perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / thermal / intel_powerclamp.c
blob0e4dc0afcfd244d510b003575249c4c3ce1d16bd
1 /*
2 * intel_powerclamp.c - package c-state idle injection
4 * Copyright (c) 2012, Intel Corporation.
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
35 * 2. synchronization with other hw blocks
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
72 #define DEFAULT_DURATION_JIFFIES (6)
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
87 static bool clamping;
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
100 static int duration_set(const char *arg, const struct kernel_param *kp)
102 int ret = 0;
103 unsigned long new_duration;
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
117 exit:
119 return ret;
122 static const struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
150 int ret = 0;
151 unsigned long new_window_size;
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
165 exit_win:
167 return ret;
170 static const struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
181 static void find_target_mwait(void)
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
209 struct pkg_cstate_info {
210 bool skip;
211 int msr_index;
212 int cstate_id;
215 #define PKG_CSTATE_INIT(id) { \
216 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
217 .cstate_id = id \
220 static struct pkg_cstate_info pkg_cstates[] = {
221 PKG_CSTATE_INIT(2),
222 PKG_CSTATE_INIT(3),
223 PKG_CSTATE_INIT(6),
224 PKG_CSTATE_INIT(7),
225 PKG_CSTATE_INIT(8),
226 PKG_CSTATE_INIT(9),
227 PKG_CSTATE_INIT(10),
228 {NULL},
231 static bool has_pkg_state_counter(void)
233 u64 val;
234 struct pkg_cstate_info *info = pkg_cstates;
236 /* check if any one of the counter msrs exists */
237 while (info->msr_index) {
238 if (!rdmsrl_safe(info->msr_index, &val))
239 return true;
240 info++;
243 return false;
246 static u64 pkg_state_counter(void)
248 u64 val;
249 u64 count = 0;
250 struct pkg_cstate_info *info = pkg_cstates;
252 while (info->msr_index) {
253 if (!info->skip) {
254 if (!rdmsrl_safe(info->msr_index, &val))
255 count += val;
256 else
257 info->skip = true;
259 info++;
262 return count;
265 static void noop_timer(unsigned long foo)
267 /* empty... just the fact that we get the interrupt wakes us up */
270 static unsigned int get_compensation(int ratio)
272 unsigned int comp = 0;
274 /* we only use compensation if all adjacent ones are good */
275 if (ratio == 1 &&
276 cal_data[ratio].confidence >= CONFIDENCE_OK &&
277 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
279 comp = (cal_data[ratio].steady_comp +
280 cal_data[ratio + 1].steady_comp +
281 cal_data[ratio + 2].steady_comp) / 3;
282 } else if (ratio == MAX_TARGET_RATIO - 1 &&
283 cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio - 2].steady_comp) / 3;
289 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
290 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
291 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
292 comp = (cal_data[ratio].steady_comp +
293 cal_data[ratio - 1].steady_comp +
294 cal_data[ratio + 1].steady_comp) / 3;
297 /* REVISIT: simple penalty of double idle injection */
298 if (reduce_irq)
299 comp = ratio;
300 /* do not exceed limit */
301 if (comp + ratio >= MAX_TARGET_RATIO)
302 comp = MAX_TARGET_RATIO - ratio - 1;
304 return comp;
307 static void adjust_compensation(int target_ratio, unsigned int win)
309 int delta;
310 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
313 * adjust compensations if confidence level has not been reached or
314 * there are too many wakeups during the last idle injection period, we
315 * cannot trust the data for compensation.
317 if (d->confidence >= CONFIDENCE_OK ||
318 atomic_read(&idle_wakeup_counter) >
319 win * num_online_cpus())
320 return;
322 delta = set_target_ratio - current_ratio;
323 /* filter out bad data */
324 if (delta >= 0 && delta <= (1+target_ratio/10)) {
325 if (d->steady_comp)
326 d->steady_comp =
327 roundup(delta+d->steady_comp, 2)/2;
328 else
329 d->steady_comp = delta;
330 d->confidence++;
334 static bool powerclamp_adjust_controls(unsigned int target_ratio,
335 unsigned int guard, unsigned int win)
337 static u64 msr_last, tsc_last;
338 u64 msr_now, tsc_now;
339 u64 val64;
341 /* check result for the last window */
342 msr_now = pkg_state_counter();
343 tsc_now = rdtsc();
345 /* calculate pkg cstate vs tsc ratio */
346 if (!msr_last || !tsc_last)
347 current_ratio = 1;
348 else if (tsc_now-tsc_last) {
349 val64 = 100*(msr_now-msr_last);
350 do_div(val64, (tsc_now-tsc_last));
351 current_ratio = val64;
354 /* update record */
355 msr_last = msr_now;
356 tsc_last = tsc_now;
358 adjust_compensation(target_ratio, win);
360 * too many external interrupts, set flag such
361 * that we can take measure later.
