x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / arch / x86 / kernel / apic / io_apic.c
blob7cc0a721f628c302d0d420ba0bf3af1945d5a1c0
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/nmi.h>
58 #include <asm/msidef.h>
59 #include <asm/hypertransport.h>
60 #include <asm/setup.h>
61 #include <asm/irq_remapping.h>
62 #include <asm/hpet.h>
63 #include <asm/hw_irq.h>
65 #include <asm/apic.h>
67 #define __apicdebuginit(type) static type __init
68 #define for_each_irq_pin(entry, head) \
69 for (entry = head; entry; entry = entry->next)
72 * Is the SiS APIC rmw bug present ?
73 * -1 = don't know, 0 = no, 1 = yes
75 int sis_apic_bug = -1;
77 static DEFINE_RAW_SPINLOCK(ioapic_lock);
78 static DEFINE_RAW_SPINLOCK(vector_lock);
81 * # of IRQ routing registers
83 int nr_ioapic_registers[MAX_IO_APICS];
85 /* I/O APIC entries */
86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
87 int nr_ioapics;
89 /* IO APIC gsi routing info */
90 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
92 /* The one past the highest gsi number used */
93 u32 gsi_top;
95 /* MP IRQ source entries */
96 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
98 /* # of MP IRQ source entries */
99 int mp_irq_entries;
101 /* GSI interrupts */
102 static int nr_irqs_gsi = NR_IRQS_LEGACY;
104 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
105 int mp_bus_id_to_type[MAX_MP_BUSSES];
106 #endif
108 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
110 int skip_ioapic_setup;
112 void arch_disable_smp_support(void)
114 #ifdef CONFIG_PCI
115 noioapicquirk = 1;
116 noioapicreroute = -1;
117 #endif
118 skip_ioapic_setup = 1;
121 static int __init parse_noapic(char *str)
123 /* disable IO-APIC */
124 arch_disable_smp_support();
125 return 0;
127 early_param("noapic", parse_noapic);
129 struct irq_pin_list {
130 int apic, pin;
131 struct irq_pin_list *next;
134 static struct irq_pin_list *alloc_irq_pin_list(int node)
136 return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
139 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
140 #ifdef CONFIG_SPARSE_IRQ
141 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
142 #else
143 static struct irq_cfg irq_cfgx[NR_IRQS];
144 #endif
146 int __init arch_early_irq_init(void)
148 struct irq_cfg *cfg;
149 int count, node, i;
151 if (!legacy_pic->nr_legacy_irqs) {
152 nr_irqs_gsi = 0;
153 io_apic_irqs = ~0UL;
156 cfg = irq_cfgx;
157 count = ARRAY_SIZE(irq_cfgx);
158 node = cpu_to_node(0);
160 /* Make sure the legacy interrupts are marked in the bitmap */
161 irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
163 for (i = 0; i < count; i++) {
164 set_irq_chip_data(i, &cfg[i]);
165 zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
166 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
168 * For legacy IRQ's, start with assigning irq0 to irq15 to
169 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
171 if (i < legacy_pic->nr_legacy_irqs) {
172 cfg[i].vector = IRQ0_VECTOR + i;
173 cpumask_set_cpu(0, cfg[i].domain);
177 return 0;
180 #ifdef CONFIG_SPARSE_IRQ
181 static struct irq_cfg *irq_cfg(unsigned int irq)
183 return get_irq_chip_data(irq);
186 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
188 struct irq_cfg *cfg;
190 cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
191 if (!cfg)
192 return NULL;
193 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
194 goto out_cfg;
195 if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
196 goto out_domain;
197 return cfg;
198 out_domain:
199 free_cpumask_var(cfg->domain);
200 out_cfg:
201 kfree(cfg);
202 return NULL;
205 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
207 if (!cfg)
208 return;
209 set_irq_chip_data(at, NULL);
210 free_cpumask_var(cfg->domain);
211 free_cpumask_var(cfg->old_domain);
212 kfree(cfg);
215 #else
217 struct irq_cfg *irq_cfg(unsigned int irq)
219 return irq < nr_irqs ? irq_cfgx + irq : NULL;
222 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
224 return irq_cfgx + irq;
227 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
229 #endif
231 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
233 int res = irq_alloc_desc_at(at, node);
234 struct irq_cfg *cfg;
236 if (res < 0) {
237 if (res != -EEXIST)
238 return NULL;
239 cfg = get_irq_chip_data(at);
240 if (cfg)
241 return cfg;
244 cfg = alloc_irq_cfg(at, node);
245 if (cfg)
246 set_irq_chip_data(at, cfg);
247 else
248 irq_free_desc(at);
249 return cfg;
252 static int alloc_irq_from(unsigned int from, int node)
254 return irq_alloc_desc_from(from, node);
257 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
259 free_irq_cfg(at, cfg);
260 irq_free_desc(at);
263 struct io_apic {
264 unsigned int index;
265 unsigned int unused[3];
266 unsigned int data;
267 unsigned int unused2[11];
268 unsigned int eoi;
271 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
273 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
274 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
277 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
279 struct io_apic __iomem *io_apic = io_apic_base(apic);
280 writel(vector, &io_apic->eoi);
283 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
285 struct io_apic __iomem *io_apic = io_apic_base(apic);
286 writel(reg, &io_apic->index);
287 return readl(&io_apic->data);
290 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
292 struct io_apic __iomem *io_apic = io_apic_base(apic);
293 writel(reg, &io_apic->index);
294 writel(value, &io_apic->data);
298 * Re-write a value: to be used for read-modify-write
299 * cycles where the read already set up the index register.
301 * Older SiS APIC requires we rewrite the index register
303 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
305 struct io_apic __iomem *io_apic = io_apic_base(apic);
307 if (sis_apic_bug)
308 writel(reg, &io_apic->index);
309 writel(value, &io_apic->data);
312 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
314 struct irq_pin_list *entry;
315 unsigned long flags;
317 raw_spin_lock_irqsave(&ioapic_lock, flags);
318 for_each_irq_pin(entry, cfg->irq_2_pin) {
319 unsigned int reg;
320 int pin;
322 pin = entry->pin;
323 reg = io_apic_read(entry->apic, 0x10 + pin*2);
324 /* Is the remote IRR bit set? */
325 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
326 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
327 return true;
330 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
332 return false;
335 union entry_union {
336 struct { u32 w1, w2; };
337 struct IO_APIC_route_entry entry;
340 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
342 union entry_union eu;
343 unsigned long flags;
344 raw_spin_lock_irqsave(&ioapic_lock, flags);
345 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
346 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
347 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
348 return eu.entry;
352 * When we write a new IO APIC routing entry, we need to write the high
353 * word first! If the mask bit in the low word is clear, we will enable
354 * the interrupt, and we need to make sure the entry is fully populated
355 * before that happens.
357 static void
358 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
360 union entry_union eu = {{0, 0}};
362 eu.entry = e;
363 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
364 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
367 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
369 unsigned long flags;
370 raw_spin_lock_irqsave(&ioapic_lock, flags);
371 __ioapic_write_entry(apic, pin, e);
372 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
376 * When we mask an IO APIC routing entry, we need to write the low
377 * word first, in order to set the mask bit before we change the
378 * high bits!
380 static void ioapic_mask_entry(int apic, int pin)
382 unsigned long flags;
383 union entry_union eu = { .entry.mask = 1 };
385 raw_spin_lock_irqsave(&ioapic_lock, flags);
386 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
387 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
388 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
392 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
393 * shared ISA-space IRQs, so we have to support them. We are super
394 * fast in the common case, and fast for shared ISA-space IRQs.
396 static int
397 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
399 struct irq_pin_list **last, *entry;
401 /* don't allow duplicates */
402 last = &cfg->irq_2_pin;
403 for_each_irq_pin(entry, cfg->irq_2_pin) {
404 if (entry->apic == apic && entry->pin == pin)
405 return 0;
406 last = &entry->next;
409 entry = alloc_irq_pin_list(node);
410 if (!entry) {
411 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
412 node, apic, pin);
413 return -ENOMEM;
415 entry->apic = apic;
416 entry->pin = pin;
418 *last = entry;
419 return 0;
422 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
424 if (__add_pin_to_irq_node(cfg, node, apic, pin))
425 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
429 * Reroute an IRQ to a different pin.
431 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
432 int oldapic, int oldpin,
433 int newapic, int newpin)
435 struct irq_pin_list *entry;
437 for_each_irq_pin(entry, cfg->irq_2_pin) {
438 if (entry->apic == oldapic && entry->pin == oldpin) {
439 entry->apic = newapic;
440 entry->pin = newpin;
441 /* every one is different, right? */
442 return;
446 /* old apic/pin didn't exist, so just add new ones */
447 add_pin_to_irq_node(cfg, node, newapic, newpin);
450 static void __io_apic_modify_irq(struct irq_pin_list *entry,
451 int mask_and, int mask_or,
452 void (*final)(struct irq_pin_list *entry))
454 unsigned int reg, pin;
456 pin = entry->pin;
457 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
458 reg &= mask_and;
459 reg |= mask_or;
460 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
461 if (final)
462 final(entry);
465 static void io_apic_modify_irq(struct irq_cfg *cfg,
466 int mask_and, int mask_or,
467 void (*final)(struct irq_pin_list *entry))
469 struct irq_pin_list *entry;
471 for_each_irq_pin(entry, cfg->irq_2_pin)
472 __io_apic_modify_irq(entry, mask_and, mask_or, final);
475 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
477 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
478 IO_APIC_REDIR_MASKED, NULL);
481 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
483 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
484 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
487 static void io_apic_sync(struct irq_pin_list *entry)
490 * Synchronize the IO-APIC and the CPU by doing
491 * a dummy read from the IO-APIC
493 struct io_apic __iomem *io_apic;
494 io_apic = io_apic_base(entry->apic);
495 readl(&io_apic->data);
498 static void mask_ioapic(struct irq_cfg *cfg)
500 unsigned long flags;
502 raw_spin_lock_irqsave(&ioapic_lock, flags);
503 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
504 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
507 static void mask_ioapic_irq(struct irq_data *data)
509 mask_ioapic(data->chip_data);
512 static void __unmask_ioapic(struct irq_cfg *cfg)
514 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
517 static void unmask_ioapic(struct irq_cfg *cfg)
519 unsigned long flags;
521 raw_spin_lock_irqsave(&ioapic_lock, flags);
522 __unmask_ioapic(cfg);
523 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
526 static void unmask_ioapic_irq(struct irq_data *data)
528 unmask_ioapic(data->chip_data);
531 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
533 struct IO_APIC_route_entry entry;
535 /* Check delivery_mode to be sure we're not clearing an SMI pin */
536 entry = ioapic_read_entry(apic, pin);
537 if (entry.delivery_mode == dest_SMI)
538 return;
540 * Disable it in the IO-APIC irq-routing table:
542 ioapic_mask_entry(apic, pin);
545 static void clear_IO_APIC (void)
547 int apic, pin;
549 for (apic = 0; apic < nr_ioapics; apic++)
550 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
551 clear_IO_APIC_pin(apic, pin);
554 #ifdef CONFIG_X86_32
556 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
557 * specific CPU-side IRQs.
560 #define MAX_PIRQS 8
561 static int pirq_entries[MAX_PIRQS] = {
562 [0 ... MAX_PIRQS - 1] = -1
565 static int __init ioapic_pirq_setup(char *str)
567 int i, max;
568 int ints[MAX_PIRQS+1];
570 get_options(str, ARRAY_SIZE(ints), ints);
572 apic_printk(APIC_VERBOSE, KERN_INFO
573 "PIRQ redirection, working around broken MP-BIOS.\n");
574 max = MAX_PIRQS;
575 if (ints[0] < MAX_PIRQS)
576 max = ints[0];
578 for (i = 0; i < max; i++) {
579 apic_printk(APIC_VERBOSE, KERN_DEBUG
580 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
582 * PIRQs are mapped upside down, usually.
