perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / mmc / card / queue.c
blob8037f73a109a14a4b9593e4034705ebc29ec8752
1 /*
2 * linux/drivers/mmc/card/queue.c
4 * Copyright (C) 2003 Russell King, All Rights Reserved.
5 * Copyright 2006-2007 Pierre Ossman
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <linux/scatterlist.h>
18 #include <linux/dma-mapping.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/host.h>
23 #include "queue.h"
24 #include "block.h"
26 #define MMC_QUEUE_BOUNCESZ 65536
29 * Prepare a MMC request. This just filters out odd stuff.
31 static int mmc_prep_request(struct request_queue *q, struct request *req)
33 struct mmc_queue *mq = q->queuedata;
36 * We only like normal block requests and discards.
38 if (req->cmd_type != REQ_TYPE_FS && req_op(req) != REQ_OP_DISCARD &&
39 req_op(req) != REQ_OP_SECURE_ERASE) {
40 blk_dump_rq_flags(req, "MMC bad request");
41 return BLKPREP_KILL;
44 if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
45 return BLKPREP_KILL;
47 req->cmd_flags |= REQ_DONTPREP;
49 return BLKPREP_OK;
52 static int mmc_queue_thread(void *d)
54 struct mmc_queue *mq = d;
55 struct request_queue *q = mq->queue;
57 current->flags |= PF_MEMALLOC;
59 down(&mq->thread_sem);
60 do {
61 struct request *req = NULL;
63 spin_lock_irq(q->queue_lock);
64 set_current_state(TASK_INTERRUPTIBLE);
65 req = blk_fetch_request(q);
66 mq->mqrq_cur->req = req;
67 spin_unlock_irq(q->queue_lock);
69 if (req || mq->mqrq_prev->req) {
70 bool req_is_special = mmc_req_is_special(req);
72 set_current_state(TASK_RUNNING);
73 mmc_blk_issue_rq(mq, req);
74 cond_resched();
75 if (mq->flags & MMC_QUEUE_NEW_REQUEST) {
76 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
77 continue; /* fetch again */
81 * Current request becomes previous request
82 * and vice versa.
83 * In case of special requests, current request
84 * has been finished. Do not assign it to previous
85 * request.
87 if (req_is_special)
88 mq->mqrq_cur->req = NULL;
90 mq->mqrq_prev->brq.mrq.data = NULL;
91 mq->mqrq_prev->req = NULL;
92 swap(mq->mqrq_prev, mq->mqrq_cur);
93 } else {
94 if (kthread_should_stop()) {
95 set_current_state(TASK_RUNNING);
96 break;
98 up(&mq->thread_sem);
99 schedule();
100 down(&mq->thread_sem);
102 } while (1);
103 up(&mq->thread_sem);
105 return 0;
109 * Generic MMC request handler. This is called for any queue on a
110 * particular host. When the host is not busy, we look for a request
111 * on any queue on this host, and attempt to issue it. This may
112 * not be the queue we were asked to process.
114 static void mmc_request_fn(struct request_queue *q)
116 struct mmc_queue *mq = q->queuedata;
117 struct request *req;
118 unsigned long flags;
119 struct mmc_context_info *cntx;
121 if (!mq) {
122 while ((req = blk_fetch_request(q)) != NULL) {
123 req->cmd_flags |= REQ_QUIET;
124 __blk_end_request_all(req, -EIO);
126 return;
129 cntx = &mq->card->host->context_info;
130 if (!mq->mqrq_cur->req && mq->mqrq_prev->req) {
132 * New MMC request arrived when MMC thread may be
133 * blocked on the previous request to be complete
134 * with no current request fetched
136 spin_lock_irqsave(&cntx->lock, flags);
137 if (cntx->is_waiting_last_req) {
138 cntx->is_new_req = true;
139 wake_up_interruptible(&cntx->wait);
141 spin_unlock_irqrestore(&cntx->lock, flags);
142 } else if (!mq->mqrq_cur->req && !mq->mqrq_prev->req)
143 wake_up_process(mq->thread);
146 static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
148 struct scatterlist *sg;
150 sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
151 if (!sg)
152 *err = -ENOMEM;
153 else {
154 *err = 0;
155 sg_init_table(sg, sg_len);
158 return sg;
161 static void mmc_queue_setup_discard(struct request_queue *q,
162 struct mmc_card *card)
164 unsigned max_discard;
166 max_discard = mmc_calc_max_discard(card);
167 if (!max_discard)
168 return;
170 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
171 blk_queue_max_discard_sectors(q, max_discard);
172 if (card->erased_byte == 0 && !mmc_can_discard(card))
173 q->limits.discard_zeroes_data = 1;
174 q->limits.discard_granularity = card->pref_erase << 9;
175 /* granularity must not be greater than max. discard */
176 if (card->pref_erase > max_discard)
177 q->limits.discard_granularity = 0;
178 if (mmc_can_secure_erase_trim(card))
179 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q);
183 * mmc_init_queue - initialise a queue structure.
