2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
136 #define WL_MAX_FAILURES 32
138 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
139 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
140 struct ubi_wl_entry
*e
, struct rb_root
*root
);
141 static int self_check_in_pq(const struct ubi_device
*ubi
,
142 struct ubi_wl_entry
*e
);
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
152 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
154 struct rb_node
**p
, *parent
= NULL
;
158 struct ubi_wl_entry
*e1
;
161 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
165 else if (e
->ec
> e1
->ec
)
168 ubi_assert(e
->pnum
!= e1
->pnum
);
169 if (e
->pnum
< e1
->pnum
)
176 rb_link_node(&e
->u
.rb
, parent
, p
);
177 rb_insert_color(&e
->u
.rb
, root
);
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
188 static void wl_entry_destroy(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
190 ubi
->lookuptbl
[e
->pnum
] = NULL
;
191 kmem_cache_free(ubi_wl_entry_slab
, e
);
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
198 * This function returns zero in case of success and a negative error code in
201 static int do_work(struct ubi_device
*ubi
)
204 struct ubi_work
*wrk
;
209 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 * it in read mode, so many of them may be doing works at a time. But
211 * the queue flush code has to be sure the whole queue of works is
212 * done, and it takes the mutex in write mode.
214 down_read(&ubi
->work_sem
);
215 spin_lock(&ubi
->wl_lock
);
216 if (list_empty(&ubi
->works
)) {
217 spin_unlock(&ubi
->wl_lock
);
218 up_read(&ubi
->work_sem
);
222 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
223 list_del(&wrk
->list
);
224 ubi
->works_count
-= 1;
225 ubi_assert(ubi
->works_count
>= 0);
226 spin_unlock(&ubi
->wl_lock
);
229 * Call the worker function. Do not touch the work structure
230 * after this call as it will have been freed or reused by that
231 * time by the worker function.
233 err
= wrk
->func(ubi
, wrk
, 0);
235 ubi_err(ubi
, "work failed with error code %d", err
);
236 up_read(&ubi
->work_sem
);
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
249 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
255 struct ubi_wl_entry
*e1
;
257 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
259 if (e
->pnum
== e1
->pnum
) {
266 else if (e
->ec
> e1
->ec
)
269 ubi_assert(e
->pnum
!= e1
->pnum
);
270 if (e
->pnum
< e1
->pnum
)
281 * prot_queue_add - add physical eraseblock to the protection queue.
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
290 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
292 int pq_tail
= ubi
->pq_head
- 1;
295 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
296 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
297 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
298 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303 * @ubi: UBI device description object
304 * @root: the RB-tree where to look for
305 * @diff: maximum possible difference from the smallest erase counter
307 * This function looks for a wear leveling entry with erase counter closest to
308 * min + @diff, where min is the smallest erase counter.
310 static struct ubi_wl_entry
*find_wl_entry(struct ubi_device
*ubi
,
311 struct rb_root
*root
, int diff
)
314 struct ubi_wl_entry
*e
, *prev_e
= NULL
;
317 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
322 struct ubi_wl_entry
*e1
;
324 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
334 /* If no fastmap has been written and this WL entry can be used
335 * as anchor PEB, hold it back and return the second best WL entry
336 * such that fastmap can use the anchor PEB later. */
337 if (prev_e
&& !ubi
->fm_disabled
&&
338 !ubi
->fm
&& e
->pnum
< UBI_FM_MAX_START
)
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
353 static struct ubi_wl_entry
*find_mean_wl_entry(struct ubi_device
*ubi
,
354 struct rb_root
*root
)
356 struct ubi_wl_entry
*e
, *first
, *last
;
358 first
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
359 last
= rb_entry(rb_last(root
), struct ubi_wl_entry
, u
.rb
);
361 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
) {
362 e
= rb_entry(root
->rb_node
, struct ubi_wl_entry
, u
.rb
);
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e
= may_reserve_for_fm(ubi
, e
, root
);
369 e
= find_wl_entry(ubi
, root
, WL_FREE_MAX_DIFF
/2);
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
382 static struct ubi_wl_entry
*wl_get_wle(struct ubi_device
*ubi
)
384 struct ubi_wl_entry
*e
;
386 e
= find_mean_wl_entry(ubi
, &ubi
->free
);
388 ubi_err(ubi
, "no free eraseblocks");
392 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
398 rb_erase(&e
->u
.rb
, &ubi
->free
);
400 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
413 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
415 struct ubi_wl_entry
*e
;
417 e
= ubi
->lookuptbl
[pnum
];
421 if (self_check_in_pq(ubi
, e
))
424 list_del(&e
->u
.list
);
425 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
435 * This function returns zero in case of success and a negative error code in