584 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
586 return 1;
589 __setup("pirq=", ioapic_pirq_setup);
590 #endif /* CONFIG_X86_32 */
592 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
594 int apic;
595 struct IO_APIC_route_entry **ioapic_entries;
597 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
598 GFP_KERNEL);
599 if (!ioapic_entries)
600 return 0;
602 for (apic = 0; apic < nr_ioapics; apic++) {
603 ioapic_entries[apic] =
604 kzalloc(sizeof(struct IO_APIC_route_entry) *
605 nr_ioapic_registers[apic], GFP_KERNEL);
606 if (!ioapic_entries[apic])
607 goto nomem;
610 return ioapic_entries;
612 nomem:
613 while (--apic >= 0)
614 kfree(ioapic_entries[apic]);
615 kfree(ioapic_entries);
617 return 0;
621 * Saves all the IO-APIC RTE's
623 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
625 int apic, pin;
627 if (!ioapic_entries)
628 return -ENOMEM;
630 for (apic = 0; apic < nr_ioapics; apic++) {
631 if (!ioapic_entries[apic])
632 return -ENOMEM;
634 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
635 ioapic_entries[apic][pin] =
636 ioapic_read_entry(apic, pin);
639 return 0;
643 * Mask all IO APIC entries.
645 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
647 int apic, pin;
649 if (!ioapic_entries)
650 return;
652 for (apic = 0; apic < nr_ioapics; apic++) {
653 if (!ioapic_entries[apic])
654 break;
656 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
657 struct IO_APIC_route_entry entry;
659 entry = ioapic_entries[apic][pin];
660 if (!entry.mask) {
661 entry.mask = 1;
662 ioapic_write_entry(apic, pin, entry);
669 * Restore IO APIC entries which was saved in ioapic_entries.
671 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
673 int apic, pin;
675 if (!ioapic_entries)
676 return -ENOMEM;
678 for (apic = 0; apic < nr_ioapics; apic++) {
679 if (!ioapic_entries[apic])
680 return -ENOMEM;
682 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
683 ioapic_write_entry(apic, pin,
684 ioapic_entries[apic][pin]);
686 return 0;
689 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
691 int apic;
693 for (apic = 0; apic < nr_ioapics; apic++)
694 kfree(ioapic_entries[apic]);
696 kfree(ioapic_entries);
700 * Find the IRQ entry number of a certain pin.
702 static int find_irq_entry(int apic, int pin, int type)
704 int i;
706 for (i = 0; i < mp_irq_entries; i++)
707 if (mp_irqs[i].irqtype == type &&
708 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
709 mp_irqs[i].dstapic == MP_APIC_ALL) &&
710 mp_irqs[i].dstirq == pin)
711 return i;
713 return -1;
717 * Find the pin to which IRQ[irq] (ISA) is connected
719 static int __init find_isa_irq_pin(int irq, int type)
721 int i;
723 for (i = 0; i < mp_irq_entries; i++) {
724 int lbus = mp_irqs[i].srcbus;
726 if (test_bit(lbus, mp_bus_not_pci) &&
727 (mp_irqs[i].irqtype == type) &&
728 (mp_irqs[i].srcbusirq == irq))
730 return mp_irqs[i].dstirq;
732 return -1;
735 static int __init find_isa_irq_apic(int irq, int type)
737 int i;
739 for (i = 0; i < mp_irq_entries; i++) {
740 int lbus = mp_irqs[i].srcbus;
742 if (test_bit(lbus, mp_bus_not_pci) &&
743 (mp_irqs[i].irqtype == type) &&
744 (mp_irqs[i].srcbusirq == irq))
745 break;
747 if (i < mp_irq_entries) {
748 int apic;
749 for(apic = 0; apic < nr_ioapics; apic++) {
750 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
751 return apic;
755 return -1;
758 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
760 * EISA Edge/Level control register, ELCR
762 static int EISA_ELCR(unsigned int irq)
764 if (irq < legacy_pic->nr_legacy_irqs) {
765 unsigned int port = 0x4d0 + (irq >> 3);
766 return (inb(port) >> (irq & 7)) & 1;
768 apic_printk(APIC_VERBOSE, KERN_INFO
769 "Broken MPtable reports ISA irq %d\n", irq);
770 return 0;
773 #endif
775 /* ISA interrupts are always polarity zero edge triggered,
776 * when listed as conforming in the MP table. */
778 #define default_ISA_trigger(idx) (0)
779 #define default_ISA_polarity(idx) (0)
781 /* EISA interrupts are always polarity zero and can be edge or level
782 * trigger depending on the ELCR value. If an interrupt is listed as
783 * EISA conforming in the MP table, that means its trigger type must
784 * be read in from the ELCR */
786 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
787 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
789 /* PCI interrupts are always polarity one level triggered,
790 * when listed as conforming in the MP table. */
792 #define default_PCI_trigger(idx) (1)
793 #define default_PCI_polarity(idx) (1)
795 /* MCA interrupts are always polarity zero level triggered,
796 * when listed as conforming in the MP table. */
798 #define default_MCA_trigger(idx) (1)
799 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
801 static int MPBIOS_polarity(int idx)
803 int bus = mp_irqs[idx].srcbus;
804 int polarity;
807 * Determine IRQ line polarity (high active or low active):
809 switch (mp_irqs[idx].irqflag & 3)
811 case 0: /* conforms, ie. bus-type dependent polarity */
812 if (test_bit(bus, mp_bus_not_pci))
813 polarity = default_ISA_polarity(idx);
814 else
815 polarity = default_PCI_polarity(idx);
816 break;
817 case 1: /* high active */
819 polarity = 0;
820 break;
822 case 2: /* reserved */
824 printk(KERN_WARNING "broken BIOS!!\n");
825 polarity = 1;
826 break;
828 case 3: /* low active */
830 polarity = 1;
831 break;
833 default: /* invalid */
835 printk(KERN_WARNING "broken BIOS!!\n");
836 polarity = 1;
837 break;
840 return polarity;
843 static int MPBIOS_trigger(int idx)
845 int bus = mp_irqs[idx].srcbus;
846 int trigger;
849 * Determine IRQ trigger mode (edge or level sensitive):
851 switch ((mp_irqs[idx].irqflag>>2) & 3)
853 case 0: /* conforms, ie. bus-type dependent */
854 if (test_bit(bus, mp_bus_not_pci))
855 trigger = default_ISA_trigger(idx);
856 else
857 trigger = default_PCI_trigger(idx);
858 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
859 switch (mp_bus_id_to_type[bus]) {
860 case MP_BUS_ISA: /* ISA pin */
862 /* set before the switch */
863 break;
865 case MP_BUS_EISA: /* EISA pin */
867 trigger = default_EISA_trigger(idx);
868 break;
870 case MP_BUS_PCI: /* PCI pin */
872 /* set before the switch */
873 break;
875 case MP_BUS_MCA: /* MCA pin */
877 trigger = default_MCA_trigger(idx);
878 break;
880 default:
882 printk(KERN_WARNING "broken BIOS!!\n");
883 trigger = 1;
884 break;
887 #endif
888 break;
889 case 1: /* edge */
891 trigger = 0;
892 break;
894 case 2: /* reserved */
896 printk(KERN_WARNING "broken BIOS!!\n");
897 trigger = 1;
898 break;
900 case 3: /* level */
902 trigger = 1;
903 break;
905 default: /* invalid */
907 printk(KERN_WARNING "broken BIOS!!\n");
908 trigger = 0;
909 break;
912 return trigger;
915 static inline int irq_polarity(int idx)
917 return MPBIOS_polarity(idx);
920 static inline int irq_trigger(int idx)
922 return MPBIOS_trigger(idx);
925 static int pin_2_irq(int idx, int apic, int pin)
927 int irq;
928 int bus = mp_irqs[idx].srcbus;
931 * Debugging check, we are in big trouble if this message pops up!
933 if (mp_irqs[idx].dstirq != pin)
934 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
936 if (test_bit(bus, mp_bus_not_pci)) {
937 irq = mp_irqs[idx].srcbusirq;
938 } else {
939 u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
941 if (gsi >= NR_IRQS_LEGACY)
942 irq = gsi;
943 else
944 irq = gsi_top + gsi;
947 #ifdef CONFIG_X86_32
949 * PCI IRQ command line redirection. Yes, limits are hardcoded.
951 if ((pin >= 16) && (pin <= 23)) {
952 if (pirq_entries[pin-16] != -1) {
953 if (!pirq_entries[pin-16]) {
954 apic_printk(APIC_VERBOSE, KERN_DEBUG
955 "disabling PIRQ%d\n", pin-16);
956 } else {
957 irq = pirq_entries[pin-16];
958 apic_printk(APIC_VERBOSE, KERN_DEBUG
959 "using PIRQ%d -> IRQ %d\n",
960 pin-16, irq);
964 #endif
966 return irq;
970 * Find a specific PCI IRQ entry.
971 * Not an __init, possibly needed by modules
973 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
974 struct io_apic_irq_attr *irq_attr)
976 int apic, i, best_guess = -1;
978 apic_printk(APIC_DEBUG,
979 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
980 bus, slot, pin);
981 if (test_bit(bus, mp_bus_not_pci)) {
982 apic_printk(APIC_VERBOSE,
983 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
984 return -1;
986 for (i = 0; i < mp_irq_entries; i++) {
987 int lbus = mp_irqs[i].srcbus;
989 for (apic = 0; apic < nr_ioapics; apic++)
990 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
991 mp_irqs[i].dstapic == MP_APIC_ALL)
992 break;
994 if (!test_bit(lbus, mp_bus_not_pci) &&
995 !mp_irqs[i].irqtype &&
996 (bus == lbus) &&
997 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
998 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1000 if (!(apic || IO_APIC_IRQ(irq)))
1001 continue;
1003 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1004 set_io_apic_irq_attr(irq_attr, apic,
1005 mp_irqs[i].dstirq,
1006 irq_trigger(i),
1007 irq_polarity(i));
1008 return irq;
1011 * Use the first all-but-pin matching entry as a
1012 * best-guess fuzzy result for broken mptables.
1014 if (best_guess < 0) {
1015 set_io_apic_irq_attr(irq_attr, apic,
1016 mp_irqs[i].dstirq,
1017 irq_trigger(i),
1018 irq_polarity(i));
1019 best_guess = irq;
1023 return best_guess;
1025 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1027 void lock_vector_lock(void)
1029 /* Used to the online set of cpus does not change
1030 * during assign_irq_vector.
1032 raw_spin_lock(&vector_lock);
1035 void unlock_vector_lock(void)
1037 raw_spin_unlock(&vector_lock);
1040 static int
1041 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1044 * NOTE! The local APIC isn't very good at handling
1045 * multiple interrupts at the same interrupt level.
1046 * As the interrupt level is determined by taking the
1047 * vector number and shifting that right by 4, we
1048 * want to spread these out a bit so that they don't
1049 * all fall in the same interrupt level.
1051 * Also, we've got to be careful not to trash gate
1052 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1054 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1055 static int current_offset = VECTOR_OFFSET_START % 8;
1056 unsigned int old_vector;
1057 int cpu, err;
1058 cpumask_var_t tmp_mask;
1060 if (cfg->move_in_progress)
1061 return -EBUSY;
1063 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1064 return -ENOMEM;
1066 old_vector = cfg->vector;
1067 if (old_vector) {
1068 cpumask_and(tmp_mask, mask, cpu_online_mask);
1069 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1070 if (!cpumask_empty(tmp_mask)) {
1071 free_cpumask_var(tmp_mask);
1072 return 0;
1076 /* Only try and allocate irqs on cpus that are present */
1077 err = -ENOSPC;
1078 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1079 int new_cpu;
1080 int vector, offset;
1082 apic->vector_allocation_domain(cpu, tmp_mask);
1084 vector = current_vector;
1085 offset = current_offset;
1086 next:
1087 vector += 8;
1088 if (vector >= first_system_vector) {
1089 /* If out of vectors on large boxen, must share them. */
1090 offset = (offset + 1) % 8;
1091 vector = FIRST_EXTERNAL_VECTOR + offset;
1093 if (unlikely(current_vector == vector))
1094 continue;
1096 if (test_bit(vector, used_vectors))
1097 goto next;
1099 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1100 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1101 goto next;
1102 /* Found one! */
1103 current_vector = vector;
1104 current_offset = offset;
1105 if (old_vector) {
1106 cfg->move_in_progress = 1;
1107 cpumask_copy(cfg->old_domain, cfg->domain);
1109 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1110 per_cpu(vector_irq, new_cpu)[vector] = irq;
1111 cfg->vector = vector;
1112 cpumask_copy(cfg->domain, tmp_mask);
1113 err = 0;
1114 break;
1116 free_cpumask_var(tmp_mask);
1117 return err;
1120 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1122 int err;
1123 unsigned long flags;
1125 raw_spin_lock_irqsave(&vector_lock, flags);
1126 err = __assign_irq_vector(irq, cfg, mask);
1127 raw_spin_unlock_irqrestore(&vector_lock, flags);
1128 return err;
1131 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1133 int cpu, vector;
1135 BUG_ON(!cfg->vector);
1137 vector = cfg->vector;
1138 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1139 per_cpu(vector_irq, cpu)[vector] = -1;
1141 cfg->vector = 0;
1142 cpumask_clear(cfg->domain);
1144 if (likely(!cfg->move_in_progress))
1145 return;
1146 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1147 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1148 vector++) {
1149 if (per_cpu(vector_irq, cpu)[vector] != irq)
1150 continue;
1151 per_cpu(vector_irq, cpu)[vector] = -1;
1152 break;
1155 cfg->move_in_progress = 0;
1158 void __setup_vector_irq(int cpu)
1160 /* Initialize vector_irq on a new cpu */
1161 int irq, vector;
1162 struct irq_cfg *cfg;
1165 * vector_lock will make sure that we don't run into irq vector
1166 * assignments that might be happening on another cpu in parallel,
1167 * while we setup our initial vector to irq mappings.
