0);
1308 put_buf(r1_bio);
1309 return;
1311 sectors -= s;
1312 sect += s;
1313 idx ++;
1318 * schedule writes
1320 atomic_set(&r1_bio->remaining, 1);
1321 for (i = 0; i < disks ; i++) {
1322 wbio = r1_bio->bios[i];
1323 if (wbio->bi_end_io == NULL ||
1324 (wbio->bi_end_io == end_sync_read &&
1325 (i == r1_bio->read_disk ||
1326 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1327 continue;
1329 wbio->bi_rw = WRITE;
1330 wbio->bi_end_io = end_sync_write;
1331 atomic_inc(&r1_bio->remaining);
1332 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1334 generic_make_request(wbio);
1337 if (atomic_dec_and_test(&r1_bio->remaining)) {
1338 /* if we're here, all write(s) have completed, so clean up */
1339 md_done_sync(mddev, r1_bio->sectors, 1);
1340 put_buf(r1_bio);
1345 * This is a kernel thread which:
1347 * 1. Retries failed read operations on working mirrors.
1348 * 2. Updates the raid superblock when problems encounter.
1349 * 3. Performs writes following reads for array syncronising.
1352 static void raid1d(mddev_t *mddev)
1354 r1bio_t *r1_bio;
1355 struct bio *bio;
1356 unsigned long flags;
1357 conf_t *conf = mddev_to_conf(mddev);
1358 struct list_head *head = &conf->retry_list;
1359 int unplug=0;
1360 mdk_rdev_t *rdev;
1362 md_check_recovery(mddev);
1364 for (;;) {
1365 char b[BDEVNAME_SIZE];
1366 spin_lock_irqsave(&conf->device_lock, flags);
1368 if (conf->pending_bio_list.head) {
1369 bio = bio_list_get(&conf->pending_bio_list);
1370 blk_remove_plug(mddev->queue);
1371 spin_unlock_irqrestore(&conf->device_lock, flags);
1372 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1373 if (bitmap_unplug(mddev->bitmap) != 0)
1374 printk("%s: bitmap file write failed!\n", mdname(mddev));
1376 while (bio) { /* submit pending writes */
1377 struct bio *next = bio->bi_next;
1378 bio->bi_next = NULL;
1379 generic_make_request(bio);
1380 bio = next;
1382 unplug = 1;
1384 continue;
1387 if (list_empty(head))
1388 break;
1389 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1390 list_del(head->prev);
1391 conf->nr_queued--;
1392 spin_unlock_irqrestore(&conf->device_lock, flags);
1394 mddev = r1_bio->mddev;
1395 conf = mddev_to_conf(mddev);
1396 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1397 sync_request_write(mddev, r1_bio);
1398 unplug = 1;
1399 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1400 /* some requests in the r1bio were BIO_RW_BARRIER
1401 * requests which failed with -ENOTSUPP. Hohumm..
1402 * Better resubmit without the barrier.
1403 * We know which devices to resubmit for, because
1404 * all others have had their bios[] entry cleared.
1406 int i;
1407 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1408 clear_bit(R1BIO_Barrier, &r1_bio->state);
1409 for (i=0; i < conf->raid_disks; i++)
1410 if (r1_bio->bios[i]) {
1411 struct bio_vec *bvec;
1412 int j;
1414 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1415 /* copy pages from the failed bio, as
1416 * this might be a write-behind device */
1417 __bio_for_each_segment(bvec, bio, j, 0)
1418 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1419 bio_put(r1_bio->bios[i]);
1420 bio->bi_sector = r1_bio->sector +
1421 conf->mirrors[i].rdev->data_offset;
1422 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1423 bio->bi_end_io = raid1_end_write_request;
1424 bio->bi_rw = WRITE;
1425 bio->bi_private = r1_bio;
1426 r1_bio->bios[i] = bio;
1427 generic_make_request(bio);
1429 } else {
1430 int disk;
1432 /* we got a read error. Maybe the drive is bad. Maybe just
1433 * the block and we can fix it.