438 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
442 struct ubi_ec_hdr
*ec_hdr
;
443 unsigned long long ec
= e
->ec
;
445 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
447 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
451 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
455 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
460 if (ec
> UBI_MAX_ERASECOUNTER
) {
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
465 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %llu",
471 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
473 ec_hdr
->ec
= cpu_to_be64(ec
);
475 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
480 spin_lock(&ubi
->wl_lock
);
481 if (e
->ec
> ubi
->max_ec
)
483 spin_unlock(&ubi
->wl_lock
);
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
498 static void serve_prot_queue(struct ubi_device
*ubi
)
500 struct ubi_wl_entry
*e
, *tmp
;
504 * There may be several protected physical eraseblock to remove,
509 spin_lock(&ubi
->wl_lock
);
510 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
514 list_del(&e
->u
.list
);
515 wl_tree_add(e
, &ubi
->used
);
518 * Let's be nice and avoid holding the spinlock for
521 spin_unlock(&ubi
->wl_lock
);
528 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
530 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
531 spin_unlock(&ubi
->wl_lock
);
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
542 static void __schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
544 spin_lock(&ubi
->wl_lock
);
545 list_add_tail(&wrk
->list
, &ubi
->works
);
546 ubi_assert(ubi
->works_count
>= 0);
547 ubi
->works_count
+= 1;
548 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
549 wake_up_process(ubi
->bgt_thread
);
550 spin_unlock(&ubi
->wl_lock
);
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
558 * This function adds a work defined by @wrk to the tail of the pending works
561 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
563 down_read(&ubi
->work_sem
);
564 __schedule_ubi_work(ubi
, wrk
);
565 up_read(&ubi
->work_sem
);
568 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
579 * This function returns zero in case of success and a %-ENOMEM in case of
582 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
583 int vol_id
, int lnum
, int torture
, bool nested
)
585 struct ubi_work
*wl_wrk
;
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e
->pnum
, e
->ec
, torture
);
592 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
596 wl_wrk
->func
= &erase_worker
;
598 wl_wrk
->vol_id
= vol_id
;
600 wl_wrk
->torture
= torture
;
603 __schedule_ubi_work(ubi
, wl_wrk
);
605 schedule_ubi_work(ubi
, wl_wrk
);
609 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
);
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
619 static int do_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
620 int vol_id
, int lnum
, int torture
)
622 struct ubi_work wl_wrk
;
624 dbg_wl("sync erase of PEB %i", e
->pnum
);
627 wl_wrk
.vol_id
= vol_id
;
629 wl_wrk
.torture
= torture
;
631 return __erase_worker(ubi
, &wl_wrk
);
634 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
);
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
646 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
649 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
650 int erase
= 0, keep
= 0, vol_id
= -1, lnum
= -1;
651 #ifdef CONFIG_MTD_UBI_FASTMAP
652 int anchor
= wrk
->anchor
;
654 struct ubi_wl_entry
*e1
, *e2
;
655 struct ubi_vid_io_buf
*vidb
;
656 struct ubi_vid_hdr
*vid_hdr
;
657 int dst_leb_clean
= 0;
663 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
667 vid_hdr
= ubi_get_vid_hdr(vidb
);
669 down_read(&ubi
->fm_eba_sem
);
670 mutex_lock(&ubi
->move_mutex
);
671 spin_lock(&ubi
->wl_lock
);
672 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
673 ubi_assert(!ubi
->move_to_put
);
675 if (!ubi
->free
.rb_node
||
676 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
678 * No free physical eraseblocks? Well, they must be waiting in
679 * the queue to be erased. Cancel movement - it will be
680 * triggered again when a free physical eraseblock appears.
682 * No used physical eraseblocks? They must be temporarily
683 * protected from being moved. They will be moved to the
684 * @ubi->used tree later and the wear-leveling will be
687 dbg_wl("cancel WL, a list is empty: free %d, used %d",
688 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
692 #ifdef CONFIG_MTD_UBI_FASTMAP
693 /* Check whether we need to produce an anchor PEB */
695 anchor
= !anchor_pebs_avalible(&ubi
->free
);
698 e1
= find_anchor_wl_entry(&ubi
->used
);
701 e2
= get_peb_for_wl(ubi
);
705 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
706 rb_erase(&e1
->u
.rb
, &ubi
->used
);
707 dbg_wl("anchor-move PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
708 } else if (!ubi
->scrub
.rb_node
) {
710 if (!ubi
->scrub
.rb_node
) {
713 * Now pick the least worn-out used physical eraseblock and a
714 * highly worn-out free physical eraseblock. If the erase
715 * counters differ much enough, start wear-leveling.
