2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax
= 515633;
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if busy detection on dat0 is supported
75 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
76 * @explicit_mclk_control: enable explicit mclk control in driver.
77 * @qcom_fifo: enables qcom specific fifo pio read logic.
78 * @qcom_dml: enables qcom specific dma glue for dma transfers.
79 * @reversed_irq_handling: handle data irq before cmd irq.
83 unsigned int clkreg_enable
;
84 unsigned int clkreg_8bit_bus_enable
;
85 unsigned int clkreg_neg_edge_enable
;
86 unsigned int datalength_bits
;
87 unsigned int fifosize
;
88 unsigned int fifohalfsize
;
89 unsigned int data_cmd_enable
;
90 unsigned int datactrl_mask_ddrmode
;
91 unsigned int datactrl_mask_sdio
;
94 bool blksz_datactrl16
;
98 bool signal_direction
;
102 bool explicit_mclk_control
;
105 bool reversed_irq_handling
;
108 static struct variant_data variant_arm
= {
110 .fifohalfsize
= 8 * 4,
111 .datalength_bits
= 16,
112 .pwrreg_powerup
= MCI_PWR_UP
,
114 .reversed_irq_handling
= true,
117 static struct variant_data variant_arm_extended_fifo
= {
119 .fifohalfsize
= 64 * 4,
120 .datalength_bits
= 16,
121 .pwrreg_powerup
= MCI_PWR_UP
,
125 static struct variant_data variant_arm_extended_fifo_hwfc
= {
127 .fifohalfsize
= 64 * 4,
128 .clkreg_enable
= MCI_ARM_HWFCEN
,
129 .datalength_bits
= 16,
130 .pwrreg_powerup
= MCI_PWR_UP
,
134 static struct variant_data variant_u300
= {
136 .fifohalfsize
= 8 * 4,
137 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
138 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
139 .datalength_bits
= 16,
140 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
142 .pwrreg_powerup
= MCI_PWR_ON
,
144 .signal_direction
= true,
145 .pwrreg_clkgate
= true,
146 .pwrreg_nopower
= true,
149 static struct variant_data variant_nomadik
= {
151 .fifohalfsize
= 8 * 4,
152 .clkreg
= MCI_CLK_ENABLE
,
153 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
154 .datalength_bits
= 24,
155 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
158 .pwrreg_powerup
= MCI_PWR_ON
,
160 .signal_direction
= true,
161 .pwrreg_clkgate
= true,
162 .pwrreg_nopower
= true,
165 static struct variant_data variant_ux500
= {
167 .fifohalfsize
= 8 * 4,
168 .clkreg
= MCI_CLK_ENABLE
,
169 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
170 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
171 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
172 .datalength_bits
= 24,
173 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
176 .pwrreg_powerup
= MCI_PWR_ON
,
178 .signal_direction
= true,
179 .pwrreg_clkgate
= true,
181 .pwrreg_nopower
= true,
184 static struct variant_data variant_ux500v2
= {
186 .fifohalfsize
= 8 * 4,
187 .clkreg
= MCI_CLK_ENABLE
,
188 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
189 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
190 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
191 .datactrl_mask_ddrmode
= MCI_ST_DPSM_DDRMODE
,
192 .datalength_bits
= 24,
193 .datactrl_mask_sdio
= MCI_ST_DPSM_SDIOEN
,
196 .blksz_datactrl16
= true,
197 .pwrreg_powerup
= MCI_PWR_ON
,
199 .signal_direction
= true,
200 .pwrreg_clkgate
= true,
202 .pwrreg_nopower
= true,
205 static struct variant_data variant_qcom
= {
207 .fifohalfsize
= 8 * 4,
208 .clkreg
= MCI_CLK_ENABLE
,
209 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
210 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
211 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
212 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
213 .data_cmd_enable
= MCI_QCOM_CSPM_DATCMD
,
214 .blksz_datactrl4
= true,
215 .datalength_bits
= 24,
216 .pwrreg_powerup
= MCI_PWR_UP
,
218 .explicit_mclk_control
= true,
223 static int mmci_card_busy(struct mmc_host
*mmc
)
225 struct mmci_host
*host
= mmc_priv(mmc
);
229 spin_lock_irqsave(&host
->lock
, flags
);
230 if (readl(host
->base
+ MMCISTATUS
) & MCI_ST_CARDBUSY
)
232 spin_unlock_irqrestore(&host
->lock
, flags
);
238 * Validate mmc prerequisites
240 static int mmci_validate_data(struct mmci_host
*host
,
241 struct mmc_data
*data
)
246 if (!is_power_of_2(data
->blksz
)) {
247 dev_err(mmc_dev(host
->mmc
),
248 "unsupported block size (%d bytes)\n", data
->blksz
);
255 static void mmci_reg_delay(struct mmci_host
*host
)
258 * According to the spec, at least three feedback clock cycles
259 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
260 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
261 * Worst delay time during card init is at 100 kHz => 30 us.
262 * Worst delay time when up and running is at 25 MHz => 120 ns.