1434 * We freeze all other IO, and try reading the block from
1435 * other devices. When we find one, we re-write
1436 * and check it that fixes the read error.
1437 * This is all done synchronously while the array is
1438 * frozen
1440 sector_t sect = r1_bio->sector;
1441 int sectors = r1_bio->sectors;
1442 freeze_array(conf);
1443 if (mddev->ro == 0) while(sectors) {
1444 int s = sectors;
1445 int d = r1_bio->read_disk;
1446 int success = 0;
1448 if (s > (PAGE_SIZE>>9))
1449 s = PAGE_SIZE >> 9;
1451 do {
1452 rdev = conf->mirrors[d].rdev;
1453 if (rdev &&
1454 test_bit(In_sync, &rdev->flags) &&
1455 sync_page_io(rdev->bdev,
1456 sect + rdev->data_offset,
1457 s<<9,
1458 conf->tmppage, READ))
1459 success = 1;
1460 else {
1461 d++;
1462 if (d == conf->raid_disks)
1463 d = 0;
1465 } while (!success && d != r1_bio->read_disk);
1467 if (success) {
1468 /* write it back and re-read */
1469 int start = d;
1470 while (d != r1_bio->read_disk) {
1471 if (d==0)
1472 d = conf->raid_disks;
1473 d--;
1474 rdev = conf->mirrors[d].rdev;
1475 if (rdev &&
1476 test_bit(In_sync, &rdev->flags)) {
1477 if (sync_page_io(rdev->bdev,
1478 sect + rdev->data_offset,
1479 s<<9, conf->tmppage, WRITE) == 0)
1480 /* Well, this device is dead */
1481 md_error(mddev, rdev);
1484 d = start;
1485 while (d != r1_bio->read_disk) {
1486 if (d==0)
1487 d = conf->raid_disks;
1488 d--;
1489 rdev = conf->mirrors[d].rdev;
1490 if (rdev &&
1491 test_bit(In_sync, &rdev->flags)) {
1492 if (sync_page_io(rdev->bdev,
1493 sect + rdev->data_offset,
1494 s<<9, conf->tmppage, READ) == 0)
1495 /* Well, this device is dead */
1496 md_error(mddev, rdev);
1497 else
1498 atomic_add(s, &rdev->corrected_errors);
1502 } else {
1503 /* Cannot read from anywhere -- bye bye array */
1504 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1505 break;
1507 sectors -= s;
1508 sect += s;
1511 unfreeze_array(conf);
1513 bio = r1_bio->bios[r1_bio->read_disk];
1514 if ((disk=read_balance(conf, r1_bio)) == -1) {
1515 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1516 " read error for block %llu\n",
1517 bdevname(bio->bi_bdev,b),
1518 (unsigned long long)r1_bio->sector);
1519 raid_end_bio_io(r1_bio);
1520 } else {
1521 r1_bio->bios[r1_bio->read_disk] =
1522 mddev->ro ? IO_BLOCKED : NULL;
1523 r1_bio->read_disk = disk;
1524 bio_put(bio);
1525 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1526 r1_bio->bios[r1_bio->read_disk] = bio;
1527 rdev = conf->mirrors[disk].rdev;
1528 if (printk_ratelimit())
1529 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1530 " another mirror\n",
1531 bdevname(rdev->bdev,b),
1532 (unsigned long long)r1_bio->sector);
1533 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1534 bio->bi_bdev = rdev->bdev;
1535 bio->bi_end_io = raid1_end_read_request;
1536 bio->bi_rw = READ;
1537 bio->bi_private = r1_bio;
1538 unplug = 1;
1539 generic_make_request(bio);
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 if (unplug)
1545 unplug_slaves(mddev);
1549 static int init_resync(conf_t *conf)
1551 int buffs;
1553 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1554 if (conf->r1buf_pool)
1555 BUG();
1556 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1557 conf->poolinfo);
1558 if (!conf->r1buf_pool)
1559 return -ENOMEM;
1560 conf->next_resync = 0;
1561 return 0;
1565 * perform a "sync" on one "block"
1567 * We need to make sure that no normal I/O request - particularly write
1568 * requests - conflict with active sync requests.
