perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / mmc / host / sh_mmcif.c
blob900778421be69b22c05ff7fe5c8e8dbc6bd6917d
1 /*
2 * MMCIF eMMC driver.
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
69 #define DRIVER_NAME "sh_mmcif"
70 #define DRIVER_VERSION "2010-04-28"
72 /* CE_CMD_SET */
73 #define CMD_MASK 0x3f000000
74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN (1 << 20)
79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH (1 << 5)
94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK (1 << 0)
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK 0x0000ffff
105 /* CE_INT */
106 #define INT_CCSDE (1 << 29)
107 #define INT_CMD12DRE (1 << 26)
108 #define INT_CMD12RBE (1 << 25)
109 #define INT_CMD12CRE (1 << 24)
110 #define INT_DTRANE (1 << 23)
111 #define INT_BUFRE (1 << 22)
112 #define INT_BUFWEN (1 << 21)
113 #define INT_BUFREN (1 << 20)
114 #define INT_CCSRCV (1 << 19)
115 #define INT_RBSYE (1 << 17)
116 #define INT_CRSPE (1 << 16)
117 #define INT_CMDVIO (1 << 15)
118 #define INT_BUFVIO (1 << 14)
119 #define INT_WDATERR (1 << 11)
120 #define INT_RDATERR (1 << 10)
121 #define INT_RIDXERR (1 << 9)
122 #define INT_RSPERR (1 << 8)
123 #define INT_CCSTO (1 << 5)
124 #define INT_CRCSTO (1 << 4)
125 #define INT_WDATTO (1 << 3)
126 #define INT_RDATTO (1 << 2)
127 #define INT_RBSYTO (1 << 1)
128 #define INT_RSPTO (1 << 0)
129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
140 /* CE_INT_MASK */
141 #define MASK_ALL 0x00000000
142 #define MASK_MCCSDE (1 << 29)
143 #define MASK_MCMD12DRE (1 << 26)
144 #define MASK_MCMD12RBE (1 << 25)
145 #define MASK_MCMD12CRE (1 << 24)
146 #define MASK_MDTRANE (1 << 23)
147 #define MASK_MBUFRE (1 << 22)
148 #define MASK_MBUFWEN (1 << 21)
149 #define MASK_MBUFREN (1 << 20)
150 #define MASK_MCCSRCV (1 << 19)
151 #define MASK_MRBSYE (1 << 17)
152 #define MASK_MCRSPE (1 << 16)
153 #define MASK_MCMDVIO (1 << 15)
154 #define MASK_MBUFVIO (1 << 14)
155 #define MASK_MWDATERR (1 << 11)
156 #define MASK_MRDATERR (1 << 10)
157 #define MASK_MRIDXERR (1 << 9)
158 #define MASK_MRSPERR (1 << 8)
159 #define MASK_MCCSTO (1 << 5)
160 #define MASK_MCRCSTO (1 << 4)
161 #define MASK_MWDATTO (1 << 3)
162 #define MASK_MRDATTO (1 << 2)
163 #define MASK_MRBSYTO (1 << 1)
164 #define MASK_MRSPTO (1 << 0)
166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ (1 << 31)
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE (1 << 31)
181 #define STS2_CRC16E (1 << 30)
182 #define STS2_AC12CRCE (1 << 29)
183 #define STS2_RSPCRC7E (1 << 28)
184 #define STS2_CRCSTEBE (1 << 27)
185 #define STS2_RDATEBE (1 << 26)
186 #define STS2_AC12REBE (1 << 25)
187 #define STS2_RSPEBE (1 << 24)
188 #define STS2_AC12IDXE (1 << 23)
189 #define STS2_RSPIDXE (1 << 22)
190 #define STS2_CCSTO (1 << 15)
191 #define STS2_RDATTO (1 << 14)
192 #define STS2_DATBSYTO (1 << 13)
193 #define STS2_CRCSTTO (1 << 12)
194 #define STS2_AC12BSYTO (1 << 11)
195 #define STS2_RSPBSYTO (1 << 10)
196 #define STS2_AC12RSPTO (1 << 9)
197 #define STS2_RSPTO (1 << 8)
198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207 #define CLKDEV_INIT 400000 /* 400 KHz */
209 enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
216 enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
229 * difference for each SoC
231 struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool ccs_enable; /* Command Completion Signal support */
252 bool clk_ctrl2_enable;
253 struct mutex thread_lock;
254 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
256 /* DMA support */
257 struct dma_chan *chan_rx;
258 struct dma_chan *chan_tx;
259 struct completion dma_complete;
260 bool dma_active;
263 static const struct of_device_id sh_mmcif_of_match[] = {
264 { .compatible = "renesas,sh-mmcif" },
267 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
272 unsigned int reg, u32 val)
274 writel(val | readl(host->addr + reg), host->addr + reg);
277 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
278 unsigned int reg, u32 val)
280 writel(~val & readl(host->addr + reg), host->addr + reg);
283 static void sh_mmcif_dma_complete(void *arg)
285 struct sh_mmcif_host *host = arg;
286 struct mmc_request *mrq = host->mrq;
287 struct device *dev = sh_mmcif_host_to_dev(host);
289 dev_dbg(dev, "Command completed\n");
291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
292 dev_name(dev)))
293 return;
295 complete(&host->dma_complete);
298 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 struct mmc_data *data = host->mrq->data;
301 struct scatterlist *sg = data->sg;
302 struct dma_async_tx_descriptor *desc = NULL;
303 struct dma_chan *chan = host->chan_rx;
304 struct device *dev = sh_mmcif_host_to_dev(host);
305 dma_cookie_t cookie = -EINVAL;
306 int ret;