264 if (host
->cclk
< 25000000)
271 * This must be called with host->lock held
273 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
275 if (host
->clk_reg
!= clk
) {
277 writel(clk
, host
->base
+ MMCICLOCK
);
282 * This must be called with host->lock held
284 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
286 if (host
->pwr_reg
!= pwr
) {
288 writel(pwr
, host
->base
+ MMCIPOWER
);
293 * This must be called with host->lock held
295 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
297 /* Keep ST Micro busy mode if enabled */
298 datactrl
|= host
->datactrl_reg
& MCI_ST_DPSM_BUSYMODE
;
300 if (host
->datactrl_reg
!= datactrl
) {
301 host
->datactrl_reg
= datactrl
;
302 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
307 * This must be called with host->lock held
309 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
311 struct variant_data
*variant
= host
->variant
;
312 u32 clk
= variant
->clkreg
;
314 /* Make sure cclk reflects the current calculated clock */
318 if (variant
->explicit_mclk_control
) {
319 host
->cclk
= host
->mclk
;
320 } else if (desired
>= host
->mclk
) {
321 clk
= MCI_CLK_BYPASS
;
322 if (variant
->st_clkdiv
)
323 clk
|= MCI_ST_UX500_NEG_EDGE
;
324 host
->cclk
= host
->mclk
;
325 } else if (variant
->st_clkdiv
) {
327 * DB8500 TRM says f = mclk / (clkdiv + 2)
328 * => clkdiv = (mclk / f) - 2
329 * Round the divider up so we don't exceed the max
332 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
335 host
->cclk
= host
->mclk
/ (clk
+ 2);
338 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
339 * => clkdiv = mclk / (2 * f) - 1
341 clk
= host
->mclk
/ (2 * desired
) - 1;
344 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
347 clk
|= variant
->clkreg_enable
;
348 clk
|= MCI_CLK_ENABLE
;
349 /* This hasn't proven to be worthwhile */
350 /* clk |= MCI_CLK_PWRSAVE; */
353 /* Set actual clock for debug */
354 host
->mmc
->actual_clock
= host
->cclk
;
356 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
358 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
359 clk
|= variant
->clkreg_8bit_bus_enable
;
361 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
362 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
363 clk
|= variant
->clkreg_neg_edge_enable
;
365 mmci_write_clkreg(host
, clk
);
369 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
371 writel(0, host
->base
+ MMCICOMMAND
);
378 mmc_request_done(host
->mmc
, mrq
);
381 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
383 void __iomem
*base
= host
->base
;
385 if (host
->singleirq
) {
386 unsigned int mask0
= readl(base
+ MMCIMASK0
);
388 mask0
&= ~MCI_IRQ1MASK
;
391 writel(mask0
, base
+ MMCIMASK0
);
394 writel(mask
, base
+ MMCIMASK1
);
397 static void mmci_stop_data(struct mmci_host
*host
)
399 mmci_write_datactrlreg(host
, 0);
400 mmci_set_mask1(host
, 0);
404 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
406 unsigned int flags
= SG_MITER_ATOMIC
;
408 if (data
->flags
& MMC_DATA_READ
)
409 flags
|= SG_MITER_TO_SG
;
411 flags
|= SG_MITER_FROM_SG
;
413 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
417 * All the DMA operation mode stuff goes inside this ifdef.
418 * This assumes that you have a generic DMA device interface,
419 * no custom DMA interfaces are supported.
421 #ifdef CONFIG_DMA_ENGINE
422 static void mmci_dma_setup(struct mmci_host
*host
)
424 const char *rxname
, *txname
;
425 struct variant_data
*variant
= host
->variant
;
427 host
->dma_rx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "rx");
428 host
->dma_tx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "tx");
430 /* initialize pre request cookie */
431 host
->next_data
.cookie
= 1;
434 * If only an RX channel is specified, the driver will
435 * attempt to use it bidirectionally, however if it is
436 * is specified but cannot be located, DMA will be disabled.
438 if (host
->dma_rx_channel
&& !host
->dma_tx_channel
)
439 host
->dma_tx_channel
= host
->dma_rx_channel
;
441 if (host
->dma_rx_channel
)
442 rxname
= dma_chan_name(host
->dma_rx_channel
);
446 if (host
->dma_tx_channel
)
447 txname
= dma_chan_name(host
->dma_tx_channel
);
451 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
455 * Limit the maximum segment size in any SG entry according to
456 * the parameters of the DMA engine device.
458 if (host
->dma_tx_channel
) {
459 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
460 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
462 if (max_seg_size
< host
->mmc
->max_seg_size
)
463 host
->mmc
->max_seg_size
= max_seg_size
;
465 if (host
->dma_rx_channel
) {
466 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
467 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
469 if (max_seg_size
< host
->mmc
->max_seg_size
)
470 host
->mmc
->max_seg_size
= max_seg_size
;
473 if (variant
->qcom_dml
&& host
->dma_rx_channel
&& host
->dma_tx_channel
)
474 if (dml_hw_init(host
, host
->mmc
->parent
->of_node
))
475 variant
->qcom_dml
= false;
479 * This is used in or so inline it
480 * so it can be discarded.