1570 * This is achieved by tracking pending requests and a 'barrier' concept
1571 * that can be installed to exclude normal IO requests.
1574 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1576 conf_t *conf = mddev_to_conf(mddev);
1577 r1bio_t *r1_bio;
1578 struct bio *bio;
1579 sector_t max_sector, nr_sectors;
1580 int disk = -1;
1581 int i;
1582 int wonly = -1;
1583 int write_targets = 0, read_targets = 0;
1584 int sync_blocks;
1585 int still_degraded = 0;
1587 if (!conf->r1buf_pool)
1590 printk("sync start - bitmap %p\n", mddev->bitmap);
1592 if (init_resync(conf))
1593 return 0;
1596 max_sector = mddev->size << 1;
1597 if (sector_nr >= max_sector) {
1598 /* If we aborted, we need to abort the
1599 * sync on the 'current' bitmap chunk (there will
1600 * only be one in raid1 resync.
1601 * We can find the current addess in mddev->curr_resync
1603 if (mddev->curr_resync < max_sector) /* aborted */
1604 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1605 &sync_blocks, 1);
1606 else /* completed sync */
1607 conf->fullsync = 0;
1609 bitmap_close_sync(mddev->bitmap);
1610 close_sync(conf);
1611 return 0;
1614 /* before building a request, check if we can skip these blocks..
1615 * This call the bitmap_start_sync doesn't actually record anything
1617 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1618 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1619 /* We can skip this block, and probably several more */
1620 *skipped = 1;
1621 return sync_blocks;
1624 * If there is non-resync activity waiting for a turn,
1625 * and resync is going fast enough,
1626 * then let it though before starting on this new sync request.
1628 if (!go_faster && conf->nr_waiting)
1629 msleep_interruptible(1000);
1631 raise_barrier(conf);
1633 conf->next_resync = sector_nr;
1635 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1636 rcu_read_lock();
1638 * If we get a correctably read error during resync or recovery,
1639 * we might want to read from a different device. So we
1640 * flag all drives that could conceivably be read from for READ,
1641 * and any others (which will be non-In_sync devices) for WRITE.
1642 * If a read fails, we try reading from something else for which READ
1643 * is OK.
1646 r1_bio->mddev = mddev;
1647 r1_bio->sector = sector_nr;
1648 r1_bio->state = 0;
1649 set_bit(R1BIO_IsSync, &r1_bio->state);
1651 for (i=0; i < conf->raid_disks; i++) {
1652 mdk_rdev_t *rdev;
1653 bio = r1_bio->bios[i];
1655 /* take from bio_init */
1656 bio->bi_next = NULL;
1657 bio->bi_flags |= 1 << BIO_UPTODATE;
1658 bio->bi_rw = 0;
1659 bio->bi_vcnt = 0;
1660 bio->bi_idx = 0;
1661 bio->bi_phys_segments = 0;
1662 bio->bi_hw_segments = 0;
1663 bio->bi_size = 0;
1664 bio->bi_end_io = NULL;
1665 bio->bi_private = NULL;
1667 rdev = rcu_dereference(conf->mirrors[i].rdev);
1668 if (rdev == NULL ||
1669 test_bit(Faulty, &rdev->flags)) {
1670 still_degraded = 1;
1671 continue;
1672 } else if (!test_bit(In_sync, &rdev->flags)) {
1673 bio->bi_rw = WRITE;
1674 bio->bi_end_io = end_sync_write;
1675 write_targets ++;
1676 } else {
1677 /* may need to read from here */
1678 bio->bi_rw = READ;
1679 bio->bi_end_io = end_sync_read;
1680 if (test_bit(WriteMostly, &rdev->flags)) {
1681 if (wonly < 0)
1682 wonly = i;
1683 } else {
1684 if (disk < 0)
1685 disk = i;
1687 read_targets++;
1689 atomic_inc(&rdev->nr_pending);
1690 bio->bi_sector = sector_nr + rdev->data_offset;
1691 bio->bi_bdev = rdev->bdev;
1692 bio->bi_private = r1_bio;
1694 rcu_read_unlock();
1695 if (disk < 0)
1696 disk = wonly;
1697 r1_bio->read_disk = disk;
1699 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1700 /* extra read targets are also write targets */
1701 write_targets += read_targets-1;
1703 if (write_targets == 0 || read_targets == 0) {
