2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
89 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
90 return &conf
->stripe_hashtbl
[hash
];
93 static inline int stripe_hash_locks_hash(sector_t sect
)
95 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
98 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
100 spin_lock_irq(conf
->hash_locks
+ hash
);
101 spin_lock(&conf
->device_lock
);
104 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
106 spin_unlock(&conf
->device_lock
);
107 spin_unlock_irq(conf
->hash_locks
+ hash
);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_lock(conf
->hash_locks
);
115 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
116 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
117 spin_lock(&conf
->device_lock
);
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
123 spin_unlock(&conf
->device_lock
);
124 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
125 spin_unlock(conf
->hash_locks
+ i
- 1);
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
138 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
140 int sectors
= bio_sectors(bio
);
141 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
151 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
153 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
154 return (atomic_read(segments
) >> 16) & 0xffff;
157 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
159 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
160 return atomic_sub_return(1, segments
) & 0xffff;
163 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
165 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
166 atomic_inc(segments
);
169 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
172 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
176 old
= atomic_read(segments
);
177 new = (old
& 0xffff) | (cnt
<< 16);
178 } while (atomic_cmpxchg(segments
, old
, new) != old
);
181 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
183 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
184 atomic_set(segments
, cnt
);
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head
*sh
)
191 /* ddf always start from first device */
193 /* md starts just after Q block */
194 if (sh
->qd_idx
== sh
->disks
- 1)
197 return sh
->qd_idx
+ 1;
199 static inline int raid6_next_disk(int disk
, int raid_disks
)
202 return (disk
< raid_disks
) ? disk
: 0;
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
210 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
211 int *count
, int syndrome_disks
)
217 if (idx
== sh
->pd_idx
)
218 return syndrome_disks
;
219 if (idx
== sh
->qd_idx
)
220 return syndrome_disks
+ 1;
226 static void return_io(struct bio_list
*return_bi
)
229 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
230 bi
->bi_iter
.bi_size
= 0;
231 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
237 static void print_raid5_conf (struct r5conf
*conf
);
239 static int stripe_operations_active(struct stripe_head
*sh
)
241 return sh
->check_state
|| sh
->reconstruct_state
||
242 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
243 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
246 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
248 struct r5conf
*conf
= sh
->raid_conf
;
249 struct r5worker_group
*group
;
251 int i
, cpu
= sh
->cpu
;
253 if (!cpu_online(cpu
)) {
254 cpu
= cpumask_any(cpu_online_mask
);
258 if (list_empty(&sh
->lru
)) {
259 struct r5worker_group
*group
;
260 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
261 list_add_tail(&sh
->lru
, &group
->handle_list
);
262 group
->stripes_cnt
++;
266 if (conf
->worker_cnt_per_group
== 0) {
267 md_wakeup_thread(conf
->mddev
->thread
);
271 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
273 group
->workers
[0].working
= true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
277 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
278 /* wakeup more workers */
279 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
280 if (group
->workers
[i
].working
== false) {
281 group
->workers
[i
].working
= true;
282 queue_work_on(sh
->cpu
, raid5_wq
,
283 &group
->workers
[i
].work
);
289 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
290 struct list_head
*temp_inactive_list
)
292 BUG_ON(!list_empty(&sh
->lru
));
293 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
294 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
295 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
297 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
298 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
299 sh
->bm_seq
- conf
->seq_write
> 0)
300 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
302 clear_bit(STRIPE_DELAYED
, &sh
->state
);
303 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
304 if (conf
->worker_cnt_per_group
== 0) {
305 list_add_tail(&sh
->lru
, &conf
->handle_list
);
307 raid5_wakeup_stripe_thread(sh
);
311 md_wakeup_thread(conf
->mddev
->thread
);
313 BUG_ON(stripe_operations_active(sh
));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
315 if (atomic_dec_return(&conf
->preread_active_stripes
)
317 md_wakeup_thread(conf
->mddev
->thread
);
318 atomic_dec(&conf
->active_stripes
);
319 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
320 list_add_tail(&sh
->lru
, temp_inactive_list
);
324 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
325 struct list_head
*temp_inactive_list
)
327 if (atomic_dec_and_test(&sh
->count
))
328 do_release_stripe(conf
, sh
, temp_inactive_list
);
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
338 static void release_inactive_stripe_list(struct r5conf
*conf
,
339 struct list_head
*temp_inactive_list
,
343 bool do_wakeup
= false;
346 if (hash
== NR_STRIPE_HASH_LOCKS
) {
347 size
= NR_STRIPE_HASH_LOCKS
;
348 hash
= NR_STRIPE_HASH_LOCKS
- 1;
352 struct list_head
*list
= &temp_inactive_list
[size
- 1];
355 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 * remove stripes from the list
358 if (!list_empty_careful(list
)) {
359 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
360 if (list_empty(conf
->inactive_list
+ hash
) &&
362 atomic_dec(&conf
->empty_inactive_list_nr
);
363 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
365 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
372 wake_up(&conf
->wait_for_stripe
);
373 if (atomic_read(&conf
->active_stripes
) == 0)
374 wake_up(&conf
->wait_for_quiescent
);
375 if (conf
->retry_read_aligned
)
376 md_wakeup_thread(conf
->mddev
->thread
);
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf
*conf
,
382 struct list_head
*temp_inactive_list
)
384 struct stripe_head
*sh
;
386 struct llist_node
*head
;
388 head
= llist_del_all(&conf
->released_stripes
);
389 head
= llist_reverse_order(head
);
393 sh
= llist_entry(head
, struct stripe_head
, release_list
);
394 head
= llist_next(head
);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
403 hash
= sh
->hash_lock_index
;
404 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
411 void raid5_release_stripe(struct stripe_head
*sh
)
413 struct r5conf
*conf
= sh
->raid_conf
;
415 struct list_head list
;
419 /* Avoid release_list until the last reference.
421 if (atomic_add_unless(&sh
->count
, -1, 1))
424 if (unlikely(!conf
->mddev
->thread
) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
427 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
429 md_wakeup_thread(conf
->mddev
->thread
);
432 local_irq_save(flags
);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
435 INIT_LIST_HEAD(&list
);
436 hash
= sh
->hash_lock_index
;
437 do_release_stripe(conf
, sh
, &list
);
438 spin_unlock(&conf
->device_lock
);
439 release_inactive_stripe_list(conf
, &list
, hash
);
441 local_irq_restore(flags
);
444 static inline void remove_hash(struct stripe_head
*sh
)
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh
->sector
);
449 hlist_del_init(&sh
->hash
);
452 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
454 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh
->sector
);
459 hlist_add_head(&sh
->hash
, hp
);
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
465 struct stripe_head
*sh
= NULL
;
466 struct list_head
*first
;
468 if (list_empty(conf
->inactive_list
+ hash
))
470 first
= (conf
->inactive_list
+ hash
)->next
;
471 sh
= list_entry(first
, struct stripe_head
, lru
);
472 list_del_init(first
);
474 atomic_inc(&conf
->active_stripes
);
475 BUG_ON(hash
!= sh
->hash_lock_index
);
476 if (list_empty(conf
->inactive_list
+ hash
))
477 atomic_inc(&conf
->empty_inactive_list_nr
);
482 static void shrink_buffers(struct stripe_head
*sh
)
486 int num
= sh
->raid_conf
->pool_size
;
488 for (i
= 0; i
< num
; i
++) {
489 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
493 sh
->dev
[i
].page
= NULL
;
498 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
501 int num
= sh
->raid_conf
->pool_size
;
503 for (i
= 0; i
< num
; i
++) {
506 if (!(page
= alloc_page(gfp
))) {
509 sh
->dev
[i
].page
= page
;
510 sh
->dev
[i
].orig_page
= page
;
515 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
516 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
517 struct stripe_head
*sh
);
519 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
521 struct r5conf
*conf
= sh
->raid_conf
;
524 BUG_ON(atomic_read(&sh
->count
) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
526 BUG_ON(stripe_operations_active(sh
));
527 BUG_ON(sh
->batch_head
);
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector
);
532 seq
= read_seqcount_begin(&conf
->gen_lock
);
533 sh
->generation
= conf
->generation
- previous
;
534 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
536 stripe_set_idx(sector
, conf
, previous
, sh
);
539 for (i
= sh
->disks
; i
--; ) {
540 struct r5dev
*dev
= &sh
->dev
[i
];
542 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
543 test_bit(R5_LOCKED
, &dev
->flags
)) {
544 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh
->sector
, i
, dev
->toread
,
546 dev
->read
, dev
->towrite
, dev
->written
,
547 test_bit(R5_LOCKED
, &dev
->flags
));
551 raid5_build_block(sh
, i
, previous
);
553 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
555 sh
->overwrite_disks
= 0;
556 insert_hash(conf
, sh
);
557 sh
->cpu
= smp_processor_id();
558 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
561 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
564 struct stripe_head
*sh
;
566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
567 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
568 if (sh
->sector
== sector
&& sh
->generation
== generation
)
570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
575 * Need to check if array has failed when deciding whether to:
577 * - remove non-faulty devices
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
587 static int calc_degraded(struct r5conf
*conf
)
589 int degraded
, degraded2
;
594 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
595 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
596 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
597 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
598 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
600 else if (test_bit(In_sync
, &rdev
->flags
))
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
612 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
616 if (conf
->raid_disks
== conf
->previous_raid_disks
)
620 for (i
= 0; i
< conf
->raid_disks
; i
++) {
621 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
622 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
623 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
624 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
626 else if (test_bit(In_sync
, &rdev
->flags
))
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
634 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
638 if (degraded2
> degraded
)
643 static int has_failed(struct r5conf
*conf
)
647 if (conf
->mddev
->reshape_position
== MaxSector
)
648 return conf
->mddev
->degraded
> conf
->max_degraded
;
650 degraded
= calc_degraded(conf
);
651 if (degraded
> conf
->max_degraded
)
657 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
658 int previous
, int noblock
, int noquiesce
)
660 struct stripe_head
*sh
;
661 int hash
= stripe_hash_locks_hash(sector
);
662 int inc_empty_inactive_list_flag
;
664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
666 spin_lock_irq(conf
->hash_locks
+ hash
);
669 wait_event_lock_irq(conf
->wait_for_quiescent
,
670 conf
->quiesce
== 0 || noquiesce
,
671 *(conf
->hash_locks
+ hash
));
672 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
674 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
675 sh
= get_free_stripe(conf
, hash
);
676 if (!sh
&& !test_bit(R5_DID_ALLOC
,
678 set_bit(R5_ALLOC_MORE
,
681 if (noblock
&& sh
== NULL
)
684 set_bit(R5_INACTIVE_BLOCKED
,
687 conf
->wait_for_stripe
,
688 !list_empty(conf
->inactive_list
+ hash
) &&
689 (atomic_read(&conf
->active_stripes
)
690 < (conf
->max_nr_stripes
* 3 / 4)
691 || !test_bit(R5_INACTIVE_BLOCKED
,
692 &conf
->cache_state
)),
693 *(conf
->hash_locks
+ hash
));
694 clear_bit(R5_INACTIVE_BLOCKED
,
697 init_stripe(sh
, sector
, previous
);
698 atomic_inc(&sh
->count
);
700 } else if (!atomic_inc_not_zero(&sh
->count
)) {
701 spin_lock(&conf
->device_lock
);
702 if (!atomic_read(&sh
->count
)) {
703 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
704 atomic_inc(&conf
->active_stripes
);
705 BUG_ON(list_empty(&sh
->lru
) &&
706 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
707 inc_empty_inactive_list_flag
= 0;
708 if (!list_empty(conf
->inactive_list
+ hash
))
709 inc_empty_inactive_list_flag
= 1;
710 list_del_init(&sh
->lru
);
711 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
712 atomic_inc(&conf
->empty_inactive_list_nr
);
714 sh
->group
->stripes_cnt
--;
718 atomic_inc(&sh
->count
);
719 spin_unlock(&conf
->device_lock
);
721 } while (sh
== NULL
);
723 spin_unlock_irq(conf
->hash_locks
+ hash
);
727 static bool is_full_stripe_write(struct stripe_head
*sh
)
729 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
730 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
733 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
737 spin_lock(&sh2
->stripe_lock
);
738 spin_lock_nested(&sh1
->stripe_lock
, 1);
740 spin_lock(&sh1
->stripe_lock
);
741 spin_lock_nested(&sh2
->stripe_lock
, 1);
745 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
747 spin_unlock(&sh1
->stripe_lock
);
748 spin_unlock(&sh2
->stripe_lock
);
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head
*sh
)
755 struct r5conf
*conf
= sh
->raid_conf
;
759 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
760 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
761 is_full_stripe_write(sh
);
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
767 struct stripe_head
*head
;
768 sector_t head_sector
, tmp_sec
;
771 int inc_empty_inactive_list_flag
;
773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec
= sh
->sector
;
775 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
777 head_sector
= sh
->sector
- STRIPE_SECTORS
;
779 hash
= stripe_hash_locks_hash(head_sector
);
780 spin_lock_irq(conf
->hash_locks
+ hash
);
781 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
782 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
783 spin_lock(&conf
->device_lock
);
784 if (!atomic_read(&head
->count
)) {
785 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
786 atomic_inc(&conf
->active_stripes
);
787 BUG_ON(list_empty(&head
->lru
) &&
788 !test_bit(STRIPE_EXPANDING
, &head
->state
));
789 inc_empty_inactive_list_flag
= 0;
790 if (!list_empty(conf
->inactive_list
+ hash
))
791 inc_empty_inactive_list_flag
= 1;
792 list_del_init(&head
->lru
);
793 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
794 atomic_inc(&conf
->empty_inactive_list_nr
);
796 head
->group
->stripes_cnt
--;
800 atomic_inc(&head
->count
);
801 spin_unlock(&conf
->device_lock
);
803 spin_unlock_irq(conf
->hash_locks
+ hash
);
807 if (!stripe_can_batch(head
))
810 lock_two_stripes(head
, sh
);
811 /* clear_batch_ready clear the flag */
812 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
819 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
821 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
822 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
825 if (head
->batch_head
) {
826 spin_lock(&head
->batch_head
->batch_lock
);
827 /* This batch list is already running */
828 if (!stripe_can_batch(head
)) {
829 spin_unlock(&head
->batch_head
->batch_lock
);
834 * at this point, head's BATCH_READY could be cleared, but we
835 * can still add the stripe to batch list
837 list_add(&sh
->batch_list
, &head
->batch_list
);
838 spin_unlock(&head
->batch_head
->batch_lock
);
840 sh
->batch_head
= head
->batch_head
;
842 head
->batch_head
= head
;
843 sh
->batch_head
= head
->batch_head
;
844 spin_lock(&head
->batch_lock
);
845 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
846 spin_unlock(&head
->batch_lock
);
849 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
850 if (atomic_dec_return(&conf
->preread_active_stripes
)
852 md_wakeup_thread(conf
->mddev
->thread
);
854 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
855 int seq
= sh
->bm_seq
;
856 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
857 sh
->batch_head
->bm_seq
> seq
)
858 seq
= sh
->batch_head
->bm_seq
;
859 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
860 sh
->batch_head
->bm_seq
= seq
;
863 atomic_inc(&sh
->count
);
865 unlock_two_stripes(head
, sh
);
867 raid5_release_stripe(head
);
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871 * in this stripe_head.
873 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
875 sector_t progress
= conf
->reshape_progress
;
876 /* Need a memory barrier to make sure we see the value
877 * of conf->generation, or ->data_offset that was set before
878 * reshape_progress was updated.
881 if (progress
== MaxSector
)
883 if (sh
->generation
== conf
->generation
- 1)
885 /* We are in a reshape, and this is a new-generation stripe,
886 * so use new_data_offset.
892 raid5_end_read_request(struct bio
*bi
);
894 raid5_end_write_request(struct bio
*bi
);
896 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
898 struct r5conf
*conf
= sh
->raid_conf
;
899 int i
, disks
= sh
->disks
;
900 struct stripe_head
*head_sh
= sh
;
904 if (r5l_write_stripe(conf
->log
, sh
) == 0)
906 for (i
= disks
; i
--; ) {
907 int op
, op_flags
= 0;
908 int replace_only
= 0;
909 struct bio
*bi
, *rbi
;
910 struct md_rdev
*rdev
, *rrdev
= NULL
;
913 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
915 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
916 op_flags
= WRITE_FUA
;
917 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
919 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
921 else if (test_and_clear_bit(R5_WantReplace
,
922 &sh
->dev
[i
].flags
)) {
927 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
928 op_flags
|= REQ_SYNC
;
931 bi
= &sh
->dev
[i
].req
;
932 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
935 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
936 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
942 if (op_is_write(op
)) {
946 /* We raced and saw duplicates */
949 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
954 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
957 atomic_inc(&rdev
->nr_pending
);
958 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
961 atomic_inc(&rrdev
->nr_pending
);
964 /* We have already checked bad blocks for reads. Now
965 * need to check for writes. We never accept write errors
966 * on the replacement, so we don't to check rrdev.
968 while (op_is_write(op
) && rdev
&&
969 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
972 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
973 &first_bad
, &bad_sectors
);
978 set_bit(BlockedBadBlocks
, &rdev
->flags
);
979 if (!conf
->mddev
->external
&&
980 conf
->mddev
->flags
) {
981 /* It is very unlikely, but we might
982 * still need to write out the
983 * bad block log - better give it
985 md_check_recovery(conf
->mddev
);
988 * Because md_wait_for_blocked_rdev
989 * will dec nr_pending, we must
990 * increment it first.
992 atomic_inc(&rdev
->nr_pending
);
993 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
995 /* Acknowledged bad block - skip the write */
996 rdev_dec_pending(rdev
, conf
->mddev
);
1002 if (s
->syncing
|| s
->expanding
|| s
->expanded
1004 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1006 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1008 bi
->bi_bdev
= rdev
->bdev
;
1009 bio_set_op_attrs(bi
, op
, op_flags
);
1010 bi
->bi_end_io
= op_is_write(op
)
1011 ? raid5_end_write_request
1012 : raid5_end_read_request
;
1013 bi
->bi_private
= sh
;
1015 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016 __func__
, (unsigned long long)sh
->sector
,
1018 atomic_inc(&sh
->count
);
1020 atomic_inc(&head_sh
->count
);
1021 if (use_new_offset(conf
, sh
))
1022 bi
->bi_iter
.bi_sector
= (sh
->sector
1023 + rdev
->new_data_offset
);
1025 bi
->bi_iter
.bi_sector
= (sh
->sector
1026 + rdev
->data_offset
);
1027 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1028 bi
->bi_opf
|= REQ_NOMERGE
;
1030 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1031 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1032 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1034 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1035 bi
->bi_io_vec
[0].bv_offset
= 0;
1036 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1038 * If this is discard request, set bi_vcnt 0. We don't
1039 * want to confuse SCSI because SCSI will replace payload
1041 if (op
== REQ_OP_DISCARD
)
1044 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1046 if (conf
->mddev
->gendisk
)
1047 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1048 bi
, disk_devt(conf
->mddev
->gendisk
),
1050 generic_make_request(bi
);
1053 if (s
->syncing
|| s
->expanding
|| s
->expanded
1055 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1057 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1059 rbi
->bi_bdev
= rrdev
->bdev
;
1060 bio_set_op_attrs(rbi
, op
, op_flags
);
1061 BUG_ON(!op_is_write(op
));
1062 rbi
->bi_end_io
= raid5_end_write_request
;
1063 rbi
->bi_private
= sh
;
1065 pr_debug("%s: for %llu schedule op %d on "
1066 "replacement disc %d\n",
1067 __func__
, (unsigned long long)sh
->sector
,
1069 atomic_inc(&sh
->count
);
1071 atomic_inc(&head_sh
->count
);
1072 if (use_new_offset(conf
, sh
))
1073 rbi
->bi_iter
.bi_sector
= (sh
->sector
1074 + rrdev
->new_data_offset
);
1076 rbi
->bi_iter
.bi_sector
= (sh
->sector
1077 + rrdev
->data_offset
);
1078 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1079 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1080 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1082 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1083 rbi
->bi_io_vec
[0].bv_offset
= 0;
1084 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1086 * If this is discard request, set bi_vcnt 0. We don't
1087 * want to confuse SCSI because SCSI will replace payload
1089 if (op
== REQ_OP_DISCARD
)
1091 if (conf
->mddev
->gendisk
)
1092 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1093 rbi
, disk_devt(conf
->mddev
->gendisk
),
1095 generic_make_request(rbi
);
1097 if (!rdev
&& !rrdev
) {
1098 if (op_is_write(op
))
1099 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1100 pr_debug("skip op %d on disc %d for sector %llu\n",
1101 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1102 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1103 set_bit(STRIPE_HANDLE
, &sh
->state
);
1106 if (!head_sh
->batch_head
)
1108 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1115 static struct dma_async_tx_descriptor
*
1116 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1117 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1118 struct stripe_head
*sh
)
1121 struct bvec_iter iter
;
1122 struct page
*bio_page
;
1124 struct async_submit_ctl submit
;
1125 enum async_tx_flags flags
= 0;
1127 if (bio
->bi_iter
.bi_sector
>= sector
)
1128 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1130 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1133 flags
|= ASYNC_TX_FENCE
;
1134 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1136 bio_for_each_segment(bvl
, bio
, iter
) {
1137 int len
= bvl
.bv_len
;
1141 if (page_offset
< 0) {
1142 b_offset
= -page_offset
;
1143 page_offset
+= b_offset
;
1147 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1148 clen
= STRIPE_SIZE
- page_offset
;
1153 b_offset
+= bvl
.bv_offset
;
1154 bio_page
= bvl
.bv_page
;
1156 if (sh
->raid_conf
->skip_copy
&&
1157 b_offset
== 0 && page_offset
== 0 &&
1158 clen
== STRIPE_SIZE
)
1161 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1162 b_offset
, clen
, &submit
);
1164 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1165 page_offset
, clen
, &submit
);
1167 /* chain the operations */
1168 submit
.depend_tx
= tx
;
1170 if (clen
< len
) /* hit end of page */
1178 static void ops_complete_biofill(void *stripe_head_ref
)
1180 struct stripe_head
*sh
= stripe_head_ref
;
1181 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1184 pr_debug("%s: stripe %llu\n", __func__
,
1185 (unsigned long long)sh
->sector
);
1187 /* clear completed biofills */
1188 for (i
= sh
->disks
; i
--; ) {
1189 struct r5dev
*dev
= &sh
->dev
[i
];
1191 /* acknowledge completion of a biofill operation */
1192 /* and check if we need to reply to a read request,
1193 * new R5_Wantfill requests are held off until
1194 * !STRIPE_BIOFILL_RUN
1196 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1197 struct bio
*rbi
, *rbi2
;
1202 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1203 dev
->sector
+ STRIPE_SECTORS
) {
1204 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1205 if (!raid5_dec_bi_active_stripes(rbi
))
1206 bio_list_add(&return_bi
, rbi
);
1211 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1213 return_io(&return_bi
);
1215 set_bit(STRIPE_HANDLE
, &sh
->state
);
1216 raid5_release_stripe(sh
);
1219 static void ops_run_biofill(struct stripe_head
*sh
)
1221 struct dma_async_tx_descriptor
*tx
= NULL
;
1222 struct async_submit_ctl submit
;
1225 BUG_ON(sh
->batch_head
);
1226 pr_debug("%s: stripe %llu\n", __func__
,
1227 (unsigned long long)sh
->sector
);
1229 for (i
= sh
->disks
; i
--; ) {
1230 struct r5dev
*dev
= &sh
->dev
[i
];
1231 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1233 spin_lock_irq(&sh
->stripe_lock
);
1234 dev
->read
= rbi
= dev
->toread
;
1236 spin_unlock_irq(&sh
->stripe_lock
);
1237 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1238 dev
->sector
+ STRIPE_SECTORS
) {
1239 tx
= async_copy_data(0, rbi
, &dev
->page
,
1240 dev
->sector
, tx
, sh
);
1241 rbi
= r5_next_bio(rbi
, dev
->sector
);
1246 atomic_inc(&sh
->count
);
1247 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1248 async_trigger_callback(&submit
);
1251 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1258 tgt
= &sh
->dev
[target
];
1259 set_bit(R5_UPTODATE
, &tgt
->flags
);
1260 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1261 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1264 static void ops_complete_compute(void *stripe_head_ref
)
1266 struct stripe_head
*sh
= stripe_head_ref
;
1268 pr_debug("%s: stripe %llu\n", __func__
,
1269 (unsigned long long)sh
->sector
);
1271 /* mark the computed target(s) as uptodate */
1272 mark_target_uptodate(sh
, sh
->ops
.target
);
1273 mark_target_uptodate(sh
, sh
->ops
.target2
);
1275 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1276 if (sh
->check_state
== check_state_compute_run
)
1277 sh
->check_state
= check_state_compute_result
;
1278 set_bit(STRIPE_HANDLE
, &sh
->state
);
1279 raid5_release_stripe(sh
);
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1284 struct raid5_percpu
*percpu
, int i
)
1288 addr
= flex_array_get(percpu
->scribble
, i
);
1289 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1297 addr
= flex_array_get(percpu
->scribble
, i
);
1301 static struct dma_async_tx_descriptor
*
1302 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1304 int disks
= sh
->disks
;
1305 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1306 int target
= sh
->ops
.target
;
1307 struct r5dev
*tgt
= &sh
->dev
[target
];
1308 struct page
*xor_dest
= tgt
->page
;
1310 struct dma_async_tx_descriptor
*tx
;
1311 struct async_submit_ctl submit
;
1314 BUG_ON(sh
->batch_head
);
1316 pr_debug("%s: stripe %llu block: %d\n",
1317 __func__
, (unsigned long long)sh
->sector
, target
);
1318 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1320 for (i
= disks
; i
--; )
1322 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1324 atomic_inc(&sh
->count
);
1326 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1327 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1328 if (unlikely(count
== 1))
1329 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1331 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337 * @srcs - (struct page *) array of size sh->disks
1338 * @sh - stripe_head to parse
1340 * Populates srcs in proper layout order for the stripe and returns the
1341 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1342 * destination buffer is recorded in srcs[count] and the Q destination
1343 * is recorded in srcs[count+1]].