308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
309 DMA_FROM_DEVICE);
310 if (ret > 0) {
311 host->dma_active = true;
312 desc = dmaengine_prep_slave_sg(chan, sg, ret,
313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
316 if (desc) {
317 desc->callback = sh_mmcif_dma_complete;
318 desc->callback_param = host;
319 cookie = dmaengine_submit(desc);
320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
321 dma_async_issue_pending(chan);
323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
324 __func__, data->sg_len, ret, cookie);
326 if (!desc) {
327 /* DMA failed, fall back to PIO */
328 if (ret >= 0)
329 ret = -EIO;
330 host->chan_rx = NULL;
331 host->dma_active = false;
332 dma_release_channel(chan);
333 /* Free the Tx channel too */
334 chan = host->chan_tx;
335 if (chan) {
336 host->chan_tx = NULL;
337 dma_release_channel(chan);
339 dev_warn(dev,
340 "DMA failed: %d, falling back to PIO\n", ret);
341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
345 desc, cookie, data->sg_len);
348 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 struct mmc_data *data = host->mrq->data;
351 struct scatterlist *sg = data->sg;
352 struct dma_async_tx_descriptor *desc = NULL;
353 struct dma_chan *chan = host->chan_tx;
354 struct device *dev = sh_mmcif_host_to_dev(host);
355 dma_cookie_t cookie = -EINVAL;
356 int ret;
358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
359 DMA_TO_DEVICE);
360 if (ret > 0) {
361 host->dma_active = true;
362 desc = dmaengine_prep_slave_sg(chan, sg, ret,
363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
366 if (desc) {
367 desc->callback = sh_mmcif_dma_complete;
368 desc->callback_param = host;
369 cookie = dmaengine_submit(desc);
370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
371 dma_async_issue_pending(chan);
373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
374 __func__, data->sg_len, ret, cookie);
376 if (!desc) {
377 /* DMA failed, fall back to PIO */
378 if (ret >= 0)
379 ret = -EIO;
380 host->chan_tx = NULL;
381 host->dma_active = false;
382 dma_release_channel(chan);
383 /* Free the Rx channel too */
384 chan = host->chan_rx;
385 if (chan) {
386 host->chan_rx = NULL;
387 dma_release_channel(chan);
389 dev_warn(dev,
390 "DMA failed: %d, falling back to PIO\n", ret);
391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
395 desc, cookie);
398 static struct dma_chan *
399 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
401 dma_cap_mask_t mask;
403 dma_cap_zero(mask);
404 dma_cap_set(DMA_SLAVE, mask);
405 if (slave_id <= 0)
406 return NULL;
408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
411 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
412 struct dma_chan *chan,
413 enum dma_transfer_direction direction)
415 struct resource *res;
416 struct dma_slave_config cfg = { 0, };
418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
419 cfg.direction = direction;
421 if (direction == DMA_DEV_TO_MEM) {
422 cfg.src_addr = res->start + MMCIF_CE_DATA;
423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 } else {
425 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
429 return dmaengine_slave_config(chan, &cfg);
432 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
434 struct device *dev = sh_mmcif_host_to_dev(host);
435 host->dma_active = false;
437 /* We can only either use DMA for both Tx and Rx or not use it at all */
438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
439 struct sh_mmcif_plat_data *pdata = dev->platform_data;
441 host->chan_tx = sh_mmcif_request_dma_pdata(host,
442 pdata->slave_id_tx);
443 host->chan_rx = sh_mmcif_request_dma_pdata(host,
444 pdata->slave_id_rx);
445 } else {
446 host->chan_tx = dma_request_slave_channel(dev, "tx");
447 host->chan_rx = dma_request_slave_channel(dev, "rx");
449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
450 host->chan_rx);
452 if (!host->chan_tx || !host->chan_rx ||
453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
455 goto error;
457 return;
459 error:
460 if (host->chan_tx)
461 dma_release_channel(host->chan_tx);
462 if (host->chan_rx)
463 dma_release_channel(host->chan_rx);
464 host->chan_tx = host->chan_rx = NULL;
467 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
470 /* Descriptors are freed automatically */
471 if (host->chan_tx) {
472 struct dma_chan *chan = host->chan_tx;
473 host->chan_tx = NULL;
474 dma_release_channel(chan);
476 if (host->chan_rx) {
477 struct dma_chan *chan = host->chan_rx;
478 host->chan_rx = NULL;
479 dma_release_channel(chan);
482 host->dma_active = false;
485 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
487 struct device *dev = sh_mmcif_host_to_dev(host);
488 struct sh_mmcif_plat_data *p = dev->platform_data;