1704 /* There is nowhere to write, so all non-sync
1705 * drives must be failed - so we are finished
1707 sector_t rv = max_sector - sector_nr;
1708 *skipped = 1;
1709 put_buf(r1_bio);
1710 return rv;
1713 nr_sectors = 0;
1714 sync_blocks = 0;
1715 do {
1716 struct page *page;
1717 int len = PAGE_SIZE;
1718 if (sector_nr + (len>>9) > max_sector)
1719 len = (max_sector - sector_nr) << 9;
1720 if (len == 0)
1721 break;
1722 if (sync_blocks == 0) {
1723 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1724 &sync_blocks, still_degraded) &&
1725 !conf->fullsync &&
1726 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1727 break;
1728 if (sync_blocks < (PAGE_SIZE>>9))
1729 BUG();
1730 if (len > (sync_blocks<<9))
1731 len = sync_blocks<<9;
1734 for (i=0 ; i < conf->raid_disks; i++) {
1735 bio = r1_bio->bios[i];
1736 if (bio->bi_end_io) {
1737 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1738 if (bio_add_page(bio, page, len, 0) == 0) {
1739 /* stop here */
1740 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1741 while (i > 0) {
1742 i--;
1743 bio = r1_bio->bios[i];
1744 if (bio->bi_end_io==NULL)
1745 continue;
1746 /* remove last page from this bio */
1747 bio->bi_vcnt--;
1748 bio->bi_size -= len;
1749 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1751 goto bio_full;
1755 nr_sectors += len>>9;
1756 sector_nr += len>>9;
1757 sync_blocks -= (len>>9);
1758 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1759 bio_full:
1760 r1_bio->sectors = nr_sectors;
1762 /* For a user-requested sync, we read all readable devices and do a
1763 * compare
1765 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1766 atomic_set(&r1_bio->remaining, read_targets);
1767 for (i=0; i<conf->raid_disks; i++) {
1768 bio = r1_bio->bios[i];
1769 if (bio->bi_end_io == end_sync_read) {
1770 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1771 generic_make_request(bio);
1774 } else {
1775 atomic_set(&r1_bio->remaining, 1);
1776 bio = r1_bio->bios[r1_bio->read_disk];
1777 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1778 nr_sectors);
1779 generic_make_request(bio);
1783 return nr_sectors;
1786 static int run(mddev_t *mddev)
1788 conf_t *conf;
1789 int i, j, disk_idx;
1790 mirror_info_t *disk;
1791 mdk_rdev_t *rdev;
1792 struct list_head *tmp;
1794 if (mddev->level != 1) {
1795 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1796 mdname(mddev), mddev->level);
1797 goto out;
1800 * copy the already verified devices into our private RAID1
1801 * bookkeeping area. [whatever we allocate in run(),
1802 * should be freed in stop()]
1804 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1805 mddev->private = conf;
1806 if (!conf)
1807 goto out_no_mem;
1809 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1810 GFP_KERNEL);
1811 if (!conf->mirrors)
1812 goto out_no_mem;
1814 conf->tmppage = alloc_page(GFP_KERNEL);
1815 if (!conf->tmppage)
1816 goto out_no_mem;
1818 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1819 if (!conf->poolinfo)
1820 goto out_no_mem;
1821 conf->poolinfo->mddev = mddev;
1822 conf->poolinfo->raid_disks = mddev->raid_disks;
1823 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1824 r1bio_pool_free,
1825 conf->poolinfo);
1826 if (!conf->r1bio_pool)
1827 goto out_no_mem;
1829 ITERATE_RDEV(mddev, rdev, tmp) {
1830 disk_idx = rdev->raid_disk;
1831 if (disk_idx >= mddev->raid_disks
1832 || disk_idx < 0)
1833 continue;
1834 disk = conf->mirrors + disk_idx;
1836 disk->rdev = rdev;
1838 blk_queue_stack_limits(mddev->queue,
1839 rdev->bdev->bd_disk->queue);
1840 /* as we don't honour merge_bvec_fn, we must never risk
1841 * violating it, so limit ->max_sector to one PAGE, as
1842 * a one page request is never in violation.