482 static inline void mmci_dma_release(struct mmci_host
*host
)
484 if (host
->dma_rx_channel
)
485 dma_release_channel(host
->dma_rx_channel
);
486 if (host
->dma_tx_channel
)
487 dma_release_channel(host
->dma_tx_channel
);
488 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
491 static void mmci_dma_data_error(struct mmci_host
*host
)
493 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
494 dmaengine_terminate_all(host
->dma_current
);
495 host
->dma_current
= NULL
;
496 host
->dma_desc_current
= NULL
;
497 host
->data
->host_cookie
= 0;
500 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
502 struct dma_chan
*chan
;
503 enum dma_data_direction dir
;
505 if (data
->flags
& MMC_DATA_READ
) {
506 dir
= DMA_FROM_DEVICE
;
507 chan
= host
->dma_rx_channel
;
510 chan
= host
->dma_tx_channel
;
513 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
516 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
521 /* Wait up to 1ms for the DMA to complete */
523 status
= readl(host
->base
+ MMCISTATUS
);
524 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
530 * Check to see whether we still have some data left in the FIFO -
531 * this catches DMA controllers which are unable to monitor the
532 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
533 * contiguous buffers. On TX, we'll get a FIFO underrun error.
535 if (status
& MCI_RXDATAAVLBLMASK
) {
536 mmci_dma_data_error(host
);
541 if (!data
->host_cookie
)
542 mmci_dma_unmap(host
, data
);
545 * Use of DMA with scatter-gather is impossible.
546 * Give up with DMA and switch back to PIO mode.
548 if (status
& MCI_RXDATAAVLBLMASK
) {
549 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
550 mmci_dma_release(host
);
553 host
->dma_current
= NULL
;
554 host
->dma_desc_current
= NULL
;
557 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
558 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
559 struct dma_chan
**dma_chan
,
560 struct dma_async_tx_descriptor
**dma_desc
)
562 struct variant_data
*variant
= host
->variant
;
563 struct dma_slave_config conf
= {
564 .src_addr
= host
->phybase
+ MMCIFIFO
,
565 .dst_addr
= host
->phybase
+ MMCIFIFO
,
566 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
567 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
568 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
569 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
572 struct dma_chan
*chan
;
573 struct dma_device
*device
;
574 struct dma_async_tx_descriptor
*desc
;
575 enum dma_data_direction buffer_dirn
;
577 unsigned long flags
= DMA_CTRL_ACK
;
579 if (data
->flags
& MMC_DATA_READ
) {
580 conf
.direction
= DMA_DEV_TO_MEM
;
581 buffer_dirn
= DMA_FROM_DEVICE
;
582 chan
= host
->dma_rx_channel
;
584 conf
.direction
= DMA_MEM_TO_DEV
;
585 buffer_dirn
= DMA_TO_DEVICE
;
586 chan
= host
->dma_tx_channel
;
589 /* If there's no DMA channel, fall back to PIO */
593 /* If less than or equal to the fifo size, don't bother with DMA */
594 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
597 device
= chan
->device
;
598 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
602 if (host
->variant
->qcom_dml
)
603 flags
|= DMA_PREP_INTERRUPT
;
605 dmaengine_slave_config(chan
, &conf
);
606 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
607 conf
.direction
, flags
);
617 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
621 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
622 struct mmc_data
*data
)
624 /* Check if next job is already prepared. */
625 if (host
->dma_current
&& host
->dma_desc_current
)
628 /* No job were prepared thus do it now. */
629 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
630 &host
->dma_desc_current
);
633 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
634 struct mmc_data
*data
)
636 struct mmci_host_next
*nd
= &host
->next_data
;
637 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
640 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
643 struct mmc_data
*data
= host
->data
;
645 ret
= mmci_dma_prep_data(host
, host
->data
);
649 /* Okay, go for it. */
650 dev_vdbg(mmc_dev(host
->mmc
),
651 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
652 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
653 dmaengine_submit(host
->dma_desc_current
);
654 dma_async_issue_pending(host
->dma_current
);
656 if (host
->variant
->qcom_dml
)
657 dml_start_xfer(host
, data
);
659 datactrl
|= MCI_DPSM_DMAENABLE
;
661 /* Trigger the DMA transfer */
662 mmci_write_datactrlreg(host
, datactrl
);
665 * Let the MMCI say when the data is ended and it's time
666 * to fire next DMA request. When that happens, MMCI will
667 * call mmci_data_end()
669 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
670 host
->base
+ MMCIMASK0
);
674 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
676 struct mmci_host_next
*next
= &host
->next_data
;
678 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
679 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
681 host
->dma_desc_current
= next
->dma_desc
;
682 host
->dma_current
= next
->dma_chan
;
683 next
->dma_desc
= NULL
;
684 next
->dma_chan
= NULL
;
687 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
690 struct mmci_host
*host
= mmc_priv(mmc
);
691 struct mmc_data
*data
= mrq
->data
;
692 struct mmci_host_next
*nd
= &host
->next_data
;
697 BUG_ON(data
->host_cookie
);
699 if (mmci_validate_data(host
, data
))