1345 static int set_syndrome_sources(struct page
**srcs
,
1346 struct stripe_head
*sh
,
1349 int disks
= sh
->disks
;
1350 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1351 int d0_idx
= raid6_d0(sh
);
1355 for (i
= 0; i
< disks
; i
++)
1361 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1362 struct r5dev
*dev
= &sh
->dev
[i
];
1364 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1365 (srctype
== SYNDROME_SRC_ALL
) ||
1366 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1367 test_bit(R5_Wantdrain
, &dev
->flags
)) ||
1368 (srctype
== SYNDROME_SRC_WRITTEN
&&
1370 srcs
[slot
] = sh
->dev
[i
].page
;
1371 i
= raid6_next_disk(i
, disks
);
1372 } while (i
!= d0_idx
);
1374 return syndrome_disks
;
1377 static struct dma_async_tx_descriptor
*
1378 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1380 int disks
= sh
->disks
;
1381 struct page
**blocks
= to_addr_page(percpu
, 0);
1383 int qd_idx
= sh
->qd_idx
;
1384 struct dma_async_tx_descriptor
*tx
;
1385 struct async_submit_ctl submit
;
1391 BUG_ON(sh
->batch_head
);
1392 if (sh
->ops
.target
< 0)
1393 target
= sh
->ops
.target2
;
1394 else if (sh
->ops
.target2
< 0)
1395 target
= sh
->ops
.target
;
1397 /* we should only have one valid target */
1400 pr_debug("%s: stripe %llu block: %d\n",
1401 __func__
, (unsigned long long)sh
->sector
, target
);
1403 tgt
= &sh
->dev
[target
];
1404 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1407 atomic_inc(&sh
->count
);
1409 if (target
== qd_idx
) {
1410 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1411 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1412 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1413 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1414 ops_complete_compute
, sh
,
1415 to_addr_conv(sh
, percpu
, 0));
1416 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1418 /* Compute any data- or p-drive using XOR */
1420 for (i
= disks
; i
-- ; ) {
1421 if (i
== target
|| i
== qd_idx
)
1423 blocks
[count
++] = sh
->dev
[i
].page
;
1426 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1427 NULL
, ops_complete_compute
, sh
,
1428 to_addr_conv(sh
, percpu
, 0));
1429 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1435 static struct dma_async_tx_descriptor
*
1436 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1438 int i
, count
, disks
= sh
->disks
;
1439 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1440 int d0_idx
= raid6_d0(sh
);
1441 int faila
= -1, failb
= -1;
1442 int target
= sh
->ops
.target
;
1443 int target2
= sh
->ops
.target2
;
1444 struct r5dev
*tgt
= &sh
->dev
[target
];
1445 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1446 struct dma_async_tx_descriptor
*tx
;
1447 struct page
**blocks
= to_addr_page(percpu
, 0);
1448 struct async_submit_ctl submit
;
1450 BUG_ON(sh
->batch_head
);
1451 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1453 BUG_ON(target
< 0 || target2
< 0);
1454 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1455 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1457 /* we need to open-code set_syndrome_sources to handle the
1458 * slot number conversion for 'faila' and 'failb'
1460 for (i
= 0; i
< disks
; i
++)
1465 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1467 blocks
[slot
] = sh
->dev
[i
].page
;
1473 i
= raid6_next_disk(i
, disks
);
1474 } while (i
!= d0_idx
);
1476 BUG_ON(faila
== failb
);
1479 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1482 atomic_inc(&sh
->count
);
1484 if (failb
== syndrome_disks
+1) {
1485 /* Q disk is one of the missing disks */
1486 if (faila
== syndrome_disks
) {
1487 /* Missing P+Q, just recompute */
1488 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1489 ops_complete_compute
, sh
,
1490 to_addr_conv(sh
, percpu
, 0));
1491 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1492 STRIPE_SIZE
, &submit
);
1496 int qd_idx
= sh
->qd_idx
;
1498 /* Missing D+Q: recompute D from P, then recompute Q */
1499 if (target
== qd_idx
)
1500 data_target
= target2
;
1502 data_target
= target
;
1505 for (i
= disks
; i
-- ; ) {
1506 if (i
== data_target
|| i
== qd_idx
)
1508 blocks
[count
++] = sh
->dev
[i
].page
;
1510 dest
= sh
->dev
[data_target
].page
;
1511 init_async_submit(&submit
,
1512 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1514 to_addr_conv(sh
, percpu
, 0));
1515 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1518 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1519 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1520 ops_complete_compute
, sh
,
1521 to_addr_conv(sh
, percpu
, 0));
1522 return async_gen_syndrome(blocks
, 0, count
+2,
1523 STRIPE_SIZE
, &submit
);
1526 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1527 ops_complete_compute
, sh
,
1528 to_addr_conv(sh
, percpu
, 0));
1529 if (failb
== syndrome_disks
) {
1530 /* We're missing D+P. */
1531 return async_raid6_datap_recov(syndrome_disks
+2,
1535 /* We're missing D+D. */
1536 return async_raid6_2data_recov(syndrome_disks
+2,
1537 STRIPE_SIZE
, faila
, failb
,
1543 static void ops_complete_prexor(void *stripe_head_ref
)
1545 struct stripe_head
*sh
= stripe_head_ref
;
1547 pr_debug("%s: stripe %llu\n", __func__
,
1548 (unsigned long long)sh
->sector
);
1551 static struct dma_async_tx_descriptor
*
1552 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1553 struct dma_async_tx_descriptor
*tx
)
1555 int disks
= sh
->disks
;
1556 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1557 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1558 struct async_submit_ctl submit
;
1560 /* existing parity data subtracted */
1561 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1563 BUG_ON(sh
->batch_head
);
1564 pr_debug("%s: stripe %llu\n", __func__
,
1565 (unsigned long long)sh
->sector
);
1567 for (i
= disks
; i
--; ) {
1568 struct r5dev
*dev
= &sh
->dev
[i
];
1569 /* Only process blocks that are known to be uptodate */
1570 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1571 xor_srcs
[count
++] = dev
->page
;
1574 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1575 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1576 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1581 static struct dma_async_tx_descriptor
*
1582 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1583 struct dma_async_tx_descriptor
*tx
)
1585 struct page
**blocks
= to_addr_page(percpu
, 0);
1587 struct async_submit_ctl submit
;
1589 pr_debug("%s: stripe %llu\n", __func__
,
1590 (unsigned long long)sh
->sector
);
1592 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1594 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1595 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1596 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1601 static struct dma_async_tx_descriptor
*
1602 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1604 int disks
= sh
->disks
;
1606 struct stripe_head
*head_sh
= sh
;
1608 pr_debug("%s: stripe %llu\n", __func__
,
1609 (unsigned long long)sh
->sector
);
1611 for (i
= disks
; i
--; ) {
1616 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1621 spin_lock_irq(&sh
->stripe_lock
);
1622 chosen
= dev
->towrite
;
1623 dev
->towrite
= NULL
;
1624 sh
->overwrite_disks
= 0;
1625 BUG_ON(dev
->written
);
1626 wbi
= dev
->written
= chosen
;
1627 spin_unlock_irq(&sh
->stripe_lock
);
1628 WARN_ON(dev
->page
!= dev
->orig_page
);
1630 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1631 dev
->sector
+ STRIPE_SECTORS
) {
1632 if (wbi
->bi_opf
& REQ_FUA
)
1633 set_bit(R5_WantFUA
, &dev
->flags
);
1634 if (wbi
->bi_opf
& REQ_SYNC
)
1635 set_bit(R5_SyncIO
, &dev
->flags
);
1636 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1637 set_bit(R5_Discard
, &dev
->flags
);
1639 tx
= async_copy_data(1, wbi
, &dev
->page
,
1640 dev
->sector
, tx
, sh
);
1641 if (dev
->page
!= dev
->orig_page
) {
1642 set_bit(R5_SkipCopy
, &dev
->flags
);
1643 clear_bit(R5_UPTODATE
, &dev
->flags
);
1644 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1647 wbi
= r5_next_bio(wbi
, dev
->sector
);
1650 if (head_sh
->batch_head
) {
1651 sh
= list_first_entry(&sh
->batch_list
,
1664 static void ops_complete_reconstruct(void *stripe_head_ref
)
1666 struct stripe_head
*sh
= stripe_head_ref
;
1667 int disks
= sh
->disks
;
1668 int pd_idx
= sh
->pd_idx
;
1669 int qd_idx
= sh
->qd_idx
;
1671 bool fua
= false, sync
= false, discard
= false;
1673 pr_debug("%s: stripe %llu\n", __func__
,
1674 (unsigned long long)sh
->sector
);
1676 for (i
= disks
; i
--; ) {
1677 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1678 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1679 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1682 for (i
= disks
; i
--; ) {
1683 struct r5dev
*dev
= &sh
->dev
[i
];
1685 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1686 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1687 set_bit(R5_UPTODATE
, &dev
->flags
);
1689 set_bit(R5_WantFUA
, &dev
->flags
);
1691 set_bit(R5_SyncIO
, &dev
->flags
);
1695 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1696 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1697 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1698 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1700 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1701 sh
->reconstruct_state
= reconstruct_state_result
;
1704 set_bit(STRIPE_HANDLE
, &sh
->state
);
1705 raid5_release_stripe(sh
);
1709 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1710 struct dma_async_tx_descriptor
*tx
)
1712 int disks
= sh
->disks
;
1713 struct page
**xor_srcs
;
1714 struct async_submit_ctl submit
;
1715 int count
, pd_idx
= sh
->pd_idx
, i
;
1716 struct page
*xor_dest
;
1718 unsigned long flags
;
1720 struct stripe_head
*head_sh
= sh
;
1723 pr_debug("%s: stripe %llu\n", __func__
,
1724 (unsigned long long)sh
->sector
);
1726 for (i
= 0; i
< sh
->disks
; i
++) {
1729 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1732 if (i
>= sh
->disks
) {
1733 atomic_inc(&sh
->count
);
1734 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1735 ops_complete_reconstruct(sh
);
1740 xor_srcs
= to_addr_page(percpu
, j
);
1741 /* check if prexor is active which means only process blocks
1742 * that are part of a read-modify-write (written)
1744 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1746 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1747 for (i
= disks
; i
--; ) {
1748 struct r5dev
*dev
= &sh
->dev
[i
];
1749 if (head_sh
->dev
[i
].written
)
1750 xor_srcs
[count
++] = dev
->page
;
1753 xor_dest
= sh
->dev
[pd_idx
].page
;
1754 for (i
= disks
; i
--; ) {
1755 struct r5dev
*dev
= &sh
->dev
[i
];
1757 xor_srcs
[count
++] = dev
->page
;
1761 /* 1/ if we prexor'd then the dest is reused as a source
1762 * 2/ if we did not prexor then we are redoing the parity
1763 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764 * for the synchronous xor case
1766 last_stripe
= !head_sh
->batch_head
||
1767 list_first_entry(&sh
->batch_list
,
1768 struct stripe_head
, batch_list
) == head_sh
;
1770 flags
= ASYNC_TX_ACK
|
1771 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1773 atomic_inc(&head_sh
->count
);
1774 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1775 to_addr_conv(sh
, percpu
, j
));
1777 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1778 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1779 to_addr_conv(sh
, percpu
, j
));
1782 if (unlikely(count
== 1))
1783 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1785 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1788 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1795 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1796 struct dma_async_tx_descriptor
*tx
)
1798 struct async_submit_ctl submit
;
1799 struct page
**blocks
;
1800 int count
, i
, j
= 0;
1801 struct stripe_head
*head_sh
= sh
;
1804 unsigned long txflags
;
1806 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1808 for (i
= 0; i
< sh
->disks
; i
++) {
1809 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1811 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1814 if (i
>= sh
->disks
) {
1815 atomic_inc(&sh
->count
);
1816 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1817 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1818 ops_complete_reconstruct(sh
);
1823 blocks
= to_addr_page(percpu
, j
);
1825 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1826 synflags
= SYNDROME_SRC_WRITTEN
;
1827 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1829 synflags
= SYNDROME_SRC_ALL
;
1830 txflags
= ASYNC_TX_ACK
;
1833 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1834 last_stripe
= !head_sh
->batch_head
||
1835 list_first_entry(&sh
->batch_list
,
1836 struct stripe_head
, batch_list
) == head_sh
;
1839 atomic_inc(&head_sh
->count
);
1840 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1841 head_sh
, to_addr_conv(sh
, percpu
, j
));
1843 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1844 to_addr_conv(sh
, percpu
, j
));
1845 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1848 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1854 static void ops_complete_check(void *stripe_head_ref
)
1856 struct stripe_head
*sh
= stripe_head_ref
;
1858 pr_debug("%s: stripe %llu\n", __func__
,
1859 (unsigned long long)sh
->sector
);
1861 sh
->check_state
= check_state_check_result
;
1862 set_bit(STRIPE_HANDLE
, &sh
->state
);
1863 raid5_release_stripe(sh
);
1866 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1868 int disks
= sh
->disks
;
1869 int pd_idx
= sh
->pd_idx
;
1870 int qd_idx
= sh
->qd_idx
;
1871 struct page
*xor_dest
;
1872 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1873 struct dma_async_tx_descriptor
*tx
;
1874 struct async_submit_ctl submit
;
1878 pr_debug("%s: stripe %llu\n", __func__
,
1879 (unsigned long long)sh
->sector
);
1881 BUG_ON(sh
->batch_head
);
1883 xor_dest
= sh
->dev
[pd_idx
].page
;
1884 xor_srcs
[count
++] = xor_dest
;
1885 for (i
= disks
; i
--; ) {
1886 if (i
== pd_idx
|| i
== qd_idx
)
1888 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1891 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1892 to_addr_conv(sh
, percpu
, 0));
1893 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1894 &sh
->ops
.zero_sum_result
, &submit
);
1896 atomic_inc(&sh
->count
);
1897 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1898 tx
= async_trigger_callback(&submit
);
1901 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1903 struct page
**srcs
= to_addr_page(percpu
, 0);
1904 struct async_submit_ctl submit
;
1907 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1908 (unsigned long long)sh
->sector
, checkp
);
1910 BUG_ON(sh
->batch_head
);
1911 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1915 atomic_inc(&sh
->count
);
1916 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1917 sh
, to_addr_conv(sh
, percpu
, 0));
1918 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1919 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1922 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1924 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1925 struct dma_async_tx_descriptor
*tx
= NULL
;
1926 struct r5conf
*conf
= sh
->raid_conf
;
1927 int level
= conf
->level
;
1928 struct raid5_percpu
*percpu
;
1932 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1933 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1934 ops_run_biofill(sh
);
1938 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1940 tx
= ops_run_compute5(sh
, percpu
);
1942 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1943 tx
= ops_run_compute6_1(sh
, percpu
);
1945 tx
= ops_run_compute6_2(sh
, percpu
);
1947 /* terminate the chain if reconstruct is not set to be run */
1948 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1952 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1954 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1956 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1959 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1960 tx
= ops_run_biodrain(sh
, tx
);
1964 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1966 ops_run_reconstruct5(sh
, percpu
, tx
);
1968 ops_run_reconstruct6(sh
, percpu
, tx
);
1971 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1972 if (sh
->check_state
== check_state_run
)
1973 ops_run_check_p(sh
, percpu
);
1974 else if (sh
->check_state
== check_state_run_q
)
1975 ops_run_check_pq(sh
, percpu
, 0);
1976 else if (sh
->check_state
== check_state_run_pq
)
1977 ops_run_check_pq(sh
, percpu
, 1);
1982 if (overlap_clear
&& !sh
->batch_head
)
1983 for (i
= disks
; i
--; ) {
1984 struct r5dev
*dev
= &sh
->dev
[i
];
1985 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1986 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1991 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
1994 struct stripe_head
*sh
;
1997 sh
= kmem_cache_zalloc(sc
, gfp
);
1999 spin_lock_init(&sh
->stripe_lock
);
2000 spin_lock_init(&sh
->batch_lock
);
2001 INIT_LIST_HEAD(&sh
->batch_list
);
2002 INIT_LIST_HEAD(&sh
->lru
);
2003 atomic_set(&sh
->count
, 1);
2004 for (i
= 0; i
< disks
; i
++) {
2005 struct r5dev
*dev
= &sh
->dev
[i
];
2007 bio_init(&dev
->req
);
2008 dev
->req
.bi_io_vec
= &dev
->vec
;
2009 dev
->req
.bi_max_vecs
= 1;
2011 bio_init(&dev
->rreq
);
2012 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2013 dev
->rreq
.bi_max_vecs
= 1;
2018 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2020 struct stripe_head
*sh
;
2022 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
);
2026 sh
->raid_conf
= conf
;
2028 if (grow_buffers(sh
, gfp
)) {
2030 kmem_cache_free(conf
->slab_cache
, sh
);
2033 sh
->hash_lock_index
=
2034 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2035 /* we just created an active stripe so... */
2036 atomic_inc(&conf
->active_stripes
);
2038 raid5_release_stripe(sh
);
2039 conf
->max_nr_stripes
++;
2043 static int grow_stripes(struct r5conf
*conf
, int num
)
2045 struct kmem_cache
*sc
;
2046 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2048 if (conf
->mddev
->gendisk
)
2049 sprintf(conf
->cache_name
[0],
2050 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2052 sprintf(conf
->cache_name
[0],
2053 "raid%d-%p", conf
->level
, conf
->mddev
);
2054 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2056 conf
->active_name
= 0;
2057 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2058 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2062 conf
->slab_cache
= sc
;
2063 conf
->pool_size
= devs
;
2065 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2072 * scribble_len - return the required size of the scribble region
2073 * @num - total number of disks in the array
2075 * The size must be enough to contain:
2076 * 1/ a struct page pointer for each device in the array +2
2077 * 2/ room to convert each entry in (1) to its corresponding dma
2078 * (dma_map_page()) or page (page_address()) address.
2080 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2081 * calculate over all devices (not just the data blocks), using zeros in place
2082 * of the P and Q blocks.
2084 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2086 struct flex_array
*ret
;
2089 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2090 ret
= flex_array_alloc(len
, cnt
, flags
);
2093 /* always prealloc all elements, so no locking is required */
2094 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2095 flex_array_free(ret
);
2101 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2107 * Never shrink. And mddev_suspend() could deadlock if this is called
2108 * from raid5d. In that case, scribble_disks and scribble_sectors
2109 * should equal to new_disks and new_sectors
2111 if (conf
->scribble_disks
>= new_disks
&&
2112 conf
->scribble_sectors
>= new_sectors
)
2114 mddev_suspend(conf
->mddev
);
2116 for_each_present_cpu(cpu
) {
2117 struct raid5_percpu
*percpu
;
2118 struct flex_array
*scribble
;
2120 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2121 scribble
= scribble_alloc(new_disks
,
2122 new_sectors
/ STRIPE_SECTORS
,
2126 flex_array_free(percpu
->scribble
);
2127 percpu
->scribble
= scribble
;
2134 mddev_resume(conf
->mddev
);
2136 conf
->scribble_disks
= new_disks
;
2137 conf
->scribble_sectors
= new_sectors
;
2142 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2144 /* Make all the stripes able to hold 'newsize' devices.
2145 * New slots in each stripe get 'page' set to a new page.
2147 * This happens in stages:
2148 * 1/ create a new kmem_cache and allocate the required number of
2150 * 2/ gather all the old stripe_heads and transfer the pages across
2151 * to the new stripe_heads. This will have the side effect of
2152 * freezing the array as once all stripe_heads have been collected,
2153 * no IO will be possible. Old stripe heads are freed once their
2154 * pages have been transferred over, and the old kmem_cache is
2155 * freed when all stripes are done.
2156 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2157 * we simple return a failre status - no need to clean anything up.
2158 * 4/ allocate new pages for the new slots in the new stripe_heads.
2159 * If this fails, we don't bother trying the shrink the
2160 * stripe_heads down again, we just leave them as they are.
2161 * As each stripe_head is processed the new one is released into
2164 * Once step2 is started, we cannot afford to wait for a write,
2165 * so we use GFP_NOIO allocations.
2167 struct stripe_head
*osh
, *nsh
;
2168 LIST_HEAD(newstripes
);
2169 struct disk_info
*ndisks
;
2171 struct kmem_cache
*sc
;
2175 if (newsize
<= conf
->pool_size
)
2176 return 0; /* never bother to shrink */
2178 err
= md_allow_write(conf
->mddev
);
2183 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2184 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2189 /* Need to ensure auto-resizing doesn't interfere */
2190 mutex_lock(&conf
->cache_size_mutex
);
2192 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2193 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
);
2197 nsh
->raid_conf
= conf
;
2198 list_add(&nsh
->lru
, &newstripes
);
2201 /* didn't get enough, give up */
2202 while (!list_empty(&newstripes
)) {
2203 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2204 list_del(&nsh
->lru
);
2205 kmem_cache_free(sc
, nsh
);
2207 kmem_cache_destroy(sc
);
2208 mutex_unlock(&conf
->cache_size_mutex
);
2211 /* Step 2 - Must use GFP_NOIO now.