363 reduce_irq = atomic_read(&idle_wakeup_counter) >=
364 2 * win * num_online_cpus();
366 atomic_set(&idle_wakeup_counter, 0);
367 /* if we are above target+guard, skip */
368 return set_target_ratio + guard <= current_ratio;
371 static int clamp_thread(void *arg)
373 int cpunr = (unsigned long)arg;
374 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
375 static const struct sched_param param = {
376 .sched_priority = MAX_USER_RT_PRIO/2,
378 unsigned int count = 0;
379 unsigned int target_ratio;
381 set_bit(cpunr, cpu_clamping_mask);
382 set_freezable();
383 init_timer_on_stack(&wakeup_timer);
384 sched_setscheduler(current, SCHED_FIFO, &param);
386 while (true == clamping && !kthread_should_stop() &&
387 cpu_online(cpunr)) {
388 int sleeptime;
389 unsigned long target_jiffies;
390 unsigned int guard;
391 unsigned int compensated_ratio;
392 int interval; /* jiffies to sleep for each attempt */
393 unsigned int duration_jiffies = msecs_to_jiffies(duration);
394 unsigned int window_size_now;
396 try_to_freeze();
398 * make sure user selected ratio does not take effect until
399 * the next round. adjust target_ratio if user has changed
400 * target such that we can converge quickly.
402 target_ratio = set_target_ratio;
403 guard = 1 + target_ratio/20;
404 window_size_now = window_size;
405 count++;
408 * systems may have different ability to enter package level
409 * c-states, thus we need to compensate the injected idle ratio
410 * to achieve the actual target reported by the HW.
412 compensated_ratio = target_ratio +
413 get_compensation(target_ratio);
414 if (compensated_ratio <= 0)
415 compensated_ratio = 1;
416 interval = duration_jiffies * 100 / compensated_ratio;
418 /* align idle time */
419 target_jiffies = roundup(jiffies, interval);
420 sleeptime = target_jiffies - jiffies;
421 if (sleeptime <= 0)
422 sleeptime = 1;
423 schedule_timeout_interruptible(sleeptime);
425 * only elected controlling cpu can collect stats and update
426 * control parameters.
428 if (cpunr == control_cpu && !(count%window_size_now)) {
429 should_skip =
430 powerclamp_adjust_controls(target_ratio,
431 guard, window_size_now);
432 smp_mb();
435 if (should_skip)
436 continue;
438 target_jiffies = jiffies + duration_jiffies;
439 mod_timer(&wakeup_timer, target_jiffies);
440 if (unlikely(local_softirq_pending()))
441 continue;
443 * stop tick sched during idle time, interrupts are still
444 * allowed. thus jiffies are updated properly.
446 preempt_disable();
447 /* mwait until target jiffies is reached */
448 while (time_before(jiffies, target_jiffies)) {
449 unsigned long ecx = 1;
450 unsigned long eax = target_mwait;
453 * REVISIT: may call enter_idle() to notify drivers who
454 * can save power during cpu idle. same for exit_idle()
456 local_touch_nmi();
457 stop_critical_timings();
458 mwait_idle_with_hints(eax, ecx);
459 start_critical_timings();
460 atomic_inc(&idle_wakeup_counter);
462 preempt_enable();
464 del_timer_sync(&wakeup_timer);
465 clear_bit(cpunr, cpu_clamping_mask);
467 return 0;
471 * 1 HZ polling while clamping is active, useful for userspace
472 * to monitor actual idle ratio.