702 if (!mmci_dma_prep_next(host
, data
))
703 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
706 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
709 struct mmci_host
*host
= mmc_priv(mmc
);
710 struct mmc_data
*data
= mrq
->data
;
712 if (!data
|| !data
->host_cookie
)
715 mmci_dma_unmap(host
, data
);
718 struct mmci_host_next
*next
= &host
->next_data
;
719 struct dma_chan
*chan
;
720 if (data
->flags
& MMC_DATA_READ
)
721 chan
= host
->dma_rx_channel
;
723 chan
= host
->dma_tx_channel
;
724 dmaengine_terminate_all(chan
);
726 if (host
->dma_desc_current
== next
->dma_desc
)
727 host
->dma_desc_current
= NULL
;
729 if (host
->dma_current
== next
->dma_chan
)
730 host
->dma_current
= NULL
;
732 next
->dma_desc
= NULL
;
733 next
->dma_chan
= NULL
;
734 data
->host_cookie
= 0;
739 /* Blank functions if the DMA engine is not available */
740 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
743 static inline void mmci_dma_setup(struct mmci_host
*host
)
747 static inline void mmci_dma_release(struct mmci_host
*host
)
751 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
755 static inline void mmci_dma_finalize(struct mmci_host
*host
,
756 struct mmc_data
*data
)
760 static inline void mmci_dma_data_error(struct mmci_host
*host
)
764 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
769 #define mmci_pre_request NULL
770 #define mmci_post_request NULL
774 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
776 struct variant_data
*variant
= host
->variant
;
777 unsigned int datactrl
, timeout
, irqmask
;
778 unsigned long long clks
;
782 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
783 data
->blksz
, data
->blocks
, data
->flags
);
786 host
->size
= data
->blksz
* data
->blocks
;
787 data
->bytes_xfered
= 0;
789 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
790 do_div(clks
, NSEC_PER_SEC
);
792 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
795 writel(timeout
, base
+ MMCIDATATIMER
);
796 writel(host
->size
, base
+ MMCIDATALENGTH
);
798 blksz_bits
= ffs(data
->blksz
) - 1;
799 BUG_ON(1 << blksz_bits
!= data
->blksz
);
801 if (variant
->blksz_datactrl16
)
802 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
803 else if (variant
->blksz_datactrl4
)
804 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 4);
806 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
808 if (data
->flags
& MMC_DATA_READ
)
809 datactrl
|= MCI_DPSM_DIRECTION
;
811 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
814 datactrl
|= variant
->datactrl_mask_sdio
;
817 * The ST Micro variant for SDIO small write transfers
818 * needs to have clock H/W flow control disabled,
819 * otherwise the transfer will not start. The threshold
820 * depends on the rate of MCLK.
822 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
824 (host
->size
<= 8 && host
->mclk
> 50000000)))
825 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
827 clk
= host
->clk_reg
| variant
->clkreg_enable
;
829 mmci_write_clkreg(host
, clk
);
832 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
833 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
834 datactrl
|= variant
->datactrl_mask_ddrmode
;
837 * Attempt to use DMA operation mode, if this
838 * should fail, fall back to PIO mode
840 if (!mmci_dma_start_data(host
, datactrl
))
843 /* IRQ mode, map the SG list for CPU reading/writing */
844 mmci_init_sg(host
, data
);
846 if (data
->flags
& MMC_DATA_READ
) {
847 irqmask
= MCI_RXFIFOHALFFULLMASK
;
850 * If we have less than the fifo 'half-full' threshold to
851 * transfer, trigger a PIO interrupt as soon as any data
854 if (host
->size
< variant
->fifohalfsize
)
855 irqmask
|= MCI_RXDATAAVLBLMASK
;
858 * We don't actually need to include "FIFO empty" here
859 * since its implicit in "FIFO half empty".
861 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
864 mmci_write_datactrlreg(host
, datactrl
);
865 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
866 mmci_set_mask1(host
, irqmask
);
870 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
872 void __iomem
*base
= host
->base
;
874 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
875 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
877 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
878 writel(0, base
+ MMCICOMMAND
);
879 mmci_reg_delay(host
);
882 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
883 if (cmd
->flags
& MMC_RSP_PRESENT
) {
884 if (cmd
->flags
& MMC_RSP_136
)
885 c
|= MCI_CPSM_LONGRSP
;
886 c
|= MCI_CPSM_RESPONSE
;
889 c
|= MCI_CPSM_INTERRUPT
;
891 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
892 c
|= host
->variant
->data_cmd_enable
;
896 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
897 writel(c
, base
+ MMCICOMMAND
);
901 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
904 /* Make sure we have data to handle */
908 /* First check for errors */
909 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
910 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
913 /* Terminate the DMA transfer */
914 if (dma_inprogress(host
)) {
915 mmci_dma_data_error(host
);
916 mmci_dma_unmap(host
, data
);
920 * Calculate how far we are into the transfer. Note that
921 * the data counter gives the number of bytes transferred
922 * on the MMC bus, not on the host side. On reads, this
923 * can be as much as a FIFO-worth of data ahead. This
924 * matters for FIFO overruns only.