1169 raw_spin_lock(&vector_lock);
1170 /* Mark the inuse vectors */
1171 for_each_active_irq(irq) {
1172 cfg = get_irq_chip_data(irq);
1173 if (!cfg)
1174 continue;
1176 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1177 * will be part of the irq_cfg's domain.
1179 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1180 cpumask_set_cpu(cpu, cfg->domain);
1182 if (!cpumask_test_cpu(cpu, cfg->domain))
1183 continue;
1184 vector = cfg->vector;
1185 per_cpu(vector_irq, cpu)[vector] = irq;
1187 /* Mark the free vectors */
1188 for (vector = 0; vector < NR_VECTORS; ++vector) {
1189 irq = per_cpu(vector_irq, cpu)[vector];
1190 if (irq < 0)
1191 continue;
1193 cfg = irq_cfg(irq);
1194 if (!cpumask_test_cpu(cpu, cfg->domain))
1195 per_cpu(vector_irq, cpu)[vector] = -1;
1197 raw_spin_unlock(&vector_lock);
1200 static struct irq_chip ioapic_chip;
1201 static struct irq_chip ir_ioapic_chip;
1203 #define IOAPIC_AUTO -1
1204 #define IOAPIC_EDGE 0
1205 #define IOAPIC_LEVEL 1
1207 #ifdef CONFIG_X86_32
1208 static inline int IO_APIC_irq_trigger(int irq)
1210 int apic, idx, pin;
1212 for (apic = 0; apic < nr_ioapics; apic++) {
1213 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1214 idx = find_irq_entry(apic, pin, mp_INT);
1215 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1216 return irq_trigger(idx);
1220 * nonexistent IRQs are edge default
1222 return 0;
1224 #else
1225 static inline int IO_APIC_irq_trigger(int irq)
1227 return 1;
1229 #endif
1231 static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1234 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1235 trigger == IOAPIC_LEVEL)
1236 irq_set_status_flags(irq, IRQ_LEVEL);
1237 else
1238 irq_clear_status_flags(irq, IRQ_LEVEL);
1240 if (irq_remapped(get_irq_chip_data(irq))) {
1241 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1242 if (trigger)
1243 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1244 handle_fasteoi_irq,
1245 "fasteoi");
1246 else
1247 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1248 handle_edge_irq, "edge");
1249 return;
1252 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1253 trigger == IOAPIC_LEVEL)
1254 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1255 handle_fasteoi_irq,
1256 "fasteoi");
1257 else
1258 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1259 handle_edge_irq, "edge");
1262 static int setup_ioapic_entry(int apic_id, int irq,
1263 struct IO_APIC_route_entry *entry,
1264 unsigned int destination, int trigger,
1265 int polarity, int vector, int pin)
1268 * add it to the IO-APIC irq-routing table:
1270 memset(entry,0,sizeof(*entry));
1272 if (intr_remapping_enabled) {
1273 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1274 struct irte irte;
1275 struct IR_IO_APIC_route_entry *ir_entry =
1276 (struct IR_IO_APIC_route_entry *) entry;
1277 int index;
1279 if (!iommu)
1280 panic("No mapping iommu for ioapic %d\n", apic_id);
1282 index = alloc_irte(iommu, irq, 1);
1283 if (index < 0)
1284 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1286 prepare_irte(&irte, vector, destination);
1288 /* Set source-id of interrupt request */
1289 set_ioapic_sid(&irte, apic_id);
1291 modify_irte(irq, &irte);
1293 ir_entry->index2 = (index >> 15) & 0x1;
1294 ir_entry->zero = 0;
1295 ir_entry->format = 1;
1296 ir_entry->index = (index & 0x7fff);
1298 * IO-APIC RTE will be configured with virtual vector.
1299 * irq handler will do the explicit EOI to the io-apic.
1301 ir_entry->vector = pin;
1302 } else {
1303 entry->delivery_mode = apic->irq_delivery_mode;
1304 entry->dest_mode = apic->irq_dest_mode;
1305 entry->dest = destination;
1306 entry->vector = vector;
1309 entry->mask = 0; /* enable IRQ */
1310 entry->trigger = trigger;
1311 entry->polarity = polarity;
1313 /* Mask level triggered irqs.
1314 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1316 if (trigger)
1317 entry->mask = 1;
1318 return 0;
1321 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1322 struct irq_cfg *cfg, int trigger, int polarity)
1324 struct IO_APIC_route_entry entry;
1325 unsigned int dest;
1327 if (!IO_APIC_IRQ(irq))
1328 return;
1330 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1331 * controllers like 8259. Now that IO-APIC can handle this irq, update
1332 * the cfg->domain.
1334 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1335 apic->vector_allocation_domain(0, cfg->domain);
1337 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1338 return;
1340 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1342 apic_printk(APIC_VERBOSE,KERN_DEBUG
1343 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1344 "IRQ %d Mode:%i Active:%i)\n",
1345 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1346 irq, trigger, polarity);
1349 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1350 dest, trigger, polarity, cfg->vector, pin)) {
1351 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1352 mp_ioapics[apic_id].apicid, pin);
1353 __clear_irq_vector(irq, cfg);
1354 return;
1357 ioapic_register_intr(irq, trigger);
1358 if (irq < legacy_pic->nr_legacy_irqs)
1359 legacy_pic->mask(irq);
1361 ioapic_write_entry(apic_id, pin, entry);
1364 static struct {
1365 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1366 } mp_ioapic_routing[MAX_IO_APICS];
1368 static void __init setup_IO_APIC_irqs(void)
1370 int apic_id, pin, idx, irq, notcon = 0;
1371 int node = cpu_to_node(0);
1372 struct irq_cfg *cfg;
1374 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1376 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1377 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1378 idx = find_irq_entry(apic_id, pin, mp_INT);
1379 if (idx == -1) {
1380 if (!notcon) {
1381 notcon = 1;
1382 apic_printk(APIC_VERBOSE,
1383 KERN_DEBUG " %d-%d",
1384 mp_ioapics[apic_id].apicid, pin);
1385 } else
1386 apic_printk(APIC_VERBOSE, " %d-%d",
1387 mp_ioapics[apic_id].apicid, pin);
1388 continue;
1390 if (notcon) {
1391 apic_printk(APIC_VERBOSE,
1392 " (apicid-pin) not connected\n");
1393 notcon = 0;
1396 irq = pin_2_irq(idx, apic_id, pin);
1398 if ((apic_id > 0) && (irq > 16))
1399 continue;
1402 * Skip the timer IRQ if there's a quirk handler
1403 * installed and if it returns 1:
1405 if (apic->multi_timer_check &&
1406 apic->multi_timer_check(apic_id, irq))
1407 continue;
1409 cfg = alloc_irq_and_cfg_at(irq, node);
1410 if (!cfg)
1411 continue;
1413 add_pin_to_irq_node(cfg, node, apic_id, pin);
1415 * don't mark it in pin_programmed, so later acpi could
1416 * set it correctly when irq < 16
1418 setup_ioapic_irq(apic_id, pin, irq, cfg, irq_trigger(idx),
1419 irq_polarity(idx));
1422 if (notcon)
1423 apic_printk(APIC_VERBOSE,
1424 " (apicid-pin) not connected\n");
1428 * for the gsit that is not in first ioapic
1429 * but could not use acpi_register_gsi()
1430 * like some special sci in IBM x3330
1432 void setup_IO_APIC_irq_extra(u32 gsi)
1434 int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1435 struct irq_cfg *cfg;
1438 * Convert 'gsi' to 'ioapic.pin'.
1440 apic_id = mp_find_ioapic(gsi);
1441 if (apic_id < 0)
1442 return;
1444 pin = mp_find_ioapic_pin(apic_id, gsi);
1445 idx = find_irq_entry(apic_id, pin, mp_INT);
1446 if (idx == -1)
1447 return;
1449 irq = pin_2_irq(idx, apic_id, pin);
1451 /* Only handle the non legacy irqs on secondary ioapics */
1452 if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1453 return;
1455 cfg = alloc_irq_and_cfg_at(irq, node);
1456 if (!cfg)
1457 return;
1459 add_pin_to_irq_node(cfg, node, apic_id, pin);
1461 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1462 pr_debug("Pin %d-%d already programmed\n",
1463 mp_ioapics[apic_id].apicid, pin);
1464 return;
1466 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1468 setup_ioapic_irq(apic_id, pin, irq, cfg,
1469 irq_trigger(idx), irq_polarity(idx));
1473 * Set up the timer pin, possibly with the 8259A-master behind.
1475 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1476 int vector)
1478 struct IO_APIC_route_entry entry;
1480 if (intr_remapping_enabled)
1481 return;
1483 memset(&entry, 0, sizeof(entry));
1486 * We use logical delivery to get the timer IRQ
1487 * to the first CPU.
1489 entry.dest_mode = apic->irq_dest_mode;
1490 entry.mask = 0; /* don't mask IRQ for edge */
1491 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1492 entry.delivery_mode = apic->irq_delivery_mode;
1493 entry.polarity = 0;
1494 entry.trigger = 0;
1495 entry.vector = vector;
1498 * The timer IRQ doesn't have to know that behind the
1499 * scene we may have a 8259A-master in AEOI mode ...
1501 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1504 * Add it to the IO-APIC irq-routing table:
1506 ioapic_write_entry(apic_id, pin, entry);
1510 __apicdebuginit(void) print_IO_APIC(void)
1512 int apic, i;
1513 union IO_APIC_reg_00 reg_00;
1514 union IO_APIC_reg_01 reg_01;
1515 union IO_APIC_reg_02 reg_02;
1516 union IO_APIC_reg_03 reg_03;
1517 unsigned long flags;
1518 struct irq_cfg *cfg;
1519 unsigned int irq;
1521 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1522 for (i = 0; i < nr_ioapics; i++)
1523 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1524 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1527 * We are a bit conservative about what we expect. We have to
1528 * know about every hardware change ASAP.
1530 printk(KERN_INFO "testing the IO APIC.......................\n");
1532 for (apic = 0; apic < nr_ioapics; apic++) {
1534 raw_spin_lock_irqsave(&ioapic_lock, flags);
1535 reg_00.raw = io_apic_read(apic, 0);
1536 reg_01.raw = io_apic_read(apic, 1);
1537 if (reg_01.bits.version >= 0x10)
1538 reg_02.raw = io_apic_read(apic, 2);
1539 if (reg_01.bits.version >= 0x20)
1540 reg_03.raw = io_apic_read(apic, 3);
1541 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1543 printk("\n");
1544 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1545 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1546 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1547 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1548 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1550 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1551 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1553 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1554 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1557 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1558 * but the value of reg_02 is read as the previous read register
1559 * value, so ignore it if reg_02 == reg_01.
1561 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1562 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1563 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1567 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1568 * or reg_03, but the value of reg_0[23] is read as the previous read
1569 * register value, so ignore it if reg_03 == reg_0[12].