1844 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1845 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1846 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1848 disk->head_position = 0;
1849 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1850 conf->working_disks++;
1852 conf->raid_disks = mddev->raid_disks;
1853 conf->mddev = mddev;
1854 spin_lock_init(&conf->device_lock);
1855 INIT_LIST_HEAD(&conf->retry_list);
1856 if (conf->working_disks == 1)
1857 mddev->recovery_cp = MaxSector;
1859 spin_lock_init(&conf->resync_lock);
1860 init_waitqueue_head(&conf->wait_barrier);
1862 bio_list_init(&conf->pending_bio_list);
1863 bio_list_init(&conf->flushing_bio_list);
1865 if (!conf->working_disks) {
1866 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1867 mdname(mddev));
1868 goto out_free_conf;
1871 mddev->degraded = 0;
1872 for (i = 0; i < conf->raid_disks; i++) {
1874 disk = conf->mirrors + i;
1876 if (!disk->rdev) {
1877 disk->head_position = 0;
1878 mddev->degraded++;
1883 * find the first working one and use it as a starting point
1884 * to read balancing.
1886 for (j = 0; j < conf->raid_disks &&
1887 (!conf->mirrors[j].rdev ||
1888 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1889 /* nothing */;
1890 conf->last_used = j;
1893 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1894 if (!mddev->thread) {
1895 printk(KERN_ERR
1896 "raid1: couldn't allocate thread for %s\n",
1897 mdname(mddev));
1898 goto out_free_conf;
1901 printk(KERN_INFO
1902 "raid1: raid set %s active with %d out of %d mirrors\n",
1903 mdname(mddev), mddev->raid_disks - mddev->degraded,
1904 mddev->raid_disks);
1906 * Ok, everything is just fine now
1908 mddev->array_size = mddev->size;
1910 mddev->queue->unplug_fn = raid1_unplug;
1911 mddev->queue->issue_flush_fn = raid1_issue_flush;
1913 return 0;
1915 out_no_mem:
1916 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1917 mdname(mddev));
1919 out_free_conf:
1920 if (conf) {
1921 if (conf->r1bio_pool)
1922 mempool_destroy(conf->r1bio_pool);
1923 kfree(conf->mirrors);
1924 safe_put_page(conf->tmppage);
1925 kfree(conf->poolinfo);
1926 kfree(conf);
1927 mddev->private = NULL;
1929 out:
1930 return -EIO;
1933 static int stop(mddev_t *mddev)
1935 conf_t *conf = mddev_to_conf(mddev);
1936 struct bitmap *bitmap = mddev->bitmap;
1937 int behind_wait = 0;
1939 /* wait for behind writes to complete */
1940 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1941 behind_wait++;
1942 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1943 set_current_state(TASK_UNINTERRUPTIBLE);
1944 schedule_timeout(HZ); /* wait a second */
1945 /* need to kick something here to make sure I/O goes? */
1948 md_unregister_thread(mddev->thread);
1949 mddev->thread = NULL;
1950 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1951 if (conf->r1bio_pool)
1952 mempool_destroy(conf->r1bio_pool);
1953 kfree(conf->mirrors);
1954 kfree(conf->poolinfo);
1955 kfree(conf);
1956 mddev->private = NULL;
1957 return 0;
1960 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1962 /* no resync is happening, and there is enough space
1963 * on all devices, so we can resize.
1964 * We need to make sure resync covers any new space.
1965 * If the array is shrinking we should possibly wait until
1966 * any io in the removed space completes, but it hardly seems
1967 * worth it.