474 static void poll_pkg_cstate(struct work_struct *dummy);
475 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
476 static void poll_pkg_cstate(struct work_struct *dummy)
478 static u64 msr_last;
479 static u64 tsc_last;
480 static unsigned long jiffies_last;
482 u64 msr_now;
483 unsigned long jiffies_now;
484 u64 tsc_now;
485 u64 val64;
487 msr_now = pkg_state_counter();
488 tsc_now = rdtsc();
489 jiffies_now = jiffies;
491 /* calculate pkg cstate vs tsc ratio */
492 if (!msr_last || !tsc_last)
493 pkg_cstate_ratio_cur = 1;
494 else {
495 if (tsc_now - tsc_last) {
496 val64 = 100 * (msr_now - msr_last);
497 do_div(val64, (tsc_now - tsc_last));
498 pkg_cstate_ratio_cur = val64;
502 /* update record */
503 msr_last = msr_now;
504 jiffies_last = jiffies_now;
505 tsc_last = tsc_now;
507 if (true == clamping)
508 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
511 static int start_power_clamp(void)
513 unsigned long cpu;
514 struct task_struct *thread;
516 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
517 /* prevent cpu hotplug */
518 get_online_cpus();
520 /* prefer BSP */
521 control_cpu = 0;
522 if (!cpu_online(control_cpu))
523 control_cpu = smp_processor_id();
525 clamping = true;
526 schedule_delayed_work(&poll_pkg_cstate_work, 0);
528 /* start one thread per online cpu */
529 for_each_online_cpu(cpu) {
530 struct task_struct **p =
531 per_cpu_ptr(powerclamp_thread, cpu);
533 thread = kthread_create_on_node(clamp_thread,
534 (void *) cpu,
535 cpu_to_node(cpu),
536 "kidle_inject/%ld", cpu);
537 /* bind to cpu here */
538 if (likely(!IS_ERR(thread))) {
539 kthread_bind(thread, cpu);
540 wake_up_process(thread);
541 *p = thread;
545 put_online_cpus();
547 return 0;
550 static void end_power_clamp(void)
552 int i;
553 struct task_struct *thread;
555 clamping = false;
557 * make clamping visible to other cpus and give per cpu clamping threads
558 * sometime to exit, or gets killed later.
560 smp_mb();
561 msleep(20);
562 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564 pr_debug("clamping thread for cpu %d alive, kill\n", i);
565 thread = *per_cpu_ptr(powerclamp_thread, i);
566 kthread_stop(thread);
571 static int powerclamp_cpu_callback(struct notifier_block *nfb,
572 unsigned long action, void *hcpu)
574 unsigned long cpu = (unsigned long)hcpu;
575 struct task_struct *thread;
576 struct task_struct **percpu_thread =
577 per_cpu_ptr(powerclamp_thread, cpu);
579 if (false == clamping)
580 goto exit_ok;
582 switch (action) {
583 case CPU_ONLINE:
584 thread = kthread_create_on_node(clamp_thread,
585 (void *) cpu,
586 cpu_to_node(cpu),
587 "kidle_inject/%lu", cpu);
588 if (likely(!IS_ERR(thread))) {
589 kthread_bind(thread, cpu);
590 wake_up_process(thread);
591 *percpu_thread = thread;
593 /* prefer BSP as controlling CPU */
594 if (cpu == 0) {
595 control_cpu = 0;
596 smp_mb();
598 break;
599 case CPU_DEAD:
600 if (test_bit(cpu, cpu_clamping_mask)) {
601 pr_err("cpu %lu dead but powerclamping thread is not\n",
602 cpu);
603 kthread_stop(*percpu_thread);
605 if (cpu == control_cpu) {
606 control_cpu = smp_processor_id();
607 smp_mb();
611 exit_ok:
612 return NOTIFY_OK;
615 static struct notifier_block powerclamp_cpu_notifier = {
616 .notifier_call = powerclamp_cpu_callback,
619 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
620 unsigned long *state)
622 *state = MAX_TARGET_RATIO;
624 return 0;
627 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
628 unsigned long *state)
630 if (true == clamping)
631 *state = pkg_cstate_ratio_cur;
632 else
633 /* to save power, do not poll idle ratio while not clamping */
634 *state = -1; /* indicates invalid state */
636 return 0;
639 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
640 unsigned long new_target_ratio)
642 int ret = 0;
644 new_target_ratio = clamp(new_target_ratio, 0UL,
645 (unsigned long) (MAX_TARGET_RATIO-1));
646 if (set_target_ratio == 0 && new_target_ratio > 0) {
647 pr_info("Start idle injection to reduce power\n");
648 set_target_ratio = new_target_ratio;
649 ret = start_power_clamp();
650 goto exit_set;
651 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
652 pr_info("Stop forced idle injection\n");
653 end_power_clamp();