489 bool sup_pclk = p ? p->sup_pclk : false;
490 unsigned int current_clk = clk_get_rate(host->clk);
491 unsigned int clkdiv;
493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
496 if (!clk)
497 return;
499 if (host->clkdiv_map) {
500 unsigned int freq, best_freq, myclk, div, diff_min, diff;
501 int i;
503 clkdiv = 0;
504 diff_min = ~0;
505 best_freq = 0;
506 for (i = 31; i >= 0; i--) {
507 if (!((1 << i) & host->clkdiv_map))
508 continue;
511 * clk = parent_freq / div
512 * -> parent_freq = clk x div
515 div = 1 << (i + 1);
516 freq = clk_round_rate(host->clk, clk * div);
517 myclk = freq / div;
518 diff = (myclk > clk) ? myclk - clk : clk - myclk;
520 if (diff <= diff_min) {
521 best_freq = freq;
522 clkdiv = i;
523 diff_min = diff;
527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
528 (best_freq / (1 << (clkdiv + 1))), clk,
529 best_freq, clkdiv);
531 clk_set_rate(host->clk, best_freq);
532 clkdiv = clkdiv << 16;
533 } else if (sup_pclk && clk == current_clk) {
534 clkdiv = CLK_SUP_PCLK;
535 } else {
536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
543 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
545 u32 tmp;
547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
551 if (host->ccs_enable)
552 tmp |= SCCSTO_29;
553 if (host->clk_ctrl2_enable)
554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
557 /* byte swap on */
558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
561 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
563 struct device *dev = sh_mmcif_host_to_dev(host);
564 u32 state1, state2;
565 int ret, timeout;
567 host->sd_error = false;
569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
574 if (state1 & STS1_CMDSEQ) {
575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
577 for (timeout = 10000; timeout; timeout--) {
578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
579 & STS1_CMDSEQ))
580 break;
581 mdelay(1);
583 if (!timeout) {
584 dev_err(dev,
585 "Forced end of command sequence timeout err\n");
586 return -EIO;
588 sh_mmcif_sync_reset(host);
589 dev_dbg(dev, "Forced end of command sequence\n");
590 return -EIO;
593 if (state2 & STS2_CRC_ERR) {
594 dev_err(dev, " CRC error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
597 } else if (state2 & STS2_TIMEOUT_ERR) {
598 dev_err(dev, " Timeout: state %u, wait %u\n",
599 host->state, host->wait_for);
600 ret = -ETIMEDOUT;
601 } else {
602 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
603 host->state, host->wait_for);
604 ret = -EIO;
606 return ret;
609 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
611 struct mmc_data *data = host->mrq->data;
613 host->sg_blkidx += host->blocksize;
615 /* data->sg->length must be a multiple of host->blocksize? */
616 BUG_ON(host->sg_blkidx > data->sg->length);
618 if (host->sg_blkidx == data->sg->length) {
619 host->sg_blkidx = 0;
620 if (++host->sg_idx < data->sg_len)
621 host->pio_ptr = sg_virt(++data->sg);
622 } else {
623 host->pio_ptr = p;
626 return host->sg_idx != data->sg_len;
629 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
630 struct mmc_request *mrq)
632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
633 BLOCK_SIZE_MASK) + 3;
635 host->wait_for = MMCIF_WAIT_FOR_READ;
637 /* buf read enable */
638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
641 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
643 struct device *dev = sh_mmcif_host_to_dev(host);
644 struct mmc_data *data = host->mrq->data;
645 u32 *p = sg_virt(data->sg);
646 int i;
648 if (host->sd_error) {
649 data->error = sh_mmcif_error_manage(host);
650 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
651 return false;
654 for (i = 0; i < host->blocksize / 4; i++)
655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657 /* buffer read end */
658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
659 host->wait_for = MMCIF_WAIT_FOR_READ_END;
661 return true;
664 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
665 struct mmc_request *mrq)
667 struct mmc_data *data = mrq->data;
669 if (!data->sg_len || !data->sg->length)
670 return;
672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
673 BLOCK_SIZE_MASK;
675 host->wait_for = MMCIF_WAIT_FOR_MREAD;
676 host->sg_idx = 0;
677 host->sg_blkidx = 0;
678 host->pio_ptr = sg_virt(data->sg);
680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
683 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
685 struct device *dev = sh_mmcif_host_to_dev(host);
686 struct mmc_data *data = host->mrq->data;
687 u32 *p = host->pio_ptr;
688 int i;
690 if (host->sd_error) {
691 data->error = sh_mmcif_error_manage(host);
692 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
693 return false;