2212 * OK, we have enough stripes, start collecting inactive
2213 * stripes and copying them over
2217 list_for_each_entry(nsh
, &newstripes
, lru
) {
2218 lock_device_hash_lock(conf
, hash
);
2219 wait_event_cmd(conf
->wait_for_stripe
,
2220 !list_empty(conf
->inactive_list
+ hash
),
2221 unlock_device_hash_lock(conf
, hash
),
2222 lock_device_hash_lock(conf
, hash
));
2223 osh
= get_free_stripe(conf
, hash
);
2224 unlock_device_hash_lock(conf
, hash
);
2226 for(i
=0; i
<conf
->pool_size
; i
++) {
2227 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2228 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2230 nsh
->hash_lock_index
= hash
;
2231 kmem_cache_free(conf
->slab_cache
, osh
);
2233 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2234 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2239 kmem_cache_destroy(conf
->slab_cache
);
2242 * At this point, we are holding all the stripes so the array
2243 * is completely stalled, so now is a good time to resize
2244 * conf->disks and the scribble region
2246 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2248 for (i
=0; i
<conf
->raid_disks
; i
++)
2249 ndisks
[i
] = conf
->disks
[i
];
2251 conf
->disks
= ndisks
;
2255 mutex_unlock(&conf
->cache_size_mutex
);
2256 /* Step 4, return new stripes to service */
2257 while(!list_empty(&newstripes
)) {
2258 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2259 list_del_init(&nsh
->lru
);
2261 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2262 if (nsh
->dev
[i
].page
== NULL
) {
2263 struct page
*p
= alloc_page(GFP_NOIO
);
2264 nsh
->dev
[i
].page
= p
;
2265 nsh
->dev
[i
].orig_page
= p
;
2269 raid5_release_stripe(nsh
);
2271 /* critical section pass, GFP_NOIO no longer needed */
2273 conf
->slab_cache
= sc
;
2274 conf
->active_name
= 1-conf
->active_name
;
2276 conf
->pool_size
= newsize
;
2280 static int drop_one_stripe(struct r5conf
*conf
)
2282 struct stripe_head
*sh
;
2283 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2285 spin_lock_irq(conf
->hash_locks
+ hash
);
2286 sh
= get_free_stripe(conf
, hash
);
2287 spin_unlock_irq(conf
->hash_locks
+ hash
);
2290 BUG_ON(atomic_read(&sh
->count
));
2292 kmem_cache_free(conf
->slab_cache
, sh
);
2293 atomic_dec(&conf
->active_stripes
);
2294 conf
->max_nr_stripes
--;
2298 static void shrink_stripes(struct r5conf
*conf
)
2300 while (conf
->max_nr_stripes
&&
2301 drop_one_stripe(conf
))
2304 kmem_cache_destroy(conf
->slab_cache
);
2305 conf
->slab_cache
= NULL
;
2308 static void raid5_end_read_request(struct bio
* bi
)
2310 struct stripe_head
*sh
= bi
->bi_private
;
2311 struct r5conf
*conf
= sh
->raid_conf
;
2312 int disks
= sh
->disks
, i
;
2313 char b
[BDEVNAME_SIZE
];
2314 struct md_rdev
*rdev
= NULL
;
2317 for (i
=0 ; i
<disks
; i
++)
2318 if (bi
== &sh
->dev
[i
].req
)
2321 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2322 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2329 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2330 /* If replacement finished while this request was outstanding,
2331 * 'replacement' might be NULL already.
2332 * In that case it moved down to 'rdev'.
2333 * rdev is not removed until all requests are finished.
2335 rdev
= conf
->disks
[i
].replacement
;
2337 rdev
= conf
->disks
[i
].rdev
;
2339 if (use_new_offset(conf
, sh
))
2340 s
= sh
->sector
+ rdev
->new_data_offset
;
2342 s
= sh
->sector
+ rdev
->data_offset
;
2343 if (!bi
->bi_error
) {
2344 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2345 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2346 /* Note that this cannot happen on a
2347 * replacement device. We just fail those on
2352 "md/raid:%s: read error corrected"
2353 " (%lu sectors at %llu on %s)\n",
2354 mdname(conf
->mddev
), STRIPE_SECTORS
,
2355 (unsigned long long)s
,
2356 bdevname(rdev
->bdev
, b
));
2357 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2358 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2359 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2360 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2361 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2363 if (atomic_read(&rdev
->read_errors
))
2364 atomic_set(&rdev
->read_errors
, 0);
2366 const char *bdn
= bdevname(rdev
->bdev
, b
);
2370 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2371 atomic_inc(&rdev
->read_errors
);
2372 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2375 "md/raid:%s: read error on replacement device "
2376 "(sector %llu on %s).\n",
2377 mdname(conf
->mddev
),
2378 (unsigned long long)s
,
2380 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2384 "md/raid:%s: read error not correctable "
2385 "(sector %llu on %s).\n",
2386 mdname(conf
->mddev
),
2387 (unsigned long long)s
,
2389 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2394 "md/raid:%s: read error NOT corrected!! "
2395 "(sector %llu on %s).\n",
2396 mdname(conf
->mddev
),
2397 (unsigned long long)s
,
2399 } else if (atomic_read(&rdev
->read_errors
)
2400 > conf
->max_nr_stripes
)
2402 "md/raid:%s: Too many read errors, failing device %s.\n",
2403 mdname(conf
->mddev
), bdn
);
2406 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2407 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2410 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2411 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2412 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2414 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2416 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2417 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2419 && test_bit(In_sync
, &rdev
->flags
)
2420 && rdev_set_badblocks(
2421 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2422 md_error(conf
->mddev
, rdev
);
2425 rdev_dec_pending(rdev
, conf
->mddev
);
2427 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2428 set_bit(STRIPE_HANDLE
, &sh
->state
);
2429 raid5_release_stripe(sh
);
2432 static void raid5_end_write_request(struct bio
*bi
)
2434 struct stripe_head
*sh
= bi
->bi_private
;
2435 struct r5conf
*conf
= sh
->raid_conf
;
2436 int disks
= sh
->disks
, i
;
2437 struct md_rdev
*uninitialized_var(rdev
);
2440 int replacement
= 0;
2442 for (i
= 0 ; i
< disks
; i
++) {
2443 if (bi
== &sh
->dev
[i
].req
) {
2444 rdev
= conf
->disks
[i
].rdev
;
2447 if (bi
== &sh
->dev
[i
].rreq
) {
2448 rdev
= conf
->disks
[i
].replacement
;
2452 /* rdev was removed and 'replacement'
2453 * replaced it. rdev is not removed
2454 * until all requests are finished.
2456 rdev
= conf
->disks
[i
].rdev
;
2460 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2461 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2471 md_error(conf
->mddev
, rdev
);
2472 else if (is_badblock(rdev
, sh
->sector
,
2474 &first_bad
, &bad_sectors
))
2475 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2478 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2479 set_bit(WriteErrorSeen
, &rdev
->flags
);
2480 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2481 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2482 set_bit(MD_RECOVERY_NEEDED
,
2483 &rdev
->mddev
->recovery
);
2484 } else if (is_badblock(rdev
, sh
->sector
,
2486 &first_bad
, &bad_sectors
)) {
2487 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2488 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2489 /* That was a successful write so make
2490 * sure it looks like we already did
2493 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2496 rdev_dec_pending(rdev
, conf
->mddev
);
2498 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2499 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2502 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2503 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2504 set_bit(STRIPE_HANDLE
, &sh
->state
);
2505 raid5_release_stripe(sh
);
2507 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2508 raid5_release_stripe(sh
->batch_head
);
2511 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2513 struct r5dev
*dev
= &sh
->dev
[i
];
2516 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2519 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2521 char b
[BDEVNAME_SIZE
];
2522 struct r5conf
*conf
= mddev
->private;
2523 unsigned long flags
;
2524 pr_debug("raid456: error called\n");
2526 spin_lock_irqsave(&conf
->device_lock
, flags
);
2527 clear_bit(In_sync
, &rdev
->flags
);
2528 mddev
->degraded
= calc_degraded(conf
);
2529 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2530 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2532 set_bit(Blocked
, &rdev
->flags
);
2533 set_bit(Faulty
, &rdev
->flags
);
2534 set_mask_bits(&mddev
->flags
, 0,
2535 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
2537 "md/raid:%s: Disk failure on %s, disabling device.\n"
2538 "md/raid:%s: Operation continuing on %d devices.\n",
2540 bdevname(rdev
->bdev
, b
),
2542 conf
->raid_disks
- mddev
->degraded
);
2546 * Input: a 'big' sector number,
2547 * Output: index of the data and parity disk, and the sector # in them.
2549 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2550 int previous
, int *dd_idx
,
2551 struct stripe_head
*sh
)
2553 sector_t stripe
, stripe2
;
2554 sector_t chunk_number
;
2555 unsigned int chunk_offset
;
2558 sector_t new_sector
;
2559 int algorithm
= previous
? conf
->prev_algo
2561 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2562 : conf
->chunk_sectors
;
2563 int raid_disks
= previous
? conf
->previous_raid_disks
2565 int data_disks
= raid_disks
- conf
->max_degraded
;
2567 /* First compute the information on this sector */
2570 * Compute the chunk number and the sector offset inside the chunk
2572 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2573 chunk_number
= r_sector
;
2576 * Compute the stripe number
2578 stripe
= chunk_number
;
2579 *dd_idx
= sector_div(stripe
, data_disks
);
2582 * Select the parity disk based on the user selected algorithm.
2584 pd_idx
= qd_idx
= -1;
2585 switch(conf
->level
) {
2587 pd_idx
= data_disks
;
2590 switch (algorithm
) {
2591 case ALGORITHM_LEFT_ASYMMETRIC
:
2592 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2593 if (*dd_idx
>= pd_idx
)
2596 case ALGORITHM_RIGHT_ASYMMETRIC
:
2597 pd_idx
= sector_div(stripe2
, raid_disks
);
2598 if (*dd_idx
>= pd_idx
)
2601 case ALGORITHM_LEFT_SYMMETRIC
:
2602 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2603 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2605 case ALGORITHM_RIGHT_SYMMETRIC
:
2606 pd_idx
= sector_div(stripe2
, raid_disks
);
2607 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2609 case ALGORITHM_PARITY_0
:
2613 case ALGORITHM_PARITY_N
:
2614 pd_idx
= data_disks
;
2622 switch (algorithm
) {
2623 case ALGORITHM_LEFT_ASYMMETRIC
:
2624 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2625 qd_idx
= pd_idx
+ 1;
2626 if (pd_idx
== raid_disks
-1) {
2627 (*dd_idx
)++; /* Q D D D P */
2629 } else if (*dd_idx
>= pd_idx
)
2630 (*dd_idx
) += 2; /* D D P Q D */
2632 case ALGORITHM_RIGHT_ASYMMETRIC
:
2633 pd_idx
= sector_div(stripe2
, raid_disks
);
2634 qd_idx
= pd_idx
+ 1;
2635 if (pd_idx
== raid_disks
-1) {
2636 (*dd_idx
)++; /* Q D D D P */
2638 } else if (*dd_idx
>= pd_idx
)
2639 (*dd_idx
) += 2; /* D D P Q D */
2641 case ALGORITHM_LEFT_SYMMETRIC
:
2642 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2643 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2644 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2646 case ALGORITHM_RIGHT_SYMMETRIC
:
2647 pd_idx
= sector_div(stripe2
, raid_disks
);
2648 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2649 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2652 case ALGORITHM_PARITY_0
:
2657 case ALGORITHM_PARITY_N
:
2658 pd_idx
= data_disks
;
2659 qd_idx
= data_disks
+ 1;
2662 case ALGORITHM_ROTATING_ZERO_RESTART
:
2663 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2664 * of blocks for computing Q is different.
2666 pd_idx
= sector_div(stripe2
, raid_disks
);
2667 qd_idx
= pd_idx
+ 1;
2668 if (pd_idx
== raid_disks
-1) {
2669 (*dd_idx
)++; /* Q D D D P */
2671 } else if (*dd_idx
>= pd_idx
)
2672 (*dd_idx
) += 2; /* D D P Q D */
2676 case ALGORITHM_ROTATING_N_RESTART
:
2677 /* Same a left_asymmetric, by first stripe is
2678 * D D D P Q rather than
2682 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2683 qd_idx
= pd_idx
+ 1;
2684 if (pd_idx
== raid_disks
-1) {
2685 (*dd_idx
)++; /* Q D D D P */
2687 } else if (*dd_idx
>= pd_idx
)
2688 (*dd_idx
) += 2; /* D D P Q D */
2692 case ALGORITHM_ROTATING_N_CONTINUE
:
2693 /* Same as left_symmetric but Q is before P */
2694 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2695 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2696 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2700 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2701 /* RAID5 left_asymmetric, with Q on last device */
2702 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2703 if (*dd_idx
>= pd_idx
)
2705 qd_idx
= raid_disks
- 1;
2708 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2709 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2710 if (*dd_idx
>= pd_idx
)
2712 qd_idx
= raid_disks
- 1;
2715 case ALGORITHM_LEFT_SYMMETRIC_6
:
2716 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2717 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2718 qd_idx
= raid_disks
- 1;
2721 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2722 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2723 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2724 qd_idx
= raid_disks
- 1;
2727 case ALGORITHM_PARITY_0_6
:
2730 qd_idx
= raid_disks
- 1;
2740 sh
->pd_idx
= pd_idx
;
2741 sh
->qd_idx
= qd_idx
;
2742 sh
->ddf_layout
= ddf_layout
;
2745 * Finally, compute the new sector number
2747 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2751 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2753 struct r5conf
*conf
= sh
->raid_conf
;
2754 int raid_disks
= sh
->disks
;
2755 int data_disks
= raid_disks
- conf
->max_degraded
;
2756 sector_t new_sector
= sh
->sector
, check
;
2757 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2758 : conf
->chunk_sectors
;
2759 int algorithm
= previous
? conf
->prev_algo
2763 sector_t chunk_number
;
2764 int dummy1
, dd_idx
= i
;
2766 struct stripe_head sh2
;
2768 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2769 stripe
= new_sector
;
2771 if (i
== sh
->pd_idx
)
2773 switch(conf
->level
) {
2776 switch (algorithm
) {
2777 case ALGORITHM_LEFT_ASYMMETRIC
:
2778 case ALGORITHM_RIGHT_ASYMMETRIC
:
2782 case ALGORITHM_LEFT_SYMMETRIC
:
2783 case ALGORITHM_RIGHT_SYMMETRIC
:
2786 i
-= (sh
->pd_idx
+ 1);
2788 case ALGORITHM_PARITY_0
:
2791 case ALGORITHM_PARITY_N
:
2798 if (i
== sh
->qd_idx
)
2799 return 0; /* It is the Q disk */
2800 switch (algorithm
) {
2801 case ALGORITHM_LEFT_ASYMMETRIC
:
2802 case ALGORITHM_RIGHT_ASYMMETRIC
:
2803 case ALGORITHM_ROTATING_ZERO_RESTART
:
2804 case ALGORITHM_ROTATING_N_RESTART
:
2805 if (sh
->pd_idx
== raid_disks
-1)
2806 i
--; /* Q D D D P */
2807 else if (i
> sh
->pd_idx
)
2808 i
-= 2; /* D D P Q D */
2810 case ALGORITHM_LEFT_SYMMETRIC
:
2811 case ALGORITHM_RIGHT_SYMMETRIC
:
2812 if (sh
->pd_idx
== raid_disks
-1)
2813 i
--; /* Q D D D P */
2818 i
-= (sh
->pd_idx
+ 2);
2821 case ALGORITHM_PARITY_0
:
2824 case ALGORITHM_PARITY_N
:
2826 case ALGORITHM_ROTATING_N_CONTINUE
:
2827 /* Like left_symmetric, but P is before Q */
2828 if (sh
->pd_idx
== 0)
2829 i
--; /* P D D D Q */
2834 i
-= (sh
->pd_idx
+ 1);
2837 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2838 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2842 case ALGORITHM_LEFT_SYMMETRIC_6
:
2843 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2845 i
+= data_disks
+ 1;
2846 i
-= (sh
->pd_idx
+ 1);
2848 case ALGORITHM_PARITY_0_6
:
2857 chunk_number
= stripe
* data_disks
+ i
;
2858 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2860 check
= raid5_compute_sector(conf
, r_sector
,
2861 previous
, &dummy1
, &sh2
);
2862 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2863 || sh2
.qd_idx
!= sh
->qd_idx
) {
2864 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2865 mdname(conf
->mddev
));
2872 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2873 int rcw
, int expand
)
2875 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2876 struct r5conf
*conf
= sh
->raid_conf
;
2877 int level
= conf
->level
;
2881 for (i
= disks
; i
--; ) {
2882 struct r5dev
*dev
= &sh
->dev
[i
];
2885 set_bit(R5_LOCKED
, &dev
->flags
);
2886 set_bit(R5_Wantdrain
, &dev
->flags
);
2888 clear_bit(R5_UPTODATE
, &dev
->flags
);
2892 /* if we are not expanding this is a proper write request, and
2893 * there will be bios with new data to be drained into the
2898 /* False alarm, nothing to do */
2900 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2901 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2903 sh
->reconstruct_state
= reconstruct_state_run
;
2905 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2907 if (s
->locked
+ conf
->max_degraded
== disks
)
2908 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2909 atomic_inc(&conf
->pending_full_writes
);
2911 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2912 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2913 BUG_ON(level
== 6 &&
2914 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2915 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2917 for (i
= disks
; i
--; ) {
2918 struct r5dev
*dev
= &sh
->dev
[i
];
2919 if (i
== pd_idx
|| i
== qd_idx
)
2923 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2924 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2925 set_bit(R5_Wantdrain
, &dev
->flags
);
2926 set_bit(R5_LOCKED
, &dev
->flags
);
2927 clear_bit(R5_UPTODATE
, &dev
->flags
);
2932 /* False alarm - nothing to do */
2934 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2935 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2936 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2937 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2940 /* keep the parity disk(s) locked while asynchronous operations
2943 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2944 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2948 int qd_idx
= sh
->qd_idx
;
2949 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2951 set_bit(R5_LOCKED
, &dev
->flags
);
2952 clear_bit(R5_UPTODATE
, &dev
->flags
);
2956 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2957 __func__
, (unsigned long long)sh
->sector
,
2958 s
->locked
, s
->ops_request
);
2962 * Each stripe/dev can have one or more bion attached.
2963 * toread/towrite point to the first in a chain.
2964 * The bi_next chain must be in order.
2966 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2967 int forwrite
, int previous
)
2970 struct r5conf
*conf
= sh
->raid_conf
;
2973 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2974 (unsigned long long)bi
->bi_iter
.bi_sector
,
2975 (unsigned long long)sh
->sector
);
2978 * If several bio share a stripe. The bio bi_phys_segments acts as a
2979 * reference count to avoid race. The reference count should already be
2980 * increased before this function is called (for example, in
2981 * raid5_make_request()), so other bio sharing this stripe will not free the
2982 * stripe. If a stripe is owned by one stripe, the stripe lock will
2985 spin_lock_irq(&sh
->stripe_lock
);
2986 /* Don't allow new IO added to stripes in batch list */
2990 bip
= &sh
->dev
[dd_idx
].towrite
;
2994 bip
= &sh
->dev
[dd_idx
].toread
;
2995 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2996 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2998 bip
= & (*bip
)->bi_next
;
3000 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3003 if (!forwrite
|| previous
)
3004 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3006 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3010 raid5_inc_bi_active_stripes(bi
);
3013 /* check if page is covered */
3014 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3015 for (bi
=sh
->dev
[dd_idx
].towrite
;
3016 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3017 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3018 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3019 if (bio_end_sector(bi
) >= sector
)
3020 sector
= bio_end_sector(bi
);
3022 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3023 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3024 sh
->overwrite_disks
++;
3027 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3028 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3029 (unsigned long long)sh
->sector
, dd_idx
);
3031 if (conf
->mddev
->bitmap
&& firstwrite
) {
3032 /* Cannot hold spinlock over bitmap_startwrite,
3033 * but must ensure this isn't added to a batch until
3034 * we have added to the bitmap and set bm_seq.
3035 * So set STRIPE_BITMAP_PENDING to prevent
3037 * If multiple add_stripe_bio() calls race here they
3038 * much all set STRIPE_BITMAP_PENDING. So only the first one
3039 * to complete "bitmap_startwrite" gets to set
3040 * STRIPE_BIT_DELAY. This is important as once a stripe
3041 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3044 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3045 spin_unlock_irq(&sh
->stripe_lock
);
3046 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3048 spin_lock_irq(&sh
->stripe_lock
);
3049 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3050 if (!sh
->batch_head
) {
3051 sh
->bm_seq
= conf
->seq_flush
+1;
3052 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3055 spin_unlock_irq(&sh
->stripe_lock
);
3057 if (stripe_can_batch(sh
))
3058 stripe_add_to_batch_list(conf
, sh
);
3062 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3063 spin_unlock_irq(&sh
->stripe_lock
);
3067 static void end_reshape(struct r5conf
*conf
);
3069 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3070 struct stripe_head
*sh
)
3072 int sectors_per_chunk
=
3073 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3075 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3076 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3078 raid5_compute_sector(conf
,
3079 stripe
* (disks
- conf
->max_degraded
)
3080 *sectors_per_chunk
+ chunk_offset
,
3086 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3087 struct stripe_head_state
*s
, int disks
,
3088 struct bio_list
*return_bi
)
3091 BUG_ON(sh
->batch_head
);
3092 for (i
= disks
; i
--; ) {
3096 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3097 struct md_rdev
*rdev
;
3099 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3100 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3101 !test_bit(Faulty
, &rdev
->flags
))
3102 atomic_inc(&rdev
->nr_pending
);
3107 if (!rdev_set_badblocks(
3111 md_error(conf
->mddev
, rdev
);
3112 rdev_dec_pending(rdev
, conf
->mddev
);
3115 spin_lock_irq(&sh
->stripe_lock
);
3116 /* fail all writes first */
3117 bi
= sh
->dev
[i
].towrite
;
3118 sh
->dev
[i
].towrite
= NULL
;
3119 sh
->overwrite_disks
= 0;
3120 spin_unlock_irq(&sh
->stripe_lock
);
3124 r5l_stripe_write_finished(sh
);
3126 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3127 wake_up(&conf
->wait_for_overlap
);
3129 while (bi
&& bi
->bi_iter
.bi_sector
<
3130 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3131 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3133 bi
->bi_error
= -EIO
;
3134 if (!raid5_dec_bi_active_stripes(bi
)) {
3135 md_write_end(conf
->mddev
);
3136 bio_list_add(return_bi
, bi
);
3141 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3142 STRIPE_SECTORS
, 0, 0);
3144 /* and fail all 'written' */
3145 bi
= sh
->dev
[i
].written
;
3146 sh
->dev
[i
].written
= NULL
;
3147 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3148 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3149 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3152 if (bi
) bitmap_end
= 1;
3153 while (bi
&& bi
->bi_iter
.bi_sector
<
3154 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3155 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3157 bi
->bi_error
= -EIO
;
3158 if (!raid5_dec_bi_active_stripes(bi
)) {
3159 md_write_end(conf
->mddev
);
3160 bio_list_add(return_bi
, bi
);
3165 /* fail any reads if this device is non-operational and
3166 * the data has not reached the cache yet.
3168 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3169 s
->failed
> conf
->max_degraded
&&
3170 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3171 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3172 spin_lock_irq(&sh
->stripe_lock
);
3173 bi
= sh
->dev
[i
].toread
;
3174 sh
->dev
[i
].toread
= NULL
;
3175 spin_unlock_irq(&sh
->stripe_lock
);
3176 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3177 wake_up(&conf
->wait_for_overlap
);
3180 while (bi
&& bi
->bi_iter
.bi_sector
<
3181 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3182 struct bio
*nextbi
=
3183 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3185 bi
->bi_error
= -EIO
;
3186 if (!raid5_dec_bi_active_stripes(bi
))
3187 bio_list_add(return_bi
, bi
);
3192 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3193 STRIPE_SECTORS
, 0, 0);
3194 /* If we were in the middle of a write the parity block might
3195 * still be locked - so just clear all R5_LOCKED flags
3197 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3202 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3203 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3204 md_wakeup_thread(conf
->mddev
->thread
);
3208 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3209 struct stripe_head_state
*s
)
3214 BUG_ON(sh
->batch_head
);
3215 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3216 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3217 wake_up(&conf
->wait_for_overlap
);
3220 /* There is nothing more to do for sync/check/repair.
3221 * Don't even need to abort as that is handled elsewhere
3222 * if needed, and not always wanted e.g. if there is a known
3224 * For recover/replace we need to record a bad block on all
3225 * non-sync devices, or abort the recovery
3227 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3228 /* During recovery devices cannot be removed, so
3229 * locking and refcounting of rdevs is not needed
3232 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3233 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3235 && !test_bit(Faulty
, &rdev
->flags
)
3236 && !test_bit(In_sync
, &rdev
->flags
)
3237 && !rdev_set_badblocks(rdev
, sh
->sector
,
3240 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3242 && !test_bit(Faulty
, &rdev
->flags
)
3243 && !test_bit(In_sync
, &rdev
->flags
)
3244 && !rdev_set_badblocks(rdev
, sh
->sector
,
3250 conf
->recovery_disabled
=
3251 conf
->mddev
->recovery_disabled
;
3253 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3256 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3258 struct md_rdev
*rdev
;
3262 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3264 && !test_bit(Faulty
, &rdev
->flags
)
3265 && !test_bit(In_sync
, &rdev
->flags
)
3266 && (rdev
->recovery_offset
<= sh
->sector
3267 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3273 /* fetch_block - checks the given member device to see if its data needs
3274 * to be read or computed to satisfy a request.