654 set_target_ratio = 0;
655 } else /* adjust currently running */ {
656 set_target_ratio = new_target_ratio;
657 /* make new set_target_ratio visible to other cpus */
658 smp_mb();
661 exit_set:
662 return ret;
665 /* bind to generic thermal layer as cooling device*/
666 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
667 .get_max_state = powerclamp_get_max_state,
668 .get_cur_state = powerclamp_get_cur_state,
669 .set_cur_state = powerclamp_set_cur_state,
672 static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = {
673 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
674 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_ARAT },
675 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_NONSTOP_TSC },
676 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_CONSTANT_TSC},
679 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
681 static int __init powerclamp_probe(void)
683 if (!x86_match_cpu(intel_powerclamp_ids)) {
684 pr_err("Intel powerclamp does not run on family %d model %d\n",
685 boot_cpu_data.x86, boot_cpu_data.x86_model);
686 return -ENODEV;
689 /* The goal for idle time alignment is to achieve package cstate. */
690 if (!has_pkg_state_counter()) {
691 pr_info("No package C-state available");
692 return -ENODEV;
695 /* find the deepest mwait value */
696 find_target_mwait();
698 return 0;
701 static int powerclamp_debug_show(struct seq_file *m, void *unused)
703 int i = 0;
705 seq_printf(m, "controlling cpu: %d\n", control_cpu);
706 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
707 for (i = 0; i < MAX_TARGET_RATIO; i++) {
708 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
710 cal_data[i].confidence,
711 cal_data[i].steady_comp,
712 cal_data[i].dynamic_comp);
715 return 0;
718 static int powerclamp_debug_open(struct inode *inode,
719 struct file *file)
721 return single_open(file, powerclamp_debug_show, inode->i_private);
724 static const struct file_operations powerclamp_debug_fops = {
725 .open = powerclamp_debug_open,
726 .read = seq_read,
727 .llseek = seq_lseek,
728 .release = single_release,
729 .owner = THIS_MODULE,
732 static inline void powerclamp_create_debug_files(void)
734 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
735 if (!debug_dir)
736 return;
738 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
739 cal_data, &powerclamp_debug_fops))
740 goto file_error;
742 return;
744 file_error:
745 debugfs_remove_recursive(debug_dir);
748 static int __init powerclamp_init(void)
750 int retval;
751 int bitmap_size;
753 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
754 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
755 if (!cpu_clamping_mask)
756 return -ENOMEM;
758 /* probe cpu features and ids here */
759 retval = powerclamp_probe();
760 if (retval)
761 goto exit_free;
763 /* set default limit, maybe adjusted during runtime based on feedback */
764 window_size = 2;
765 register_hotcpu_notifier(&powerclamp_cpu_notifier);
767 powerclamp_thread = alloc_percpu(struct task_struct *);
768 if (!powerclamp_thread) {
769 retval = -ENOMEM;
770 goto exit_unregister;
773 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
774 &powerclamp_cooling_ops);
775 if (IS_ERR(cooling_dev)) {
776 retval = -ENODEV;
777 goto exit_free_thread;
780 if (!duration)
781 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
783 powerclamp_create_debug_files();
785 return 0;
787 exit_free_thread:
788 free_percpu(powerclamp_thread);
789 exit_unregister:
790 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
791 exit_free:
792 kfree(cpu_clamping_mask);
793 return retval;
795 module_init(powerclamp_init);
797 static void __exit powerclamp_exit(void)
799 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
800 end_power_clamp();
801 free_percpu(powerclamp_thread);
802 thermal_cooling_device_unregister(cooling_dev);
803 kfree(cpu_clamping_mask);
805 cancel_delayed_work_sync(&poll_pkg_cstate_work);
806 debugfs_remove_recursive(debug_dir);
808 module_exit(powerclamp_exit);
810 MODULE_LICENSE("GPL");
811 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
812 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
813 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");