1571 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1572 reg_03.raw != reg_01.raw) {
1573 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1574 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1577 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1579 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1580 " Stat Dmod Deli Vect:\n");
1582 for (i = 0; i <= reg_01.bits.entries; i++) {
1583 struct IO_APIC_route_entry entry;
1585 entry = ioapic_read_entry(apic, i);
1587 printk(KERN_DEBUG " %02x %03X ",
1589 entry.dest
1592 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1593 entry.mask,
1594 entry.trigger,
1595 entry.irr,
1596 entry.polarity,
1597 entry.delivery_status,
1598 entry.dest_mode,
1599 entry.delivery_mode,
1600 entry.vector
1604 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1605 for_each_active_irq(irq) {
1606 struct irq_pin_list *entry;
1608 cfg = get_irq_chip_data(irq);
1609 if (!cfg)
1610 continue;
1611 entry = cfg->irq_2_pin;
1612 if (!entry)
1613 continue;
1614 printk(KERN_DEBUG "IRQ%d ", irq);
1615 for_each_irq_pin(entry, cfg->irq_2_pin)
1616 printk("-> %d:%d", entry->apic, entry->pin);
1617 printk("\n");
1620 printk(KERN_INFO ".................................... done.\n");
1622 return;
1625 __apicdebuginit(void) print_APIC_field(int base)
1627 int i;
1629 printk(KERN_DEBUG);
1631 for (i = 0; i < 8; i++)
1632 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1634 printk(KERN_CONT "\n");
1637 __apicdebuginit(void) print_local_APIC(void *dummy)
1639 unsigned int i, v, ver, maxlvt;
1640 u64 icr;
1642 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1643 smp_processor_id(), hard_smp_processor_id());
1644 v = apic_read(APIC_ID);
1645 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1646 v = apic_read(APIC_LVR);
1647 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1648 ver = GET_APIC_VERSION(v);
1649 maxlvt = lapic_get_maxlvt();
1651 v = apic_read(APIC_TASKPRI);
1652 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1654 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1655 if (!APIC_XAPIC(ver)) {
1656 v = apic_read(APIC_ARBPRI);
1657 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1658 v & APIC_ARBPRI_MASK);
1660 v = apic_read(APIC_PROCPRI);
1661 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1665 * Remote read supported only in the 82489DX and local APIC for
1666 * Pentium processors.
1668 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1669 v = apic_read(APIC_RRR);
1670 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1673 v = apic_read(APIC_LDR);
1674 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1675 if (!x2apic_enabled()) {
1676 v = apic_read(APIC_DFR);
1677 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1679 v = apic_read(APIC_SPIV);
1680 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1682 printk(KERN_DEBUG "... APIC ISR field:\n");
1683 print_APIC_field(APIC_ISR);
1684 printk(KERN_DEBUG "... APIC TMR field:\n");
1685 print_APIC_field(APIC_TMR);
1686 printk(KERN_DEBUG "... APIC IRR field:\n");
1687 print_APIC_field(APIC_IRR);
1689 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1690 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1691 apic_write(APIC_ESR, 0);
1693 v = apic_read(APIC_ESR);
1694 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1697 icr = apic_icr_read();
1698 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1699 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1701 v = apic_read(APIC_LVTT);
1702 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1704 if (maxlvt > 3) { /* PC is LVT#4. */
1705 v = apic_read(APIC_LVTPC);
1706 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1708 v = apic_read(APIC_LVT0);
1709 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1710 v = apic_read(APIC_LVT1);
1711 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1713 if (maxlvt > 2) { /* ERR is LVT#3. */
1714 v = apic_read(APIC_LVTERR);
1715 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1718 v = apic_read(APIC_TMICT);
1719 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1720 v = apic_read(APIC_TMCCT);
1721 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1722 v = apic_read(APIC_TDCR);
1723 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1725 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1726 v = apic_read(APIC_EFEAT);
1727 maxlvt = (v >> 16) & 0xff;
1728 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1729 v = apic_read(APIC_ECTRL);
1730 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1731 for (i = 0; i < maxlvt; i++) {
1732 v = apic_read(APIC_EILVTn(i));
1733 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1736 printk("\n");
1739 __apicdebuginit(void) print_local_APICs(int maxcpu)
1741 int cpu;
1743 if (!maxcpu)
1744 return;
1746 preempt_disable();
1747 for_each_online_cpu(cpu) {
1748 if (cpu >= maxcpu)
1749 break;
1750 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1752 preempt_enable();
1755 __apicdebuginit(void) print_PIC(void)
1757 unsigned int v;
1758 unsigned long flags;
1760 if (!legacy_pic->nr_legacy_irqs)
1761 return;
1763 printk(KERN_DEBUG "\nprinting PIC contents\n");
1765 raw_spin_lock_irqsave(&i8259A_lock, flags);
1767 v = inb(0xa1) << 8 | inb(0x21);
1768 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1770 v = inb(0xa0) << 8 | inb(0x20);
1771 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1773 outb(0x0b,0xa0);
1774 outb(0x0b,0x20);
1775 v = inb(0xa0) << 8 | inb(0x20);
1776 outb(0x0a,0xa0);
1777 outb(0x0a,0x20);
1779 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1781 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1783 v = inb(0x4d1) << 8 | inb(0x4d0);
1784 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1787 static int __initdata show_lapic = 1;
1788 static __init int setup_show_lapic(char *arg)
1790 int num = -1;
1792 if (strcmp(arg, "all") == 0) {
1793 show_lapic = CONFIG_NR_CPUS;
1794 } else {
1795 get_option(&arg, &num);
1796 if (num >= 0)
1797 show_lapic = num;
1800 return 1;
1802 __setup("show_lapic=", setup_show_lapic);
1804 __apicdebuginit(int) print_ICs(void)
1806 if (apic_verbosity == APIC_QUIET)
1807 return 0;
1809 print_PIC();
1811 /* don't print out if apic is not there */
1812 if (!cpu_has_apic && !apic_from_smp_config())
1813 return 0;
1815 print_local_APICs(show_lapic);
1816 print_IO_APIC();
1818 return 0;
1821 fs_initcall(print_ICs);
1824 /* Where if anywhere is the i8259 connect in external int mode */
1825 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1827 void __init enable_IO_APIC(void)
1829 int i8259_apic, i8259_pin;
1830 int apic;
1832 if (!legacy_pic->nr_legacy_irqs)
1833 return;
1835 for(apic = 0; apic < nr_ioapics; apic++) {
1836 int pin;
1837 /* See if any of the pins is in ExtINT mode */
1838 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1839 struct IO_APIC_route_entry entry;
1840 entry = ioapic_read_entry(apic, pin);
1842 /* If the interrupt line is enabled and in ExtInt mode
1843 * I have found the pin where the i8259 is connected.
1845 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1846 ioapic_i8259.apic = apic;
1847 ioapic_i8259.pin = pin;
1848 goto found_i8259;
1852 found_i8259:
1853 /* Look to see what if the MP table has reported the ExtINT */
1854 /* If we could not find the appropriate pin by looking at the ioapic
1855 * the i8259 probably is not connected the ioapic but give the
1856 * mptable a chance anyway.
1858 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1859 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1860 /* Trust the MP table if nothing is setup in the hardware */
1861 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1862 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1863 ioapic_i8259.pin = i8259_pin;
1864 ioapic_i8259.apic = i8259_apic;
1866 /* Complain if the MP table and the hardware disagree */
1867 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1868 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1870 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1874 * Do not trust the IO-APIC being empty at bootup
1876 clear_IO_APIC();
1880 * Not an __init, needed by the reboot code
1882 void disable_IO_APIC(void)
1885 * Clear the IO-APIC before rebooting:
1887 clear_IO_APIC();
1889 if (!legacy_pic->nr_legacy_irqs)
1890 return;
1893 * If the i8259 is routed through an IOAPIC
1894 * Put that IOAPIC in virtual wire mode
1895 * so legacy interrupts can be delivered.
1897 * With interrupt-remapping, for now we will use virtual wire A mode,
1898 * as virtual wire B is little complex (need to configure both
1899 * IOAPIC RTE aswell as interrupt-remapping table entry).
1900 * As this gets called during crash dump, keep this simple for now.
1902 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1903 struct IO_APIC_route_entry entry;
1905 memset(&entry, 0, sizeof(entry));
1906 entry.mask = 0; /* Enabled */
1907 entry.trigger = 0; /* Edge */
1908 entry.irr = 0;
1909 entry.polarity = 0; /* High */
1910 entry.delivery_status = 0;
1911 entry.dest_mode = 0; /* Physical */
1912 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1913 entry.vector = 0;
1914 entry.dest = read_apic_id();
1917 * Add it to the IO-APIC irq-routing table:
1919 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1923 * Use virtual wire A mode when interrupt remapping is enabled.
1925 if (cpu_has_apic || apic_from_smp_config())
1926 disconnect_bsp_APIC(!intr_remapping_enabled &&
1927 ioapic_i8259.pin != -1);
1930 #ifdef CONFIG_X86_32
1932 * function to set the IO-APIC physical IDs based on the
1933 * values stored in the MPC table.
1935 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1938 void __init setup_ioapic_ids_from_mpc(void)
1940 union IO_APIC_reg_00 reg_00;
1941 physid_mask_t phys_id_present_map;
1942 int apic_id;
1943 int i;
1944 unsigned char old_id;
1945 unsigned long flags;
1947 if (acpi_ioapic)
1948 return;
1950 * Don't check I/O APIC IDs for xAPIC systems. They have
1951 * no meaning without the serial APIC bus.
1953 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1954 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
1955 return;
1957 * This is broken; anything with a real cpu count has to
1958 * circumvent this idiocy regardless.
1960 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1963 * Set the IOAPIC ID to the value stored in the MPC table.
1965 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1967 /* Read the register 0 value */
1968 raw_spin_lock_irqsave(&ioapic_lock, flags);
1969 reg_00.raw = io_apic_read(apic_id, 0);
1970 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1972 old_id = mp_ioapics[apic_id].apicid;
1974 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1975 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1976 apic_id, mp_ioapics[apic_id].apicid);
1977 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1978 reg_00.bits.ID);
1979 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1983 * Sanity check, is the ID really free? Every APIC in a
1984 * system must have a unique ID or we get lots of nice
1985 * 'stuck on smp_invalidate_needed IPI wait' messages.
1987 if (apic->check_apicid_used(&phys_id_present_map,
1988 mp_ioapics[apic_id].apicid)) {
1989 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1990 apic_id, mp_ioapics[apic_id].apicid);
1991 for (i = 0; i < get_physical_broadcast(); i++)
1992 if (!physid_isset(i, phys_id_present_map))
1993 break;
1994 if (i >= get_physical_broadcast())
1995 panic("Max APIC ID exceeded!\n");
1996 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1998 physid_set(i, phys_id_present_map);
1999 mp_ioapics[apic_id].apicid = i;
2000 } else {
2001 physid_mask_t tmp;
2002 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2003 apic_printk(APIC_VERBOSE, "Setting %d in the "
2004 "phys_id_present_map\n",
2005 mp_ioapics[apic_id].apicid);
2006 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2011 * We need to adjust the IRQ routing table
2012 * if the ID changed.
2014 if (old_id != mp_ioapics[apic_id].apicid)
2015 for (i = 0; i < mp_irq_entries; i++)
2016 if (mp_irqs[i].dstapic == old_id)
2017 mp_irqs[i].dstapic
2018 = mp_ioapics[apic_id].apicid;
2021 * Read the right value from the MPC table and
2022 * write it into the ID register.
2024 apic_printk(APIC_VERBOSE, KERN_INFO
2025 "...changing IO-APIC physical APIC ID to %d ...",
2026 mp_ioapics[apic_id].apicid);
2028 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2029 raw_spin_lock_irqsave(&ioapic_lock, flags);
2030 io_apic_write(apic_id, 0, reg_00.raw);
2031 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2034 * Sanity check
2036 raw_spin_lock_irqsave(&ioapic_lock, flags);
2037 reg_00.raw = io_apic_read(apic_id, 0);
2038 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2039 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2040 printk("could not set ID!\n");
2041 else
2042 apic_printk(APIC_VERBOSE, " ok.\n");
2045 #endif
2047 int no_timer_check __initdata;
2049 static int __init notimercheck(char *s)
2051 no_timer_check = 1;
2052 return 1;
2054 __setup("no_timer_check", notimercheck);
2057 * There is a nasty bug in some older SMP boards, their mptable lies
2058 * about the timer IRQ. We do the following to work around the situation:
2060 * - timer IRQ defaults to IO-APIC IRQ
2061 * - if this function detects that timer IRQs are defunct, then we fall
2062 * back to ISA timer IRQs
2064 static int __init timer_irq_works(void)
2066 unsigned long t1 = jiffies;
2067 unsigned long flags;
2069 if (no_timer_check)
2070 return 1;
2072 local_save_flags(flags);
2073 local_irq_enable();
2074 /* Let ten ticks pass... */
2075 mdelay((10 * 1000) / HZ);
2076 local_irq_restore(flags);
2079 * Expect a few ticks at least, to be sure some possible
2080 * glue logic does not lock up after one or two first
2081 * ticks in a non-ExtINT mode. Also the local APIC
2082 * might have cached one ExtINT interrupt. Finally, at
2083 * least one tick may be lost due to delays.