717 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
718 e2
= get_peb_for_wl(ubi
);
722 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
723 dbg_wl("no WL needed: min used EC %d, max free EC %d",
726 /* Give the unused PEB back */
727 wl_tree_add(e2
, &ubi
->free
);
731 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
732 rb_erase(&e1
->u
.rb
, &ubi
->used
);
733 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
736 /* Perform scrubbing */
738 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
739 e2
= get_peb_for_wl(ubi
);
743 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
744 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
745 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
750 spin_unlock(&ubi
->wl_lock
);
753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 * We so far do not know which logical eraseblock our physical
755 * eraseblock (@e1) belongs to. We have to read the volume identifier
758 * Note, we are protected from this PEB being unmapped and erased. The
759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 * which is being moved was unmapped.
763 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vidb
, 0);
764 if (err
&& err
!= UBI_IO_BITFLIPS
) {
766 if (err
== UBI_IO_FF
) {
768 * We are trying to move PEB without a VID header. UBI
769 * always write VID headers shortly after the PEB was
770 * given, so we have a situation when it has not yet
771 * had a chance to write it, because it was preempted.
772 * So add this PEB to the protection queue so far,
773 * because presumably more data will be written there
774 * (including the missing VID header), and then we'll
777 dbg_wl("PEB %d has no VID header", e1
->pnum
);
780 } else if (err
== UBI_IO_FF_BITFLIPS
) {
782 * The same situation as %UBI_IO_FF, but bit-flips were
783 * detected. It is better to schedule this PEB for
786 dbg_wl("PEB %d has no VID header but has bit-flips",
790 } else if (ubi
->fast_attach
&& err
== UBI_IO_BAD_HDR_EBADMSG
) {
792 * While a full scan would detect interrupted erasures
793 * at attach time we can face them here when attached from
796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
802 ubi_err(ubi
, "error %d while reading VID header from PEB %d",
807 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
808 lnum
= be32_to_cpu(vid_hdr
->lnum
);
810 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vidb
);
812 if (err
== MOVE_CANCEL_RACE
) {
814 * The LEB has not been moved because the volume is
815 * being deleted or the PEB has been put meanwhile. We
816 * should prevent this PEB from being selected for
817 * wear-leveling movement again, so put it to the
824 if (err
== MOVE_RETRY
) {
829 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
830 err
== MOVE_TARGET_RD_ERR
) {
832 * Target PEB had bit-flips or write error - torture it.
839 if (err
== MOVE_SOURCE_RD_ERR
) {
841 * An error happened while reading the source PEB. Do
842 * not switch to R/O mode in this case, and give the
843 * upper layers a possibility to recover from this,
844 * e.g. by unmapping corresponding LEB. Instead, just
845 * put this PEB to the @ubi->erroneous list to prevent
846 * UBI from trying to move it over and over again.
848 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
849 ubi_err(ubi
, "too many erroneous eraseblocks (%d)",
850 ubi
->erroneous_peb_count
);
864 /* The PEB has been successfully moved */
866 ubi_msg(ubi
, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
868 ubi_free_vid_buf(vidb
);
870 spin_lock(&ubi
->wl_lock
);
871 if (!ubi
->move_to_put
) {
872 wl_tree_add(e2
, &ubi
->used
);
875 ubi
->move_from
= ubi
->move_to
= NULL
;
876 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
877 spin_unlock(&ubi
->wl_lock
);
879 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 0);
882 wl_entry_destroy(ubi
, e2
);
888 * Well, the target PEB was put meanwhile, schedule it for
891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 e2
->pnum
, vol_id
, lnum
);
893 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, 0);
899 mutex_unlock(&ubi
->move_mutex
);
900 up_read(&ubi
->fm_eba_sem
);
904 * For some reasons the LEB was not moved, might be an error, might be
905 * something else. @e1 was not changed, so return it back. @e2 might
906 * have been changed, schedule it for erasure.