3276 * Returns 1 when no more member devices need to be checked, otherwise returns
3277 * 0 to tell the loop in handle_stripe_fill to continue
3280 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3281 int disk_idx
, int disks
)
3283 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3284 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3285 &sh
->dev
[s
->failed_num
[1]] };
3289 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3290 test_bit(R5_UPTODATE
, &dev
->flags
))
3291 /* No point reading this as we already have it or have
3292 * decided to get it.
3297 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3298 /* We need this block to directly satisfy a request */
3301 if (s
->syncing
|| s
->expanding
||
3302 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3303 /* When syncing, or expanding we read everything.
3304 * When replacing, we need the replaced block.
3308 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3309 (s
->failed
>= 2 && fdev
[1]->toread
))
3310 /* If we want to read from a failed device, then
3311 * we need to actually read every other device.
3315 /* Sometimes neither read-modify-write nor reconstruct-write
3316 * cycles can work. In those cases we read every block we
3317 * can. Then the parity-update is certain to have enough to
3319 * This can only be a problem when we need to write something,
3320 * and some device has failed. If either of those tests
3321 * fail we need look no further.
3323 if (!s
->failed
|| !s
->to_write
)
3326 if (test_bit(R5_Insync
, &dev
->flags
) &&
3327 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3328 /* Pre-reads at not permitted until after short delay
3329 * to gather multiple requests. However if this
3330 * device is no Insync, the block could only be be computed
3331 * and there is no need to delay that.
3335 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3336 if (fdev
[i
]->towrite
&&
3337 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3338 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3339 /* If we have a partial write to a failed
3340 * device, then we will need to reconstruct
3341 * the content of that device, so all other
3342 * devices must be read.
3347 /* If we are forced to do a reconstruct-write, either because
3348 * the current RAID6 implementation only supports that, or
3349 * or because parity cannot be trusted and we are currently
3350 * recovering it, there is extra need to be careful.
3351 * If one of the devices that we would need to read, because
3352 * it is not being overwritten (and maybe not written at all)
3353 * is missing/faulty, then we need to read everything we can.
3355 if (sh
->raid_conf
->level
!= 6 &&
3356 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3357 /* reconstruct-write isn't being forced */
3359 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3360 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3361 s
->failed_num
[i
] != sh
->qd_idx
&&
3362 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3363 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3370 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3371 int disk_idx
, int disks
)
3373 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3375 /* is the data in this block needed, and can we get it? */
3376 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3377 /* we would like to get this block, possibly by computing it,
3378 * otherwise read it if the backing disk is insync
3380 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3381 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3382 BUG_ON(sh
->batch_head
);
3383 if ((s
->uptodate
== disks
- 1) &&
3384 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3385 disk_idx
== s
->failed_num
[1]))) {
3386 /* have disk failed, and we're requested to fetch it;
3389 pr_debug("Computing stripe %llu block %d\n",
3390 (unsigned long long)sh
->sector
, disk_idx
);
3391 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3392 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3393 set_bit(R5_Wantcompute
, &dev
->flags
);
3394 sh
->ops
.target
= disk_idx
;
3395 sh
->ops
.target2
= -1; /* no 2nd target */
3397 /* Careful: from this point on 'uptodate' is in the eye
3398 * of raid_run_ops which services 'compute' operations
3399 * before writes. R5_Wantcompute flags a block that will
3400 * be R5_UPTODATE by the time it is needed for a
3401 * subsequent operation.
3405 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3406 /* Computing 2-failure is *very* expensive; only
3407 * do it if failed >= 2
3410 for (other
= disks
; other
--; ) {
3411 if (other
== disk_idx
)
3413 if (!test_bit(R5_UPTODATE
,
3414 &sh
->dev
[other
].flags
))
3418 pr_debug("Computing stripe %llu blocks %d,%d\n",
3419 (unsigned long long)sh
->sector
,
3421 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3422 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3423 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3424 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3425 sh
->ops
.target
= disk_idx
;
3426 sh
->ops
.target2
= other
;
3430 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3431 set_bit(R5_LOCKED
, &dev
->flags
);
3432 set_bit(R5_Wantread
, &dev
->flags
);
3434 pr_debug("Reading block %d (sync=%d)\n",
3435 disk_idx
, s
->syncing
);
3443 * handle_stripe_fill - read or compute data to satisfy pending requests.
3445 static void handle_stripe_fill(struct stripe_head
*sh
,
3446 struct stripe_head_state
*s
,
3451 /* look for blocks to read/compute, skip this if a compute
3452 * is already in flight, or if the stripe contents are in the
3453 * midst of changing due to a write
3455 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3456 !sh
->reconstruct_state
)
3457 for (i
= disks
; i
--; )
3458 if (fetch_block(sh
, s
, i
, disks
))
3460 set_bit(STRIPE_HANDLE
, &sh
->state
);
3463 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3464 unsigned long handle_flags
);
3465 /* handle_stripe_clean_event
3466 * any written block on an uptodate or failed drive can be returned.
3467 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3468 * never LOCKED, so we don't need to test 'failed' directly.
3470 static void handle_stripe_clean_event(struct r5conf
*conf
,
3471 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3475 int discard_pending
= 0;
3476 struct stripe_head
*head_sh
= sh
;
3477 bool do_endio
= false;
3479 for (i
= disks
; i
--; )
3480 if (sh
->dev
[i
].written
) {
3482 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3483 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3484 test_bit(R5_Discard
, &dev
->flags
) ||
3485 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3486 /* We can return any write requests */
3487 struct bio
*wbi
, *wbi2
;
3488 pr_debug("Return write for disc %d\n", i
);
3489 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3490 clear_bit(R5_UPTODATE
, &dev
->flags
);
3491 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3492 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3497 dev
->page
= dev
->orig_page
;
3499 dev
->written
= NULL
;
3500 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3501 dev
->sector
+ STRIPE_SECTORS
) {
3502 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3503 if (!raid5_dec_bi_active_stripes(wbi
)) {
3504 md_write_end(conf
->mddev
);
3505 bio_list_add(return_bi
, wbi
);
3509 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3511 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3513 if (head_sh
->batch_head
) {
3514 sh
= list_first_entry(&sh
->batch_list
,
3517 if (sh
!= head_sh
) {
3524 } else if (test_bit(R5_Discard
, &dev
->flags
))
3525 discard_pending
= 1;
3528 r5l_stripe_write_finished(sh
);
3530 if (!discard_pending
&&
3531 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3533 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3534 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3535 if (sh
->qd_idx
>= 0) {
3536 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3537 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3539 /* now that discard is done we can proceed with any sync */
3540 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3542 * SCSI discard will change some bio fields and the stripe has
3543 * no updated data, so remove it from hash list and the stripe
3544 * will be reinitialized
3547 hash
= sh
->hash_lock_index
;
3548 spin_lock_irq(conf
->hash_locks
+ hash
);
3550 spin_unlock_irq(conf
->hash_locks
+ hash
);
3551 if (head_sh
->batch_head
) {
3552 sh
= list_first_entry(&sh
->batch_list
,
3553 struct stripe_head
, batch_list
);
3559 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3560 set_bit(STRIPE_HANDLE
, &sh
->state
);
3564 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3565 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3566 md_wakeup_thread(conf
->mddev
->thread
);
3568 if (head_sh
->batch_head
&& do_endio
)
3569 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3572 static void handle_stripe_dirtying(struct r5conf
*conf
,
3573 struct stripe_head
*sh
,
3574 struct stripe_head_state
*s
,
3577 int rmw
= 0, rcw
= 0, i
;
3578 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3580 /* Check whether resync is now happening or should start.
3581 * If yes, then the array is dirty (after unclean shutdown or
3582 * initial creation), so parity in some stripes might be inconsistent.
3583 * In this case, we need to always do reconstruct-write, to ensure
3584 * that in case of drive failure or read-error correction, we
3585 * generate correct data from the parity.
3587 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3588 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3590 /* Calculate the real rcw later - for now make it
3591 * look like rcw is cheaper
3594 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3595 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3596 (unsigned long long)sh
->sector
);
3597 } else for (i
= disks
; i
--; ) {
3598 /* would I have to read this buffer for read_modify_write */
3599 struct r5dev
*dev
= &sh
->dev
[i
];
3600 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3601 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3602 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3603 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3604 if (test_bit(R5_Insync
, &dev
->flags
))
3607 rmw
+= 2*disks
; /* cannot read it */
3609 /* Would I have to read this buffer for reconstruct_write */
3610 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3611 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3612 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3613 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3614 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3615 if (test_bit(R5_Insync
, &dev
->flags
))
3621 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3622 (unsigned long long)sh
->sector
, rmw
, rcw
);
3623 set_bit(STRIPE_HANDLE
, &sh
->state
);
3624 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3625 /* prefer read-modify-write, but need to get some data */
3626 if (conf
->mddev
->queue
)
3627 blk_add_trace_msg(conf
->mddev
->queue
,
3628 "raid5 rmw %llu %d",
3629 (unsigned long long)sh
->sector
, rmw
);
3630 for (i
= disks
; i
--; ) {
3631 struct r5dev
*dev
= &sh
->dev
[i
];
3632 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3633 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3634 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3635 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3636 test_bit(R5_Insync
, &dev
->flags
)) {
3637 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3639 pr_debug("Read_old block %d for r-m-w\n",
3641 set_bit(R5_LOCKED
, &dev
->flags
);
3642 set_bit(R5_Wantread
, &dev
->flags
);
3645 set_bit(STRIPE_DELAYED
, &sh
->state
);
3646 set_bit(STRIPE_HANDLE
, &sh
->state
);
3651 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3652 /* want reconstruct write, but need to get some data */
3655 for (i
= disks
; i
--; ) {
3656 struct r5dev
*dev
= &sh
->dev
[i
];
3657 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3658 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3659 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3660 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3661 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3663 if (test_bit(R5_Insync
, &dev
->flags
) &&
3664 test_bit(STRIPE_PREREAD_ACTIVE
,
3666 pr_debug("Read_old block "
3667 "%d for Reconstruct\n", i
);
3668 set_bit(R5_LOCKED
, &dev
->flags
);
3669 set_bit(R5_Wantread
, &dev
->flags
);
3673 set_bit(STRIPE_DELAYED
, &sh
->state
);
3674 set_bit(STRIPE_HANDLE
, &sh
->state
);
3678 if (rcw
&& conf
->mddev
->queue
)
3679 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3680 (unsigned long long)sh
->sector
,
3681 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3684 if (rcw
> disks
&& rmw
> disks
&&
3685 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3686 set_bit(STRIPE_DELAYED
, &sh
->state
);
3688 /* now if nothing is locked, and if we have enough data,
3689 * we can start a write request
3691 /* since handle_stripe can be called at any time we need to handle the
3692 * case where a compute block operation has been submitted and then a
3693 * subsequent call wants to start a write request. raid_run_ops only
3694 * handles the case where compute block and reconstruct are requested
3695 * simultaneously. If this is not the case then new writes need to be
3696 * held off until the compute completes.
3698 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3699 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3700 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3701 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3704 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3705 struct stripe_head_state
*s
, int disks
)
3707 struct r5dev
*dev
= NULL
;
3709 BUG_ON(sh
->batch_head
);
3710 set_bit(STRIPE_HANDLE
, &sh
->state
);
3712 switch (sh
->check_state
) {
3713 case check_state_idle
:
3714 /* start a new check operation if there are no failures */
3715 if (s
->failed
== 0) {
3716 BUG_ON(s
->uptodate
!= disks
);
3717 sh
->check_state
= check_state_run
;
3718 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3719 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3723 dev
= &sh
->dev
[s
->failed_num
[0]];
3725 case check_state_compute_result
:
3726 sh
->check_state
= check_state_idle
;
3728 dev
= &sh
->dev
[sh
->pd_idx
];
3730 /* check that a write has not made the stripe insync */
3731 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3734 /* either failed parity check, or recovery is happening */
3735 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3736 BUG_ON(s
->uptodate
!= disks
);
3738 set_bit(R5_LOCKED
, &dev
->flags
);
3740 set_bit(R5_Wantwrite
, &dev
->flags
);
3742 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3743 set_bit(STRIPE_INSYNC
, &sh
->state
);
3745 case check_state_run
:
3746 break; /* we will be called again upon completion */
3747 case check_state_check_result
:
3748 sh
->check_state
= check_state_idle
;
3750 /* if a failure occurred during the check operation, leave
3751 * STRIPE_INSYNC not set and let the stripe be handled again
3756 /* handle a successful check operation, if parity is correct
3757 * we are done. Otherwise update the mismatch count and repair
3758 * parity if !MD_RECOVERY_CHECK
3760 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3761 /* parity is correct (on disc,
3762 * not in buffer any more)
3764 set_bit(STRIPE_INSYNC
, &sh
->state
);
3766 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3767 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3768 /* don't try to repair!! */
3769 set_bit(STRIPE_INSYNC
, &sh
->state
);
3771 sh
->check_state
= check_state_compute_run
;
3772 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3773 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3774 set_bit(R5_Wantcompute
,
3775 &sh
->dev
[sh
->pd_idx
].flags
);
3776 sh
->ops
.target
= sh
->pd_idx
;
3777 sh
->ops
.target2
= -1;
3782 case check_state_compute_run
:
3785 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3786 __func__
, sh
->check_state
,
3787 (unsigned long long) sh
->sector
);
3792 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3793 struct stripe_head_state
*s
,
3796 int pd_idx
= sh
->pd_idx
;
3797 int qd_idx
= sh
->qd_idx
;
3800 BUG_ON(sh
->batch_head
);
3801 set_bit(STRIPE_HANDLE
, &sh
->state
);
3803 BUG_ON(s
->failed
> 2);
3805 /* Want to check and possibly repair P and Q.
3806 * However there could be one 'failed' device, in which
3807 * case we can only check one of them, possibly using the
3808 * other to generate missing data
3811 switch (sh
->check_state
) {
3812 case check_state_idle
:
3813 /* start a new check operation if there are < 2 failures */
3814 if (s
->failed
== s
->q_failed
) {
3815 /* The only possible failed device holds Q, so it
3816 * makes sense to check P (If anything else were failed,
3817 * we would have used P to recreate it).
3819 sh
->check_state
= check_state_run
;
3821 if (!s
->q_failed
&& s
->failed
< 2) {
3822 /* Q is not failed, and we didn't use it to generate
3823 * anything, so it makes sense to check it
3825 if (sh
->check_state
== check_state_run
)
3826 sh
->check_state
= check_state_run_pq
;
3828 sh
->check_state
= check_state_run_q
;
3831 /* discard potentially stale zero_sum_result */
3832 sh
->ops
.zero_sum_result
= 0;
3834 if (sh
->check_state
== check_state_run
) {
3835 /* async_xor_zero_sum destroys the contents of P */
3836 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3839 if (sh
->check_state
>= check_state_run
&&
3840 sh
->check_state
<= check_state_run_pq
) {
3841 /* async_syndrome_zero_sum preserves P and Q, so
3842 * no need to mark them !uptodate here
3844 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3848 /* we have 2-disk failure */
3849 BUG_ON(s
->failed
!= 2);
3851 case check_state_compute_result
:
3852 sh
->check_state
= check_state_idle
;
3854 /* check that a write has not made the stripe insync */
3855 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3858 /* now write out any block on a failed drive,
3859 * or P or Q if they were recomputed
3861 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3862 if (s
->failed
== 2) {
3863 dev
= &sh
->dev
[s
->failed_num
[1]];
3865 set_bit(R5_LOCKED
, &dev
->flags
);
3866 set_bit(R5_Wantwrite
, &dev
->flags
);
3868 if (s
->failed
>= 1) {
3869 dev
= &sh
->dev
[s
->failed_num
[0]];
3871 set_bit(R5_LOCKED
, &dev
->flags
);
3872 set_bit(R5_Wantwrite
, &dev
->flags
);
3874 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3875 dev
= &sh
->dev
[pd_idx
];
3877 set_bit(R5_LOCKED
, &dev
->flags
);
3878 set_bit(R5_Wantwrite
, &dev
->flags
);
3880 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3881 dev
= &sh
->dev
[qd_idx
];
3883 set_bit(R5_LOCKED
, &dev
->flags
);
3884 set_bit(R5_Wantwrite
, &dev
->flags
);
3886 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3888 set_bit(STRIPE_INSYNC
, &sh
->state
);
3890 case check_state_run
:
3891 case check_state_run_q
:
3892 case check_state_run_pq
:
3893 break; /* we will be called again upon completion */
3894 case check_state_check_result
:
3895 sh
->check_state
= check_state_idle
;
3897 /* handle a successful check operation, if parity is correct
3898 * we are done. Otherwise update the mismatch count and repair
3899 * parity if !MD_RECOVERY_CHECK
3901 if (sh
->ops
.zero_sum_result
== 0) {
3902 /* both parities are correct */
3904 set_bit(STRIPE_INSYNC
, &sh
->state
);
3906 /* in contrast to the raid5 case we can validate
3907 * parity, but still have a failure to write
3910 sh
->check_state
= check_state_compute_result
;
3911 /* Returning at this point means that we may go
3912 * off and bring p and/or q uptodate again so
3913 * we make sure to check zero_sum_result again
3914 * to verify if p or q need writeback
3918 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3919 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3920 /* don't try to repair!! */
3921 set_bit(STRIPE_INSYNC
, &sh
->state
);
3923 int *target
= &sh
->ops
.target
;
3925 sh
->ops
.target
= -1;
3926 sh
->ops
.target2
= -1;
3927 sh
->check_state
= check_state_compute_run
;
3928 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3929 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3930 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3931 set_bit(R5_Wantcompute
,
3932 &sh
->dev
[pd_idx
].flags
);
3934 target
= &sh
->ops
.target2
;
3937 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3938 set_bit(R5_Wantcompute
,
3939 &sh
->dev
[qd_idx
].flags
);
3946 case check_state_compute_run
:
3949 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3950 __func__
, sh
->check_state
,
3951 (unsigned long long) sh
->sector
);
3956 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3960 /* We have read all the blocks in this stripe and now we need to
3961 * copy some of them into a target stripe for expand.
3963 struct dma_async_tx_descriptor
*tx
= NULL
;
3964 BUG_ON(sh
->batch_head
);
3965 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3966 for (i
= 0; i
< sh
->disks
; i
++)
3967 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3969 struct stripe_head
*sh2
;
3970 struct async_submit_ctl submit
;
3972 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
3973 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3975 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
3977 /* so far only the early blocks of this stripe
3978 * have been requested. When later blocks
3979 * get requested, we will try again
3982 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3983 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3984 /* must have already done this block */
3985 raid5_release_stripe(sh2
);
3989 /* place all the copies on one channel */
3990 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3991 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3992 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3995 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3996 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3997 for (j
= 0; j
< conf
->raid_disks
; j
++)
3998 if (j
!= sh2
->pd_idx
&&
4000 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4002 if (j
== conf
->raid_disks
) {
4003 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4004 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4006 raid5_release_stripe(sh2
);
4009 /* done submitting copies, wait for them to complete */
4010 async_tx_quiesce(&tx
);
4014 * handle_stripe - do things to a stripe.
4016 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4017 * state of various bits to see what needs to be done.
4019 * return some read requests which now have data
4020 * return some write requests which are safely on storage
4021 * schedule a read on some buffers
4022 * schedule a write of some buffers
4023 * return confirmation of parity correctness
4027 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4029 struct r5conf
*conf
= sh
->raid_conf
;
4030 int disks
= sh
->disks
;
4033 int do_recovery
= 0;
4035 memset(s
, 0, sizeof(*s
));
4037 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4038 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4039 s
->failed_num
[0] = -1;
4040 s
->failed_num
[1] = -1;
4041 s
->log_failed
= r5l_log_disk_error(conf
);
4043 /* Now to look around and see what can be done */
4045 for (i
=disks
; i
--; ) {
4046 struct md_rdev
*rdev
;
4053 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4055 dev
->toread
, dev
->towrite
, dev
->written
);
4056 /* maybe we can reply to a read
4058 * new wantfill requests are only permitted while
4059 * ops_complete_biofill is guaranteed to be inactive
4061 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4062 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4063 set_bit(R5_Wantfill
, &dev
->flags
);
4065 /* now count some things */
4066 if (test_bit(R5_LOCKED
, &dev
->flags
))
4068 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4070 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4072 BUG_ON(s
->compute
> 2);
4075 if (test_bit(R5_Wantfill
, &dev
->flags
))
4077 else if (dev
->toread
)
4081 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4086 /* Prefer to use the replacement for reads, but only
4087 * if it is recovered enough and has no bad blocks.
4089 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4090 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4091 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4092 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4093 &first_bad
, &bad_sectors
))
4094 set_bit(R5_ReadRepl
, &dev
->flags
);
4096 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4097 set_bit(R5_NeedReplace
, &dev
->flags
);
4099 clear_bit(R5_NeedReplace
, &dev
->flags
);
4100 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4101 clear_bit(R5_ReadRepl
, &dev
->flags
);
4103 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4106 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4107 &first_bad
, &bad_sectors
);
4108 if (s
->blocked_rdev
== NULL
4109 && (test_bit(Blocked
, &rdev
->flags
)
4112 set_bit(BlockedBadBlocks
,
4114 s
->blocked_rdev
= rdev
;
4115 atomic_inc(&rdev
->nr_pending
);
4118 clear_bit(R5_Insync
, &dev
->flags
);
4122 /* also not in-sync */
4123 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4124 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4125 /* treat as in-sync, but with a read error
4126 * which we can now try to correct
4128 set_bit(R5_Insync
, &dev
->flags
);
4129 set_bit(R5_ReadError
, &dev
->flags
);
4131 } else if (test_bit(In_sync
, &rdev
->flags
))
4132 set_bit(R5_Insync
, &dev
->flags
);
4133 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4134 /* in sync if before recovery_offset */
4135 set_bit(R5_Insync
, &dev
->flags
);
4136 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4137 test_bit(R5_Expanded
, &dev
->flags
))
4138 /* If we've reshaped into here, we assume it is Insync.
4139 * We will shortly update recovery_offset to make
4142 set_bit(R5_Insync
, &dev
->flags
);
4144 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4145 /* This flag does not apply to '.replacement'
4146 * only to .rdev, so make sure to check that*/
4147 struct md_rdev
*rdev2
= rcu_dereference(
4148 conf
->disks
[i
].rdev
);
4150 clear_bit(R5_Insync
, &dev
->flags
);
4151 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4152 s
->handle_bad_blocks
= 1;
4153 atomic_inc(&rdev2
->nr_pending
);
4155 clear_bit(R5_WriteError
, &dev
->flags
);
4157 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4158 /* This flag does not apply to '.replacement'
4159 * only to .rdev, so make sure to check that*/
4160 struct md_rdev
*rdev2
= rcu_dereference(
4161 conf
->disks
[i
].rdev
);
4162 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4163 s
->handle_bad_blocks
= 1;
4164 atomic_inc(&rdev2
->nr_pending
);
4166 clear_bit(R5_MadeGood
, &dev
->flags
);
4168 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4169 struct md_rdev
*rdev2
= rcu_dereference(
4170 conf
->disks
[i
].replacement
);
4171 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4172 s
->handle_bad_blocks
= 1;
4173 atomic_inc(&rdev2
->nr_pending
);
4175 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4177 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4178 /* The ReadError flag will just be confusing now */
4179 clear_bit(R5_ReadError
, &dev
->flags
);
4180 clear_bit(R5_ReWrite
, &dev
->flags
);
4182 if (test_bit(R5_ReadError
, &dev
->flags
))
4183 clear_bit(R5_Insync
, &dev
->flags
);
4184 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4186 s
->failed_num
[s
->failed
] = i
;
4188 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4192 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4193 /* If there is a failed device being replaced,
4194 * we must be recovering.