184 * @mq: mmc queue
185 * @card: mmc card to attach this queue
186 * @lock: queue lock
187 * @subname: partition subname
189 * Initialise a MMC card request queue.
191 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
192 spinlock_t *lock, const char *subname)
194 struct mmc_host *host = card->host;
195 u64 limit = BLK_BOUNCE_HIGH;
196 int ret;
197 struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
198 struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
200 if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
201 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
203 mq->card = card;
204 mq->queue = blk_init_queue(mmc_request_fn, lock);
205 if (!mq->queue)
206 return -ENOMEM;
208 mq->mqrq_cur = mqrq_cur;
209 mq->mqrq_prev = mqrq_prev;
210 mq->queue->queuedata = mq;
212 blk_queue_prep_rq(mq->queue, mmc_prep_request);
213 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
214 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
215 if (mmc_can_erase(card))
216 mmc_queue_setup_discard(mq->queue, card);
218 #ifdef CONFIG_MMC_BLOCK_BOUNCE
219 if (host->max_segs == 1) {
220 unsigned int bouncesz;
222 bouncesz = MMC_QUEUE_BOUNCESZ;
224 if (bouncesz > host->max_req_size)
225 bouncesz = host->max_req_size;
226 if (bouncesz > host->max_seg_size)
227 bouncesz = host->max_seg_size;
228 if (bouncesz > (host->max_blk_count * 512))
229 bouncesz = host->max_blk_count * 512;
231 if (bouncesz > 512) {
232 mqrq_cur->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
233 if (!mqrq_cur->bounce_buf) {
234 pr_warn("%s: unable to allocate bounce cur buffer\n",
235 mmc_card_name(card));
236 } else {
237 mqrq_prev->bounce_buf =
238 kmalloc(bouncesz, GFP_KERNEL);
239 if (!mqrq_prev->bounce_buf) {
240 pr_warn("%s: unable to allocate bounce prev buffer\n",
241 mmc_card_name(card));
242 kfree(mqrq_cur->bounce_buf);
243 mqrq_cur->bounce_buf = NULL;
248 if (mqrq_cur->bounce_buf && mqrq_prev->bounce_buf) {
249 blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
250 blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
251 blk_queue_max_segments(mq->queue, bouncesz / 512);
252 blk_queue_max_segment_size(mq->queue, bouncesz);
254 mqrq_cur->sg = mmc_alloc_sg(1, &ret);
255 if (ret)
256 goto cleanup_queue;
258 mqrq_cur->bounce_sg =
259 mmc_alloc_sg(bouncesz / 512, &ret);
260 if (ret)
261 goto cleanup_queue;
263 mqrq_prev->sg = mmc_alloc_sg(1, &ret);
264 if (ret)
265 goto cleanup_queue;
267 mqrq_prev->bounce_sg =
268 mmc_alloc_sg(bouncesz / 512, &ret);
269 if (ret)
270 goto cleanup_queue;
273 #endif
275 if (!mqrq_cur->bounce_buf && !mqrq_prev->bounce_buf) {
276 blk_queue_bounce_limit(mq->queue, limit);
277 blk_queue_max_hw_sectors(mq->queue,
278 min(host->max_blk_count, host->max_req_size / 512));
279 blk_queue_max_segments(mq->queue, host->max_segs);
280 blk_queue_max_segment_size(mq->queue, host->max_seg_size);
282 mqrq_cur->sg = mmc_alloc_sg(host->max_segs, &ret);
283 if (ret)
284 goto cleanup_queue;
287 mqrq_prev->sg = mmc_alloc_sg(host->max_segs, &ret);
288 if (ret)
289 goto cleanup_queue;