910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
913 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 e1
->pnum
, e2
->pnum
, err
);
915 spin_lock(&ubi
->wl_lock
);
917 prot_queue_add(ubi
, e1
);
918 else if (erroneous
) {
919 wl_tree_add(e1
, &ubi
->erroneous
);
920 ubi
->erroneous_peb_count
+= 1;
921 } else if (scrubbing
)
922 wl_tree_add(e1
, &ubi
->scrub
);
924 wl_tree_add(e1
, &ubi
->used
);
926 wl_tree_add(e2
, &ubi
->free
);
930 ubi_assert(!ubi
->move_to_put
);
931 ubi
->move_from
= ubi
->move_to
= NULL
;
932 ubi
->wl_scheduled
= 0;
933 spin_unlock(&ubi
->wl_lock
);
935 ubi_free_vid_buf(vidb
);
937 ensure_wear_leveling(ubi
, 1);
939 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, torture
);
945 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 1);
950 mutex_unlock(&ubi
->move_mutex
);
951 up_read(&ubi
->fm_eba_sem
);
956 ubi_err(ubi
, "error %d while moving PEB %d to PEB %d",
957 err
, e1
->pnum
, e2
->pnum
);
959 ubi_err(ubi
, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
961 spin_lock(&ubi
->wl_lock
);
962 ubi
->move_from
= ubi
->move_to
= NULL
;
963 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
964 spin_unlock(&ubi
->wl_lock
);
966 ubi_free_vid_buf(vidb
);
967 wl_entry_destroy(ubi
, e1
);
968 wl_entry_destroy(ubi
, e2
);
972 mutex_unlock(&ubi
->move_mutex
);
973 up_read(&ubi
->fm_eba_sem
);
974 ubi_assert(err
!= 0);
975 return err
< 0 ? err
: -EIO
;
978 ubi
->wl_scheduled
= 0;
979 spin_unlock(&ubi
->wl_lock
);
980 mutex_unlock(&ubi
->move_mutex
);
981 up_read(&ubi
->fm_eba_sem
);
982 ubi_free_vid_buf(vidb
);
987 * ensure_wear_leveling - schedule wear-leveling if it is needed.
988 * @ubi: UBI device description object
989 * @nested: set to non-zero if this function is called from UBI worker
991 * This function checks if it is time to start wear-leveling and schedules it
992 * if yes. This function returns zero in case of success and a negative error
993 * code in case of failure.
995 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
)
998 struct ubi_wl_entry
*e1
;
999 struct ubi_wl_entry
*e2
;
1000 struct ubi_work
*wrk
;
1002 spin_lock(&ubi
->wl_lock
);
1003 if (ubi
->wl_scheduled
)
1004 /* Wear-leveling is already in the work queue */
1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 * the WL worker has to be scheduled anyway.
1011 if (!ubi
->scrub
.rb_node
) {
1012 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
1013 /* No physical eraseblocks - no deal */
1017 * We schedule wear-leveling only if the difference between the
1018 * lowest erase counter of used physical eraseblocks and a high
1019 * erase counter of free physical eraseblocks is greater than
1020 * %UBI_WL_THRESHOLD.
1022 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
1023 e2
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
1025 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
1027 dbg_wl("schedule wear-leveling");
1029 dbg_wl("schedule scrubbing");
1031 ubi
->wl_scheduled
= 1;
1032 spin_unlock(&ubi
->wl_lock
);
1034 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1041 wrk
->func
= &wear_leveling_worker
;
1043 __schedule_ubi_work(ubi
, wrk
);
1045 schedule_ubi_work(ubi
, wrk
);
1049 spin_lock(&ubi
->wl_lock
);
1050 ubi
->wl_scheduled
= 0;
1052 spin_unlock(&ubi
->wl_lock
);
1057 * __erase_worker - physical eraseblock erase worker function.
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1068 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
)
1070 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1072 int vol_id
= wl_wrk
->vol_id
;
1073 int lnum
= wl_wrk
->lnum
;
1074 int err
, available_consumed
= 0;
1076 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
1079 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1081 spin_lock(&ubi
->wl_lock
);
1082 wl_tree_add(e
, &ubi
->free
);
1084 spin_unlock(&ubi
->wl_lock
);
1087 * One more erase operation has happened, take care about
1088 * protected physical eraseblocks.
1090 serve_prot_queue(ubi
);
1092 /* And take care about wear-leveling */
1093 err
= ensure_wear_leveling(ubi
, 1);
1097 ubi_err(ubi
, "failed to erase PEB %d, error %d", pnum
, err
);
1099 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1103 /* Re-schedule the LEB for erasure */
1104 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0, false);
1106 wl_entry_destroy(ubi
, e
);
1113 wl_entry_destroy(ubi
, e
);
1116 * If this is not %-EIO, we have no idea what to do. Scheduling
1117 * this physical eraseblock for erasure again would cause
1118 * errors again and again. Well, lets switch to R/O mode.