696 BUG_ON(!data->sg->length);
698 for (i = 0; i < host->blocksize / 4; i++)
699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
701 if (!sh_mmcif_next_block(host, p))
702 return false;
704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
706 return true;
709 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
710 struct mmc_request *mrq)
712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
713 BLOCK_SIZE_MASK) + 3;
715 host->wait_for = MMCIF_WAIT_FOR_WRITE;
717 /* buf write enable */
718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
721 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
723 struct device *dev = sh_mmcif_host_to_dev(host);
724 struct mmc_data *data = host->mrq->data;
725 u32 *p = sg_virt(data->sg);
726 int i;
728 if (host->sd_error) {
729 data->error = sh_mmcif_error_manage(host);
730 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
731 return false;
734 for (i = 0; i < host->blocksize / 4; i++)
735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
737 /* buffer write end */
738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
741 return true;
744 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
745 struct mmc_request *mrq)
747 struct mmc_data *data = mrq->data;
749 if (!data->sg_len || !data->sg->length)
750 return;
752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
753 BLOCK_SIZE_MASK;
755 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
756 host->sg_idx = 0;
757 host->sg_blkidx = 0;
758 host->pio_ptr = sg_virt(data->sg);
760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
763 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
765 struct device *dev = sh_mmcif_host_to_dev(host);
766 struct mmc_data *data = host->mrq->data;
767 u32 *p = host->pio_ptr;
768 int i;
770 if (host->sd_error) {
771 data->error = sh_mmcif_error_manage(host);
772 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
773 return false;
776 BUG_ON(!data->sg->length);
778 for (i = 0; i < host->blocksize / 4; i++)
779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
781 if (!sh_mmcif_next_block(host, p))
782 return false;
784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
786 return true;
789 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
790 struct mmc_command *cmd)
792 if (cmd->flags & MMC_RSP_136) {
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
797 } else
798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
801 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
802 struct mmc_command *cmd)
804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
807 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
808 struct mmc_request *mrq)
810 struct device *dev = sh_mmcif_host_to_dev(host);
811 struct mmc_data *data = mrq->data;
812 struct mmc_command *cmd = mrq->cmd;
813 u32 opc = cmd->opcode;
814 u32 tmp = 0;
816 /* Response Type check */
817 switch (mmc_resp_type(cmd)) {
818 case MMC_RSP_NONE:
819 tmp |= CMD_SET_RTYP_NO;
820 break;
821 case MMC_RSP_R1:
822 case MMC_RSP_R3:
823 tmp |= CMD_SET_RTYP_6B;
824 break;
825 case MMC_RSP_R1B:
826 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
827 break;
828 case MMC_RSP_R2:
829 tmp |= CMD_SET_RTYP_17B;
830 break;
831 default:
832 dev_err(dev, "Unsupported response type.\n");
833 break;
836 /* WDAT / DATW */
837 if (data) {
838 tmp |= CMD_SET_WDAT;
839 switch (host->bus_width) {
840 case MMC_BUS_WIDTH_1:
841 tmp |= CMD_SET_DATW_1;
842 break;
843 case MMC_BUS_WIDTH_4:
844 tmp |= CMD_SET_DATW_4;
845 break;
846 case MMC_BUS_WIDTH_8:
847 tmp |= CMD_SET_DATW_8;
848 break;
849 default:
850 dev_err(dev, "Unsupported bus width.\n");
851 break;
853 switch (host->timing) {
854 case MMC_TIMING_MMC_DDR52:
856 * MMC core will only set this timing, if the host
857 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
858 * capability. MMCIF implementations with this
859 * capability, e.g. sh73a0, will have to set it
860 * in their platform data.
862 tmp |= CMD_SET_DARS;
863 break;
866 /* DWEN */
867 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
868 tmp |= CMD_SET_DWEN;
869 /* CMLTE/CMD12EN */
870 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
871 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
872 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
873 data->blocks << 16);
875 /* RIDXC[1:0] check bits */
876 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878 tmp |= CMD_SET_RIDXC_BITS;
879 /* RCRC7C[1:0] check bits */
880 if (opc == MMC_SEND_OP_COND)
881 tmp |= CMD_SET_CRC7C_BITS;
882 /* RCRC7C[1:0] internal CRC7 */
883 if (opc == MMC_ALL_SEND_CID ||
884 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
885 tmp |= CMD_SET_CRC7C_INTERNAL;
887 return (opc << 24) | tmp;