292 sema_init(&mq->thread_sem, 1);
294 mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
295 host->index, subname ? subname : "");
297 if (IS_ERR(mq->thread)) {
298 ret = PTR_ERR(mq->thread);
299 goto free_bounce_sg;
302 return 0;
303 free_bounce_sg:
304 kfree(mqrq_cur->bounce_sg);
305 mqrq_cur->bounce_sg = NULL;
306 kfree(mqrq_prev->bounce_sg);
307 mqrq_prev->bounce_sg = NULL;
309 cleanup_queue:
310 kfree(mqrq_cur->sg);
311 mqrq_cur->sg = NULL;
312 kfree(mqrq_cur->bounce_buf);
313 mqrq_cur->bounce_buf = NULL;
315 kfree(mqrq_prev->sg);
316 mqrq_prev->sg = NULL;
317 kfree(mqrq_prev->bounce_buf);
318 mqrq_prev->bounce_buf = NULL;
320 blk_cleanup_queue(mq->queue);
321 return ret;
324 void mmc_cleanup_queue(struct mmc_queue *mq)
326 struct request_queue *q = mq->queue;
327 unsigned long flags;
328 struct mmc_queue_req *mqrq_cur = mq->mqrq_cur;
329 struct mmc_queue_req *mqrq_prev = mq->mqrq_prev;
331 /* Make sure the queue isn't suspended, as that will deadlock */
332 mmc_queue_resume(mq);
334 /* Then terminate our worker thread */
335 kthread_stop(mq->thread);
337 /* Empty the queue */
338 spin_lock_irqsave(q->queue_lock, flags);
339 q->queuedata = NULL;
340 blk_start_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
343 kfree(mqrq_cur->bounce_sg);
344 mqrq_cur->bounce_sg = NULL;
346 kfree(mqrq_cur->sg);
347 mqrq_cur->sg = NULL;
349 kfree(mqrq_cur->bounce_buf);
350 mqrq_cur->bounce_buf = NULL;
352 kfree(mqrq_prev->bounce_sg);
353 mqrq_prev->bounce_sg = NULL;
355 kfree(mqrq_prev->sg);
356 mqrq_prev->sg = NULL;
358 kfree(mqrq_prev->bounce_buf);
359 mqrq_prev->bounce_buf = NULL;
361 mq->card = NULL;
363 EXPORT_SYMBOL(mmc_cleanup_queue);
365 int mmc_packed_init(struct mmc_queue *mq, struct mmc_card *card)
367 struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
368 struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
369 int ret = 0;
372 mqrq_cur->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
373 if (!mqrq_cur->packed) {
374 pr_warn("%s: unable to allocate packed cmd for mqrq_cur\n",
375 mmc_card_name(card));
376 ret = -ENOMEM;
377 goto out;
380 mqrq_prev->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
381 if (!mqrq_prev->packed) {
382 pr_warn("%s: unable to allocate packed cmd for mqrq_prev\n",
383 mmc_card_name(card));
384 kfree(mqrq_cur->packed);
385 mqrq_cur->packed = NULL;
386 ret = -ENOMEM;
387 goto out;
390 INIT_LIST_HEAD(&mqrq_cur->packed->list);
391 INIT_LIST_HEAD(&mqrq_prev->packed->list);
393 out:
394 return ret;
397 void mmc_packed_clean(struct mmc_queue *mq)
399 struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
400 struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
402 kfree(mqrq_cur->packed);
403 mqrq_cur->packed = NULL;
404 kfree(mqrq_prev->packed);
405 mqrq_prev->packed = NULL;
409 * mmc_queue_suspend - suspend a MMC request queue
410 * @mq: MMC queue to suspend
412 * Stop the block request queue, and wait for our thread to
413 * complete any outstanding requests. This ensures that we
414 * won't suspend while a request is being processed.