4195 * else if we are after recovery_cp, we must be syncing
4196 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4197 * else we can only be replacing
4198 * sync and recovery both need to read all devices, and so
4199 * use the same flag.
4202 sh
->sector
>= conf
->mddev
->recovery_cp
||
4203 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4211 static int clear_batch_ready(struct stripe_head
*sh
)
4213 /* Return '1' if this is a member of batch, or
4214 * '0' if it is a lone stripe or a head which can now be
4217 struct stripe_head
*tmp
;
4218 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4219 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4220 spin_lock(&sh
->stripe_lock
);
4221 if (!sh
->batch_head
) {
4222 spin_unlock(&sh
->stripe_lock
);
4227 * this stripe could be added to a batch list before we check
4228 * BATCH_READY, skips it
4230 if (sh
->batch_head
!= sh
) {
4231 spin_unlock(&sh
->stripe_lock
);
4234 spin_lock(&sh
->batch_lock
);
4235 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4236 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4237 spin_unlock(&sh
->batch_lock
);
4238 spin_unlock(&sh
->stripe_lock
);
4241 * BATCH_READY is cleared, no new stripes can be added.
4242 * batch_list can be accessed without lock
4247 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4248 unsigned long handle_flags
)
4250 struct stripe_head
*sh
, *next
;
4254 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4256 list_del_init(&sh
->batch_list
);
4258 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4259 (1 << STRIPE_SYNCING
) |
4260 (1 << STRIPE_REPLACED
) |
4261 (1 << STRIPE_DELAYED
) |
4262 (1 << STRIPE_BIT_DELAY
) |
4263 (1 << STRIPE_FULL_WRITE
) |
4264 (1 << STRIPE_BIOFILL_RUN
) |
4265 (1 << STRIPE_COMPUTE_RUN
) |
4266 (1 << STRIPE_OPS_REQ_PENDING
) |
4267 (1 << STRIPE_DISCARD
) |
4268 (1 << STRIPE_BATCH_READY
) |
4269 (1 << STRIPE_BATCH_ERR
) |
4270 (1 << STRIPE_BITMAP_PENDING
)),
4271 "stripe state: %lx\n", sh
->state
);
4272 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4273 (1 << STRIPE_REPLACED
)),
4274 "head stripe state: %lx\n", head_sh
->state
);
4276 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4277 (1 << STRIPE_PREREAD_ACTIVE
) |
4278 (1 << STRIPE_DEGRADED
)),
4279 head_sh
->state
& (1 << STRIPE_INSYNC
));
4281 sh
->check_state
= head_sh
->check_state
;
4282 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4283 for (i
= 0; i
< sh
->disks
; i
++) {
4284 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4286 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4287 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4289 spin_lock_irq(&sh
->stripe_lock
);
4290 sh
->batch_head
= NULL
;
4291 spin_unlock_irq(&sh
->stripe_lock
);
4292 if (handle_flags
== 0 ||
4293 sh
->state
& handle_flags
)
4294 set_bit(STRIPE_HANDLE
, &sh
->state
);
4295 raid5_release_stripe(sh
);
4297 spin_lock_irq(&head_sh
->stripe_lock
);
4298 head_sh
->batch_head
= NULL
;
4299 spin_unlock_irq(&head_sh
->stripe_lock
);
4300 for (i
= 0; i
< head_sh
->disks
; i
++)
4301 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4303 if (head_sh
->state
& handle_flags
)
4304 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4307 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4310 static void handle_stripe(struct stripe_head
*sh
)
4312 struct stripe_head_state s
;
4313 struct r5conf
*conf
= sh
->raid_conf
;
4316 int disks
= sh
->disks
;
4317 struct r5dev
*pdev
, *qdev
;
4319 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4320 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4321 /* already being handled, ensure it gets handled
4322 * again when current action finishes */
4323 set_bit(STRIPE_HANDLE
, &sh
->state
);
4327 if (clear_batch_ready(sh
) ) {
4328 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4332 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4333 break_stripe_batch_list(sh
, 0);
4335 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4336 spin_lock(&sh
->stripe_lock
);
4337 /* Cannot process 'sync' concurrently with 'discard' */
4338 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4339 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4340 set_bit(STRIPE_SYNCING
, &sh
->state
);
4341 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4342 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4344 spin_unlock(&sh
->stripe_lock
);
4346 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4348 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4349 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4350 (unsigned long long)sh
->sector
, sh
->state
,
4351 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4352 sh
->check_state
, sh
->reconstruct_state
);
4354 analyse_stripe(sh
, &s
);
4356 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4359 if (s
.handle_bad_blocks
) {
4360 set_bit(STRIPE_HANDLE
, &sh
->state
);
4364 if (unlikely(s
.blocked_rdev
)) {
4365 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4366 s
.replacing
|| s
.to_write
|| s
.written
) {
4367 set_bit(STRIPE_HANDLE
, &sh
->state
);
4370 /* There is nothing for the blocked_rdev to block */
4371 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4372 s
.blocked_rdev
= NULL
;
4375 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4376 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4377 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4380 pr_debug("locked=%d uptodate=%d to_read=%d"
4381 " to_write=%d failed=%d failed_num=%d,%d\n",
4382 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4383 s
.failed_num
[0], s
.failed_num
[1]);
4384 /* check if the array has lost more than max_degraded devices and,
4385 * if so, some requests might need to be failed.
4387 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4388 sh
->check_state
= 0;
4389 sh
->reconstruct_state
= 0;
4390 break_stripe_batch_list(sh
, 0);
4391 if (s
.to_read
+s
.to_write
+s
.written
)
4392 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4393 if (s
.syncing
+ s
.replacing
)
4394 handle_failed_sync(conf
, sh
, &s
);
4397 /* Now we check to see if any write operations have recently
4401 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4403 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4404 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4405 sh
->reconstruct_state
= reconstruct_state_idle
;
4407 /* All the 'written' buffers and the parity block are ready to
4408 * be written back to disk
4410 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4411 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4412 BUG_ON(sh
->qd_idx
>= 0 &&
4413 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4414 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4415 for (i
= disks
; i
--; ) {
4416 struct r5dev
*dev
= &sh
->dev
[i
];
4417 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4418 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4420 pr_debug("Writing block %d\n", i
);
4421 set_bit(R5_Wantwrite
, &dev
->flags
);
4426 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4427 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4429 set_bit(STRIPE_INSYNC
, &sh
->state
);
4432 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4433 s
.dec_preread_active
= 1;
4437 * might be able to return some write requests if the parity blocks
4438 * are safe, or on a failed drive
4440 pdev
= &sh
->dev
[sh
->pd_idx
];
4441 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4442 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4443 qdev
= &sh
->dev
[sh
->qd_idx
];
4444 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4445 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4449 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4450 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4451 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4452 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4453 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4454 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4455 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4456 test_bit(R5_Discard
, &qdev
->flags
))))))
4457 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4459 /* Now we might consider reading some blocks, either to check/generate
4460 * parity, or to satisfy requests
4461 * or to load a block that is being partially written.
4463 if (s
.to_read
|| s
.non_overwrite
4464 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4465 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4468 handle_stripe_fill(sh
, &s
, disks
);
4470 /* Now to consider new write requests and what else, if anything
4471 * should be read. We do not handle new writes when:
4472 * 1/ A 'write' operation (copy+xor) is already in flight.
4473 * 2/ A 'check' operation is in flight, as it may clobber the parity
4476 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
4477 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4479 /* maybe we need to check and possibly fix the parity for this stripe
4480 * Any reads will already have been scheduled, so we just see if enough
4481 * data is available. The parity check is held off while parity
4482 * dependent operations are in flight.
4484 if (sh
->check_state
||
4485 (s
.syncing
&& s
.locked
== 0 &&
4486 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4487 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4488 if (conf
->level
== 6)
4489 handle_parity_checks6(conf
, sh
, &s
, disks
);
4491 handle_parity_checks5(conf
, sh
, &s
, disks
);
4494 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4495 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4496 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4497 /* Write out to replacement devices where possible */
4498 for (i
= 0; i
< conf
->raid_disks
; i
++)
4499 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4500 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4501 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4502 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4506 set_bit(STRIPE_INSYNC
, &sh
->state
);
4507 set_bit(STRIPE_REPLACED
, &sh
->state
);
4509 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4510 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4511 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4512 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4513 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4514 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4515 wake_up(&conf
->wait_for_overlap
);
4518 /* If the failed drives are just a ReadError, then we might need
4519 * to progress the repair/check process
4521 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4522 for (i
= 0; i
< s
.failed
; i
++) {
4523 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4524 if (test_bit(R5_ReadError
, &dev
->flags
)
4525 && !test_bit(R5_LOCKED
, &dev
->flags
)
4526 && test_bit(R5_UPTODATE
, &dev
->flags
)
4528 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4529 set_bit(R5_Wantwrite
, &dev
->flags
);
4530 set_bit(R5_ReWrite
, &dev
->flags
);
4531 set_bit(R5_LOCKED
, &dev
->flags
);
4534 /* let's read it back */
4535 set_bit(R5_Wantread
, &dev
->flags
);
4536 set_bit(R5_LOCKED
, &dev
->flags
);
4542 /* Finish reconstruct operations initiated by the expansion process */
4543 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4544 struct stripe_head
*sh_src
4545 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4546 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4547 /* sh cannot be written until sh_src has been read.
4548 * so arrange for sh to be delayed a little
4550 set_bit(STRIPE_DELAYED
, &sh
->state
);
4551 set_bit(STRIPE_HANDLE
, &sh
->state
);
4552 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4554 atomic_inc(&conf
->preread_active_stripes
);
4555 raid5_release_stripe(sh_src
);
4559 raid5_release_stripe(sh_src
);
4561 sh
->reconstruct_state
= reconstruct_state_idle
;
4562 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4563 for (i
= conf
->raid_disks
; i
--; ) {
4564 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4565 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4570 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4571 !sh
->reconstruct_state
) {
4572 /* Need to write out all blocks after computing parity */
4573 sh
->disks
= conf
->raid_disks
;
4574 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4575 schedule_reconstruction(sh
, &s
, 1, 1);
4576 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4577 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4578 atomic_dec(&conf
->reshape_stripes
);
4579 wake_up(&conf
->wait_for_overlap
);
4580 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4583 if (s
.expanding
&& s
.locked
== 0 &&
4584 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4585 handle_stripe_expansion(conf
, sh
);
4588 /* wait for this device to become unblocked */
4589 if (unlikely(s
.blocked_rdev
)) {
4590 if (conf
->mddev
->external
)
4591 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4594 /* Internal metadata will immediately
4595 * be written by raid5d, so we don't
4596 * need to wait here.
4598 rdev_dec_pending(s
.blocked_rdev
,
4602 if (s
.handle_bad_blocks
)
4603 for (i
= disks
; i
--; ) {
4604 struct md_rdev
*rdev
;
4605 struct r5dev
*dev
= &sh
->dev
[i
];
4606 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4607 /* We own a safe reference to the rdev */
4608 rdev
= conf
->disks
[i
].rdev
;
4609 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4611 md_error(conf
->mddev
, rdev
);
4612 rdev_dec_pending(rdev
, conf
->mddev
);
4614 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4615 rdev
= conf
->disks
[i
].rdev
;
4616 rdev_clear_badblocks(rdev
, sh
->sector
,
4618 rdev_dec_pending(rdev
, conf
->mddev
);
4620 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4621 rdev
= conf
->disks
[i
].replacement
;
4623 /* rdev have been moved down */
4624 rdev
= conf
->disks
[i
].rdev
;
4625 rdev_clear_badblocks(rdev
, sh
->sector
,
4627 rdev_dec_pending(rdev
, conf
->mddev
);
4632 raid_run_ops(sh
, s
.ops_request
);
4636 if (s
.dec_preread_active
) {
4637 /* We delay this until after ops_run_io so that if make_request
4638 * is waiting on a flush, it won't continue until the writes
4639 * have actually been submitted.
4641 atomic_dec(&conf
->preread_active_stripes
);
4642 if (atomic_read(&conf
->preread_active_stripes
) <
4644 md_wakeup_thread(conf
->mddev
->thread
);
4647 if (!bio_list_empty(&s
.return_bi
)) {
4648 if (test_bit(MD_CHANGE_PENDING
, &conf
->mddev
->flags
) &&
4649 (s
.failed
<= conf
->max_degraded
||
4650 conf
->mddev
->external
== 0)) {
4651 spin_lock_irq(&conf
->device_lock
);
4652 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4653 spin_unlock_irq(&conf
->device_lock
);
4654 md_wakeup_thread(conf
->mddev
->thread
);
4656 return_io(&s
.return_bi
);
4659 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4662 static void raid5_activate_delayed(struct r5conf
*conf
)
4664 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4665 while (!list_empty(&conf
->delayed_list
)) {
4666 struct list_head
*l
= conf
->delayed_list
.next
;
4667 struct stripe_head
*sh
;
4668 sh
= list_entry(l
, struct stripe_head
, lru
);
4670 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4671 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4672 atomic_inc(&conf
->preread_active_stripes
);
4673 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4674 raid5_wakeup_stripe_thread(sh
);
4679 static void activate_bit_delay(struct r5conf
*conf
,
4680 struct list_head
*temp_inactive_list
)
4682 /* device_lock is held */
4683 struct list_head head
;
4684 list_add(&head
, &conf
->bitmap_list
);
4685 list_del_init(&conf
->bitmap_list
);
4686 while (!list_empty(&head
)) {
4687 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4689 list_del_init(&sh
->lru
);
4690 atomic_inc(&sh
->count
);
4691 hash
= sh
->hash_lock_index
;
4692 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4696 static int raid5_congested(struct mddev
*mddev
, int bits
)
4698 struct r5conf
*conf
= mddev
->private;
4700 /* No difference between reads and writes. Just check
4701 * how busy the stripe_cache is
4704 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4708 if (atomic_read(&conf
->empty_inactive_list_nr
))
4714 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4716 struct r5conf
*conf
= mddev
->private;
4717 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4718 unsigned int chunk_sectors
;
4719 unsigned int bio_sectors
= bio_sectors(bio
);
4721 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4722 return chunk_sectors
>=
4723 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4727 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4728 * later sampled by raid5d.
4730 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4732 unsigned long flags
;
4734 spin_lock_irqsave(&conf
->device_lock
, flags
);
4736 bi
->bi_next
= conf
->retry_read_aligned_list
;
4737 conf
->retry_read_aligned_list
= bi
;
4739 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4740 md_wakeup_thread(conf
->mddev
->thread
);
4743 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4747 bi
= conf
->retry_read_aligned
;
4749 conf
->retry_read_aligned
= NULL
;
4752 bi
= conf
->retry_read_aligned_list
;
4754 conf
->retry_read_aligned_list
= bi
->bi_next
;
4757 * this sets the active strip count to 1 and the processed
4758 * strip count to zero (upper 8 bits)
4760 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4767 * The "raid5_align_endio" should check if the read succeeded and if it
4768 * did, call bio_endio on the original bio (having bio_put the new bio
4770 * If the read failed..
4772 static void raid5_align_endio(struct bio
*bi
)
4774 struct bio
* raid_bi
= bi
->bi_private
;
4775 struct mddev
*mddev
;
4776 struct r5conf
*conf
;
4777 struct md_rdev
*rdev
;
4778 int error
= bi
->bi_error
;
4782 rdev
= (void*)raid_bi
->bi_next
;
4783 raid_bi
->bi_next
= NULL
;
4784 mddev
= rdev
->mddev
;
4785 conf
= mddev
->private;
4787 rdev_dec_pending(rdev
, conf
->mddev
);
4790 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4793 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4794 wake_up(&conf
->wait_for_quiescent
);
4798 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4800 add_bio_to_retry(raid_bi
, conf
);
4803 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4805 struct r5conf
*conf
= mddev
->private;
4807 struct bio
* align_bi
;
4808 struct md_rdev
*rdev
;
4809 sector_t end_sector
;
4811 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4812 pr_debug("%s: non aligned\n", __func__
);
4816 * use bio_clone_mddev to make a copy of the bio
4818 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4822 * set bi_end_io to a new function, and set bi_private to the
4825 align_bi
->bi_end_io
= raid5_align_endio
;
4826 align_bi
->bi_private
= raid_bio
;
4830 align_bi
->bi_iter
.bi_sector
=
4831 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4834 end_sector
= bio_end_sector(align_bi
);
4836 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4837 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4838 rdev
->recovery_offset
< end_sector
) {
4839 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4841 (test_bit(Faulty
, &rdev
->flags
) ||
4842 !(test_bit(In_sync
, &rdev
->flags
) ||
4843 rdev
->recovery_offset
>= end_sector
)))
4850 atomic_inc(&rdev
->nr_pending
);
4852 raid_bio
->bi_next
= (void*)rdev
;
4853 align_bi
->bi_bdev
= rdev
->bdev
;
4854 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4856 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4857 bio_sectors(align_bi
),
4858 &first_bad
, &bad_sectors
)) {
4860 rdev_dec_pending(rdev
, mddev
);
4864 /* No reshape active, so we can trust rdev->data_offset */
4865 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4867 spin_lock_irq(&conf
->device_lock
);
4868 wait_event_lock_irq(conf
->wait_for_quiescent
,
4871 atomic_inc(&conf
->active_aligned_reads
);
4872 spin_unlock_irq(&conf
->device_lock
);
4875 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4876 align_bi
, disk_devt(mddev
->gendisk
),
4877 raid_bio
->bi_iter
.bi_sector
);
4878 generic_make_request(align_bi
);
4887 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
4892 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
4893 unsigned chunk_sects
= mddev
->chunk_sectors
;
4894 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
4896 if (sectors
< bio_sectors(raid_bio
)) {
4897 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
4898 bio_chain(split
, raid_bio
);
4902 if (!raid5_read_one_chunk(mddev
, split
)) {
4903 if (split
!= raid_bio
)
4904 generic_make_request(raid_bio
);
4907 } while (split
!= raid_bio
);
4912 /* __get_priority_stripe - get the next stripe to process
4914 * Full stripe writes are allowed to pass preread active stripes up until
4915 * the bypass_threshold is exceeded. In general the bypass_count
4916 * increments when the handle_list is handled before the hold_list; however, it
4917 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4918 * stripe with in flight i/o. The bypass_count will be reset when the
4919 * head of the hold_list has changed, i.e. the head was promoted to the
4922 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4924 struct stripe_head
*sh
= NULL
, *tmp
;
4925 struct list_head
*handle_list
= NULL
;
4926 struct r5worker_group
*wg
= NULL
;
4928 if (conf
->worker_cnt_per_group
== 0) {
4929 handle_list
= &conf
->handle_list
;
4930 } else if (group
!= ANY_GROUP
) {
4931 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4932 wg
= &conf
->worker_groups
[group
];
4935 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4936 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4937 wg
= &conf
->worker_groups
[i
];
4938 if (!list_empty(handle_list
))
4943 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4945 list_empty(handle_list
) ? "empty" : "busy",
4946 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4947 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4949 if (!list_empty(handle_list
)) {
4950 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4952 if (list_empty(&conf
->hold_list
))
4953 conf
->bypass_count
= 0;
4954 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4955 if (conf
->hold_list
.next
== conf
->last_hold
)
4956 conf
->bypass_count
++;
4958 conf
->last_hold
= conf
->hold_list
.next
;
4959 conf
->bypass_count
-= conf
->bypass_threshold
;
4960 if (conf
->bypass_count
< 0)
4961 conf
->bypass_count
= 0;
4964 } else if (!list_empty(&conf
->hold_list
) &&
4965 ((conf
->bypass_threshold
&&
4966 conf
->bypass_count
> conf
->bypass_threshold
) ||
4967 atomic_read(&conf
->pending_full_writes
) == 0)) {
4969 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4970 if (conf
->worker_cnt_per_group
== 0 ||
4971 group
== ANY_GROUP
||
4972 !cpu_online(tmp
->cpu
) ||
4973 cpu_to_group(tmp
->cpu
) == group
) {
4980 conf
->bypass_count
-= conf
->bypass_threshold
;
4981 if (conf
->bypass_count
< 0)
4982 conf
->bypass_count
= 0;
4994 list_del_init(&sh
->lru
);
4995 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
4999 struct raid5_plug_cb
{
5000 struct blk_plug_cb cb
;
5001 struct list_head list
;
5002 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5005 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5007 struct raid5_plug_cb
*cb
= container_of(
5008 blk_cb
, struct raid5_plug_cb
, cb
);
5009 struct stripe_head
*sh
;
5010 struct mddev
*mddev
= cb
->cb
.data
;
5011 struct r5conf
*conf
= mddev
->private;
5015 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5016 spin_lock_irq(&conf
->device_lock
);
5017 while (!list_empty(&cb
->list
)) {
5018 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5019 list_del_init(&sh
->lru
);
5021 * avoid race release_stripe_plug() sees
5022 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5023 * is still in our list
5025 smp_mb__before_atomic();
5026 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5028 * STRIPE_ON_RELEASE_LIST could be set here. In that
5029 * case, the count is always > 1 here
5031 hash
= sh
->hash_lock_index
;
5032 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5035 spin_unlock_irq(&conf
->device_lock
);
5037 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5038 NR_STRIPE_HASH_LOCKS
);
5040 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5044 static void release_stripe_plug(struct mddev
*mddev
,
5045 struct stripe_head
*sh
)
5047 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5048 raid5_unplug
, mddev
,
5049 sizeof(struct raid5_plug_cb
));
5050 struct raid5_plug_cb
*cb
;
5053 raid5_release_stripe(sh
);
5057 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5059 if (cb
->list
.next
== NULL
) {
5061 INIT_LIST_HEAD(&cb
->list
);
5062 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5063 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5066 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5067 list_add_tail(&sh
->lru
, &cb
->list
);
5069 raid5_release_stripe(sh
);
5072 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5074 struct r5conf
*conf
= mddev
->private;
5075 sector_t logical_sector
, last_sector
;
5076 struct stripe_head
*sh
;
5080 if (mddev
->reshape_position
!= MaxSector
)
5081 /* Skip discard while reshape is happening */
5084 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5085 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5088 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5090 stripe_sectors
= conf
->chunk_sectors
*
5091 (conf
->raid_disks
- conf
->max_degraded
);
5092 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5094 sector_div(last_sector
, stripe_sectors
);
5096 logical_sector
*= conf
->chunk_sectors
;
5097 last_sector
*= conf
->chunk_sectors
;
5099 for (; logical_sector
< last_sector
;
5100 logical_sector
+= STRIPE_SECTORS
) {
5104 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5105 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5106 TASK_UNINTERRUPTIBLE
);
5107 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5108 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5109 raid5_release_stripe(sh
);
5113 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5114 spin_lock_irq(&sh
->stripe_lock
);
5115 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5116 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5118 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5119 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5120 spin_unlock_irq(&sh
->stripe_lock
);
5121 raid5_release_stripe(sh
);
5126 set_bit(STRIPE_DISCARD
, &sh
->state
);
5127 finish_wait(&conf
->wait_for_overlap
, &w
);
5128 sh
->overwrite_disks
= 0;
5129 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5130 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5132 sh
->dev
[d
].towrite
= bi
;
5133 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5134 raid5_inc_bi_active_stripes(bi
);
5135 sh
->overwrite_disks
++;
5137 spin_unlock_irq(&sh
->stripe_lock
);
5138 if (conf
->mddev
->bitmap
) {
5140 d
< conf
->raid_disks
- conf
->max_degraded
;
5142 bitmap_startwrite(mddev
->bitmap
,
5146 sh
->bm_seq
= conf
->seq_flush
+ 1;
5147 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5150 set_bit(STRIPE_HANDLE
, &sh
->state
);
5151 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5152 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5153 atomic_inc(&conf
->preread_active_stripes
);
5154 release_stripe_plug(mddev
, sh
);
5157 remaining
= raid5_dec_bi_active_stripes(bi
);
5158 if (remaining
== 0) {
5159 md_write_end(mddev
);
5164 static void raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5166 struct r5conf
*conf
= mddev
->private;
5168 sector_t new_sector
;
5169 sector_t logical_sector
, last_sector
;
5170 struct stripe_head
*sh
;
5171 const int rw
= bio_data_dir(bi
);
5176 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5177 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5181 if (ret
== -ENODEV
) {
5182 md_flush_request(mddev
, bi
);
5185 /* ret == -EAGAIN, fallback */
5188 md_write_start(mddev
, bi
);
5191 * If array is degraded, better not do chunk aligned read because
5192 * later we might have to read it again in order to reconstruct
5193 * data on failed drives.