1122 /* It is %-EIO, the PEB went bad */
1124 if (!ubi
->bad_allowed
) {
1125 ubi_err(ubi
, "bad physical eraseblock %d detected", pnum
);
1129 spin_lock(&ubi
->volumes_lock
);
1130 if (ubi
->beb_rsvd_pebs
== 0) {
1131 if (ubi
->avail_pebs
== 0) {
1132 spin_unlock(&ubi
->volumes_lock
);
1133 ubi_err(ubi
, "no reserved/available physical eraseblocks");
1136 ubi
->avail_pebs
-= 1;
1137 available_consumed
= 1;
1139 spin_unlock(&ubi
->volumes_lock
);
1141 ubi_msg(ubi
, "mark PEB %d as bad", pnum
);
1142 err
= ubi_io_mark_bad(ubi
, pnum
);
1146 spin_lock(&ubi
->volumes_lock
);
1147 if (ubi
->beb_rsvd_pebs
> 0) {
1148 if (available_consumed
) {
1150 * The amount of reserved PEBs increased since we last
1153 ubi
->avail_pebs
+= 1;
1154 available_consumed
= 0;
1156 ubi
->beb_rsvd_pebs
-= 1;
1158 ubi
->bad_peb_count
+= 1;
1159 ubi
->good_peb_count
-= 1;
1160 ubi_calculate_reserved(ubi
);
1161 if (available_consumed
)
1162 ubi_warn(ubi
, "no PEBs in the reserved pool, used an available PEB");
1163 else if (ubi
->beb_rsvd_pebs
)
1164 ubi_msg(ubi
, "%d PEBs left in the reserve",
1165 ubi
->beb_rsvd_pebs
);
1167 ubi_warn(ubi
, "last PEB from the reserve was used");
1168 spin_unlock(&ubi
->volumes_lock
);
1173 if (available_consumed
) {
1174 spin_lock(&ubi
->volumes_lock
);
1175 ubi
->avail_pebs
+= 1;
1176 spin_unlock(&ubi
->volumes_lock
);
1182 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1188 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1190 dbg_wl("cancel erasure of PEB %d EC %d", e
->pnum
, e
->ec
);
1192 wl_entry_destroy(ubi
, e
);
1196 ret
= __erase_worker(ubi
, wl_wrk
);
1202 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1203 * @ubi: UBI device description object
1204 * @vol_id: the volume ID that last used this PEB
1205 * @lnum: the last used logical eraseblock number for the PEB
1206 * @pnum: physical eraseblock to return
1207 * @torture: if this physical eraseblock has to be tortured
1209 * This function is called to return physical eraseblock @pnum to the pool of
1210 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1211 * occurred to this @pnum and it has to be tested. This function returns zero
1212 * in case of success, and a negative error code in case of failure.
1214 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1215 int pnum
, int torture
)
1218 struct ubi_wl_entry
*e
;
1220 dbg_wl("PEB %d", pnum
);
1221 ubi_assert(pnum
>= 0);
1222 ubi_assert(pnum
< ubi
->peb_count
);
1224 down_read(&ubi
->fm_protect
);
1227 spin_lock(&ubi
->wl_lock
);
1228 e
= ubi
->lookuptbl
[pnum
];
1229 if (e
== ubi
->move_from
) {
1231 * User is putting the physical eraseblock which was selected to
1232 * be moved. It will be scheduled for erasure in the
1233 * wear-leveling worker.
1235 dbg_wl("PEB %d is being moved, wait", pnum
);
1236 spin_unlock(&ubi
->wl_lock
);
1238 /* Wait for the WL worker by taking the @ubi->move_mutex */
1239 mutex_lock(&ubi
->move_mutex
);
1240 mutex_unlock(&ubi
->move_mutex
);
1242 } else if (e
== ubi
->move_to
) {
1244 * User is putting the physical eraseblock which was selected
1245 * as the target the data is moved to. It may happen if the EBA
1246 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1247 * but the WL sub-system has not put the PEB to the "used" tree
1248 * yet, but it is about to do this. So we just set a flag which
1249 * will tell the WL worker that the PEB is not needed anymore
1250 * and should be scheduled for erasure.
1252 dbg_wl("PEB %d is the target of data moving", pnum
);
1253 ubi_assert(!ubi
->move_to_put
);
1254 ubi
->move_to_put
= 1;
1255 spin_unlock(&ubi
->wl_lock
);
1256 up_read(&ubi
->fm_protect
);
1259 if (in_wl_tree(e
, &ubi
->used
)) {
1260 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1261 rb_erase(&e
->u
.rb
, &ubi
->used
);
1262 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1263 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1264 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1265 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1266 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1267 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1268 ubi
->erroneous_peb_count
-= 1;
1269 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1270 /* Erroneous PEBs should be tortured */
1273 err
= prot_queue_del(ubi
, e
->pnum
);
1275 ubi_err(ubi
, "PEB %d not found", pnum
);
1277 spin_unlock(&ubi
->wl_lock
);
1278 up_read(&ubi
->fm_protect
);
1283 spin_unlock(&ubi
->wl_lock
);
1285 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
, false);
1287 spin_lock(&ubi
->wl_lock
);
1288 wl_tree_add(e
, &ubi
->used
);
1289 spin_unlock(&ubi
->wl_lock
);
1292 up_read(&ubi
->fm_protect
);
1297 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1298 * @ubi: UBI device description object
1299 * @pnum: the physical eraseblock to schedule
1301 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1302 * needs scrubbing. This function schedules a physical eraseblock for
1303 * scrubbing which is done in background. This function returns zero in case of
1304 * success and a negative error code in case of failure.