890 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
891 struct mmc_request *mrq, u32 opc)
893 struct device *dev = sh_mmcif_host_to_dev(host);
895 switch (opc) {
896 case MMC_READ_MULTIPLE_BLOCK:
897 sh_mmcif_multi_read(host, mrq);
898 return 0;
899 case MMC_WRITE_MULTIPLE_BLOCK:
900 sh_mmcif_multi_write(host, mrq);
901 return 0;
902 case MMC_WRITE_BLOCK:
903 sh_mmcif_single_write(host, mrq);
904 return 0;
905 case MMC_READ_SINGLE_BLOCK:
906 case MMC_SEND_EXT_CSD:
907 sh_mmcif_single_read(host, mrq);
908 return 0;
909 default:
910 dev_err(dev, "Unsupported CMD%d\n", opc);
911 return -EINVAL;
915 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
916 struct mmc_request *mrq)
918 struct mmc_command *cmd = mrq->cmd;
919 u32 opc = cmd->opcode;
920 u32 mask = 0;
921 unsigned long flags;
923 if (cmd->flags & MMC_RSP_BUSY)
924 mask = MASK_START_CMD | MASK_MRBSYE;
925 else
926 mask = MASK_START_CMD | MASK_MCRSPE;
928 if (host->ccs_enable)
929 mask |= MASK_MCCSTO;
931 if (mrq->data) {
932 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
933 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
934 mrq->data->blksz);
936 opc = sh_mmcif_set_cmd(host, mrq);
938 if (host->ccs_enable)
939 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
940 else
941 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
942 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
943 /* set arg */
944 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
945 /* set cmd */
946 spin_lock_irqsave(&host->lock, flags);
947 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
949 host->wait_for = MMCIF_WAIT_FOR_CMD;
950 schedule_delayed_work(&host->timeout_work, host->timeout);
951 spin_unlock_irqrestore(&host->lock, flags);
954 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
955 struct mmc_request *mrq)
957 struct device *dev = sh_mmcif_host_to_dev(host);
959 switch (mrq->cmd->opcode) {
960 case MMC_READ_MULTIPLE_BLOCK:
961 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
962 break;
963 case MMC_WRITE_MULTIPLE_BLOCK:
964 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
965 break;
966 default:
967 dev_err(dev, "unsupported stop cmd\n");
968 mrq->stop->error = sh_mmcif_error_manage(host);
969 return;
972 host->wait_for = MMCIF_WAIT_FOR_STOP;
975 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
977 struct sh_mmcif_host *host = mmc_priv(mmc);
978 struct device *dev = sh_mmcif_host_to_dev(host);
979 unsigned long flags;
981 spin_lock_irqsave(&host->lock, flags);
982 if (host->state != STATE_IDLE) {
983 dev_dbg(dev, "%s() rejected, state %u\n",
984 __func__, host->state);
985 spin_unlock_irqrestore(&host->lock, flags);
986 mrq->cmd->error = -EAGAIN;
987 mmc_request_done(mmc, mrq);
988 return;
991 host->state = STATE_REQUEST;
992 spin_unlock_irqrestore(&host->lock, flags);
994 host->mrq = mrq;
996 sh_mmcif_start_cmd(host, mrq);
999 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1001 struct device *dev = sh_mmcif_host_to_dev(host);
1003 if (host->mmc->f_max) {
1004 unsigned int f_max, f_min = 0, f_min_old;
1006 f_max = host->mmc->f_max;
1007 for (f_min_old = f_max; f_min_old > 2;) {
1008 f_min = clk_round_rate(host->clk, f_min_old / 2);
1009 if (f_min == f_min_old)
1010 break;
1011 f_min_old = f_min;
1015 * This driver assumes this SoC is R-Car Gen2 or later
1017 host->clkdiv_map = 0x3ff;
1019 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1020 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1021 } else {
1022 unsigned int clk = clk_get_rate(host->clk);
1024 host->mmc->f_max = clk / 2;
1025 host->mmc->f_min = clk / 512;
1028 dev_dbg(dev, "clk max/min = %d/%d\n",
1029 host->mmc->f_max, host->mmc->f_min);
1032 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1034 struct sh_mmcif_host *host = mmc_priv(mmc);
1035 struct device *dev = sh_mmcif_host_to_dev(host);
1036 unsigned long flags;
1038 spin_lock_irqsave(&host->lock, flags);
1039 if (host->state != STATE_IDLE) {
1040 dev_dbg(dev, "%s() rejected, state %u\n",
1041 __func__, host->state);
1042 spin_unlock_irqrestore(&host->lock, flags);
1043 return;
1046 host->state = STATE_IOS;
1047 spin_unlock_irqrestore(&host->lock, flags);
1049 switch (ios->power_mode) {
1050 case MMC_POWER_UP:
1051 if (!IS_ERR(mmc->supply.vmmc))
1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1053 if (!host->power) {
1054 clk_prepare_enable(host->clk);
1055 pm_runtime_get_sync(dev);
1056 sh_mmcif_sync_reset(host);
1057 sh_mmcif_request_dma(host);
1058 host->power = true;
1060 break;
1061 case MMC_POWER_OFF:
1062 if (!IS_ERR(mmc->supply.vmmc))
1063 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1064 if (host->power) {
1065 sh_mmcif_clock_control(host, 0);
1066 sh_mmcif_release_dma(host);