5195 if (rw
== READ
&& mddev
->degraded
== 0 &&
5196 mddev
->reshape_position
== MaxSector
) {
5197 bi
= chunk_aligned_read(mddev
, bi
);
5202 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5203 make_discard_request(mddev
, bi
);
5207 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5208 last_sector
= bio_end_sector(bi
);
5210 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5212 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5213 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5219 seq
= read_seqcount_begin(&conf
->gen_lock
);
5222 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5223 TASK_UNINTERRUPTIBLE
);
5224 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5225 /* spinlock is needed as reshape_progress may be
5226 * 64bit on a 32bit platform, and so it might be
5227 * possible to see a half-updated value
5228 * Of course reshape_progress could change after
5229 * the lock is dropped, so once we get a reference
5230 * to the stripe that we think it is, we will have
5233 spin_lock_irq(&conf
->device_lock
);
5234 if (mddev
->reshape_backwards
5235 ? logical_sector
< conf
->reshape_progress
5236 : logical_sector
>= conf
->reshape_progress
) {
5239 if (mddev
->reshape_backwards
5240 ? logical_sector
< conf
->reshape_safe
5241 : logical_sector
>= conf
->reshape_safe
) {
5242 spin_unlock_irq(&conf
->device_lock
);
5248 spin_unlock_irq(&conf
->device_lock
);
5251 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5254 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5255 (unsigned long long)new_sector
,
5256 (unsigned long long)logical_sector
);
5258 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5259 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5261 if (unlikely(previous
)) {
5262 /* expansion might have moved on while waiting for a
5263 * stripe, so we must do the range check again.
5264 * Expansion could still move past after this
5265 * test, but as we are holding a reference to
5266 * 'sh', we know that if that happens,
5267 * STRIPE_EXPANDING will get set and the expansion
5268 * won't proceed until we finish with the stripe.
5271 spin_lock_irq(&conf
->device_lock
);
5272 if (mddev
->reshape_backwards
5273 ? logical_sector
>= conf
->reshape_progress
5274 : logical_sector
< conf
->reshape_progress
)
5275 /* mismatch, need to try again */
5277 spin_unlock_irq(&conf
->device_lock
);
5279 raid5_release_stripe(sh
);
5285 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5286 /* Might have got the wrong stripe_head
5289 raid5_release_stripe(sh
);
5294 logical_sector
>= mddev
->suspend_lo
&&
5295 logical_sector
< mddev
->suspend_hi
) {
5296 raid5_release_stripe(sh
);
5297 /* As the suspend_* range is controlled by
5298 * userspace, we want an interruptible
5301 flush_signals(current
);
5302 prepare_to_wait(&conf
->wait_for_overlap
,
5303 &w
, TASK_INTERRUPTIBLE
);
5304 if (logical_sector
>= mddev
->suspend_lo
&&
5305 logical_sector
< mddev
->suspend_hi
) {
5312 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5313 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5314 /* Stripe is busy expanding or
5315 * add failed due to overlap. Flush everything
5318 md_wakeup_thread(mddev
->thread
);
5319 raid5_release_stripe(sh
);
5324 set_bit(STRIPE_HANDLE
, &sh
->state
);
5325 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5326 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5327 (bi
->bi_opf
& REQ_SYNC
) &&
5328 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5329 atomic_inc(&conf
->preread_active_stripes
);
5330 release_stripe_plug(mddev
, sh
);
5332 /* cannot get stripe for read-ahead, just give-up */
5333 bi
->bi_error
= -EIO
;
5337 finish_wait(&conf
->wait_for_overlap
, &w
);
5339 remaining
= raid5_dec_bi_active_stripes(bi
);
5340 if (remaining
== 0) {
5343 md_write_end(mddev
);
5345 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5351 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5353 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5355 /* reshaping is quite different to recovery/resync so it is
5356 * handled quite separately ... here.
5358 * On each call to sync_request, we gather one chunk worth of
5359 * destination stripes and flag them as expanding.
5360 * Then we find all the source stripes and request reads.
5361 * As the reads complete, handle_stripe will copy the data
5362 * into the destination stripe and release that stripe.
5364 struct r5conf
*conf
= mddev
->private;
5365 struct stripe_head
*sh
;
5366 sector_t first_sector
, last_sector
;
5367 int raid_disks
= conf
->previous_raid_disks
;
5368 int data_disks
= raid_disks
- conf
->max_degraded
;
5369 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5372 sector_t writepos
, readpos
, safepos
;
5373 sector_t stripe_addr
;
5374 int reshape_sectors
;
5375 struct list_head stripes
;
5378 if (sector_nr
== 0) {
5379 /* If restarting in the middle, skip the initial sectors */
5380 if (mddev
->reshape_backwards
&&
5381 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5382 sector_nr
= raid5_size(mddev
, 0, 0)
5383 - conf
->reshape_progress
;
5384 } else if (mddev
->reshape_backwards
&&
5385 conf
->reshape_progress
== MaxSector
) {
5386 /* shouldn't happen, but just in case, finish up.*/
5387 sector_nr
= MaxSector
;
5388 } else if (!mddev
->reshape_backwards
&&
5389 conf
->reshape_progress
> 0)
5390 sector_nr
= conf
->reshape_progress
;
5391 sector_div(sector_nr
, new_data_disks
);
5393 mddev
->curr_resync_completed
= sector_nr
;
5394 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5401 /* We need to process a full chunk at a time.
5402 * If old and new chunk sizes differ, we need to process the
5406 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5408 /* We update the metadata at least every 10 seconds, or when
5409 * the data about to be copied would over-write the source of
5410 * the data at the front of the range. i.e. one new_stripe
5411 * along from reshape_progress new_maps to after where
5412 * reshape_safe old_maps to
5414 writepos
= conf
->reshape_progress
;
5415 sector_div(writepos
, new_data_disks
);
5416 readpos
= conf
->reshape_progress
;
5417 sector_div(readpos
, data_disks
);
5418 safepos
= conf
->reshape_safe
;
5419 sector_div(safepos
, data_disks
);
5420 if (mddev
->reshape_backwards
) {
5421 BUG_ON(writepos
< reshape_sectors
);
5422 writepos
-= reshape_sectors
;
5423 readpos
+= reshape_sectors
;
5424 safepos
+= reshape_sectors
;
5426 writepos
+= reshape_sectors
;
5427 /* readpos and safepos are worst-case calculations.
5428 * A negative number is overly pessimistic, and causes
5429 * obvious problems for unsigned storage. So clip to 0.
5431 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5432 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5435 /* Having calculated the 'writepos' possibly use it
5436 * to set 'stripe_addr' which is where we will write to.
5438 if (mddev
->reshape_backwards
) {
5439 BUG_ON(conf
->reshape_progress
== 0);
5440 stripe_addr
= writepos
;
5441 BUG_ON((mddev
->dev_sectors
&
5442 ~((sector_t
)reshape_sectors
- 1))
5443 - reshape_sectors
- stripe_addr
5446 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5447 stripe_addr
= sector_nr
;
5450 /* 'writepos' is the most advanced device address we might write.
5451 * 'readpos' is the least advanced device address we might read.
5452 * 'safepos' is the least address recorded in the metadata as having
5454 * If there is a min_offset_diff, these are adjusted either by
5455 * increasing the safepos/readpos if diff is negative, or
5456 * increasing writepos if diff is positive.
5457 * If 'readpos' is then behind 'writepos', there is no way that we can
5458 * ensure safety in the face of a crash - that must be done by userspace
5459 * making a backup of the data. So in that case there is no particular
5460 * rush to update metadata.
5461 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5462 * update the metadata to advance 'safepos' to match 'readpos' so that
5463 * we can be safe in the event of a crash.
5464 * So we insist on updating metadata if safepos is behind writepos and
5465 * readpos is beyond writepos.
5466 * In any case, update the metadata every 10 seconds.
5467 * Maybe that number should be configurable, but I'm not sure it is
5468 * worth it.... maybe it could be a multiple of safemode_delay???
5470 if (conf
->min_offset_diff
< 0) {
5471 safepos
+= -conf
->min_offset_diff
;
5472 readpos
+= -conf
->min_offset_diff
;
5474 writepos
+= conf
->min_offset_diff
;
5476 if ((mddev
->reshape_backwards
5477 ? (safepos
> writepos
&& readpos
< writepos
)
5478 : (safepos
< writepos
&& readpos
> writepos
)) ||
5479 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5480 /* Cannot proceed until we've updated the superblock... */
5481 wait_event(conf
->wait_for_overlap
,
5482 atomic_read(&conf
->reshape_stripes
)==0
5483 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5484 if (atomic_read(&conf
->reshape_stripes
) != 0)
5486 mddev
->reshape_position
= conf
->reshape_progress
;
5487 mddev
->curr_resync_completed
= sector_nr
;
5488 conf
->reshape_checkpoint
= jiffies
;
5489 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5490 md_wakeup_thread(mddev
->thread
);
5491 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5492 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5493 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5495 spin_lock_irq(&conf
->device_lock
);
5496 conf
->reshape_safe
= mddev
->reshape_position
;
5497 spin_unlock_irq(&conf
->device_lock
);
5498 wake_up(&conf
->wait_for_overlap
);
5499 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5502 INIT_LIST_HEAD(&stripes
);
5503 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5505 int skipped_disk
= 0;
5506 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5507 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5508 atomic_inc(&conf
->reshape_stripes
);
5509 /* If any of this stripe is beyond the end of the old
5510 * array, then we need to zero those blocks
5512 for (j
=sh
->disks
; j
--;) {
5514 if (j
== sh
->pd_idx
)
5516 if (conf
->level
== 6 &&
5519 s
= raid5_compute_blocknr(sh
, j
, 0);
5520 if (s
< raid5_size(mddev
, 0, 0)) {
5524 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5525 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5526 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5528 if (!skipped_disk
) {
5529 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5530 set_bit(STRIPE_HANDLE
, &sh
->state
);
5532 list_add(&sh
->lru
, &stripes
);
5534 spin_lock_irq(&conf
->device_lock
);
5535 if (mddev
->reshape_backwards
)
5536 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5538 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5539 spin_unlock_irq(&conf
->device_lock
);
5540 /* Ok, those stripe are ready. We can start scheduling
5541 * reads on the source stripes.
5542 * The source stripes are determined by mapping the first and last
5543 * block on the destination stripes.
5546 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5549 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5550 * new_data_disks
- 1),
5552 if (last_sector
>= mddev
->dev_sectors
)
5553 last_sector
= mddev
->dev_sectors
- 1;
5554 while (first_sector
<= last_sector
) {
5555 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5556 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5557 set_bit(STRIPE_HANDLE
, &sh
->state
);
5558 raid5_release_stripe(sh
);
5559 first_sector
+= STRIPE_SECTORS
;
5561 /* Now that the sources are clearly marked, we can release
5562 * the destination stripes
5564 while (!list_empty(&stripes
)) {
5565 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5566 list_del_init(&sh
->lru
);
5567 raid5_release_stripe(sh
);
5569 /* If this takes us to the resync_max point where we have to pause,
5570 * then we need to write out the superblock.
5572 sector_nr
+= reshape_sectors
;
5573 retn
= reshape_sectors
;
5575 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5576 (sector_nr
- mddev
->curr_resync_completed
) * 2
5577 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5578 /* Cannot proceed until we've updated the superblock... */
5579 wait_event(conf
->wait_for_overlap
,
5580 atomic_read(&conf
->reshape_stripes
) == 0
5581 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5582 if (atomic_read(&conf
->reshape_stripes
) != 0)
5584 mddev
->reshape_position
= conf
->reshape_progress
;
5585 mddev
->curr_resync_completed
= sector_nr
;
5586 conf
->reshape_checkpoint
= jiffies
;
5587 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5588 md_wakeup_thread(mddev
->thread
);
5589 wait_event(mddev
->sb_wait
,
5590 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5591 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5592 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5594 spin_lock_irq(&conf
->device_lock
);
5595 conf
->reshape_safe
= mddev
->reshape_position
;
5596 spin_unlock_irq(&conf
->device_lock
);
5597 wake_up(&conf
->wait_for_overlap
);
5598 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5604 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
5607 struct r5conf
*conf
= mddev
->private;
5608 struct stripe_head
*sh
;
5609 sector_t max_sector
= mddev
->dev_sectors
;
5610 sector_t sync_blocks
;
5611 int still_degraded
= 0;
5614 if (sector_nr
>= max_sector
) {
5615 /* just being told to finish up .. nothing much to do */
5617 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5622 if (mddev
->curr_resync
< max_sector
) /* aborted */
5623 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5625 else /* completed sync */
5627 bitmap_close_sync(mddev
->bitmap
);
5632 /* Allow raid5_quiesce to complete */
5633 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5635 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5636 return reshape_request(mddev
, sector_nr
, skipped
);
5638 /* No need to check resync_max as we never do more than one
5639 * stripe, and as resync_max will always be on a chunk boundary,
5640 * if the check in md_do_sync didn't fire, there is no chance
5641 * of overstepping resync_max here
5644 /* if there is too many failed drives and we are trying
5645 * to resync, then assert that we are finished, because there is
5646 * nothing we can do.
5648 if (mddev
->degraded
>= conf
->max_degraded
&&
5649 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5650 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5654 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5656 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5657 sync_blocks
>= STRIPE_SECTORS
) {
5658 /* we can skip this block, and probably more */
5659 sync_blocks
/= STRIPE_SECTORS
;
5661 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5664 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5666 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5668 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5669 /* make sure we don't swamp the stripe cache if someone else
5670 * is trying to get access
5672 schedule_timeout_uninterruptible(1);
5674 /* Need to check if array will still be degraded after recovery/resync
5675 * Note in case of > 1 drive failures it's possible we're rebuilding
5676 * one drive while leaving another faulty drive in array.
5679 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5680 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5682 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5687 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5689 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5690 set_bit(STRIPE_HANDLE
, &sh
->state
);
5692 raid5_release_stripe(sh
);
5694 return STRIPE_SECTORS
;
5697 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5699 /* We may not be able to submit a whole bio at once as there
5700 * may not be enough stripe_heads available.
5701 * We cannot pre-allocate enough stripe_heads as we may need
5702 * more than exist in the cache (if we allow ever large chunks).
5703 * So we do one stripe head at a time and record in
5704 * ->bi_hw_segments how many have been done.
5706 * We *know* that this entire raid_bio is in one chunk, so
5707 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5709 struct stripe_head
*sh
;
5711 sector_t sector
, logical_sector
, last_sector
;
5716 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5717 ~((sector_t
)STRIPE_SECTORS
-1);
5718 sector
= raid5_compute_sector(conf
, logical_sector
,
5720 last_sector
= bio_end_sector(raid_bio
);
5722 for (; logical_sector
< last_sector
;
5723 logical_sector
+= STRIPE_SECTORS
,
5724 sector
+= STRIPE_SECTORS
,
5727 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5728 /* already done this stripe */
5731 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5734 /* failed to get a stripe - must wait */
5735 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5736 conf
->retry_read_aligned
= raid_bio
;
5740 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5741 raid5_release_stripe(sh
);
5742 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5743 conf
->retry_read_aligned
= raid_bio
;
5747 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5749 raid5_release_stripe(sh
);
5752 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5753 if (remaining
== 0) {
5754 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5756 bio_endio(raid_bio
);
5758 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5759 wake_up(&conf
->wait_for_quiescent
);
5763 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5764 struct r5worker
*worker
,
5765 struct list_head
*temp_inactive_list
)
5767 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5768 int i
, batch_size
= 0, hash
;
5769 bool release_inactive
= false;
5771 while (batch_size
< MAX_STRIPE_BATCH
&&
5772 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5773 batch
[batch_size
++] = sh
;
5775 if (batch_size
== 0) {
5776 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5777 if (!list_empty(temp_inactive_list
+ i
))
5779 if (i
== NR_STRIPE_HASH_LOCKS
) {
5780 spin_unlock_irq(&conf
->device_lock
);
5781 r5l_flush_stripe_to_raid(conf
->log
);
5782 spin_lock_irq(&conf
->device_lock
);
5785 release_inactive
= true;
5787 spin_unlock_irq(&conf
->device_lock
);
5789 release_inactive_stripe_list(conf
, temp_inactive_list
,
5790 NR_STRIPE_HASH_LOCKS
);
5792 r5l_flush_stripe_to_raid(conf
->log
);
5793 if (release_inactive
) {
5794 spin_lock_irq(&conf
->device_lock
);
5798 for (i
= 0; i
< batch_size
; i
++)
5799 handle_stripe(batch
[i
]);
5800 r5l_write_stripe_run(conf
->log
);
5804 spin_lock_irq(&conf
->device_lock
);
5805 for (i
= 0; i
< batch_size
; i
++) {
5806 hash
= batch
[i
]->hash_lock_index
;
5807 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5812 static void raid5_do_work(struct work_struct
*work
)
5814 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5815 struct r5worker_group
*group
= worker
->group
;
5816 struct r5conf
*conf
= group
->conf
;
5817 int group_id
= group
- conf
->worker_groups
;
5819 struct blk_plug plug
;
5821 pr_debug("+++ raid5worker active\n");
5823 blk_start_plug(&plug
);
5825 spin_lock_irq(&conf
->device_lock
);
5827 int batch_size
, released
;
5829 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5831 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5832 worker
->temp_inactive_list
);
5833 worker
->working
= false;
5834 if (!batch_size
&& !released
)
5836 handled
+= batch_size
;
5838 pr_debug("%d stripes handled\n", handled
);
5840 spin_unlock_irq(&conf
->device_lock
);
5841 blk_finish_plug(&plug
);
5843 pr_debug("--- raid5worker inactive\n");
5847 * This is our raid5 kernel thread.
5849 * We scan the hash table for stripes which can be handled now.
5850 * During the scan, completed stripes are saved for us by the interrupt
5851 * handler, so that they will not have to wait for our next wakeup.