1969 mddev->array_size = sectors>>1;
1970 set_capacity(mddev->gendisk, mddev->array_size << 1);
1971 mddev->changed = 1;
1972 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1973 mddev->recovery_cp = mddev->size << 1;
1974 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1976 mddev->size = mddev->array_size;
1977 mddev->resync_max_sectors = sectors;
1978 return 0;
1981 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1983 /* We need to:
1984 * 1/ resize the r1bio_pool
1985 * 2/ resize conf->mirrors
1987 * We allocate a new r1bio_pool if we can.
1988 * Then raise a device barrier and wait until all IO stops.
1989 * Then resize conf->mirrors and swap in the new r1bio pool.
1991 * At the same time, we "pack" the devices so that all the missing
1992 * devices have the higher raid_disk numbers.
1994 mempool_t *newpool, *oldpool;
1995 struct pool_info *newpoolinfo;
1996 mirror_info_t *newmirrors;
1997 conf_t *conf = mddev_to_conf(mddev);
1998 int cnt;
2000 int d, d2;
2002 if (raid_disks < conf->raid_disks) {
2003 cnt=0;
2004 for (d= 0; d < conf->raid_disks; d++)
2005 if (conf->mirrors[d].rdev)
2006 cnt++;
2007 if (cnt > raid_disks)
2008 return -EBUSY;
2011 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2012 if (!newpoolinfo)
2013 return -ENOMEM;
2014 newpoolinfo->mddev = mddev;
2015 newpoolinfo->raid_disks = raid_disks;
2017 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2018 r1bio_pool_free, newpoolinfo);
2019 if (!newpool) {
2020 kfree(newpoolinfo);
2021 return -ENOMEM;
2023 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2024 if (!newmirrors) {
2025 kfree(newpoolinfo);
2026 mempool_destroy(newpool);
2027 return -ENOMEM;
2030 raise_barrier(conf);
2032 /* ok, everything is stopped */
2033 oldpool = conf->r1bio_pool;
2034 conf->r1bio_pool = newpool;
2036 for (d=d2=0; d < conf->raid_disks; d++)
2037 if (conf->mirrors[d].rdev) {
2038 conf->mirrors[d].rdev->raid_disk = d2;
2039 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2041 kfree(conf->mirrors);
2042 conf->mirrors = newmirrors;
2043 kfree(conf->poolinfo);
2044 conf->poolinfo = newpoolinfo;
2046 mddev->degraded += (raid_disks - conf->raid_disks);
2047 conf->raid_disks = mddev->raid_disks = raid_disks;
2049 conf->last_used = 0; /* just make sure it is in-range */
2050 lower_barrier(conf);
2052 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2053 md_wakeup_thread(mddev->thread);
2055 mempool_destroy(oldpool);
2056 return 0;
2059 static void raid1_quiesce(mddev_t *mddev, int state)
2061 conf_t *conf = mddev_to_conf(mddev);
2063 switch(state) {
2064 case 1:
2065 raise_barrier(conf);
2066 break;
2067 case 0:
2068 lower_barrier(conf);
2069 break;
2074 static struct mdk_personality raid1_personality =
2076 .name = "raid1",
2077 .level = 1,
2078 .owner = THIS_MODULE,
2079 .make_request = make_request,
2080 .run = run,
2081 .stop = stop,
2082 .status = status,
2083 .error_handler = error,
2084 .hot_add_disk = raid1_add_disk,
2085 .hot_remove_disk= raid1_remove_disk,
2086 .spare_active = raid1_spare_active,
2087 .sync_request = sync_request,
2088 .resize = raid1_resize,
2089 .reshape = raid1_reshape,
2090 .quiesce = raid1_quiesce,
2093 static int __init raid_init(void)
2095 return register_md_personality(&raid1_personality);
2098 static void raid_exit(void)
2100 unregister_md_personality(&raid1_personality);
2103 module_init(raid_init);
2104 module_exit(raid_exit);
2105 MODULE_LICENSE("GPL");
2106 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2107 MODULE_ALIAS("md-raid1");
2108 MODULE_ALIAS("md-level-1");