926 remain
= readl(host
->base
+ MMCIDATACNT
);
927 success
= data
->blksz
* data
->blocks
- remain
;
929 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
931 if (status
& MCI_DATACRCFAIL
) {
932 /* Last block was not successful */
934 data
->error
= -EILSEQ
;
935 } else if (status
& MCI_DATATIMEOUT
) {
936 data
->error
= -ETIMEDOUT
;
937 } else if (status
& MCI_STARTBITERR
) {
938 data
->error
= -ECOMM
;
939 } else if (status
& MCI_TXUNDERRUN
) {
941 } else if (status
& MCI_RXOVERRUN
) {
942 if (success
> host
->variant
->fifosize
)
943 success
-= host
->variant
->fifosize
;
948 data
->bytes_xfered
= round_down(success
, data
->blksz
);
951 if (status
& MCI_DATABLOCKEND
)
952 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
954 if (status
& MCI_DATAEND
|| data
->error
) {
955 if (dma_inprogress(host
))
956 mmci_dma_finalize(host
, data
);
957 mmci_stop_data(host
);
960 /* The error clause is handled above, success! */
961 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
963 if (!data
->stop
|| host
->mrq
->sbc
) {
964 mmci_request_end(host
, data
->mrq
);
966 mmci_start_command(host
, data
->stop
, 0);
972 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
975 void __iomem
*base
= host
->base
;
981 sbc
= (cmd
== host
->mrq
->sbc
);
982 busy_resp
= host
->variant
->busy_detect
&& (cmd
->flags
& MMC_RSP_BUSY
);
984 if (!((status
|host
->busy_status
) & (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|
985 MCI_CMDSENT
|MCI_CMDRESPEND
)))
988 /* Check if we need to wait for busy completion. */
989 if (host
->busy_status
&& (status
& MCI_ST_CARDBUSY
))
992 /* Enable busy completion if needed and supported. */
993 if (!host
->busy_status
&& busy_resp
&&
994 !(status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
)) &&
995 (readl(base
+ MMCISTATUS
) & MCI_ST_CARDBUSY
)) {
996 writel(readl(base
+ MMCIMASK0
) | MCI_ST_BUSYEND
,
998 host
->busy_status
= status
& (MCI_CMDSENT
|MCI_CMDRESPEND
);
1002 /* At busy completion, mask the IRQ and complete the request. */
1003 if (host
->busy_status
) {
1004 writel(readl(base
+ MMCIMASK0
) & ~MCI_ST_BUSYEND
,
1006 host
->busy_status
= 0;
1011 if (status
& MCI_CMDTIMEOUT
) {
1012 cmd
->error
= -ETIMEDOUT
;
1013 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1014 cmd
->error
= -EILSEQ
;
1016 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1017 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1018 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1019 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1022 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1024 /* Terminate the DMA transfer */
1025 if (dma_inprogress(host
)) {
1026 mmci_dma_data_error(host
);
1027 mmci_dma_unmap(host
, host
->data
);
1029 mmci_stop_data(host
);
1031 mmci_request_end(host
, host
->mrq
);
1033 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1034 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
1035 mmci_start_data(host
, cmd
->data
);
1039 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1041 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1044 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1047 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1048 * from the fifo range should be used
1050 if (status
& MCI_RXFIFOHALFFULL
)
1051 return host
->variant
->fifohalfsize
;
1052 else if (status
& MCI_RXDATAAVLBL
)
1058 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1060 void __iomem
*base
= host
->base
;
1062 u32 status
= readl(host
->base
+ MMCISTATUS
);
1063 int host_remain
= host
->size
;
1066 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1075 * SDIO especially may want to send something that is
1076 * not divisible by 4 (as opposed to card sectors
1077 * etc). Therefore make sure to always read the last bytes
1078 * while only doing full 32-bit reads towards the FIFO.
1080 if (unlikely(count
& 0x3)) {
1082 unsigned char buf
[4];
1083 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1084 memcpy(ptr
, buf
, count
);
1086 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1090 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1095 host_remain
-= count
;
1100 status
= readl(base
+ MMCISTATUS
);
1101 } while (status
& MCI_RXDATAAVLBL
);
1103 return ptr
- buffer
;
1106 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1108 struct variant_data
*variant
= host
->variant
;
1109 void __iomem
*base
= host
->base
;
1113 unsigned int count
, maxcnt
;
1115 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1116 variant
->fifosize
: variant
->fifohalfsize
;
1117 count
= min(remain
, maxcnt
);
1120 * SDIO especially may want to send something that is
1121 * not divisible by 4 (as opposed to card sectors
1122 * etc), and the FIFO only accept full 32-bit writes.
1123 * So compensate by adding +3 on the count, a single
1124 * byte become a 32bit write, 7 bytes will be two
1127 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1135 status
= readl(base
+ MMCISTATUS
);
1136 } while (status
& MCI_TXFIFOHALFEMPTY
);
1138 return ptr
- buffer
;
1142 * PIO data transfer IRQ handler.
1144 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1146 struct mmci_host
*host
= dev_id
;
1147 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1148 struct variant_data
*variant
= host
->variant
;
1149 void __iomem
*base
= host
->base
;
1150 unsigned long flags
;
1153 status
= readl(base
+ MMCISTATUS
);
1155 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1157 local_irq_save(flags
);
1160 unsigned int remain
, len
;
1164 * For write, we only need to test the half-empty flag
1165 * here - if the FIFO is completely empty, then by
1166 * definition it is more than half empty.
1168 * For read, check for data available.