2086 /* jiffies wrap? */
2087 if (time_after(jiffies, t1 + 4))
2088 return 1;
2089 return 0;
2093 * In the SMP+IOAPIC case it might happen that there are an unspecified
2094 * number of pending IRQ events unhandled. These cases are very rare,
2095 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2096 * better to do it this way as thus we do not have to be aware of
2097 * 'pending' interrupts in the IRQ path, except at this point.
2100 * Edge triggered needs to resend any interrupt
2101 * that was delayed but this is now handled in the device
2102 * independent code.
2106 * Starting up a edge-triggered IO-APIC interrupt is
2107 * nasty - we need to make sure that we get the edge.
2108 * If it is already asserted for some reason, we need
2109 * return 1 to indicate that is was pending.
2111 * This is not complete - we should be able to fake
2112 * an edge even if it isn't on the 8259A...
2115 static unsigned int startup_ioapic_irq(struct irq_data *data)
2117 int was_pending = 0, irq = data->irq;
2118 unsigned long flags;
2120 raw_spin_lock_irqsave(&ioapic_lock, flags);
2121 if (irq < legacy_pic->nr_legacy_irqs) {
2122 legacy_pic->mask(irq);
2123 if (legacy_pic->irq_pending(irq))
2124 was_pending = 1;
2126 __unmask_ioapic(data->chip_data);
2127 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2129 return was_pending;
2132 static int ioapic_retrigger_irq(struct irq_data *data)
2134 struct irq_cfg *cfg = data->chip_data;
2135 unsigned long flags;
2137 raw_spin_lock_irqsave(&vector_lock, flags);
2138 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2139 raw_spin_unlock_irqrestore(&vector_lock, flags);
2141 return 1;
2145 * Level and edge triggered IO-APIC interrupts need different handling,
2146 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2147 * handled with the level-triggered descriptor, but that one has slightly
2148 * more overhead. Level-triggered interrupts cannot be handled with the
2149 * edge-triggered handler, without risking IRQ storms and other ugly
2150 * races.
2153 #ifdef CONFIG_SMP
2154 void send_cleanup_vector(struct irq_cfg *cfg)
2156 cpumask_var_t cleanup_mask;
2158 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2159 unsigned int i;
2160 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2161 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2162 } else {
2163 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2164 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2165 free_cpumask_var(cleanup_mask);
2167 cfg->move_in_progress = 0;
2170 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2172 int apic, pin;
2173 struct irq_pin_list *entry;
2174 u8 vector = cfg->vector;
2176 for_each_irq_pin(entry, cfg->irq_2_pin) {
2177 unsigned int reg;
2179 apic = entry->apic;
2180 pin = entry->pin;
2182 * With interrupt-remapping, destination information comes
2183 * from interrupt-remapping table entry.
2185 if (!irq_remapped(cfg))
2186 io_apic_write(apic, 0x11 + pin*2, dest);
2187 reg = io_apic_read(apic, 0x10 + pin*2);
2188 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2189 reg |= vector;
2190 io_apic_modify(apic, 0x10 + pin*2, reg);
2195 * Either sets data->affinity to a valid value, and returns
2196 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2197 * leaves data->affinity untouched.
2199 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2200 unsigned int *dest_id)
2202 struct irq_cfg *cfg = data->chip_data;
2204 if (!cpumask_intersects(mask, cpu_online_mask))
2205 return -1;
2207 if (assign_irq_vector(data->irq, data->chip_data, mask))
2208 return -1;
2210 cpumask_copy(data->affinity, mask);
2212 *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2213 return 0;
2216 static int
2217 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2218 bool force)
2220 unsigned int dest, irq = data->irq;
2221 unsigned long flags;
2222 int ret;
2224 raw_spin_lock_irqsave(&ioapic_lock, flags);
2225 ret = __ioapic_set_affinity(data, mask, &dest);
2226 if (!ret) {
2227 /* Only the high 8 bits are valid. */
2228 dest = SET_APIC_LOGICAL_ID(dest);
2229 __target_IO_APIC_irq(irq, dest, data->chip_data);
2231 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2232 return ret;
2235 #ifdef CONFIG_INTR_REMAP
2238 * Migrate the IO-APIC irq in the presence of intr-remapping.
2240 * For both level and edge triggered, irq migration is a simple atomic
2241 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2243 * For level triggered, we eliminate the io-apic RTE modification (with the
2244 * updated vector information), by using a virtual vector (io-apic pin number).
2245 * Real vector that is used for interrupting cpu will be coming from
2246 * the interrupt-remapping table entry.
2248 static int
2249 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2250 bool force)
2252 struct irq_cfg *cfg = data->chip_data;
2253 unsigned int dest, irq = data->irq;
2254 struct irte irte;
2256 if (!cpumask_intersects(mask, cpu_online_mask))
2257 return -EINVAL;
2259 if (get_irte(irq, &irte))
2260 return -EBUSY;
2262 if (assign_irq_vector(irq, cfg, mask))
2263 return -EBUSY;
2265 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2267 irte.vector = cfg->vector;
2268 irte.dest_id = IRTE_DEST(dest);
2271 * Modified the IRTE and flushes the Interrupt entry cache.
2273 modify_irte(irq, &irte);
2275 if (cfg->move_in_progress)
2276 send_cleanup_vector(cfg);
2278 cpumask_copy(data->affinity, mask);
2279 return 0;
2282 #else
2283 static inline int
2284 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2285 bool force)
2287 return 0;
2289 #endif
2291 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2293 unsigned vector, me;
2295 ack_APIC_irq();
2296 exit_idle();
2297 irq_enter();
2299 me = smp_processor_id();
2300 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2301 unsigned int irq;
2302 unsigned int irr;
2303 struct irq_desc *desc;
2304 struct irq_cfg *cfg;
2305 irq = __get_cpu_var(vector_irq)[vector];
2307 if (irq == -1)
2308 continue;
2310 desc = irq_to_desc(irq);
2311 if (!desc)
2312 continue;
2314 cfg = irq_cfg(irq);
2315 raw_spin_lock(&desc->lock);
2318 * Check if the irq migration is in progress. If so, we
2319 * haven't received the cleanup request yet for this irq.
2321 if (cfg->move_in_progress)
2322 goto unlock;
2324 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2325 goto unlock;
2327 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2329 * Check if the vector that needs to be cleanedup is
2330 * registered at the cpu's IRR. If so, then this is not
2331 * the best time to clean it up. Lets clean it up in the
2332 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2333 * to myself.
2335 if (irr & (1 << (vector % 32))) {
2336 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2337 goto unlock;
2339 __get_cpu_var(vector_irq)[vector] = -1;
2340 unlock:
2341 raw_spin_unlock(&desc->lock);
2344 irq_exit();
2347 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2349 unsigned me;
2351 if (likely(!cfg->move_in_progress))
2352 return;
2354 me = smp_processor_id();
2356 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2357 send_cleanup_vector(cfg);
2360 static void irq_complete_move(struct irq_cfg *cfg)
2362 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2365 void irq_force_complete_move(int irq)
2367 struct irq_cfg *cfg = get_irq_chip_data(irq);
2369 if (!cfg)
2370 return;
2372 __irq_complete_move(cfg, cfg->vector);
2374 #else
2375 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2376 #endif
2378 static void ack_apic_edge(struct irq_data *data)
2380 irq_complete_move(data->chip_data);
2381 move_native_irq(data->irq);
2382 ack_APIC_irq();
2385 atomic_t irq_mis_count;
2388 * IO-APIC versions below 0x20 don't support EOI register.
2389 * For the record, here is the information about various versions:
2390 * 0Xh 82489DX
2391 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2392 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2393 * 30h-FFh Reserved
2395 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2396 * version as 0x2. This is an error with documentation and these ICH chips
2397 * use io-apic's of version 0x20.
2399 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2400 * Otherwise, we simulate the EOI message manually by changing the trigger
2401 * mode to edge and then back to level, with RTE being masked during this.
2403 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2405 struct irq_pin_list *entry;
2406 unsigned long flags;
2408 raw_spin_lock_irqsave(&ioapic_lock, flags);
2409 for_each_irq_pin(entry, cfg->irq_2_pin) {
2410 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2412 * Intr-remapping uses pin number as the virtual vector
2413 * in the RTE. Actual vector is programmed in
2414 * intr-remapping table entry. Hence for the io-apic
2415 * EOI we use the pin number.
2417 if (irq_remapped(cfg))
2418 io_apic_eoi(entry->apic, entry->pin);
2419 else
2420 io_apic_eoi(entry->apic, cfg->vector);
2421 } else {
2422 __mask_and_edge_IO_APIC_irq(entry);
2423 __unmask_and_level_IO_APIC_irq(entry);
2426 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2429 static void ack_apic_level(struct irq_data *data)
2431 struct irq_cfg *cfg = data->chip_data;
2432 int i, do_unmask_irq = 0, irq = data->irq;
2433 struct irq_desc *desc = irq_to_desc(irq);
2434 unsigned long v;
2436 irq_complete_move(cfg);
2437 #ifdef CONFIG_GENERIC_PENDING_IRQ
2438 /* If we are moving the irq we need to mask it */
2439 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2440 do_unmask_irq = 1;
2441 mask_ioapic(cfg);
2443 #endif
2446 * It appears there is an erratum which affects at least version 0x11
2447 * of I/O APIC (that's the 82093AA and cores integrated into various
2448 * chipsets). Under certain conditions a level-triggered interrupt is
2449 * erroneously delivered as edge-triggered one but the respective IRR
2450 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2451 * message but it will never arrive and further interrupts are blocked
2452 * from the source. The exact reason is so far unknown, but the
2453 * phenomenon was observed when two consecutive interrupt requests
2454 * from a given source get delivered to the same CPU and the source is
2455 * temporarily disabled in between.
2457 * A workaround is to simulate an EOI message manually. We achieve it
2458 * by setting the trigger mode to edge and then to level when the edge
2459 * trigger mode gets detected in the TMR of a local APIC for a
2460 * level-triggered interrupt. We mask the source for the time of the
2461 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2462 * The idea is from Manfred Spraul. --macro
2464 * Also in the case when cpu goes offline, fixup_irqs() will forward
2465 * any unhandled interrupt on the offlined cpu to the new cpu
2466 * destination that is handling the corresponding interrupt. This
2467 * interrupt forwarding is done via IPI's. Hence, in this case also
2468 * level-triggered io-apic interrupt will be seen as an edge
2469 * interrupt in the IRR. And we can't rely on the cpu's EOI
2470 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2471 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2472 * supporting EOI register, we do an explicit EOI to clear the
2473 * remote IRR and on IO-APIC's which don't have an EOI register,
2474 * we use the above logic (mask+edge followed by unmask+level) from
2475 * Manfred Spraul to clear the remote IRR.
2477 i = cfg->vector;
2478 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2481 * We must acknowledge the irq before we move it or the acknowledge will
2482 * not propagate properly.
2484 ack_APIC_irq();
2487 * Tail end of clearing remote IRR bit (either by delivering the EOI
2488 * message via io-apic EOI register write or simulating it using
2489 * mask+edge followed by unnask+level logic) manually when the
2490 * level triggered interrupt is seen as the edge triggered interrupt
2491 * at the cpu.
2493 if (!(v & (1 << (i & 0x1f)))) {
2494 atomic_inc(&irq_mis_count);
2496 eoi_ioapic_irq(irq, cfg);
2499 /* Now we can move and renable the irq */
2500 if (unlikely(do_unmask_irq)) {
2501 /* Only migrate the irq if the ack has been received.
2503 * On rare occasions the broadcast level triggered ack gets
2504 * delayed going to ioapics, and if we reprogram the
2505 * vector while Remote IRR is still set the irq will never
2506 * fire again.
2508 * To prevent this scenario we read the Remote IRR bit
2509 * of the ioapic. This has two effects.
2510 * - On any sane system the read of the ioapic will
2511 * flush writes (and acks) going to the ioapic from
2512 * this cpu.