5853 static void raid5d(struct md_thread
*thread
)
5855 struct mddev
*mddev
= thread
->mddev
;
5856 struct r5conf
*conf
= mddev
->private;
5858 struct blk_plug plug
;
5860 pr_debug("+++ raid5d active\n");
5862 md_check_recovery(mddev
);
5864 if (!bio_list_empty(&conf
->return_bi
) &&
5865 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5866 struct bio_list tmp
= BIO_EMPTY_LIST
;
5867 spin_lock_irq(&conf
->device_lock
);
5868 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5869 bio_list_merge(&tmp
, &conf
->return_bi
);
5870 bio_list_init(&conf
->return_bi
);
5872 spin_unlock_irq(&conf
->device_lock
);
5876 blk_start_plug(&plug
);
5878 spin_lock_irq(&conf
->device_lock
);
5881 int batch_size
, released
;
5883 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5885 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5888 !list_empty(&conf
->bitmap_list
)) {
5889 /* Now is a good time to flush some bitmap updates */
5891 spin_unlock_irq(&conf
->device_lock
);
5892 bitmap_unplug(mddev
->bitmap
);
5893 spin_lock_irq(&conf
->device_lock
);
5894 conf
->seq_write
= conf
->seq_flush
;
5895 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5897 raid5_activate_delayed(conf
);
5899 while ((bio
= remove_bio_from_retry(conf
))) {
5901 spin_unlock_irq(&conf
->device_lock
);
5902 ok
= retry_aligned_read(conf
, bio
);
5903 spin_lock_irq(&conf
->device_lock
);
5909 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5910 conf
->temp_inactive_list
);
5911 if (!batch_size
&& !released
)
5913 handled
+= batch_size
;
5915 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5916 spin_unlock_irq(&conf
->device_lock
);
5917 md_check_recovery(mddev
);
5918 spin_lock_irq(&conf
->device_lock
);
5921 pr_debug("%d stripes handled\n", handled
);
5923 spin_unlock_irq(&conf
->device_lock
);
5924 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
5925 mutex_trylock(&conf
->cache_size_mutex
)) {
5926 grow_one_stripe(conf
, __GFP_NOWARN
);
5927 /* Set flag even if allocation failed. This helps
5928 * slow down allocation requests when mem is short
5930 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5931 mutex_unlock(&conf
->cache_size_mutex
);
5934 r5l_flush_stripe_to_raid(conf
->log
);
5936 async_tx_issue_pending_all();
5937 blk_finish_plug(&plug
);
5939 pr_debug("--- raid5d inactive\n");
5943 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5945 struct r5conf
*conf
;
5947 spin_lock(&mddev
->lock
);
5948 conf
= mddev
->private;
5950 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
5951 spin_unlock(&mddev
->lock
);
5956 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5958 struct r5conf
*conf
= mddev
->private;
5961 if (size
<= 16 || size
> 32768)
5964 conf
->min_nr_stripes
= size
;
5965 mutex_lock(&conf
->cache_size_mutex
);
5966 while (size
< conf
->max_nr_stripes
&&
5967 drop_one_stripe(conf
))
5969 mutex_unlock(&conf
->cache_size_mutex
);
5972 err
= md_allow_write(mddev
);
5976 mutex_lock(&conf
->cache_size_mutex
);
5977 while (size
> conf
->max_nr_stripes
)
5978 if (!grow_one_stripe(conf
, GFP_KERNEL
))
5980 mutex_unlock(&conf
->cache_size_mutex
);
5984 EXPORT_SYMBOL(raid5_set_cache_size
);
5987 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5989 struct r5conf
*conf
;
5993 if (len
>= PAGE_SIZE
)
5995 if (kstrtoul(page
, 10, &new))
5997 err
= mddev_lock(mddev
);
6000 conf
= mddev
->private;
6004 err
= raid5_set_cache_size(mddev
, new);
6005 mddev_unlock(mddev
);
6010 static struct md_sysfs_entry
6011 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6012 raid5_show_stripe_cache_size
,
6013 raid5_store_stripe_cache_size
);
6016 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6018 struct r5conf
*conf
= mddev
->private;
6020 return sprintf(page
, "%d\n", conf
->rmw_level
);
6026 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6028 struct r5conf
*conf
= mddev
->private;
6034 if (len
>= PAGE_SIZE
)
6037 if (kstrtoul(page
, 10, &new))
6040 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6043 if (new != PARITY_DISABLE_RMW
&&
6044 new != PARITY_ENABLE_RMW
&&
6045 new != PARITY_PREFER_RMW
)
6048 conf
->rmw_level
= new;
6052 static struct md_sysfs_entry
6053 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6054 raid5_show_rmw_level
,
6055 raid5_store_rmw_level
);
6059 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6061 struct r5conf
*conf
;
6063 spin_lock(&mddev
->lock
);
6064 conf
= mddev
->private;
6066 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6067 spin_unlock(&mddev
->lock
);
6072 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6074 struct r5conf
*conf
;
6078 if (len
>= PAGE_SIZE
)
6080 if (kstrtoul(page
, 10, &new))
6083 err
= mddev_lock(mddev
);
6086 conf
= mddev
->private;
6089 else if (new > conf
->min_nr_stripes
)
6092 conf
->bypass_threshold
= new;
6093 mddev_unlock(mddev
);
6097 static struct md_sysfs_entry
6098 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6100 raid5_show_preread_threshold
,
6101 raid5_store_preread_threshold
);
6104 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6106 struct r5conf
*conf
;
6108 spin_lock(&mddev
->lock
);
6109 conf
= mddev
->private;
6111 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6112 spin_unlock(&mddev
->lock
);
6117 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6119 struct r5conf
*conf
;
6123 if (len
>= PAGE_SIZE
)
6125 if (kstrtoul(page
, 10, &new))
6129 err
= mddev_lock(mddev
);
6132 conf
= mddev
->private;
6135 else if (new != conf
->skip_copy
) {
6136 mddev_suspend(mddev
);
6137 conf
->skip_copy
= new;
6139 mddev
->queue
->backing_dev_info
.capabilities
|=
6140 BDI_CAP_STABLE_WRITES
;
6142 mddev
->queue
->backing_dev_info
.capabilities
&=
6143 ~BDI_CAP_STABLE_WRITES
;
6144 mddev_resume(mddev
);
6146 mddev_unlock(mddev
);
6150 static struct md_sysfs_entry
6151 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6152 raid5_show_skip_copy
,
6153 raid5_store_skip_copy
);
6156 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6158 struct r5conf
*conf
= mddev
->private;
6160 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6165 static struct md_sysfs_entry
6166 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6169 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6171 struct r5conf
*conf
;
6173 spin_lock(&mddev
->lock
);
6174 conf
= mddev
->private;
6176 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6177 spin_unlock(&mddev
->lock
);
6181 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6183 int *worker_cnt_per_group
,
6184 struct r5worker_group
**worker_groups
);
6186 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6188 struct r5conf
*conf
;
6191 struct r5worker_group
*new_groups
, *old_groups
;
6192 int group_cnt
, worker_cnt_per_group
;
6194 if (len
>= PAGE_SIZE
)
6196 if (kstrtoul(page
, 10, &new))
6199 err
= mddev_lock(mddev
);
6202 conf
= mddev
->private;
6205 else if (new != conf
->worker_cnt_per_group
) {
6206 mddev_suspend(mddev
);
6208 old_groups
= conf
->worker_groups
;
6210 flush_workqueue(raid5_wq
);
6212 err
= alloc_thread_groups(conf
, new,
6213 &group_cnt
, &worker_cnt_per_group
,
6216 spin_lock_irq(&conf
->device_lock
);
6217 conf
->group_cnt
= group_cnt
;
6218 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6219 conf
->worker_groups
= new_groups
;
6220 spin_unlock_irq(&conf
->device_lock
);
6223 kfree(old_groups
[0].workers
);
6226 mddev_resume(mddev
);
6228 mddev_unlock(mddev
);
6233 static struct md_sysfs_entry
6234 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6235 raid5_show_group_thread_cnt
,
6236 raid5_store_group_thread_cnt
);
6238 static struct attribute
*raid5_attrs
[] = {
6239 &raid5_stripecache_size
.attr
,
6240 &raid5_stripecache_active
.attr
,
6241 &raid5_preread_bypass_threshold
.attr
,
6242 &raid5_group_thread_cnt
.attr
,
6243 &raid5_skip_copy
.attr
,
6244 &raid5_rmw_level
.attr
,
6247 static struct attribute_group raid5_attrs_group
= {
6249 .attrs
= raid5_attrs
,
6252 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6254 int *worker_cnt_per_group
,
6255 struct r5worker_group
**worker_groups
)
6259 struct r5worker
*workers
;
6261 *worker_cnt_per_group
= cnt
;
6264 *worker_groups
= NULL
;
6267 *group_cnt
= num_possible_nodes();
6268 size
= sizeof(struct r5worker
) * cnt
;
6269 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6270 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6271 *group_cnt
, GFP_NOIO
);
6272 if (!*worker_groups
|| !workers
) {
6274 kfree(*worker_groups
);
6278 for (i
= 0; i
< *group_cnt
; i
++) {
6279 struct r5worker_group
*group
;
6281 group
= &(*worker_groups
)[i
];
6282 INIT_LIST_HEAD(&group
->handle_list
);
6284 group
->workers
= workers
+ i
* cnt
;
6286 for (j
= 0; j
< cnt
; j
++) {
6287 struct r5worker
*worker
= group
->workers
+ j
;
6288 worker
->group
= group
;
6289 INIT_WORK(&worker
->work
, raid5_do_work
);
6291 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6292 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6299 static void free_thread_groups(struct r5conf
*conf
)
6301 if (conf
->worker_groups
)
6302 kfree(conf
->worker_groups
[0].workers
);
6303 kfree(conf
->worker_groups
);
6304 conf
->worker_groups
= NULL
;
6308 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6310 struct r5conf
*conf
= mddev
->private;
6313 sectors
= mddev
->dev_sectors
;
6315 /* size is defined by the smallest of previous and new size */
6316 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6318 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6319 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6320 return sectors
* (raid_disks
- conf
->max_degraded
);
6323 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6325 safe_put_page(percpu
->spare_page
);
6326 if (percpu
->scribble
)
6327 flex_array_free(percpu
->scribble
);
6328 percpu
->spare_page
= NULL
;
6329 percpu
->scribble
= NULL
;
6332 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6334 if (conf
->level
== 6 && !percpu
->spare_page
)
6335 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6336 if (!percpu
->scribble
)
6337 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6338 conf
->previous_raid_disks
),
6339 max(conf
->chunk_sectors
,
6340 conf
->prev_chunk_sectors
)
6344 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6345 free_scratch_buffer(conf
, percpu
);
6352 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6354 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6356 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6360 static void raid5_free_percpu(struct r5conf
*conf
)
6365 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6366 free_percpu(conf
->percpu
);
6369 static void free_conf(struct r5conf
*conf
)
6372 r5l_exit_log(conf
->log
);
6373 if (conf
->shrinker
.nr_deferred
)
6374 unregister_shrinker(&conf
->shrinker
);
6376 free_thread_groups(conf
);
6377 shrink_stripes(conf
);
6378 raid5_free_percpu(conf
);
6380 kfree(conf
->stripe_hashtbl
);
6384 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6386 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6387 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6389 if (alloc_scratch_buffer(conf
, percpu
)) {
6390 pr_err("%s: failed memory allocation for cpu%u\n",
6397 static int raid5_alloc_percpu(struct r5conf
*conf
)
6401 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6405 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6407 conf
->scribble_disks
= max(conf
->raid_disks
,
6408 conf
->previous_raid_disks
);
6409 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6410 conf
->prev_chunk_sectors
);
6415 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6416 struct shrink_control
*sc
)
6418 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6419 unsigned long ret
= SHRINK_STOP
;
6421 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6423 while (ret
< sc
->nr_to_scan
&&
6424 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6425 if (drop_one_stripe(conf
) == 0) {
6431 mutex_unlock(&conf
->cache_size_mutex
);
6436 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6437 struct shrink_control
*sc
)
6439 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6441 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6442 /* unlikely, but not impossible */
6444 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6447 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6449 struct r5conf
*conf
;
6450 int raid_disk
, memory
, max_disks
;
6451 struct md_rdev
*rdev
;
6452 struct disk_info
*disk
;
6455 int group_cnt
, worker_cnt_per_group
;
6456 struct r5worker_group
*new_group
;
6458 if (mddev
->new_level
!= 5
6459 && mddev
->new_level
!= 4
6460 && mddev
->new_level
!= 6) {
6461 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6462 mdname(mddev
), mddev
->new_level
);
6463 return ERR_PTR(-EIO
);
6465 if ((mddev
->new_level
== 5
6466 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6467 (mddev
->new_level
== 6
6468 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6469 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
6470 mdname(mddev
), mddev
->new_layout
);
6471 return ERR_PTR(-EIO
);
6473 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6474 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6475 mdname(mddev
), mddev
->raid_disks
);
6476 return ERR_PTR(-EINVAL
);
6479 if (!mddev
->new_chunk_sectors
||
6480 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6481 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6482 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
6483 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6484 return ERR_PTR(-EINVAL
);
6487 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6490 /* Don't enable multi-threading by default*/
6491 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6493 conf
->group_cnt
= group_cnt
;
6494 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6495 conf
->worker_groups
= new_group
;
6498 spin_lock_init(&conf
->device_lock
);
6499 seqcount_init(&conf
->gen_lock
);
6500 mutex_init(&conf
->cache_size_mutex
);
6501 init_waitqueue_head(&conf
->wait_for_quiescent
);
6502 init_waitqueue_head(&conf
->wait_for_stripe
);
6503 init_waitqueue_head(&conf
->wait_for_overlap
);
6504 INIT_LIST_HEAD(&conf
->handle_list
);
6505 INIT_LIST_HEAD(&conf
->hold_list
);
6506 INIT_LIST_HEAD(&conf
->delayed_list
);
6507 INIT_LIST_HEAD(&conf
->bitmap_list
);
6508 bio_list_init(&conf
->return_bi
);
6509 init_llist_head(&conf
->released_stripes
);
6510 atomic_set(&conf
->active_stripes
, 0);
6511 atomic_set(&conf
->preread_active_stripes
, 0);
6512 atomic_set(&conf
->active_aligned_reads
, 0);
6513 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6514 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6516 conf
->raid_disks
= mddev
->raid_disks
;
6517 if (mddev
->reshape_position
== MaxSector
)
6518 conf
->previous_raid_disks
= mddev
->raid_disks
;
6520 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6521 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6523 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6528 conf
->mddev
= mddev
;
6530 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6533 /* We init hash_locks[0] separately to that it can be used
6534 * as the reference lock in the spin_lock_nest_lock() call
6535 * in lock_all_device_hash_locks_irq in order to convince
6536 * lockdep that we know what we are doing.
6538 spin_lock_init(conf
->hash_locks
);
6539 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6540 spin_lock_init(conf
->hash_locks
+ i
);
6542 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6543 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6545 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6546 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6548 conf
->level
= mddev
->new_level
;
6549 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6550 if (raid5_alloc_percpu(conf
) != 0)
6553 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6555 rdev_for_each(rdev
, mddev
) {
6556 raid_disk
= rdev
->raid_disk
;
6557 if (raid_disk
>= max_disks
6558 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6560 disk
= conf
->disks
+ raid_disk
;
6562 if (test_bit(Replacement
, &rdev
->flags
)) {
6563 if (disk
->replacement
)
6565 disk
->replacement
= rdev
;
6572 if (test_bit(In_sync
, &rdev
->flags
)) {
6573 char b
[BDEVNAME_SIZE
];
6574 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
6576 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6577 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6578 /* Cannot rely on bitmap to complete recovery */
6582 conf
->level
= mddev
->new_level
;
6583 if (conf
->level
== 6) {
6584 conf
->max_degraded
= 2;
6585 if (raid6_call
.xor_syndrome
)
6586 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6588 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6590 conf
->max_degraded
= 1;
6591 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6593 conf
->algorithm
= mddev
->new_layout
;
6594 conf
->reshape_progress
= mddev
->reshape_position
;
6595 if (conf
->reshape_progress
!= MaxSector
) {
6596 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6597 conf
->prev_algo
= mddev
->layout
;
6599 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6600 conf
->prev_algo
= conf
->algorithm
;
6603 conf
->min_nr_stripes
= NR_STRIPES
;
6604 if (mddev
->reshape_position
!= MaxSector
) {
6605 int stripes
= max_t(int,
6606 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
6607 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
6608 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
6609 if (conf
->min_nr_stripes
!= NR_STRIPES
)
6611 "md/raid:%s: force stripe size %d for reshape\n",
6612 mdname(mddev
), conf
->min_nr_stripes
);
6614 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6615 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6616 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6617 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6619 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6620 mdname(mddev
), memory
);
6623 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
6624 mdname(mddev
), memory
);
6626 * Losing a stripe head costs more than the time to refill it,
6627 * it reduces the queue depth and so can hurt throughput.
6628 * So set it rather large, scaled by number of devices.
6630 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6631 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6632 conf
->shrinker
.count_objects
= raid5_cache_count
;
6633 conf
->shrinker
.batch
= 128;
6634 conf
->shrinker
.flags
= 0;
6635 if (register_shrinker(&conf
->shrinker
)) {
6637 "md/raid:%s: couldn't register shrinker.\n",
6642 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6643 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6644 if (!conf
->thread
) {
6646 "md/raid:%s: couldn't allocate thread.\n",
6656 return ERR_PTR(-EIO
);
6658 return ERR_PTR(-ENOMEM
);
6661 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6664 case ALGORITHM_PARITY_0
:
6665 if (raid_disk
< max_degraded
)
6668 case ALGORITHM_PARITY_N
:
6669 if (raid_disk
>= raid_disks
- max_degraded
)
6672 case ALGORITHM_PARITY_0_6
:
6673 if (raid_disk
== 0 ||
6674 raid_disk
== raid_disks
- 1)
6677 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6678 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6679 case ALGORITHM_LEFT_SYMMETRIC_6
:
6680 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6681 if (raid_disk
== raid_disks
- 1)
6687 static int raid5_run(struct mddev
*mddev
)
6689 struct r5conf
*conf
;
6690 int working_disks
= 0;
6691 int dirty_parity_disks
= 0;
6692 struct md_rdev
*rdev
;
6693 struct md_rdev
*journal_dev
= NULL
;
6694 sector_t reshape_offset
= 0;
6696 long long min_offset_diff
= 0;
6699 if (mddev
->recovery_cp
!= MaxSector
)
6700 printk(KERN_NOTICE
"md/raid:%s: not clean"
6701 " -- starting background reconstruction\n",
6704 rdev_for_each(rdev
, mddev
) {
6707 if (test_bit(Journal
, &rdev
->flags
)) {
6711 if (rdev
->raid_disk
< 0)
6713 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6715 min_offset_diff
= diff
;
6717 } else if (mddev
->reshape_backwards
&&
6718 diff
< min_offset_diff
)
6719 min_offset_diff
= diff
;
6720 else if (!mddev
->reshape_backwards
&&
6721 diff
> min_offset_diff
)
6722 min_offset_diff
= diff
;
6725 if (mddev
->reshape_position
!= MaxSector
) {
6726 /* Check that we can continue the reshape.
6727 * Difficulties arise if the stripe we would write to
6728 * next is at or after the stripe we would read from next.
6729 * For a reshape that changes the number of devices, this
6730 * is only possible for a very short time, and mdadm makes
6731 * sure that time appears to have past before assembling
6732 * the array. So we fail if that time hasn't passed.
6733 * For a reshape that keeps the number of devices the same
6734 * mdadm must be monitoring the reshape can keeping the
6735 * critical areas read-only and backed up. It will start
6736 * the array in read-only mode, so we check for that.
6738 sector_t here_new
, here_old
;
6740 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6745 printk(KERN_ERR
"md/raid:%s: don't support reshape with journal - aborting.\n",
6750 if (mddev
->new_level
!= mddev
->level
) {
6751 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
6752 "required - aborting.\n",
6756 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6757 /* reshape_position must be on a new-stripe boundary, and one
6758 * further up in new geometry must map after here in old
6760 * If the chunk sizes are different, then as we perform reshape
6761 * in units of the largest of the two, reshape_position needs
6762 * be a multiple of the largest chunk size times new data disks.
6764 here_new
= mddev
->reshape_position
;
6765 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6766 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6767 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6768 printk(KERN_ERR
"md/raid:%s: reshape_position not "
6769 "on a stripe boundary\n", mdname(mddev
));
6772 reshape_offset
= here_new
* chunk_sectors
;
6773 /* here_new is the stripe we will write to */
6774 here_old
= mddev
->reshape_position
;
6775 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6776 /* here_old is the first stripe that we might need to read
6778 if (mddev
->delta_disks
== 0) {
6779 /* We cannot be sure it is safe to start an in-place
6780 * reshape. It is only safe if user-space is monitoring
6781 * and taking constant backups.
6782 * mdadm always starts a situation like this in
6783 * readonly mode so it can take control before
6784 * allowing any writes. So just check for that.
6786 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6787 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6788 /* not really in-place - so OK */;
6789 else if (mddev
->ro
== 0) {
6790 printk(KERN_ERR
"md/raid:%s: in-place reshape "
6791 "must be started in read-only mode "
6796 } else if (mddev
->reshape_backwards
6797 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6798 here_old
* chunk_sectors
)
6799 : (here_new
* chunk_sectors
>=
6800 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6801 /* Reading from the same stripe as writing to - bad */
6802 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
6803 "auto-recovery - aborting.\n",
6807 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
6809 /* OK, we should be able to continue; */
6811 BUG_ON(mddev
->level
!= mddev
->new_level
);
6812 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6813 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6814 BUG_ON(mddev
->delta_disks
!= 0);
6817 if (mddev
->private == NULL
)
6818 conf
= setup_conf(mddev
);
6820 conf
= mddev
->private;
6823 return PTR_ERR(conf
);
6825 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
6827 pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6830 set_disk_ro(mddev
->gendisk
, 1);
6831 } else if (mddev
->recovery_cp
== MaxSector
)
6832 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
6835 conf
->min_offset_diff
= min_offset_diff
;
6836 mddev
->thread
= conf
->thread
;
6837 conf
->thread
= NULL
;
6838 mddev
->private = conf
;
6840 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6842 rdev
= conf
->disks
[i
].rdev
;
6843 if (!rdev
&& conf
->disks
[i
].replacement
) {
6844 /* The replacement is all we have yet */
6845 rdev
= conf
->disks
[i
].replacement
;
6846 conf
->disks
[i
].replacement
= NULL
;
6847 clear_bit(Replacement
, &rdev
->flags
);
6848 conf
->disks
[i
].rdev
= rdev
;
6852 if (conf
->disks
[i
].replacement
&&
6853 conf
->reshape_progress
!= MaxSector
) {
6854 /* replacements and reshape simply do not mix. */
6855 printk(KERN_ERR
"md: cannot handle concurrent "
6856 "replacement and reshape.\n");
6859 if (test_bit(In_sync
, &rdev
->flags
)) {
6863 /* This disc is not fully in-sync. However if it
6864 * just stored parity (beyond the recovery_offset),
6865 * when we don't need to be concerned about the
6866 * array being dirty.
6867 * When reshape goes 'backwards', we never have
6868 * partially completed devices, so we only need
6869 * to worry about reshape going forwards.
6871 /* Hack because v0.91 doesn't store recovery_offset properly. */
6872 if (mddev
->major_version
== 0 &&
6873 mddev
->minor_version
> 90)
6874 rdev
->recovery_offset
= reshape_offset
;
6876 if (rdev
->recovery_offset
< reshape_offset
) {
6877 /* We need to check old and new layout */
6878 if (!only_parity(rdev
->raid_disk
,
6881 conf
->max_degraded
))
6884 if (!only_parity(rdev
->raid_disk
,
6886 conf
->previous_raid_disks
,
6887 conf
->max_degraded
))
6889 dirty_parity_disks
++;
6893 * 0 for a fully functional array, 1 or 2 for a degraded array.
6895 mddev
->degraded
= calc_degraded(conf
);
6897 if (has_failed(conf
)) {
6898 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6899 " (%d/%d failed)\n",
6900 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6904 /* device size must be a multiple of chunk size */
6905 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6906 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6908 if (mddev
->degraded
> dirty_parity_disks
&&
6909 mddev
->recovery_cp
!= MaxSector
) {
6910 if (mddev
->ok_start_degraded
)
6912 "md/raid:%s: starting dirty degraded array"
6913 " - data corruption possible.\n",
6917 "md/raid:%s: cannot start dirty degraded array.\n",
6923 if (mddev
->degraded
== 0)
6924 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6925 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6926 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6929 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6930 " out of %d devices, algorithm %d\n",
6931 mdname(mddev
), conf
->level
,
6932 mddev
->raid_disks
- mddev
->degraded
,
6933 mddev
->raid_disks
, mddev
->new_layout
);
6935 print_raid5_conf(conf
);
6937 if (conf
->reshape_progress
!= MaxSector
) {
6938 conf
->reshape_safe
= conf
->reshape_progress
;
6939 atomic_set(&conf
->reshape_stripes
, 0);
6940 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6941 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6942 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6943 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6944 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6948 /* Ok, everything is just fine now */
6949 if (mddev
->to_remove
== &raid5_attrs_group
)
6950 mddev
->to_remove
= NULL
;
6951 else if (mddev
->kobj
.sd
&&
6952 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6954 "raid5: failed to create sysfs attributes for %s\n",
6956 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6960 bool discard_supported
= true;
6961 /* read-ahead size must cover two whole stripes, which
6962 * is 2 * (datadisks) * chunksize where 'n' is the
6963 * number of raid devices
6965 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6966 int stripe
= data_disks
*
6967 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6968 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6969 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6971 chunk_size
= mddev
->chunk_sectors
<< 9;
6972 blk_queue_io_min(mddev
->queue
, chunk_size
);
6973 blk_queue_io_opt(mddev
->queue
, chunk_size
*
6974 (conf
->raid_disks
- conf
->max_degraded
));
6975 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
6977 * We can only discard a whole stripe. It doesn't make sense to
6978 * discard data disk but write parity disk
6980 stripe
= stripe
* PAGE_SIZE
;
6981 /* Round up to power of 2, as discard handling
6982 * currently assumes that */
6983 while ((stripe
-1) & stripe
)
6984 stripe
= (stripe
| (stripe
-1)) + 1;
6985 mddev
->queue
->limits
.discard_alignment
= stripe
;
6986 mddev
->queue
->limits
.discard_granularity
= stripe
;
6988 * unaligned part of discard request will be ignored, so can't
6989 * guarantee discard_zeroes_data
6991 mddev
->queue
->limits
.discard_zeroes_data
= 0;
6993 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
6995 rdev_for_each(rdev
, mddev
) {
6996 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6997 rdev
->data_offset
<< 9);
6998 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6999 rdev
->new_data_offset
<< 9);
7001 * discard_zeroes_data is required, otherwise data
7002 * could be lost. Consider a scenario: discard a stripe
7003 * (the stripe could be inconsistent if
7004 * discard_zeroes_data is 0); write one disk of the
7005 * stripe (the stripe could be inconsistent again
7006 * depending on which disks are used to calculate
7007 * parity); the disk is broken; The stripe data of this
7010 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7011 !bdev_get_queue(rdev
->bdev
)->
7012 limits
.discard_zeroes_data
)
7013 discard_supported
= false;
7014 /* Unfortunately, discard_zeroes_data is not currently
7015 * a guarantee - just a hint. So we only allow DISCARD
7016 * if the sysadmin has confirmed that only safe devices
7017 * are in use by setting a module parameter.
7019 if (!devices_handle_discard_safely
) {
7020 if (discard_supported
) {
7021 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7022 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7024 discard_supported
= false;
7028 if (discard_supported
&&
7029 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7030 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7031 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7034 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7037 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7041 char b
[BDEVNAME_SIZE
];
7043 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7044 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7045 r5l_init_log(conf
, journal_dev
);
7050 md_unregister_thread(&mddev
->thread
);
7051 print_raid5_conf(conf
);
7053 mddev
->private = NULL
;
7054 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7058 static void raid5_free(struct mddev
*mddev
, void *priv
)
7060 struct r5conf
*conf
= priv
;
7063 mddev
->to_remove
= &raid5_attrs_group
;
7066 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7068 struct r5conf
*conf
= mddev
->private;
7071 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7072 conf
->chunk_sectors
/ 2, mddev
->layout
);
7073 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7075 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7076 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7077 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7080 seq_printf (seq
, "]");
7083 static void print_raid5_conf (struct r5conf
*conf
)
7086 struct disk_info
*tmp
;
7088 printk(KERN_DEBUG
"RAID conf printout:\n");
7090 printk("(conf==NULL)\n");
7093 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
7095 conf
->raid_disks
- conf
->mddev
->degraded
);
7097 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7098 char b
[BDEVNAME_SIZE
];
7099 tmp
= conf
->disks
+ i
;
7101 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
7102 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7103 bdevname(tmp
->rdev
->bdev
, b
));
7107 static int raid5_spare_active(struct mddev
*mddev
)
7110 struct r5conf
*conf
= mddev
->private;
7111 struct disk_info
*tmp
;
7113 unsigned long flags
;
7115 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7116 tmp
= conf
->disks
+ i
;
7117 if (tmp
->replacement
7118 && tmp
->replacement
->recovery_offset
== MaxSector
7119 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7120 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7121 /* Replacement has just become active. */
7123 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7126 /* Replaced device not technically faulty,
7127 * but we need to be sure it gets removed
7128 * and never re-added.