1170 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1173 if (!sg_miter_next(sg_miter
))
1176 buffer
= sg_miter
->addr
;
1177 remain
= sg_miter
->length
;
1180 if (status
& MCI_RXACTIVE
)
1181 len
= mmci_pio_read(host
, buffer
, remain
);
1182 if (status
& MCI_TXACTIVE
)
1183 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1185 sg_miter
->consumed
= len
;
1193 status
= readl(base
+ MMCISTATUS
);
1196 sg_miter_stop(sg_miter
);
1198 local_irq_restore(flags
);
1201 * If we have less than the fifo 'half-full' threshold to transfer,
1202 * trigger a PIO interrupt as soon as any data is available.
1204 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1205 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1208 * If we run out of data, disable the data IRQs; this
1209 * prevents a race where the FIFO becomes empty before
1210 * the chip itself has disabled the data path, and
1211 * stops us racing with our data end IRQ.
1213 if (host
->size
== 0) {
1214 mmci_set_mask1(host
, 0);
1215 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1222 * Handle completion of command and data transfers.
1224 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1226 struct mmci_host
*host
= dev_id
;
1230 spin_lock(&host
->lock
);
1233 status
= readl(host
->base
+ MMCISTATUS
);
1235 if (host
->singleirq
) {
1236 if (status
& readl(host
->base
+ MMCIMASK1
))
1237 mmci_pio_irq(irq
, dev_id
);
1239 status
&= ~MCI_IRQ1MASK
;
1243 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1244 * enabled) since the HW seems to be triggering the IRQ on both
1245 * edges while monitoring DAT0 for busy completion.
1247 status
&= readl(host
->base
+ MMCIMASK0
);
1248 writel(status
, host
->base
+ MMCICLEAR
);
1250 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1252 if (host
->variant
->reversed_irq_handling
) {
1253 mmci_data_irq(host
, host
->data
, status
);
1254 mmci_cmd_irq(host
, host
->cmd
, status
);
1256 mmci_cmd_irq(host
, host
->cmd
, status
);
1257 mmci_data_irq(host
, host
->data
, status
);
1260 /* Don't poll for busy completion in irq context. */
1261 if (host
->busy_status
)
1262 status
&= ~MCI_ST_CARDBUSY
;
1267 spin_unlock(&host
->lock
);
1269 return IRQ_RETVAL(ret
);
1272 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1274 struct mmci_host
*host
= mmc_priv(mmc
);
1275 unsigned long flags
;
1277 WARN_ON(host
->mrq
!= NULL
);
1279 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1280 if (mrq
->cmd
->error
) {
1281 mmc_request_done(mmc
, mrq
);
1285 spin_lock_irqsave(&host
->lock
, flags
);
1290 mmci_get_next_data(host
, mrq
->data
);
1292 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1293 mmci_start_data(host
, mrq
->data
);
1296 mmci_start_command(host
, mrq
->sbc
, 0);
1298 mmci_start_command(host
, mrq
->cmd
, 0);
1300 spin_unlock_irqrestore(&host
->lock
, flags
);
1303 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1305 struct mmci_host
*host
= mmc_priv(mmc
);
1306 struct variant_data
*variant
= host
->variant
;
1308 unsigned long flags
;
1311 if (host
->plat
->ios_handler
&&
1312 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1313 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1315 switch (ios
->power_mode
) {
1317 if (!IS_ERR(mmc
->supply
.vmmc
))
1318 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1320 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1321 regulator_disable(mmc
->supply
.vqmmc
);
1322 host
->vqmmc_enabled
= false;
1327 if (!IS_ERR(mmc
->supply
.vmmc
))
1328 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1331 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1332 * and instead uses MCI_PWR_ON so apply whatever value is
1333 * configured in the variant data.
1335 pwr
|= variant
->pwrreg_powerup
;
1339 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1340 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1342 dev_err(mmc_dev(mmc
),
1343 "failed to enable vqmmc regulator\n");
1345 host
->vqmmc_enabled
= true;
1352 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1354 * The ST Micro variant has some additional bits
1355 * indicating signal direction for the signals in
1356 * the SD/MMC bus and feedback-clock usage.
1358 pwr
|= host
->pwr_reg_add
;
1360 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1361 pwr
&= ~MCI_ST_DATA74DIREN
;
1362 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1363 pwr
&= (~MCI_ST_DATA74DIREN
&
1364 ~MCI_ST_DATA31DIREN
&
1365 ~MCI_ST_DATA2DIREN
);
1368 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1369 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1373 * The ST Micro variant use the ROD bit for something
1374 * else and only has OD (Open Drain).
1381 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1382 * gating the clock, the MCI_PWR_ON bit is cleared.