2513 * - We get to see if the ACK has actually been delivered.
2515 * Based on failed experiments of reprogramming the
2516 * ioapic entry from outside of irq context starting
2517 * with masking the ioapic entry and then polling until
2518 * Remote IRR was clear before reprogramming the
2519 * ioapic I don't trust the Remote IRR bit to be
2520 * completey accurate.
2522 * However there appears to be no other way to plug
2523 * this race, so if the Remote IRR bit is not
2524 * accurate and is causing problems then it is a hardware bug
2525 * and you can go talk to the chipset vendor about it.
2527 if (!io_apic_level_ack_pending(cfg))
2528 move_masked_irq(irq);
2529 unmask_ioapic(cfg);
2533 #ifdef CONFIG_INTR_REMAP
2534 static void ir_ack_apic_edge(struct irq_data *data)
2536 ack_APIC_irq();
2539 static void ir_ack_apic_level(struct irq_data *data)
2541 ack_APIC_irq();
2542 eoi_ioapic_irq(data->irq, data->chip_data);
2544 #endif /* CONFIG_INTR_REMAP */
2546 static struct irq_chip ioapic_chip __read_mostly = {
2547 .name = "IO-APIC",
2548 .irq_startup = startup_ioapic_irq,
2549 .irq_mask = mask_ioapic_irq,
2550 .irq_unmask = unmask_ioapic_irq,
2551 .irq_ack = ack_apic_edge,
2552 .irq_eoi = ack_apic_level,
2553 #ifdef CONFIG_SMP
2554 .irq_set_affinity = ioapic_set_affinity,
2555 #endif
2556 .irq_retrigger = ioapic_retrigger_irq,
2559 static struct irq_chip ir_ioapic_chip __read_mostly = {
2560 .name = "IR-IO-APIC",
2561 .irq_startup = startup_ioapic_irq,
2562 .irq_mask = mask_ioapic_irq,
2563 .irq_unmask = unmask_ioapic_irq,
2564 #ifdef CONFIG_INTR_REMAP
2565 .irq_ack = ir_ack_apic_edge,
2566 .irq_eoi = ir_ack_apic_level,
2567 #ifdef CONFIG_SMP
2568 .irq_set_affinity = ir_ioapic_set_affinity,
2569 #endif
2570 #endif
2571 .irq_retrigger = ioapic_retrigger_irq,
2574 static inline void init_IO_APIC_traps(void)
2576 struct irq_cfg *cfg;
2577 unsigned int irq;
2580 * NOTE! The local APIC isn't very good at handling
2581 * multiple interrupts at the same interrupt level.
2582 * As the interrupt level is determined by taking the
2583 * vector number and shifting that right by 4, we
2584 * want to spread these out a bit so that they don't
2585 * all fall in the same interrupt level.
2587 * Also, we've got to be careful not to trash gate
2588 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2590 for_each_active_irq(irq) {
2591 cfg = get_irq_chip_data(irq);
2592 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2594 * Hmm.. We don't have an entry for this,
2595 * so default to an old-fashioned 8259
2596 * interrupt if we can..
2598 if (irq < legacy_pic->nr_legacy_irqs)
2599 legacy_pic->make_irq(irq);
2600 else
2601 /* Strange. Oh, well.. */
2602 set_irq_chip(irq, &no_irq_chip);
2608 * The local APIC irq-chip implementation:
2611 static void mask_lapic_irq(struct irq_data *data)
2613 unsigned long v;
2615 v = apic_read(APIC_LVT0);
2616 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2619 static void unmask_lapic_irq(struct irq_data *data)
2621 unsigned long v;
2623 v = apic_read(APIC_LVT0);
2624 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2627 static void ack_lapic_irq(struct irq_data *data)
2629 ack_APIC_irq();
2632 static struct irq_chip lapic_chip __read_mostly = {
2633 .name = "local-APIC",
2634 .irq_mask = mask_lapic_irq,
2635 .irq_unmask = unmask_lapic_irq,
2636 .irq_ack = ack_lapic_irq,
2639 static void lapic_register_intr(int irq)
2641 irq_clear_status_flags(irq, IRQ_LEVEL);
2642 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2643 "edge");
2646 static void __init setup_nmi(void)
2649 * Dirty trick to enable the NMI watchdog ...
2650 * We put the 8259A master into AEOI mode and
2651 * unmask on all local APICs LVT0 as NMI.
2653 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2654 * is from Maciej W. Rozycki - so we do not have to EOI from
2655 * the NMI handler or the timer interrupt.
2657 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2659 enable_NMI_through_LVT0();
2661 apic_printk(APIC_VERBOSE, " done.\n");
2665 * This looks a bit hackish but it's about the only one way of sending
2666 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2667 * not support the ExtINT mode, unfortunately. We need to send these
2668 * cycles as some i82489DX-based boards have glue logic that keeps the
2669 * 8259A interrupt line asserted until INTA. --macro
2671 static inline void __init unlock_ExtINT_logic(void)
2673 int apic, pin, i;
2674 struct IO_APIC_route_entry entry0, entry1;
2675 unsigned char save_control, save_freq_select;
2677 pin = find_isa_irq_pin(8, mp_INT);
2678 if (pin == -1) {
2679 WARN_ON_ONCE(1);
2680 return;
2682 apic = find_isa_irq_apic(8, mp_INT);
2683 if (apic == -1) {
2684 WARN_ON_ONCE(1);
2685 return;
2688 entry0 = ioapic_read_entry(apic, pin);
2689 clear_IO_APIC_pin(apic, pin);
2691 memset(&entry1, 0, sizeof(entry1));
2693 entry1.dest_mode = 0; /* physical delivery */
2694 entry1.mask = 0; /* unmask IRQ now */
2695 entry1.dest = hard_smp_processor_id();
2696 entry1.delivery_mode = dest_ExtINT;
2697 entry1.polarity = entry0.polarity;
2698 entry1.trigger = 0;
2699 entry1.vector = 0;
2701 ioapic_write_entry(apic, pin, entry1);
2703 save_control = CMOS_READ(RTC_CONTROL);
2704 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2705 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2706 RTC_FREQ_SELECT);
2707 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2709 i = 100;
2710 while (i-- > 0) {
2711 mdelay(10);
2712 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2713 i -= 10;
2716 CMOS_WRITE(save_control, RTC_CONTROL);
2717 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2718 clear_IO_APIC_pin(apic, pin);
2720 ioapic_write_entry(apic, pin, entry0);
2723 static int disable_timer_pin_1 __initdata;
2724 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2725 static int __init disable_timer_pin_setup(char *arg)
2727 disable_timer_pin_1 = 1;
2728 return 0;
2730 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2732 int timer_through_8259 __initdata;
2735 * This code may look a bit paranoid, but it's supposed to cooperate with
2736 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2737 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2738 * fanatically on his truly buggy board.
2740 * FIXME: really need to revamp this for all platforms.
2742 static inline void __init check_timer(void)
2744 struct irq_cfg *cfg = get_irq_chip_data(0);
2745 int node = cpu_to_node(0);
2746 int apic1, pin1, apic2, pin2;
2747 unsigned long flags;
2748 int no_pin1 = 0;
2750 local_irq_save(flags);
2753 * get/set the timer IRQ vector:
2755 legacy_pic->mask(0);
2756 assign_irq_vector(0, cfg, apic->target_cpus());
2759 * As IRQ0 is to be enabled in the 8259A, the virtual
2760 * wire has to be disabled in the local APIC. Also
2761 * timer interrupts need to be acknowledged manually in
2762 * the 8259A for the i82489DX when using the NMI
2763 * watchdog as that APIC treats NMIs as level-triggered.
2764 * The AEOI mode will finish them in the 8259A
2765 * automatically.
2767 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2768 legacy_pic->init(1);
2769 #ifdef CONFIG_X86_32
2771 unsigned int ver;
2773 ver = apic_read(APIC_LVR);
2774 ver = GET_APIC_VERSION(ver);
2775 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2777 #endif
2779 pin1 = find_isa_irq_pin(0, mp_INT);
2780 apic1 = find_isa_irq_apic(0, mp_INT);
2781 pin2 = ioapic_i8259.pin;
2782 apic2 = ioapic_i8259.apic;
2784 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2785 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2786 cfg->vector, apic1, pin1, apic2, pin2);
2789 * Some BIOS writers are clueless and report the ExtINTA
2790 * I/O APIC input from the cascaded 8259A as the timer
2791 * interrupt input. So just in case, if only one pin
2792 * was found above, try it both directly and through the
2793 * 8259A.
2795 if (pin1 == -1) {
2796 if (intr_remapping_enabled)
2797 panic("BIOS bug: timer not connected to IO-APIC");
2798 pin1 = pin2;
2799 apic1 = apic2;
2800 no_pin1 = 1;
2801 } else if (pin2 == -1) {
2802 pin2 = pin1;
2803 apic2 = apic1;
2806 if (pin1 != -1) {
2808 * Ok, does IRQ0 through the IOAPIC work?
2810 if (no_pin1) {
2811 add_pin_to_irq_node(cfg, node, apic1, pin1);
2812 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2813 } else {
2814 /* for edge trigger, setup_ioapic_irq already
2815 * leave it unmasked.
2816 * so only need to unmask if it is level-trigger
2817 * do we really have level trigger timer?
2819 int idx;
2820 idx = find_irq_entry(apic1, pin1, mp_INT);
2821 if (idx != -1 && irq_trigger(idx))
2822 unmask_ioapic(cfg);
2824 if (timer_irq_works()) {
2825 if (nmi_watchdog == NMI_IO_APIC) {
2826 setup_nmi();
2827 legacy_pic->unmask(0);
2829 if (disable_timer_pin_1 > 0)
2830 clear_IO_APIC_pin(0, pin1);
2831 goto out;
2833 if (intr_remapping_enabled)
2834 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2835 local_irq_disable();
2836 clear_IO_APIC_pin(apic1, pin1);
2837 if (!no_pin1)
2838 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2839 "8254 timer not connected to IO-APIC\n");
2841 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2842 "(IRQ0) through the 8259A ...\n");
2843 apic_printk(APIC_QUIET, KERN_INFO
2844 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2846 * legacy devices should be connected to IO APIC #0
2848 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2849 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2850 legacy_pic->unmask(0);
2851 if (timer_irq_works()) {
2852 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2853 timer_through_8259 = 1;
2854 if (nmi_watchdog == NMI_IO_APIC) {
2855 legacy_pic->mask(0);
2856 setup_nmi();
2857 legacy_pic->unmask(0);
2859 goto out;
2862 * Cleanup, just in case ...
2864 local_irq_disable();
2865 legacy_pic->mask(0);
2866 clear_IO_APIC_pin(apic2, pin2);
2867 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2870 if (nmi_watchdog == NMI_IO_APIC) {
2871 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2872 "through the IO-APIC - disabling NMI Watchdog!\n");
2873 nmi_watchdog = NMI_NONE;
2875 #ifdef CONFIG_X86_32
2876 timer_ack = 0;
2877 #endif
2879 apic_printk(APIC_QUIET, KERN_INFO
2880 "...trying to set up timer as Virtual Wire IRQ...\n");
2882 lapic_register_intr(0);
2883 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2884 legacy_pic->unmask(0);
2886 if (timer_irq_works()) {
2887 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2888 goto out;
2890 local_irq_disable();
2891 legacy_pic->mask(0);
2892 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2893 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2895 apic_printk(APIC_QUIET, KERN_INFO
2896 "...trying to set up timer as ExtINT IRQ...\n");
2898 legacy_pic->init(0);
2899 legacy_pic->make_irq(0);
2900 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2902 unlock_ExtINT_logic();
2904 if (timer_irq_works()) {
2905 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2906 goto out;
2908 local_irq_disable();
2909 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2910 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2911 "report. Then try booting with the 'noapic' option.\n");
2912 out:
2913 local_irq_restore(flags);
2917 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2918 * to devices. However there may be an I/O APIC pin available for
2919 * this interrupt regardless. The pin may be left unconnected, but
2920 * typically it will be reused as an ExtINT cascade interrupt for
2921 * the master 8259A. In the MPS case such a pin will normally be
2922 * reported as an ExtINT interrupt in the MP table. With ACPI
2923 * there is no provision for ExtINT interrupts, and in the absence
2924 * of an override it would be treated as an ordinary ISA I/O APIC
2925 * interrupt, that is edge-triggered and unmasked by default. We
2926 * used to do this, but it caused problems on some systems because
2927 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2928 * the same ExtINT cascade interrupt to drive the local APIC of the
2929 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2930 * the I/O APIC in all cases now. No actual device should request
2931 * it anyway. --macro
2933 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
2935 void __init setup_IO_APIC(void)
2939 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2941 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2943 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2945 * Set up IO-APIC IRQ routing.