1306 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1308 struct ubi_wl_entry
*e
;
1310 ubi_msg(ubi
, "schedule PEB %d for scrubbing", pnum
);
1313 spin_lock(&ubi
->wl_lock
);
1314 e
= ubi
->lookuptbl
[pnum
];
1315 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1316 in_wl_tree(e
, &ubi
->erroneous
)) {
1317 spin_unlock(&ubi
->wl_lock
);
1321 if (e
== ubi
->move_to
) {
1323 * This physical eraseblock was used to move data to. The data
1324 * was moved but the PEB was not yet inserted to the proper
1325 * tree. We should just wait a little and let the WL worker
1328 spin_unlock(&ubi
->wl_lock
);
1329 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1334 if (in_wl_tree(e
, &ubi
->used
)) {
1335 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1336 rb_erase(&e
->u
.rb
, &ubi
->used
);
1340 err
= prot_queue_del(ubi
, e
->pnum
);
1342 ubi_err(ubi
, "PEB %d not found", pnum
);
1344 spin_unlock(&ubi
->wl_lock
);
1349 wl_tree_add(e
, &ubi
->scrub
);
1350 spin_unlock(&ubi
->wl_lock
);
1353 * Technically scrubbing is the same as wear-leveling, so it is done
1356 return ensure_wear_leveling(ubi
, 0);
1360 * ubi_wl_flush - flush all pending works.
1361 * @ubi: UBI device description object
1362 * @vol_id: the volume id to flush for
1363 * @lnum: the logical eraseblock number to flush for
1365 * This function executes all pending works for a particular volume id /
1366 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1367 * acts as a wildcard for all of the corresponding volume numbers or logical
1368 * eraseblock numbers. It returns zero in case of success and a negative error
1369 * code in case of failure.
1371 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1377 * Erase while the pending works queue is not empty, but not more than
1378 * the number of currently pending works.
1380 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1381 vol_id
, lnum
, ubi
->works_count
);
1384 struct ubi_work
*wrk
, *tmp
;
1387 down_read(&ubi
->work_sem
);
1388 spin_lock(&ubi
->wl_lock
);
1389 list_for_each_entry_safe(wrk
, tmp
, &ubi
->works
, list
) {
1390 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1391 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1392 list_del(&wrk
->list
);
1393 ubi
->works_count
-= 1;
1394 ubi_assert(ubi
->works_count
>= 0);
1395 spin_unlock(&ubi
->wl_lock
);
1397 err
= wrk
->func(ubi
, wrk
, 0);
1399 up_read(&ubi
->work_sem
);
1403 spin_lock(&ubi
->wl_lock
);
1408 spin_unlock(&ubi
->wl_lock
);
1409 up_read(&ubi
->work_sem
);
1413 * Make sure all the works which have been done in parallel are
1416 down_write(&ubi
->work_sem
);
1417 up_write(&ubi
->work_sem
);
1423 * tree_destroy - destroy an RB-tree.
1424 * @ubi: UBI device description object
1425 * @root: the root of the tree to destroy
1427 static void tree_destroy(struct ubi_device
*ubi
, struct rb_root
*root
)
1430 struct ubi_wl_entry
*e
;
1436 else if (rb
->rb_right
)
1439 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1443 if (rb
->rb_left
== &e
->u
.rb
)
1446 rb
->rb_right
= NULL
;
1449 wl_entry_destroy(ubi
, e
);
1455 * ubi_thread - UBI background thread.
1456 * @u: the UBI device description object pointer
1458 int ubi_thread(void *u
)
1461 struct ubi_device
*ubi
= u
;
1463 ubi_msg(ubi
, "background thread \"%s\" started, PID %d",
1464 ubi
->bgt_name
, task_pid_nr(current
));
1470 if (kthread_should_stop())
1473 if (try_to_freeze())
1476 spin_lock(&ubi
->wl_lock
);
1477 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1478 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1479 set_current_state(TASK_INTERRUPTIBLE
);
1480 spin_unlock(&ubi
->wl_lock
);
1484 spin_unlock(&ubi
->wl_lock
);
1488 ubi_err(ubi
, "%s: work failed with error code %d",
1489 ubi
->bgt_name
, err
);
1490 if (failures
++ > WL_MAX_FAILURES
) {
1492 * Too many failures, disable the thread and
1493 * switch to read-only mode.