1384 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1387 if (host
->variant
->explicit_mclk_control
&&
1388 ios
->clock
!= host
->clock_cache
) {
1389 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1391 dev_err(mmc_dev(host
->mmc
),
1392 "Error setting clock rate (%d)\n", ret
);
1394 host
->mclk
= clk_get_rate(host
->clk
);
1396 host
->clock_cache
= ios
->clock
;
1398 spin_lock_irqsave(&host
->lock
, flags
);
1400 mmci_set_clkreg(host
, ios
->clock
);
1401 mmci_write_pwrreg(host
, pwr
);
1402 mmci_reg_delay(host
);
1404 spin_unlock_irqrestore(&host
->lock
, flags
);
1407 static int mmci_get_cd(struct mmc_host
*mmc
)
1409 struct mmci_host
*host
= mmc_priv(mmc
);
1410 struct mmci_platform_data
*plat
= host
->plat
;
1411 unsigned int status
= mmc_gpio_get_cd(mmc
);
1413 if (status
== -ENOSYS
) {
1415 return 1; /* Assume always present */
1417 status
= plat
->status(mmc_dev(host
->mmc
));
1422 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1426 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1428 switch (ios
->signal_voltage
) {
1429 case MMC_SIGNAL_VOLTAGE_330
:
1430 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1433 case MMC_SIGNAL_VOLTAGE_180
:
1434 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1437 case MMC_SIGNAL_VOLTAGE_120
:
1438 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1444 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1450 static struct mmc_host_ops mmci_ops
= {
1451 .request
= mmci_request
,
1452 .pre_req
= mmci_pre_request
,
1453 .post_req
= mmci_post_request
,
1454 .set_ios
= mmci_set_ios
,
1455 .get_ro
= mmc_gpio_get_ro
,
1456 .get_cd
= mmci_get_cd
,
1457 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1460 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1462 struct mmci_host
*host
= mmc_priv(mmc
);
1463 int ret
= mmc_of_parse(mmc
);
1468 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1469 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1470 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1471 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1472 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1473 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1474 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1475 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1476 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1477 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1478 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1479 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1481 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1482 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1483 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1484 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1489 static int mmci_probe(struct amba_device
*dev
,
1490 const struct amba_id
*id
)
1492 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1493 struct device_node
*np
= dev
->dev
.of_node
;
1494 struct variant_data
*variant
= id
->data
;
1495 struct mmci_host
*host
;
1496 struct mmc_host
*mmc
;
1499 /* Must have platform data or Device Tree. */
1501 dev_err(&dev
->dev
, "No plat data or DT found\n");
1506 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1511 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1515 ret
= mmci_of_parse(np
, mmc
);
1519 host
= mmc_priv(mmc
);
1522 host
->hw_designer
= amba_manf(dev
);
1523 host
->hw_revision
= amba_rev(dev
);
1524 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1525 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1527 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1528 if (IS_ERR(host
->clk
)) {
1529 ret
= PTR_ERR(host
->clk
);
1533 ret
= clk_prepare_enable(host
->clk
);
1537 if (variant
->qcom_fifo
)
1538 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
1540 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
1543 host
->variant
= variant
;
1544 host
->mclk
= clk_get_rate(host
->clk
);
1546 * According to the spec, mclk is max 100 MHz,
1547 * so we try to adjust the clock down to this,
1550 if (host
->mclk
> variant
->f_max
) {
1551 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
1554 host
->mclk
= clk_get_rate(host
->clk
);
1555 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1559 host
->phybase
= dev
->res
.start
;
1560 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
1561 if (IS_ERR(host
->base
)) {
1562 ret
= PTR_ERR(host
->base
);
1567 * The ARM and ST versions of the block have slightly different
1568 * clock divider equations which means that the minimum divider
1570 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1572 if (variant
->st_clkdiv
)
1573 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1574 else if (variant
->explicit_mclk_control
)
1575 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
1577 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1579 * If no maximum operating frequency is supplied, fall back to use
1580 * the module parameter, which has a (low) default value in case it
1581 * is not specified. Either value must not exceed the clock rate into
1582 * the block, of course.
1585 mmc
->f_max
= variant
->explicit_mclk_control
?
1586 min(variant
->f_max
, mmc
->f_max
) :
1587 min(host
->mclk
, mmc
->f_max
);
1589 mmc
->f_max
= variant
->explicit_mclk_control
?
1590 fmax
: min(host
->mclk
, fmax
);
1593 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1595 /* Get regulators and the supported OCR mask */
1596 ret
= mmc_regulator_get_supply(mmc
);
1597 if (ret
== -EPROBE_DEFER
)
1600 if (!mmc
->ocr_avail
)
1601 mmc
->ocr_avail
= plat
->ocr_mask
;
1602 else if (plat
->ocr_mask
)
1603 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1605 /* DT takes precedence over platform data. */
1607 if (!plat
->cd_invert
)
1608 mmc
->caps2
|= MMC_CAP2_CD_ACTIVE_HIGH
;
1609 mmc
->caps2
|= MMC_CAP2_RO_ACTIVE_HIGH
;
1612 /* We support these capabilities. */
1613 mmc
->caps
|= MMC_CAP_CMD23
;
1615 if (variant
->busy_detect
) {
1616 mmci_ops
.card_busy
= mmci_card_busy
;
1617 mmci_write_datactrlreg(host
, MCI_ST_DPSM_BUSYMODE
);
1618 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
1619 mmc
->max_busy_timeout
= 0;
1622 mmc
->ops
= &mmci_ops
;
1624 /* We support these PM capabilities. */
1625 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
1630 mmc
->max_segs
= NR_SG
;
1633 * Since only a certain number of bits are valid in the data length
1634 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1637 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1640 * Set the maximum segment size. Since we aren't doing DMA
1641 * (yet) we are only limited by the data length register.
1643 mmc
->max_seg_size
= mmc
->max_req_size
;
1646 * Block size can be up to 2048 bytes, but must be a power of two.