1067 pm_runtime_put(dev);
1068 clk_disable_unprepare(host->clk);
1069 host->power = false;
1071 break;
1072 case MMC_POWER_ON:
1073 sh_mmcif_clock_control(host, ios->clock);
1074 break;
1077 host->timing = ios->timing;
1078 host->bus_width = ios->bus_width;
1079 host->state = STATE_IDLE;
1082 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1084 struct sh_mmcif_host *host = mmc_priv(mmc);
1085 struct device *dev = sh_mmcif_host_to_dev(host);
1086 struct sh_mmcif_plat_data *p = dev->platform_data;
1087 int ret = mmc_gpio_get_cd(mmc);
1089 if (ret >= 0)
1090 return ret;
1092 if (!p || !p->get_cd)
1093 return -ENOSYS;
1094 else
1095 return p->get_cd(host->pd);
1098 static struct mmc_host_ops sh_mmcif_ops = {
1099 .request = sh_mmcif_request,
1100 .set_ios = sh_mmcif_set_ios,
1101 .get_cd = sh_mmcif_get_cd,
1104 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1106 struct mmc_command *cmd = host->mrq->cmd;
1107 struct mmc_data *data = host->mrq->data;
1108 struct device *dev = sh_mmcif_host_to_dev(host);
1109 long time;
1111 if (host->sd_error) {
1112 switch (cmd->opcode) {
1113 case MMC_ALL_SEND_CID:
1114 case MMC_SELECT_CARD:
1115 case MMC_APP_CMD:
1116 cmd->error = -ETIMEDOUT;
1117 break;
1118 default:
1119 cmd->error = sh_mmcif_error_manage(host);
1120 break;
1122 dev_dbg(dev, "CMD%d error %d\n",
1123 cmd->opcode, cmd->error);
1124 host->sd_error = false;
1125 return false;
1127 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1128 cmd->error = 0;
1129 return false;
1132 sh_mmcif_get_response(host, cmd);
1134 if (!data)
1135 return false;
1138 * Completion can be signalled from DMA callback and error, so, have to
1139 * reset here, before setting .dma_active
1141 init_completion(&host->dma_complete);
1143 if (data->flags & MMC_DATA_READ) {
1144 if (host->chan_rx)
1145 sh_mmcif_start_dma_rx(host);
1146 } else {
1147 if (host->chan_tx)
1148 sh_mmcif_start_dma_tx(host);
1151 if (!host->dma_active) {
1152 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1153 return !data->error;
1156 /* Running in the IRQ thread, can sleep */
1157 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1158 host->timeout);
1160 if (data->flags & MMC_DATA_READ)
1161 dma_unmap_sg(host->chan_rx->device->dev,
1162 data->sg, data->sg_len,
1163 DMA_FROM_DEVICE);
1164 else
1165 dma_unmap_sg(host->chan_tx->device->dev,
1166 data->sg, data->sg_len,
1167 DMA_TO_DEVICE);
1169 if (host->sd_error) {
1170 dev_err(host->mmc->parent,
1171 "Error IRQ while waiting for DMA completion!\n");
1172 /* Woken up by an error IRQ: abort DMA */
1173 data->error = sh_mmcif_error_manage(host);
1174 } else if (!time) {
1175 dev_err(host->mmc->parent, "DMA timeout!\n");
1176 data->error = -ETIMEDOUT;
1177 } else if (time < 0) {
1178 dev_err(host->mmc->parent,
1179 "wait_for_completion_...() error %ld!\n", time);
1180 data->error = time;
1182 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1183 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1184 host->dma_active = false;
1186 if (data->error) {
1187 data->bytes_xfered = 0;
1188 /* Abort DMA */
1189 if (data->flags & MMC_DATA_READ)
1190 dmaengine_terminate_all(host->chan_rx);
1191 else
1192 dmaengine_terminate_all(host->chan_tx);
1195 return false;
1198 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1200 struct sh_mmcif_host *host = dev_id;
1201 struct mmc_request *mrq;
1202 struct device *dev = sh_mmcif_host_to_dev(host);
1203 bool wait = false;
1204 unsigned long flags;
1205 int wait_work;
1207 spin_lock_irqsave(&host->lock, flags);
1208 wait_work = host->wait_for;
1209 spin_unlock_irqrestore(&host->lock, flags);
1211 cancel_delayed_work_sync(&host->timeout_work);
1213 mutex_lock(&host->thread_lock);
1215 mrq = host->mrq;
1216 if (!mrq) {
1217 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1218 host->state, host->wait_for);
1219 mutex_unlock(&host->thread_lock);
1220 return IRQ_HANDLED;
1224 * All handlers return true, if processing continues, and false, if the
1225 * request has to be completed - successfully or not
1227 switch (wait_work) {
1228 case MMCIF_WAIT_FOR_REQUEST:
1229 /* We're too late, the timeout has already kicked in */
1230 mutex_unlock(&host->thread_lock);
1231 return IRQ_HANDLED;
1232 case MMCIF_WAIT_FOR_CMD:
1233 /* Wait for data? */
1234 wait = sh_mmcif_end_cmd(host);
1235 break;
1236 case MMCIF_WAIT_FOR_MREAD:
1237 /* Wait for more data? */
1238 wait = sh_mmcif_mread_block(host);
1239 break;
1240 case MMCIF_WAIT_FOR_READ:
1241 /* Wait for data end? */
1242 wait = sh_mmcif_read_block(host);
1243 break;
1244 case MMCIF_WAIT_FOR_MWRITE:
1245 /* Wait data to write? */
1246 wait = sh_mmcif_mwrite_block(host);
1247 break;
1248 case MMCIF_WAIT_FOR_WRITE:
1249 /* Wait for data end? */