416 void mmc_queue_suspend(struct mmc_queue *mq)
418 struct request_queue *q = mq->queue;
419 unsigned long flags;
421 if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
422 mq->flags |= MMC_QUEUE_SUSPENDED;
424 spin_lock_irqsave(q->queue_lock, flags);
425 blk_stop_queue(q);
426 spin_unlock_irqrestore(q->queue_lock, flags);
428 down(&mq->thread_sem);
433 * mmc_queue_resume - resume a previously suspended MMC request queue
434 * @mq: MMC queue to resume
436 void mmc_queue_resume(struct mmc_queue *mq)
438 struct request_queue *q = mq->queue;
439 unsigned long flags;
441 if (mq->flags & MMC_QUEUE_SUSPENDED) {
442 mq->flags &= ~MMC_QUEUE_SUSPENDED;
444 up(&mq->thread_sem);
446 spin_lock_irqsave(q->queue_lock, flags);
447 blk_start_queue(q);
448 spin_unlock_irqrestore(q->queue_lock, flags);
452 static unsigned int mmc_queue_packed_map_sg(struct mmc_queue *mq,
453 struct mmc_packed *packed,
454 struct scatterlist *sg,
455 enum mmc_packed_type cmd_type)
457 struct scatterlist *__sg = sg;
458 unsigned int sg_len = 0;
459 struct request *req;
461 if (mmc_packed_wr(cmd_type)) {
462 unsigned int hdr_sz = mmc_large_sector(mq->card) ? 4096 : 512;
463 unsigned int max_seg_sz = queue_max_segment_size(mq->queue);
464 unsigned int len, remain, offset = 0;
465 u8 *buf = (u8 *)packed->cmd_hdr;
467 remain = hdr_sz;
468 do {
469 len = min(remain, max_seg_sz);
470 sg_set_buf(__sg, buf + offset, len);
471 offset += len;
472 remain -= len;
473 sg_unmark_end(__sg++);
474 sg_len++;
475 } while (remain);
478 list_for_each_entry(req, &packed->list, queuelist) {
479 sg_len += blk_rq_map_sg(mq->queue, req, __sg);
480 __sg = sg + (sg_len - 1);
481 sg_unmark_end(__sg++);
483 sg_mark_end(sg + (sg_len - 1));
484 return sg_len;
488 * Prepare the sg list(s) to be handed of to the host driver
490 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
492 unsigned int sg_len;
493 size_t buflen;
494 struct scatterlist *sg;
495 enum mmc_packed_type cmd_type;
496 int i;
498 cmd_type = mqrq->cmd_type;
500 if (!mqrq->bounce_buf) {
501 if (mmc_packed_cmd(cmd_type))
502 return mmc_queue_packed_map_sg(mq, mqrq->packed,
503 mqrq->sg, cmd_type);
504 else
505 return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
508 BUG_ON(!mqrq->bounce_sg);
510 if (mmc_packed_cmd(cmd_type))
511 sg_len = mmc_queue_packed_map_sg(mq, mqrq->packed,
512 mqrq->bounce_sg, cmd_type);
513 else
514 sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
516 mqrq->bounce_sg_len = sg_len;
518 buflen = 0;
519 for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
520 buflen += sg->length;
522 sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
524 return 1;
528 * If writing, bounce the data to the buffer before the request
529 * is sent to the host driver
531 void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
533 if (!mqrq->bounce_buf)
534 return;
536 if (rq_data_dir(mqrq->req) != WRITE)
537 return;
539 sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
540 mqrq->bounce_buf, mqrq->sg[0].length);
544 * If reading, bounce the data from the buffer after the request
545 * has been handled by the host driver
547 void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
549 if (!mqrq->bounce_buf)
550 return;
552 if (rq_data_dir(mqrq->req) != READ)
553 return;
555 sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
556 mqrq->bounce_buf, mqrq->sg[0].length);