7130 set_bit(Faulty
, &tmp
->rdev
->flags
);
7131 sysfs_notify_dirent_safe(
7132 tmp
->rdev
->sysfs_state
);
7134 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7135 } else if (tmp
->rdev
7136 && tmp
->rdev
->recovery_offset
== MaxSector
7137 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7138 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7140 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7143 spin_lock_irqsave(&conf
->device_lock
, flags
);
7144 mddev
->degraded
= calc_degraded(conf
);
7145 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7146 print_raid5_conf(conf
);
7150 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7152 struct r5conf
*conf
= mddev
->private;
7154 int number
= rdev
->raid_disk
;
7155 struct md_rdev
**rdevp
;
7156 struct disk_info
*p
= conf
->disks
+ number
;
7158 print_raid5_conf(conf
);
7159 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7160 struct r5l_log
*log
;
7162 * we can't wait pending write here, as this is called in
7163 * raid5d, wait will deadlock.
7165 if (atomic_read(&mddev
->writes_pending
))
7173 if (rdev
== p
->rdev
)
7175 else if (rdev
== p
->replacement
)
7176 rdevp
= &p
->replacement
;
7180 if (number
>= conf
->raid_disks
&&
7181 conf
->reshape_progress
== MaxSector
)
7182 clear_bit(In_sync
, &rdev
->flags
);
7184 if (test_bit(In_sync
, &rdev
->flags
) ||
7185 atomic_read(&rdev
->nr_pending
)) {
7189 /* Only remove non-faulty devices if recovery
7192 if (!test_bit(Faulty
, &rdev
->flags
) &&
7193 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7194 !has_failed(conf
) &&
7195 (!p
->replacement
|| p
->replacement
== rdev
) &&
7196 number
< conf
->raid_disks
) {
7201 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7203 if (atomic_read(&rdev
->nr_pending
)) {
7204 /* lost the race, try later */
7209 if (p
->replacement
) {
7210 /* We must have just cleared 'rdev' */
7211 p
->rdev
= p
->replacement
;
7212 clear_bit(Replacement
, &p
->replacement
->flags
);
7213 smp_mb(); /* Make sure other CPUs may see both as identical
7214 * but will never see neither - if they are careful
7216 p
->replacement
= NULL
;
7217 clear_bit(WantReplacement
, &rdev
->flags
);
7219 /* We might have just removed the Replacement as faulty-
7220 * clear the bit just in case
7222 clear_bit(WantReplacement
, &rdev
->flags
);
7225 print_raid5_conf(conf
);
7229 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7231 struct r5conf
*conf
= mddev
->private;
7234 struct disk_info
*p
;
7236 int last
= conf
->raid_disks
- 1;
7238 if (test_bit(Journal
, &rdev
->flags
)) {
7239 char b
[BDEVNAME_SIZE
];
7243 rdev
->raid_disk
= 0;
7245 * The array is in readonly mode if journal is missing, so no
7246 * write requests running. We should be safe
7248 r5l_init_log(conf
, rdev
);
7249 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7250 mdname(mddev
), bdevname(rdev
->bdev
, b
));
7253 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7256 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7257 /* no point adding a device */
7260 if (rdev
->raid_disk
>= 0)
7261 first
= last
= rdev
->raid_disk
;
7264 * find the disk ... but prefer rdev->saved_raid_disk
7267 if (rdev
->saved_raid_disk
>= 0 &&
7268 rdev
->saved_raid_disk
>= first
&&
7269 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7270 first
= rdev
->saved_raid_disk
;
7272 for (disk
= first
; disk
<= last
; disk
++) {
7273 p
= conf
->disks
+ disk
;
7274 if (p
->rdev
== NULL
) {
7275 clear_bit(In_sync
, &rdev
->flags
);
7276 rdev
->raid_disk
= disk
;
7278 if (rdev
->saved_raid_disk
!= disk
)
7280 rcu_assign_pointer(p
->rdev
, rdev
);
7284 for (disk
= first
; disk
<= last
; disk
++) {
7285 p
= conf
->disks
+ disk
;
7286 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7287 p
->replacement
== NULL
) {
7288 clear_bit(In_sync
, &rdev
->flags
);
7289 set_bit(Replacement
, &rdev
->flags
);
7290 rdev
->raid_disk
= disk
;
7293 rcu_assign_pointer(p
->replacement
, rdev
);
7298 print_raid5_conf(conf
);
7302 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7304 /* no resync is happening, and there is enough space
7305 * on all devices, so we can resize.
7306 * We need to make sure resync covers any new space.
7307 * If the array is shrinking we should possibly wait until
7308 * any io in the removed space completes, but it hardly seems
7312 struct r5conf
*conf
= mddev
->private;
7316 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7317 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7318 if (mddev
->external_size
&&
7319 mddev
->array_sectors
> newsize
)
7321 if (mddev
->bitmap
) {
7322 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7326 md_set_array_sectors(mddev
, newsize
);
7327 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7328 revalidate_disk(mddev
->gendisk
);
7329 if (sectors
> mddev
->dev_sectors
&&
7330 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7331 mddev
->recovery_cp
= mddev
->dev_sectors
;
7332 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7334 mddev
->dev_sectors
= sectors
;
7335 mddev
->resync_max_sectors
= sectors
;
7339 static int check_stripe_cache(struct mddev
*mddev
)
7341 /* Can only proceed if there are plenty of stripe_heads.
7342 * We need a minimum of one full stripe,, and for sensible progress
7343 * it is best to have about 4 times that.
7344 * If we require 4 times, then the default 256 4K stripe_heads will
7345 * allow for chunk sizes up to 256K, which is probably OK.
7346 * If the chunk size is greater, user-space should request more
7347 * stripe_heads first.
7349 struct r5conf
*conf
= mddev
->private;
7350 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7351 > conf
->min_nr_stripes
||
7352 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7353 > conf
->min_nr_stripes
) {
7354 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7356 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7363 static int check_reshape(struct mddev
*mddev
)
7365 struct r5conf
*conf
= mddev
->private;
7369 if (mddev
->delta_disks
== 0 &&
7370 mddev
->new_layout
== mddev
->layout
&&
7371 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7372 return 0; /* nothing to do */
7373 if (has_failed(conf
))
7375 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7376 /* We might be able to shrink, but the devices must
7377 * be made bigger first.
7378 * For raid6, 4 is the minimum size.
7379 * Otherwise 2 is the minimum
7382 if (mddev
->level
== 6)
7384 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7388 if (!check_stripe_cache(mddev
))
7391 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7392 mddev
->delta_disks
> 0)
7393 if (resize_chunks(conf
,
7394 conf
->previous_raid_disks
7395 + max(0, mddev
->delta_disks
),
7396 max(mddev
->new_chunk_sectors
,
7397 mddev
->chunk_sectors
)
7400 return resize_stripes(conf
, (conf
->previous_raid_disks
7401 + mddev
->delta_disks
));
7404 static int raid5_start_reshape(struct mddev
*mddev
)
7406 struct r5conf
*conf
= mddev
->private;
7407 struct md_rdev
*rdev
;
7409 unsigned long flags
;
7411 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7414 if (!check_stripe_cache(mddev
))
7417 if (has_failed(conf
))
7420 rdev_for_each(rdev
, mddev
) {
7421 if (!test_bit(In_sync
, &rdev
->flags
)
7422 && !test_bit(Faulty
, &rdev
->flags
))
7426 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7427 /* Not enough devices even to make a degraded array
7432 /* Refuse to reduce size of the array. Any reductions in
7433 * array size must be through explicit setting of array_size
7436 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7437 < mddev
->array_sectors
) {
7438 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
7439 "before number of disks\n", mdname(mddev
));
7443 atomic_set(&conf
->reshape_stripes
, 0);
7444 spin_lock_irq(&conf
->device_lock
);
7445 write_seqcount_begin(&conf
->gen_lock
);
7446 conf
->previous_raid_disks
= conf
->raid_disks
;
7447 conf
->raid_disks
+= mddev
->delta_disks
;
7448 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7449 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7450 conf
->prev_algo
= conf
->algorithm
;
7451 conf
->algorithm
= mddev
->new_layout
;
7453 /* Code that selects data_offset needs to see the generation update
7454 * if reshape_progress has been set - so a memory barrier needed.
7457 if (mddev
->reshape_backwards
)
7458 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7460 conf
->reshape_progress
= 0;
7461 conf
->reshape_safe
= conf
->reshape_progress
;
7462 write_seqcount_end(&conf
->gen_lock
);
7463 spin_unlock_irq(&conf
->device_lock
);
7465 /* Now make sure any requests that proceeded on the assumption
7466 * the reshape wasn't running - like Discard or Read - have
7469 mddev_suspend(mddev
);
7470 mddev_resume(mddev
);
7472 /* Add some new drives, as many as will fit.
7473 * We know there are enough to make the newly sized array work.
7474 * Don't add devices if we are reducing the number of
7475 * devices in the array. This is because it is not possible
7476 * to correctly record the "partially reconstructed" state of
7477 * such devices during the reshape and confusion could result.
7479 if (mddev
->delta_disks
>= 0) {
7480 rdev_for_each(rdev
, mddev
)
7481 if (rdev
->raid_disk
< 0 &&
7482 !test_bit(Faulty
, &rdev
->flags
)) {
7483 if (raid5_add_disk(mddev
, rdev
) == 0) {
7485 >= conf
->previous_raid_disks
)
7486 set_bit(In_sync
, &rdev
->flags
);
7488 rdev
->recovery_offset
= 0;
7490 if (sysfs_link_rdev(mddev
, rdev
))
7491 /* Failure here is OK */;
7493 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7494 && !test_bit(Faulty
, &rdev
->flags
)) {
7495 /* This is a spare that was manually added */
7496 set_bit(In_sync
, &rdev
->flags
);
7499 /* When a reshape changes the number of devices,
7500 * ->degraded is measured against the larger of the
7501 * pre and post number of devices.
7503 spin_lock_irqsave(&conf
->device_lock
, flags
);
7504 mddev
->degraded
= calc_degraded(conf
);
7505 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7507 mddev
->raid_disks
= conf
->raid_disks
;
7508 mddev
->reshape_position
= conf
->reshape_progress
;
7509 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7511 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7512 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7513 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7514 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7515 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7516 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7518 if (!mddev
->sync_thread
) {
7519 mddev
->recovery
= 0;
7520 spin_lock_irq(&conf
->device_lock
);
7521 write_seqcount_begin(&conf
->gen_lock
);
7522 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7523 mddev
->new_chunk_sectors
=
7524 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7525 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7526 rdev_for_each(rdev
, mddev
)
7527 rdev
->new_data_offset
= rdev
->data_offset
;
7529 conf
->generation
--;
7530 conf
->reshape_progress
= MaxSector
;
7531 mddev
->reshape_position
= MaxSector
;
7532 write_seqcount_end(&conf
->gen_lock
);
7533 spin_unlock_irq(&conf
->device_lock
);
7536 conf
->reshape_checkpoint
= jiffies
;
7537 md_wakeup_thread(mddev
->sync_thread
);
7538 md_new_event(mddev
);
7542 /* This is called from the reshape thread and should make any
7543 * changes needed in 'conf'
7545 static void end_reshape(struct r5conf
*conf
)
7548 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7549 struct md_rdev
*rdev
;
7551 spin_lock_irq(&conf
->device_lock
);
7552 conf
->previous_raid_disks
= conf
->raid_disks
;
7553 rdev_for_each(rdev
, conf
->mddev
)
7554 rdev
->data_offset
= rdev
->new_data_offset
;
7556 conf
->reshape_progress
= MaxSector
;
7557 conf
->mddev
->reshape_position
= MaxSector
;
7558 spin_unlock_irq(&conf
->device_lock
);
7559 wake_up(&conf
->wait_for_overlap
);
7561 /* read-ahead size must cover two whole stripes, which is
7562 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7564 if (conf
->mddev
->queue
) {
7565 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7566 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7568 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7569 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7574 /* This is called from the raid5d thread with mddev_lock held.
7575 * It makes config changes to the device.
7577 static void raid5_finish_reshape(struct mddev
*mddev
)
7579 struct r5conf
*conf
= mddev
->private;
7581 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7583 if (mddev
->delta_disks
> 0) {
7584 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7586 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7587 revalidate_disk(mddev
->gendisk
);
7591 spin_lock_irq(&conf
->device_lock
);
7592 mddev
->degraded
= calc_degraded(conf
);
7593 spin_unlock_irq(&conf
->device_lock
);
7594 for (d
= conf
->raid_disks
;
7595 d
< conf
->raid_disks
- mddev
->delta_disks
;
7597 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7599 clear_bit(In_sync
, &rdev
->flags
);
7600 rdev
= conf
->disks
[d
].replacement
;
7602 clear_bit(In_sync
, &rdev
->flags
);
7605 mddev
->layout
= conf
->algorithm
;
7606 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7607 mddev
->reshape_position
= MaxSector
;
7608 mddev
->delta_disks
= 0;
7609 mddev
->reshape_backwards
= 0;
7613 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7615 struct r5conf
*conf
= mddev
->private;
7618 case 2: /* resume for a suspend */
7619 wake_up(&conf
->wait_for_overlap
);
7622 case 1: /* stop all writes */
7623 lock_all_device_hash_locks_irq(conf
);
7624 /* '2' tells resync/reshape to pause so that all
7625 * active stripes can drain
7628 wait_event_cmd(conf
->wait_for_quiescent
,
7629 atomic_read(&conf
->active_stripes
) == 0 &&
7630 atomic_read(&conf
->active_aligned_reads
) == 0,
7631 unlock_all_device_hash_locks_irq(conf
),
7632 lock_all_device_hash_locks_irq(conf
));
7634 unlock_all_device_hash_locks_irq(conf
);
7635 /* allow reshape to continue */
7636 wake_up(&conf
->wait_for_overlap
);
7639 case 0: /* re-enable writes */
7640 lock_all_device_hash_locks_irq(conf
);
7642 wake_up(&conf
->wait_for_quiescent
);
7643 wake_up(&conf
->wait_for_overlap
);
7644 unlock_all_device_hash_locks_irq(conf
);
7647 r5l_quiesce(conf
->log
, state
);
7650 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7652 struct r0conf
*raid0_conf
= mddev
->private;
7655 /* for raid0 takeover only one zone is supported */
7656 if (raid0_conf
->nr_strip_zones
> 1) {
7657 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7659 return ERR_PTR(-EINVAL
);
7662 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7663 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7664 mddev
->dev_sectors
= sectors
;
7665 mddev
->new_level
= level
;
7666 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7667 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7668 mddev
->raid_disks
+= 1;
7669 mddev
->delta_disks
= 1;
7670 /* make sure it will be not marked as dirty */
7671 mddev
->recovery_cp
= MaxSector
;
7673 return setup_conf(mddev
);
7676 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7680 if (mddev
->raid_disks
!= 2 ||
7681 mddev
->degraded
> 1)
7682 return ERR_PTR(-EINVAL
);
7684 /* Should check if there are write-behind devices? */
7686 chunksect
= 64*2; /* 64K by default */
7688 /* The array must be an exact multiple of chunksize */
7689 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7692 if ((chunksect
<<9) < STRIPE_SIZE
)
7693 /* array size does not allow a suitable chunk size */
7694 return ERR_PTR(-EINVAL
);
7696 mddev
->new_level
= 5;
7697 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7698 mddev
->new_chunk_sectors
= chunksect
;
7700 return setup_conf(mddev
);
7703 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7707 switch (mddev
->layout
) {
7708 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7709 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7711 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7712 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7714 case ALGORITHM_LEFT_SYMMETRIC_6
:
7715 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7717 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7718 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7720 case ALGORITHM_PARITY_0_6
:
7721 new_layout
= ALGORITHM_PARITY_0
;
7723 case ALGORITHM_PARITY_N
:
7724 new_layout
= ALGORITHM_PARITY_N
;
7727 return ERR_PTR(-EINVAL
);
7729 mddev
->new_level
= 5;
7730 mddev
->new_layout
= new_layout
;
7731 mddev
->delta_disks
= -1;
7732 mddev
->raid_disks
-= 1;
7733 return setup_conf(mddev
);
7736 static int raid5_check_reshape(struct mddev
*mddev
)
7738 /* For a 2-drive array, the layout and chunk size can be changed
7739 * immediately as not restriping is needed.
7740 * For larger arrays we record the new value - after validation
7741 * to be used by a reshape pass.
7743 struct r5conf
*conf
= mddev
->private;
7744 int new_chunk
= mddev
->new_chunk_sectors
;
7746 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7748 if (new_chunk
> 0) {
7749 if (!is_power_of_2(new_chunk
))
7751 if (new_chunk
< (PAGE_SIZE
>>9))
7753 if (mddev
->array_sectors
& (new_chunk
-1))
7754 /* not factor of array size */
7758 /* They look valid */
7760 if (mddev
->raid_disks
== 2) {
7761 /* can make the change immediately */
7762 if (mddev
->new_layout
>= 0) {
7763 conf
->algorithm
= mddev
->new_layout
;
7764 mddev
->layout
= mddev
->new_layout
;
7766 if (new_chunk
> 0) {
7767 conf
->chunk_sectors
= new_chunk
;
7768 mddev
->chunk_sectors
= new_chunk
;
7770 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7771 md_wakeup_thread(mddev
->thread
);
7773 return check_reshape(mddev
);
7776 static int raid6_check_reshape(struct mddev
*mddev
)
7778 int new_chunk
= mddev
->new_chunk_sectors
;
7780 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7782 if (new_chunk
> 0) {
7783 if (!is_power_of_2(new_chunk
))
7785 if (new_chunk
< (PAGE_SIZE
>> 9))
7787 if (mddev
->array_sectors
& (new_chunk
-1))
7788 /* not factor of array size */
7792 /* They look valid */
7793 return check_reshape(mddev
);
7796 static void *raid5_takeover(struct mddev
*mddev
)
7798 /* raid5 can take over:
7799 * raid0 - if there is only one strip zone - make it a raid4 layout
7800 * raid1 - if there are two drives. We need to know the chunk size
7801 * raid4 - trivial - just use a raid4 layout.
7802 * raid6 - Providing it is a *_6 layout
7804 if (mddev
->level
== 0)
7805 return raid45_takeover_raid0(mddev
, 5);
7806 if (mddev
->level
== 1)
7807 return raid5_takeover_raid1(mddev
);
7808 if (mddev
->level
== 4) {
7809 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7810 mddev
->new_level
= 5;
7811 return setup_conf(mddev
);
7813 if (mddev
->level
== 6)
7814 return raid5_takeover_raid6(mddev
);
7816 return ERR_PTR(-EINVAL
);
7819 static void *raid4_takeover(struct mddev
*mddev
)
7821 /* raid4 can take over:
7822 * raid0 - if there is only one strip zone
7823 * raid5 - if layout is right
7825 if (mddev
->level
== 0)
7826 return raid45_takeover_raid0(mddev
, 4);
7827 if (mddev
->level
== 5 &&
7828 mddev
->layout
== ALGORITHM_PARITY_N
) {
7829 mddev
->new_layout
= 0;
7830 mddev
->new_level
= 4;
7831 return setup_conf(mddev
);
7833 return ERR_PTR(-EINVAL
);
7836 static struct md_personality raid5_personality
;
7838 static void *raid6_takeover(struct mddev
*mddev
)
7840 /* Currently can only take over a raid5. We map the
7841 * personality to an equivalent raid6 personality
7842 * with the Q block at the end.
7846 if (mddev
->pers
!= &raid5_personality
)
7847 return ERR_PTR(-EINVAL
);
7848 if (mddev
->degraded
> 1)
7849 return ERR_PTR(-EINVAL
);
7850 if (mddev
->raid_disks
> 253)
7851 return ERR_PTR(-EINVAL
);
7852 if (mddev
->raid_disks
< 3)
7853 return ERR_PTR(-EINVAL
);
7855 switch (mddev
->layout
) {
7856 case ALGORITHM_LEFT_ASYMMETRIC
:
7857 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7859 case ALGORITHM_RIGHT_ASYMMETRIC
:
7860 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7862 case ALGORITHM_LEFT_SYMMETRIC
:
7863 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7865 case ALGORITHM_RIGHT_SYMMETRIC
:
7866 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7868 case ALGORITHM_PARITY_0
:
7869 new_layout
= ALGORITHM_PARITY_0_6
;
7871 case ALGORITHM_PARITY_N
:
7872 new_layout
= ALGORITHM_PARITY_N
;
7875 return ERR_PTR(-EINVAL
);
7877 mddev
->new_level
= 6;
7878 mddev
->new_layout
= new_layout
;
7879 mddev
->delta_disks
= 1;
7880 mddev
->raid_disks
+= 1;
7881 return setup_conf(mddev
);
7884 static struct md_personality raid6_personality
=
7888 .owner
= THIS_MODULE
,
7889 .make_request
= raid5_make_request
,
7892 .status
= raid5_status
,
7893 .error_handler
= raid5_error
,
7894 .hot_add_disk
= raid5_add_disk
,
7895 .hot_remove_disk
= raid5_remove_disk
,
7896 .spare_active
= raid5_spare_active
,
7897 .sync_request
= raid5_sync_request
,
7898 .resize
= raid5_resize
,
7900 .check_reshape
= raid6_check_reshape
,
7901 .start_reshape
= raid5_start_reshape
,
7902 .finish_reshape
= raid5_finish_reshape
,
7903 .quiesce
= raid5_quiesce
,
7904 .takeover
= raid6_takeover
,
7905 .congested
= raid5_congested
,
7907 static struct md_personality raid5_personality
=
7911 .owner
= THIS_MODULE
,
7912 .make_request
= raid5_make_request
,
7915 .status
= raid5_status
,
7916 .error_handler
= raid5_error
,
7917 .hot_add_disk
= raid5_add_disk
,
7918 .hot_remove_disk
= raid5_remove_disk
,
7919 .spare_active
= raid5_spare_active
,
7920 .sync_request
= raid5_sync_request
,
7921 .resize
= raid5_resize
,
7923 .check_reshape
= raid5_check_reshape
,
7924 .start_reshape
= raid5_start_reshape
,
7925 .finish_reshape
= raid5_finish_reshape
,
7926 .quiesce
= raid5_quiesce
,
7927 .takeover
= raid5_takeover
,
7928 .congested
= raid5_congested
,
7931 static struct md_personality raid4_personality
=
7935 .owner
= THIS_MODULE
,
7936 .make_request
= raid5_make_request
,
7939 .status
= raid5_status
,
7940 .error_handler
= raid5_error
,
7941 .hot_add_disk
= raid5_add_disk
,
7942 .hot_remove_disk
= raid5_remove_disk
,
7943 .spare_active
= raid5_spare_active
,
7944 .sync_request
= raid5_sync_request
,
7945 .resize
= raid5_resize
,
7947 .check_reshape
= raid5_check_reshape
,
7948 .start_reshape
= raid5_start_reshape
,
7949 .finish_reshape
= raid5_finish_reshape
,
7950 .quiesce
= raid5_quiesce
,
7951 .takeover
= raid4_takeover
,
7952 .congested
= raid5_congested
,
7955 static int __init
raid5_init(void)
7959 raid5_wq
= alloc_workqueue("raid5wq",
7960 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7964 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
7966 raid456_cpu_up_prepare
,
7969 destroy_workqueue(raid5_wq
);
7972 register_md_personality(&raid6_personality
);
7973 register_md_personality(&raid5_personality
);
7974 register_md_personality(&raid4_personality
);
7978 static void raid5_exit(void)
7980 unregister_md_personality(&raid6_personality
);
7981 unregister_md_personality(&raid5_personality
);
7982 unregister_md_personality(&raid4_personality
);
7983 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
7984 destroy_workqueue(raid5_wq
);
7987 module_init(raid5_init
);
7988 module_exit(raid5_exit
);
7989 MODULE_LICENSE("GPL");
7990 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7991 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7992 MODULE_ALIAS("md-raid5");
7993 MODULE_ALIAS("md-raid4");
7994 MODULE_ALIAS("md-level-5");
7995 MODULE_ALIAS("md-level-4");
7996 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7997 MODULE_ALIAS("md-raid6");
7998 MODULE_ALIAS("md-level-6");
8000 /* This used to be two separate modules, they were: */
8001 MODULE_ALIAS("raid5");
8002 MODULE_ALIAS("raid6");