2947 x86_init.mpparse.setup_ioapic_ids();
2949 sync_Arb_IDs();
2950 setup_IO_APIC_irqs();
2951 init_IO_APIC_traps();
2952 if (legacy_pic->nr_legacy_irqs)
2953 check_timer();
2957 * Called after all the initialization is done. If we didnt find any
2958 * APIC bugs then we can allow the modify fast path
2961 static int __init io_apic_bug_finalize(void)
2963 if (sis_apic_bug == -1)
2964 sis_apic_bug = 0;
2965 return 0;
2968 late_initcall(io_apic_bug_finalize);
2970 struct sysfs_ioapic_data {
2971 struct sys_device dev;
2972 struct IO_APIC_route_entry entry[0];
2974 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2976 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2978 struct IO_APIC_route_entry *entry;
2979 struct sysfs_ioapic_data *data;
2980 int i;
2982 data = container_of(dev, struct sysfs_ioapic_data, dev);
2983 entry = data->entry;
2984 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2985 *entry = ioapic_read_entry(dev->id, i);
2987 return 0;
2990 static int ioapic_resume(struct sys_device *dev)
2992 struct IO_APIC_route_entry *entry;
2993 struct sysfs_ioapic_data *data;
2994 unsigned long flags;
2995 union IO_APIC_reg_00 reg_00;
2996 int i;
2998 data = container_of(dev, struct sysfs_ioapic_data, dev);
2999 entry = data->entry;
3001 raw_spin_lock_irqsave(&ioapic_lock, flags);
3002 reg_00.raw = io_apic_read(dev->id, 0);
3003 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3004 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3005 io_apic_write(dev->id, 0, reg_00.raw);
3007 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3008 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3009 ioapic_write_entry(dev->id, i, entry[i]);
3011 return 0;
3014 static struct sysdev_class ioapic_sysdev_class = {
3015 .name = "ioapic",
3016 .suspend = ioapic_suspend,
3017 .resume = ioapic_resume,
3020 static int __init ioapic_init_sysfs(void)
3022 struct sys_device * dev;
3023 int i, size, error;
3025 error = sysdev_class_register(&ioapic_sysdev_class);
3026 if (error)
3027 return error;
3029 for (i = 0; i < nr_ioapics; i++ ) {
3030 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3031 * sizeof(struct IO_APIC_route_entry);
3032 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3033 if (!mp_ioapic_data[i]) {
3034 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3035 continue;
3037 dev = &mp_ioapic_data[i]->dev;
3038 dev->id = i;
3039 dev->cls = &ioapic_sysdev_class;
3040 error = sysdev_register(dev);
3041 if (error) {
3042 kfree(mp_ioapic_data[i]);
3043 mp_ioapic_data[i] = NULL;
3044 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3045 continue;
3049 return 0;
3052 device_initcall(ioapic_init_sysfs);
3055 * Dynamic irq allocate and deallocation
3057 unsigned int create_irq_nr(unsigned int from, int node)
3059 struct irq_cfg *cfg;
3060 unsigned long flags;
3061 unsigned int ret = 0;
3062 int irq;
3064 if (from < nr_irqs_gsi)
3065 from = nr_irqs_gsi;
3067 irq = alloc_irq_from(from, node);
3068 if (irq < 0)
3069 return 0;
3070 cfg = alloc_irq_cfg(irq, node);
3071 if (!cfg) {
3072 free_irq_at(irq, NULL);
3073 return 0;
3076 raw_spin_lock_irqsave(&vector_lock, flags);
3077 if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3078 ret = irq;
3079 raw_spin_unlock_irqrestore(&vector_lock, flags);
3081 if (ret) {
3082 set_irq_chip_data(irq, cfg);
3083 irq_clear_status_flags(irq, IRQ_NOREQUEST);
3084 } else {
3085 free_irq_at(irq, cfg);
3087 return ret;
3090 int create_irq(void)
3092 int node = cpu_to_node(0);
3093 unsigned int irq_want;
3094 int irq;
3096 irq_want = nr_irqs_gsi;
3097 irq = create_irq_nr(irq_want, node);
3099 if (irq == 0)
3100 irq = -1;
3102 return irq;
3105 void destroy_irq(unsigned int irq)
3107 struct irq_cfg *cfg = get_irq_chip_data(irq);
3108 unsigned long flags;
3110 irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3112 if (irq_remapped(cfg))
3113 free_irte(irq);
3114 raw_spin_lock_irqsave(&vector_lock, flags);
3115 __clear_irq_vector(irq, cfg);
3116 raw_spin_unlock_irqrestore(&vector_lock, flags);
3117 free_irq_at(irq, cfg);
3121 * MSI message composition
3123 #ifdef CONFIG_PCI_MSI
3124 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3125 struct msi_msg *msg, u8 hpet_id)
3127 struct irq_cfg *cfg;
3128 int err;
3129 unsigned dest;
3131 if (disable_apic)
3132 return -ENXIO;
3134 cfg = irq_cfg(irq);
3135 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3136 if (err)
3137 return err;
3139 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3141 if (irq_remapped(get_irq_chip_data(irq))) {
3142 struct irte irte;
3143 int ir_index;
3144 u16 sub_handle;
3146 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3147 BUG_ON(ir_index == -1);
3149 prepare_irte(&irte, cfg->vector, dest);
3151 /* Set source-id of interrupt request */
3152 if (pdev)
3153 set_msi_sid(&irte, pdev);
3154 else
3155 set_hpet_sid(&irte, hpet_id);
3157 modify_irte(irq, &irte);
3159 msg->address_hi = MSI_ADDR_BASE_HI;
3160 msg->data = sub_handle;
3161 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3162 MSI_ADDR_IR_SHV |
3163 MSI_ADDR_IR_INDEX1(ir_index) |
3164 MSI_ADDR_IR_INDEX2(ir_index);
3165 } else {
3166 if (x2apic_enabled())
3167 msg->address_hi = MSI_ADDR_BASE_HI |
3168 MSI_ADDR_EXT_DEST_ID(dest);
3169 else
3170 msg->address_hi = MSI_ADDR_BASE_HI;
3172 msg->address_lo =
3173 MSI_ADDR_BASE_LO |
3174 ((apic->irq_dest_mode == 0) ?
3175 MSI_ADDR_DEST_MODE_PHYSICAL:
3176 MSI_ADDR_DEST_MODE_LOGICAL) |
3177 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3178 MSI_ADDR_REDIRECTION_CPU:
3179 MSI_ADDR_REDIRECTION_LOWPRI) |
3180 MSI_ADDR_DEST_ID(dest);
3182 msg->data =
3183 MSI_DATA_TRIGGER_EDGE |
3184 MSI_DATA_LEVEL_ASSERT |
3185 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3186 MSI_DATA_DELIVERY_FIXED:
3187 MSI_DATA_DELIVERY_LOWPRI) |
3188 MSI_DATA_VECTOR(cfg->vector);
3190 return err;
3193 #ifdef CONFIG_SMP
3194 static int
3195 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3197 struct irq_cfg *cfg = data->chip_data;
3198 struct msi_msg msg;
3199 unsigned int dest;
3201 if (__ioapic_set_affinity(data, mask, &dest))
3202 return -1;
3204 __get_cached_msi_msg(data->msi_desc, &msg);
3206 msg.data &= ~MSI_DATA_VECTOR_MASK;
3207 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3208 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3209 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3211 __write_msi_msg(data->msi_desc, &msg);
3213 return 0;
3215 #ifdef CONFIG_INTR_REMAP
3217 * Migrate the MSI irq to another cpumask. This migration is
3218 * done in the process context using interrupt-remapping hardware.
3220 static int
3221 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3222 bool force)
3224 struct irq_cfg *cfg = data->chip_data;
3225 unsigned int dest, irq = data->irq;
3226 struct irte irte;
3228 if (get_irte(irq, &irte))
3229 return -1;
3231 if (__ioapic_set_affinity(data, mask, &dest))
3232 return -1;
3234 irte.vector = cfg->vector;
3235 irte.dest_id = IRTE_DEST(dest);
3238 * atomically update the IRTE with the new destination and vector.
3240 modify_irte(irq, &irte);
3243 * After this point, all the interrupts will start arriving
3244 * at the new destination. So, time to cleanup the previous
3245 * vector allocation.
3247 if (cfg->move_in_progress)
3248 send_cleanup_vector(cfg);
3250 return 0;
3253 #endif
3254 #endif /* CONFIG_SMP */
3257 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3258 * which implement the MSI or MSI-X Capability Structure.
3260 static struct irq_chip msi_chip = {
3261 .name = "PCI-MSI",
3262 .irq_unmask = unmask_msi_irq,
3263 .irq_mask = mask_msi_irq,
3264 .irq_ack = ack_apic_edge,
3265 #ifdef CONFIG_SMP
3266 .irq_set_affinity = msi_set_affinity,
3267 #endif
3268 .irq_retrigger = ioapic_retrigger_irq,
3271 static struct irq_chip msi_ir_chip = {
3272 .name = "IR-PCI-MSI",
3273 .irq_unmask = unmask_msi_irq,
3274 .irq_mask = mask_msi_irq,
3275 #ifdef CONFIG_INTR_REMAP
3276 .irq_ack = ir_ack_apic_edge,
3277 #ifdef CONFIG_SMP
3278 .irq_set_affinity = ir_msi_set_affinity,
3279 #endif
3280 #endif
3281 .irq_retrigger = ioapic_retrigger_irq,
3285 * Map the PCI dev to the corresponding remapping hardware unit
3286 * and allocate 'nvec' consecutive interrupt-remapping table entries
3287 * in it.
3289 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3291 struct intel_iommu *iommu;
3292 int index;
3294 iommu = map_dev_to_ir(dev);
3295 if (!iommu) {
3296 printk(KERN_ERR
3297 "Unable to map PCI %s to iommu\n", pci_name(dev));
3298 return -ENOENT;
3301 index = alloc_irte(iommu, irq, nvec);
3302 if (index < 0) {
3303 printk(KERN_ERR
3304 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3305 pci_name(dev));
3306 return -ENOSPC;
3308 return index;
3311 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3313 struct msi_msg msg;
3314 int ret;
3316 ret = msi_compose_msg(dev, irq, &msg, -1);
3317 if (ret < 0)
3318 return ret;
3320 set_irq_msi(irq, msidesc);
3321 write_msi_msg(irq, &msg);
3323 if (irq_remapped(get_irq_chip_data(irq))) {
3324 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3325 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3326 } else
3327 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3329 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3331 return 0;
3334 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3336 int node, ret, sub_handle, index = 0;
3337 unsigned int irq, irq_want;
3338 struct msi_desc *msidesc;
3339 struct intel_iommu *iommu = NULL;
3341 /* x86 doesn't support multiple MSI yet */
3342 if (type == PCI_CAP_ID_MSI && nvec > 1)
3343 return 1;
3345 node = dev_to_node(&dev->dev);
3346 irq_want = nr_irqs_gsi;
3347 sub_handle = 0;
3348 list_for_each_entry(msidesc, &dev->msi_list, list) {
3349 irq = create_irq_nr(irq_want, node);
3350 if (irq == 0)
3351 return -1;
3352 irq_want = irq + 1;
3353 if (!intr_remapping_enabled)
3354 goto no_ir;
3356 if (!sub_handle) {
3358 * allocate the consecutive block of IRTE's
3359 * for 'nvec'
3361 index = msi_alloc_irte(dev, irq, nvec);
3362 if (index < 0) {
3363 ret = index;
3364 goto error;
3366 } else {
3367 iommu = map_dev_to_ir(dev);
3368 if (!iommu) {
3369 ret = -ENOENT;
3370 goto error;
3373 * setup the mapping between the irq and the IRTE
3374 * base index, the sub_handle pointing to the
3375 * appropriate interrupt remap table entry.