1250 wait = sh_mmcif_write_block(host);
1251 break;
1252 case MMCIF_WAIT_FOR_STOP:
1253 if (host->sd_error) {
1254 mrq->stop->error = sh_mmcif_error_manage(host);
1255 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1256 break;
1258 sh_mmcif_get_cmd12response(host, mrq->stop);
1259 mrq->stop->error = 0;
1260 break;
1261 case MMCIF_WAIT_FOR_READ_END:
1262 case MMCIF_WAIT_FOR_WRITE_END:
1263 if (host->sd_error) {
1264 mrq->data->error = sh_mmcif_error_manage(host);
1265 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1267 break;
1268 default:
1269 BUG();
1272 if (wait) {
1273 schedule_delayed_work(&host->timeout_work, host->timeout);
1274 /* Wait for more data */
1275 mutex_unlock(&host->thread_lock);
1276 return IRQ_HANDLED;
1279 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1280 struct mmc_data *data = mrq->data;
1281 if (!mrq->cmd->error && data && !data->error)
1282 data->bytes_xfered =
1283 data->blocks * data->blksz;
1285 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1286 sh_mmcif_stop_cmd(host, mrq);
1287 if (!mrq->stop->error) {
1288 schedule_delayed_work(&host->timeout_work, host->timeout);
1289 mutex_unlock(&host->thread_lock);
1290 return IRQ_HANDLED;
1295 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1296 host->state = STATE_IDLE;
1297 host->mrq = NULL;
1298 mmc_request_done(host->mmc, mrq);
1300 mutex_unlock(&host->thread_lock);
1302 return IRQ_HANDLED;
1305 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1307 struct sh_mmcif_host *host = dev_id;
1308 struct device *dev = sh_mmcif_host_to_dev(host);
1309 u32 state, mask;
1311 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1312 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1313 if (host->ccs_enable)
1314 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1315 else
1316 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1317 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1319 if (state & ~MASK_CLEAN)
1320 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1321 state);
1323 if (state & INT_ERR_STS || state & ~INT_ALL) {
1324 host->sd_error = true;
1325 dev_dbg(dev, "int err state = 0x%08x\n", state);
1327 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1328 if (!host->mrq)
1329 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1330 if (!host->dma_active)
1331 return IRQ_WAKE_THREAD;
1332 else if (host->sd_error)
1333 sh_mmcif_dma_complete(host);
1334 } else {
1335 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1338 return IRQ_HANDLED;
1341 static void sh_mmcif_timeout_work(struct work_struct *work)
1343 struct delayed_work *d = to_delayed_work(work);
1344 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1345 struct mmc_request *mrq = host->mrq;
1346 struct device *dev = sh_mmcif_host_to_dev(host);
1347 unsigned long flags;
1349 if (host->dying)
1350 /* Don't run after mmc_remove_host() */
1351 return;
1353 spin_lock_irqsave(&host->lock, flags);
1354 if (host->state == STATE_IDLE) {
1355 spin_unlock_irqrestore(&host->lock, flags);
1356 return;
1359 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1360 host->wait_for, mrq->cmd->opcode);
1362 host->state = STATE_TIMEOUT;
1363 spin_unlock_irqrestore(&host->lock, flags);
1366 * Handle races with cancel_delayed_work(), unless
1367 * cancel_delayed_work_sync() is used
1369 switch (host->wait_for) {
1370 case MMCIF_WAIT_FOR_CMD:
1371 mrq->cmd->error = sh_mmcif_error_manage(host);
1372 break;
1373 case MMCIF_WAIT_FOR_STOP:
1374 mrq->stop->error = sh_mmcif_error_manage(host);
1375 break;
1376 case MMCIF_WAIT_FOR_MREAD:
1377 case MMCIF_WAIT_FOR_MWRITE:
1378 case MMCIF_WAIT_FOR_READ:
1379 case MMCIF_WAIT_FOR_WRITE:
1380 case MMCIF_WAIT_FOR_READ_END:
1381 case MMCIF_WAIT_FOR_WRITE_END:
1382 mrq->data->error = sh_mmcif_error_manage(host);
1383 break;
1384 default:
1385 BUG();
1388 host->state = STATE_IDLE;
1389 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1390 host->mrq = NULL;
1391 mmc_request_done(host->mmc, mrq);
1394 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1396 struct device *dev = sh_mmcif_host_to_dev(host);
1397 struct sh_mmcif_plat_data *pd = dev->platform_data;
1398 struct mmc_host *mmc = host->mmc;
1400 mmc_regulator_get_supply(mmc);
1402 if (!pd)
1403 return;
1405 if (!mmc->ocr_avail)
1406 mmc->ocr_avail = pd->ocr;
1407 else if (pd->ocr)
1408 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1411 static int sh_mmcif_probe(struct platform_device *pdev)
1413 int ret = 0, irq[2];
1414 struct mmc_host *mmc;
1415 struct sh_mmcif_host *host;
1416 struct device *dev = &pdev->dev;
1417 struct sh_mmcif_plat_data *pd = dev->platform_data;
1418 struct resource *res;
1419 void __iomem *reg;
1420 const char *name;