1495 ubi_msg(ubi
, "%s: %d consecutive failures",
1496 ubi
->bgt_name
, WL_MAX_FAILURES
);
1498 ubi
->thread_enabled
= 0;
1507 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1512 * shutdown_work - shutdown all pending works.
1513 * @ubi: UBI device description object
1515 static void shutdown_work(struct ubi_device
*ubi
)
1517 #ifdef CONFIG_MTD_UBI_FASTMAP
1518 flush_work(&ubi
->fm_work
);
1520 while (!list_empty(&ubi
->works
)) {
1521 struct ubi_work
*wrk
;
1523 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1524 list_del(&wrk
->list
);
1525 wrk
->func(ubi
, wrk
, 1);
1526 ubi
->works_count
-= 1;
1527 ubi_assert(ubi
->works_count
>= 0);
1532 * ubi_wl_init - initialize the WL sub-system using attaching information.
1533 * @ubi: UBI device description object
1534 * @ai: attaching information
1536 * This function returns zero in case of success, and a negative error code in
1539 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1541 int err
, i
, reserved_pebs
, found_pebs
= 0;
1542 struct rb_node
*rb1
, *rb2
;
1543 struct ubi_ainf_volume
*av
;
1544 struct ubi_ainf_peb
*aeb
, *tmp
;
1545 struct ubi_wl_entry
*e
;
1547 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1548 spin_lock_init(&ubi
->wl_lock
);
1549 mutex_init(&ubi
->move_mutex
);
1550 init_rwsem(&ubi
->work_sem
);
1551 ubi
->max_ec
= ai
->max_ec
;
1552 INIT_LIST_HEAD(&ubi
->works
);
1554 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1557 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1558 if (!ubi
->lookuptbl
)
1561 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1562 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1565 ubi
->free_count
= 0;
1566 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1569 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1573 e
->pnum
= aeb
->pnum
;
1575 ubi
->lookuptbl
[e
->pnum
] = e
;
1576 if (schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false)) {
1577 wl_entry_destroy(ubi
, e
);
1584 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1587 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1591 e
->pnum
= aeb
->pnum
;
1593 ubi_assert(e
->ec
>= 0);
1595 wl_tree_add(e
, &ubi
->free
);
1598 ubi
->lookuptbl
[e
->pnum
] = e
;
1603 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1604 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1607 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1611 e
->pnum
= aeb
->pnum
;
1613 ubi
->lookuptbl
[e
->pnum
] = e
;
1616 dbg_wl("add PEB %d EC %d to the used tree",
1618 wl_tree_add(e
, &ubi
->used
);
1620 dbg_wl("add PEB %d EC %d to the scrub tree",
1622 wl_tree_add(e
, &ubi
->scrub
);
1629 list_for_each_entry(aeb
, &ai
->fastmap
, u
.list
) {
1632 e
= ubi_find_fm_block(ubi
, aeb
->pnum
);
1635 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1636 ubi
->lookuptbl
[e
->pnum
] = e
;
1639 * Usually old Fastmap PEBs are scheduled for erasure
1640 * and we don't have to care about them but if we face
1641 * an power cut before scheduling them we need to
1642 * take care of them here.
1644 if (ubi
->lookuptbl
[aeb
->pnum
])
1647 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1651 e
->pnum
= aeb
->pnum
;
1653 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1654 ubi
->lookuptbl
[e
->pnum
] = e
;
1655 if (schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false)) {
1656 wl_entry_destroy(ubi
, e
);
1664 dbg_wl("found %i PEBs", found_pebs
);
1666 ubi_assert(ubi
->good_peb_count
== found_pebs
);
1668 reserved_pebs
= WL_RESERVED_PEBS
;
1669 ubi_fastmap_init(ubi
, &reserved_pebs
);
1671 if (ubi
->avail_pebs
< reserved_pebs
) {
1672 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1673 ubi
->avail_pebs
, reserved_pebs
);
1674 if (ubi
->corr_peb_count
)
1675 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1676 ubi
->corr_peb_count
);
1680 ubi
->avail_pebs
-= reserved_pebs
;
1681 ubi
->rsvd_pebs
+= reserved_pebs
;
1683 /* Schedule wear-leveling if needed */
1684 err
= ensure_wear_leveling(ubi
, 0);
1692 tree_destroy(ubi
, &ubi
->used
);
1693 tree_destroy(ubi
, &ubi
->free
);
1694 tree_destroy(ubi
, &ubi
->scrub
);
1695 kfree(ubi
->lookuptbl
);
1700 * protection_queue_destroy - destroy the protection queue.
1701 * @ubi: UBI device description object
1703 static void protection_queue_destroy(struct ubi_device
*ubi
)
1706 struct ubi_wl_entry
*e
, *tmp
;
1708 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1709 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1710 list_del(&e
->u
.list
);
1711 wl_entry_destroy(ubi
, e
);
1717 * ubi_wl_close - close the wear-leveling sub-system.