1648 mmc
->max_blk_size
= 1 << 11;
1651 * Limit the number of blocks transferred so that we don't overflow
1652 * the maximum request size.
1654 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1656 spin_lock_init(&host
->lock
);
1658 writel(0, host
->base
+ MMCIMASK0
);
1659 writel(0, host
->base
+ MMCIMASK1
);
1660 writel(0xfff, host
->base
+ MMCICLEAR
);
1664 * - not using DT but using a descriptor table, or
1665 * - using a table of descriptors ALONGSIDE DT, or
1666 * look up these descriptors named "cd" and "wp" right here, fail
1667 * silently of these do not exist and proceed to try platform data
1670 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0, NULL
);
1672 if (ret
== -EPROBE_DEFER
)
1674 else if (gpio_is_valid(plat
->gpio_cd
)) {
1675 ret
= mmc_gpio_request_cd(mmc
, plat
->gpio_cd
, 0);
1681 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, false, 0, NULL
);
1683 if (ret
== -EPROBE_DEFER
)
1685 else if (gpio_is_valid(plat
->gpio_wp
)) {
1686 ret
= mmc_gpio_request_ro(mmc
, plat
->gpio_wp
);
1693 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
, IRQF_SHARED
,
1694 DRIVER_NAME
" (cmd)", host
);
1699 host
->singleirq
= true;
1701 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
1702 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
1707 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1709 amba_set_drvdata(dev
, mmc
);
1711 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1712 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1713 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1714 dev
->irq
[0], dev
->irq
[1]);
1716 mmci_dma_setup(host
);
1718 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1719 pm_runtime_use_autosuspend(&dev
->dev
);
1723 pm_runtime_put(&dev
->dev
);
1727 clk_disable_unprepare(host
->clk
);
1733 static int mmci_remove(struct amba_device
*dev
)
1735 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1738 struct mmci_host
*host
= mmc_priv(mmc
);
1741 * Undo pm_runtime_put() in probe. We use the _sync
1742 * version here so that we can access the primecell.
1744 pm_runtime_get_sync(&dev
->dev
);
1746 mmc_remove_host(mmc
);
1748 writel(0, host
->base
+ MMCIMASK0
);
1749 writel(0, host
->base
+ MMCIMASK1
);
1751 writel(0, host
->base
+ MMCICOMMAND
);
1752 writel(0, host
->base
+ MMCIDATACTRL
);
1754 mmci_dma_release(host
);
1755 clk_disable_unprepare(host
->clk
);
1763 static void mmci_save(struct mmci_host
*host
)
1765 unsigned long flags
;
1767 spin_lock_irqsave(&host
->lock
, flags
);
1769 writel(0, host
->base
+ MMCIMASK0
);
1770 if (host
->variant
->pwrreg_nopower
) {
1771 writel(0, host
->base
+ MMCIDATACTRL
);
1772 writel(0, host
->base
+ MMCIPOWER
);
1773 writel(0, host
->base
+ MMCICLOCK
);
1775 mmci_reg_delay(host
);
1777 spin_unlock_irqrestore(&host
->lock
, flags
);
1780 static void mmci_restore(struct mmci_host
*host
)
1782 unsigned long flags
;
1784 spin_lock_irqsave(&host
->lock
, flags
);
1786 if (host
->variant
->pwrreg_nopower
) {
1787 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1788 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
1789 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1791 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1792 mmci_reg_delay(host
);
1794 spin_unlock_irqrestore(&host
->lock
, flags
);
1797 static int mmci_runtime_suspend(struct device
*dev
)
1799 struct amba_device
*adev
= to_amba_device(dev
);
1800 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1803 struct mmci_host
*host
= mmc_priv(mmc
);
1804 pinctrl_pm_select_sleep_state(dev
);
1806 clk_disable_unprepare(host
->clk
);
1812 static int mmci_runtime_resume(struct device
*dev
)
1814 struct amba_device
*adev
= to_amba_device(dev
);
1815 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1818 struct mmci_host
*host
= mmc_priv(mmc
);
1819 clk_prepare_enable(host
->clk
);
1821 pinctrl_pm_select_default_state(dev
);
1828 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1829 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1830 pm_runtime_force_resume
)
1831 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1834 static struct amba_id mmci_ids
[] = {
1838 .data
= &variant_arm
,
1843 .data
= &variant_arm_extended_fifo
,
1848 .data
= &variant_arm_extended_fifo_hwfc
,
1853 .data
= &variant_arm
,
1855 /* ST Micro variants */
1859 .data
= &variant_u300
,
1864 .data
= &variant_nomadik
,
1869 .data
= &variant_nomadik
,
1874 .data
= &variant_ux500
,
1879 .data
= &variant_ux500v2
,
1881 /* Qualcomm variants */
1885 .data
= &variant_qcom
,
1890 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1892 static struct amba_driver mmci_driver
= {
1894 .name
= DRIVER_NAME
,
1895 .pm
= &mmci_dev_pm_ops
,
1897 .probe
= mmci_probe
,
1898 .remove
= mmci_remove
,
1899 .id_table
= mmci_ids
,
1902 module_amba_driver(mmci_driver
);
1904 module_param(fmax
, uint
, 0444);
1906 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1907 MODULE_LICENSE("GPL");