1422 irq[0] = platform_get_irq(pdev, 0);
1423 irq[1] = platform_get_irq(pdev, 1);
1424 if (irq[0] < 0) {
1425 dev_err(dev, "Get irq error\n");
1426 return -ENXIO;
1429 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1430 reg = devm_ioremap_resource(dev, res);
1431 if (IS_ERR(reg))
1432 return PTR_ERR(reg);
1434 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1435 if (!mmc)
1436 return -ENOMEM;
1438 ret = mmc_of_parse(mmc);
1439 if (ret < 0)
1440 goto err_host;
1442 host = mmc_priv(mmc);
1443 host->mmc = mmc;
1444 host->addr = reg;
1445 host->timeout = msecs_to_jiffies(10000);
1446 host->ccs_enable = !pd || !pd->ccs_unsupported;
1447 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1449 host->pd = pdev;
1451 spin_lock_init(&host->lock);
1453 mmc->ops = &sh_mmcif_ops;
1454 sh_mmcif_init_ocr(host);
1456 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1457 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1458 mmc->max_busy_timeout = 10000;
1460 if (pd && pd->caps)
1461 mmc->caps |= pd->caps;
1462 mmc->max_segs = 32;
1463 mmc->max_blk_size = 512;
1464 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1465 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1466 mmc->max_seg_size = mmc->max_req_size;
1468 platform_set_drvdata(pdev, host);
1470 host->clk = devm_clk_get(dev, NULL);
1471 if (IS_ERR(host->clk)) {
1472 ret = PTR_ERR(host->clk);
1473 dev_err(dev, "cannot get clock: %d\n", ret);
1474 goto err_host;
1477 ret = clk_prepare_enable(host->clk);
1478 if (ret < 0)
1479 goto err_host;
1481 sh_mmcif_clk_setup(host);
1483 pm_runtime_enable(dev);
1484 host->power = false;
1486 ret = pm_runtime_get_sync(dev);
1487 if (ret < 0)
1488 goto err_clk;
1490 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1492 sh_mmcif_sync_reset(host);
1493 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1495 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1496 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1497 sh_mmcif_irqt, 0, name, host);
1498 if (ret) {
1499 dev_err(dev, "request_irq error (%s)\n", name);
1500 goto err_clk;
1502 if (irq[1] >= 0) {
1503 ret = devm_request_threaded_irq(dev, irq[1],
1504 sh_mmcif_intr, sh_mmcif_irqt,
1505 0, "sh_mmc:int", host);
1506 if (ret) {
1507 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1508 goto err_clk;
1512 if (pd && pd->use_cd_gpio) {
1513 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1514 if (ret < 0)
1515 goto err_clk;
1518 mutex_init(&host->thread_lock);
1520 ret = mmc_add_host(mmc);
1521 if (ret < 0)
1522 goto err_clk;
1524 dev_pm_qos_expose_latency_limit(dev, 100);
1526 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1527 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1528 clk_get_rate(host->clk) / 1000000UL);
1530 pm_runtime_put(dev);
1531 clk_disable_unprepare(host->clk);
1532 return ret;
1534 err_clk:
1535 clk_disable_unprepare(host->clk);
1536 pm_runtime_put_sync(dev);
1537 pm_runtime_disable(dev);
1538 err_host:
1539 mmc_free_host(mmc);
1540 return ret;
1543 static int sh_mmcif_remove(struct platform_device *pdev)
1545 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1547 host->dying = true;
1548 clk_prepare_enable(host->clk);
1549 pm_runtime_get_sync(&pdev->dev);
1551 dev_pm_qos_hide_latency_limit(&pdev->dev);
1553 mmc_remove_host(host->mmc);
1554 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1557 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1558 * mmc_remove_host() call above. But swapping order doesn't help either
1559 * (a query on the linux-mmc mailing list didn't bring any replies).
1561 cancel_delayed_work_sync(&host->timeout_work);
1563 clk_disable_unprepare(host->clk);
1564 mmc_free_host(host->mmc);
1565 pm_runtime_put_sync(&pdev->dev);
1566 pm_runtime_disable(&pdev->dev);
1568 return 0;
1571 #ifdef CONFIG_PM_SLEEP
1572 static int sh_mmcif_suspend(struct device *dev)
1574 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1576 pm_runtime_get_sync(dev);
1577 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1578 pm_runtime_put(dev);
1580 return 0;
1583 static int sh_mmcif_resume(struct device *dev)
1585 return 0;
1587 #endif
1589 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1590 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1593 static struct platform_driver sh_mmcif_driver = {
1594 .probe = sh_mmcif_probe,
1595 .remove = sh_mmcif_remove,
1596 .driver = {
1597 .name = DRIVER_NAME,
1598 .pm = &sh_mmcif_dev_pm_ops,
1599 .of_match_table = sh_mmcif_of_match,
1603 module_platform_driver(sh_mmcif_driver);
1605 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1606 MODULE_LICENSE("GPL");
1607 MODULE_ALIAS("platform:" DRIVER_NAME);
1608 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");