1718 * @ubi: UBI device description object
1720 void ubi_wl_close(struct ubi_device
*ubi
)
1722 dbg_wl("close the WL sub-system");
1723 ubi_fastmap_close(ubi
);
1725 protection_queue_destroy(ubi
);
1726 tree_destroy(ubi
, &ubi
->used
);
1727 tree_destroy(ubi
, &ubi
->erroneous
);
1728 tree_destroy(ubi
, &ubi
->free
);
1729 tree_destroy(ubi
, &ubi
->scrub
);
1730 kfree(ubi
->lookuptbl
);
1734 * self_check_ec - make sure that the erase counter of a PEB is correct.
1735 * @ubi: UBI device description object
1736 * @pnum: the physical eraseblock number to check
1737 * @ec: the erase counter to check
1739 * This function returns zero if the erase counter of physical eraseblock @pnum
1740 * is equivalent to @ec, and a negative error code if not or if an error
1743 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1747 struct ubi_ec_hdr
*ec_hdr
;
1749 if (!ubi_dbg_chk_gen(ubi
))
1752 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1756 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1757 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1758 /* The header does not have to exist */
1763 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1764 if (ec
!= read_ec
&& read_ec
- ec
> 1) {
1765 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1766 ubi_err(ubi
, "read EC is %lld, should be %d", read_ec
, ec
);
1778 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1779 * @ubi: UBI device description object
1780 * @e: the wear-leveling entry to check
1781 * @root: the root of the tree
1783 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1786 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
1787 struct ubi_wl_entry
*e
, struct rb_root
*root
)
1789 if (!ubi_dbg_chk_gen(ubi
))
1792 if (in_wl_tree(e
, root
))
1795 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1796 e
->pnum
, e
->ec
, root
);
1802 * self_check_in_pq - check if wear-leveling entry is in the protection
1804 * @ubi: UBI device description object
1805 * @e: the wear-leveling entry to check
1807 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1809 static int self_check_in_pq(const struct ubi_device
*ubi
,
1810 struct ubi_wl_entry
*e
)
1812 struct ubi_wl_entry
*p
;
1815 if (!ubi_dbg_chk_gen(ubi
))
1818 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
1819 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
1823 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, Protect queue",
1828 #ifndef CONFIG_MTD_UBI_FASTMAP
1829 static struct ubi_wl_entry
*get_peb_for_wl(struct ubi_device
*ubi
)
1831 struct ubi_wl_entry
*e
;
1833 e
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
1834 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
1836 ubi_assert(ubi
->free_count
>= 0);
1837 rb_erase(&e
->u
.rb
, &ubi
->free
);
1843 * produce_free_peb - produce a free physical eraseblock.
1844 * @ubi: UBI device description object
1846 * This function tries to make a free PEB by means of synchronous execution of
1847 * pending works. This may be needed if, for example the background thread is
1848 * disabled. Returns zero in case of success and a negative error code in case
1851 static int produce_free_peb(struct ubi_device
*ubi
)
1855 while (!ubi
->free
.rb_node
&& ubi
->works_count
) {
1856 spin_unlock(&ubi
->wl_lock
);
1858 dbg_wl("do one work synchronously");
1861 spin_lock(&ubi
->wl_lock
);
1870 * ubi_wl_get_peb - get a physical eraseblock.
1871 * @ubi: UBI device description object
1873 * This function returns a physical eraseblock in case of success and a
1874 * negative error code in case of failure.
1875 * Returns with ubi->fm_eba_sem held in read mode!
1877 int ubi_wl_get_peb(struct ubi_device
*ubi
)
1880 struct ubi_wl_entry
*e
;
1883 down_read(&ubi
->fm_eba_sem
);
1884 spin_lock(&ubi
->wl_lock
);
1885 if (!ubi
->free
.rb_node
) {
1886 if (ubi
->works_count
== 0) {
1887 ubi_err(ubi
, "no free eraseblocks");
1888 ubi_assert(list_empty(&ubi
->works
));
1889 spin_unlock(&ubi
->wl_lock
);
1893 err
= produce_free_peb(ubi
);
1895 spin_unlock(&ubi
->wl_lock
);
1898 spin_unlock(&ubi
->wl_lock
);
1899 up_read(&ubi
->fm_eba_sem
);
1903 e
= wl_get_wle(ubi
);
1904 prot_queue_add(ubi
, e
);
1905 spin_unlock(&ubi
->wl_lock
);
1907 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
1908 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
1910 ubi_err(ubi
, "new PEB %d does not contain all 0xFF bytes", e
->pnum
);
1917 #include "fastmap-wl.c"