3377 set_irte_irq(irq, iommu, index, sub_handle);
3379 no_ir:
3380 ret = setup_msi_irq(dev, msidesc, irq);
3381 if (ret < 0)
3382 goto error;
3383 sub_handle++;
3385 return 0;
3387 error:
3388 destroy_irq(irq);
3389 return ret;
3392 void native_teardown_msi_irq(unsigned int irq)
3394 destroy_irq(irq);
3397 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3398 #ifdef CONFIG_SMP
3399 static int
3400 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3401 bool force)
3403 struct irq_cfg *cfg = data->chip_data;
3404 unsigned int dest, irq = data->irq;
3405 struct msi_msg msg;
3407 if (__ioapic_set_affinity(data, mask, &dest))
3408 return -1;
3410 dmar_msi_read(irq, &msg);
3412 msg.data &= ~MSI_DATA_VECTOR_MASK;
3413 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3414 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3415 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3417 dmar_msi_write(irq, &msg);
3419 return 0;
3422 #endif /* CONFIG_SMP */
3424 static struct irq_chip dmar_msi_type = {
3425 .name = "DMAR_MSI",
3426 .irq_unmask = dmar_msi_unmask,
3427 .irq_mask = dmar_msi_mask,
3428 .irq_ack = ack_apic_edge,
3429 #ifdef CONFIG_SMP
3430 .irq_set_affinity = dmar_msi_set_affinity,
3431 #endif
3432 .irq_retrigger = ioapic_retrigger_irq,
3435 int arch_setup_dmar_msi(unsigned int irq)
3437 int ret;
3438 struct msi_msg msg;
3440 ret = msi_compose_msg(NULL, irq, &msg, -1);
3441 if (ret < 0)
3442 return ret;
3443 dmar_msi_write(irq, &msg);
3444 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3445 "edge");
3446 return 0;
3448 #endif
3450 #ifdef CONFIG_HPET_TIMER
3452 #ifdef CONFIG_SMP
3453 static int hpet_msi_set_affinity(struct irq_data *data,
3454 const struct cpumask *mask, bool force)
3456 struct irq_cfg *cfg = data->chip_data;
3457 struct msi_msg msg;
3458 unsigned int dest;
3460 if (__ioapic_set_affinity(data, mask, &dest))
3461 return -1;
3463 hpet_msi_read(data->handler_data, &msg);
3465 msg.data &= ~MSI_DATA_VECTOR_MASK;
3466 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3467 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3468 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3470 hpet_msi_write(data->handler_data, &msg);
3472 return 0;
3475 #endif /* CONFIG_SMP */
3477 static struct irq_chip ir_hpet_msi_type = {
3478 .name = "IR-HPET_MSI",
3479 .irq_unmask = hpet_msi_unmask,
3480 .irq_mask = hpet_msi_mask,
3481 #ifdef CONFIG_INTR_REMAP
3482 .irq_ack = ir_ack_apic_edge,
3483 #ifdef CONFIG_SMP
3484 .irq_set_affinity = ir_msi_set_affinity,
3485 #endif
3486 #endif
3487 .irq_retrigger = ioapic_retrigger_irq,
3490 static struct irq_chip hpet_msi_type = {
3491 .name = "HPET_MSI",
3492 .irq_unmask = hpet_msi_unmask,
3493 .irq_mask = hpet_msi_mask,
3494 .irq_ack = ack_apic_edge,
3495 #ifdef CONFIG_SMP
3496 .irq_set_affinity = hpet_msi_set_affinity,
3497 #endif
3498 .irq_retrigger = ioapic_retrigger_irq,
3501 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3503 struct msi_msg msg;
3504 int ret;
3506 if (intr_remapping_enabled) {
3507 struct intel_iommu *iommu = map_hpet_to_ir(id);
3508 int index;
3510 if (!iommu)
3511 return -1;
3513 index = alloc_irte(iommu, irq, 1);
3514 if (index < 0)
3515 return -1;
3518 ret = msi_compose_msg(NULL, irq, &msg, id);
3519 if (ret < 0)
3520 return ret;
3522 hpet_msi_write(get_irq_data(irq), &msg);
3523 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3524 if (irq_remapped(get_irq_chip_data(irq)))
3525 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3526 handle_edge_irq, "edge");
3527 else
3528 set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3529 handle_edge_irq, "edge");
3531 return 0;
3533 #endif
3535 #endif /* CONFIG_PCI_MSI */
3537 * Hypertransport interrupt support
3539 #ifdef CONFIG_HT_IRQ
3541 #ifdef CONFIG_SMP
3543 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3545 struct ht_irq_msg msg;
3546 fetch_ht_irq_msg(irq, &msg);
3548 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3549 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3551 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3552 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3554 write_ht_irq_msg(irq, &msg);
3557 static int
3558 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3560 struct irq_cfg *cfg = data->chip_data;
3561 unsigned int dest;
3563 if (__ioapic_set_affinity(data, mask, &dest))
3564 return -1;
3566 target_ht_irq(data->irq, dest, cfg->vector);
3567 return 0;
3570 #endif
3572 static struct irq_chip ht_irq_chip = {
3573 .name = "PCI-HT",
3574 .irq_mask = mask_ht_irq,
3575 .irq_unmask = unmask_ht_irq,
3576 .irq_ack = ack_apic_edge,
3577 #ifdef CONFIG_SMP
3578 .irq_set_affinity = ht_set_affinity,
3579 #endif
3580 .irq_retrigger = ioapic_retrigger_irq,
3583 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3585 struct irq_cfg *cfg;
3586 int err;
3588 if (disable_apic)
3589 return -ENXIO;
3591 cfg = irq_cfg(irq);
3592 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3593 if (!err) {
3594 struct ht_irq_msg msg;
3595 unsigned dest;
3597 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3598 apic->target_cpus());
3600 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3602 msg.address_lo =
3603 HT_IRQ_LOW_BASE |
3604 HT_IRQ_LOW_DEST_ID(dest) |
3605 HT_IRQ_LOW_VECTOR(cfg->vector) |
3606 ((apic->irq_dest_mode == 0) ?
3607 HT_IRQ_LOW_DM_PHYSICAL :
3608 HT_IRQ_LOW_DM_LOGICAL) |
3609 HT_IRQ_LOW_RQEOI_EDGE |
3610 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3611 HT_IRQ_LOW_MT_FIXED :
3612 HT_IRQ_LOW_MT_ARBITRATED) |
3613 HT_IRQ_LOW_IRQ_MASKED;
3615 write_ht_irq_msg(irq, &msg);
3617 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3618 handle_edge_irq, "edge");
3620 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3622 return err;
3624 #endif /* CONFIG_HT_IRQ */
3626 int __init io_apic_get_redir_entries (int ioapic)
3628 union IO_APIC_reg_01 reg_01;
3629 unsigned long flags;
3631 raw_spin_lock_irqsave(&ioapic_lock, flags);
3632 reg_01.raw = io_apic_read(ioapic, 1);
3633 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3635 /* The register returns the maximum index redir index
3636 * supported, which is one less than the total number of redir
3637 * entries.
3639 return reg_01.bits.entries + 1;
3642 void __init probe_nr_irqs_gsi(void)
3644 int nr;
3646 nr = gsi_top + NR_IRQS_LEGACY;
3647 if (nr > nr_irqs_gsi)
3648 nr_irqs_gsi = nr;
3650 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3653 int get_nr_irqs_gsi(void)
3655 return nr_irqs_gsi;
3658 #ifdef CONFIG_SPARSE_IRQ
3659 int __init arch_probe_nr_irqs(void)
3661 int nr;
3663 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3664 nr_irqs = NR_VECTORS * nr_cpu_ids;
3666 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3667 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3669 * for MSI and HT dyn irq
3671 nr += nr_irqs_gsi * 16;
3672 #endif
3673 if (nr < nr_irqs)
3674 nr_irqs = nr;
3676 return NR_IRQS_LEGACY;
3678 #endif
3680 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3681 struct io_apic_irq_attr *irq_attr)
3683 struct irq_cfg *cfg;
3684 int node;
3685 int ioapic, pin;
3686 int trigger, polarity;
3688 ioapic = irq_attr->ioapic;
3689 if (!IO_APIC_IRQ(irq)) {
3690 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3691 ioapic);
3692 return -EINVAL;
3695 if (dev)
3696 node = dev_to_node(dev);
3697 else
3698 node = cpu_to_node(0);
3700 cfg = alloc_irq_and_cfg_at(irq, node);
3701 if (!cfg)
3702 return 0;
3704 pin = irq_attr->ioapic_pin;
3705 trigger = irq_attr->trigger;
3706 polarity = irq_attr->polarity;
3709 * IRQs < 16 are already in the irq_2_pin[] map
3711 if (irq >= legacy_pic->nr_legacy_irqs) {
3712 if (__add_pin_to_irq_node(cfg, node, ioapic, pin)) {
3713 printk(KERN_INFO "can not add pin %d for irq %d\n",
3714 pin, irq);
3715 return 0;
3719 setup_ioapic_irq(ioapic, pin, irq, cfg, trigger, polarity);
3721 return 0;
3724 int io_apic_set_pci_routing(struct device *dev, int irq,
3725 struct io_apic_irq_attr *irq_attr)
3727 int ioapic, pin;
3729 * Avoid pin reprogramming. PRTs typically include entries
3730 * with redundant pin->gsi mappings (but unique PCI devices);
3731 * we only program the IOAPIC on the first.
3733 ioapic = irq_attr->ioapic;
3734 pin = irq_attr->ioapic_pin;
3735 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3736 pr_debug("Pin %d-%d already programmed\n",
3737 mp_ioapics[ioapic].apicid, pin);
3738 return 0;
3740 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3742 return __io_apic_set_pci_routing(dev, irq, irq_attr);
3745 u8 __init io_apic_unique_id(u8 id)
3747 #ifdef CONFIG_X86_32
3748 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3749 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3750 return io_apic_get_unique_id(nr_ioapics, id);
3751 else
3752 return id;
3753 #else
3754 int i;
3755 DECLARE_BITMAP(used, 256);
3757 bitmap_zero(used, 256);
3758 for (i = 0; i < nr_ioapics; i++) {
3759 struct mpc_ioapic *ia = &mp_ioapics[i];
3760 __set_bit(ia->apicid, used);
3762 if (!test_bit(id, used))
3763 return id;
3764 return find_first_zero_bit(used, 256);
3765 #endif
3768 #ifdef CONFIG_X86_32
3769 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3771 union IO_APIC_reg_00 reg_00;
3772 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3773 physid_mask_t tmp;
3774 unsigned long flags;
3775 int i = 0;
3778 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3779 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3780 * supports up to 16 on one shared APIC bus.
3782 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3783 * advantage of new APIC bus architecture.
3786 if (physids_empty(apic_id_map))
3787 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3789 raw_spin_lock_irqsave(&ioapic_lock, flags);
3790 reg_00.raw = io_apic_read(ioapic, 0);
3791 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3793 if (apic_id >= get_physical_broadcast()) {
3794 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3795 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3796 apic_id = reg_00.bits.ID;
3800 * Every APIC in a system must have a unique ID or we get lots of nice
3801 * 'stuck on smp_invalidate_needed IPI wait' messages.
3803 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3805 for (i = 0; i < get_physical_broadcast(); i++) {
3806 if (!apic->check_apicid_used(&apic_id_map, i))
3807 break;
3810 if (i == get_physical_broadcast())
3811 panic("Max apic_id exceeded!\n");
3813 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3814 "trying %d\n", ioapic, apic_id, i);
3816 apic_id = i;
3819 apic->apicid_to_cpu_present(apic_id, &tmp);
3820 physids_or(apic_id_map, apic_id_map, tmp);
3822 if (reg_00.bits.ID != apic_id) {
3823 reg_00.bits.ID = apic_id;
3825 raw_spin_lock_irqsave(&ioapic_lock, flags);
3826 io_apic_write(ioapic, 0, reg_00.raw);
3827 reg_00.raw = io_apic_read(ioapic, 0);
3828 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3830 /* Sanity check */
3831 if (reg_00.bits.ID != apic_id) {
3832 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3833 return -1;
3837 apic_printk(APIC_VERBOSE, KERN_INFO
3838 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3840 return apic_id;
3842 #endif
3844 int __init io_apic_get_version(int ioapic)
3846 union IO_APIC_reg_01 reg_01;
3847 unsigned long flags;
3849 raw_spin_lock_irqsave(&ioapic_lock, flags);
3850 reg_01.raw = io_apic_read(ioapic, 1);
3851 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3853 return reg_01.bits.version;
3856 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3858 int ioapic, pin, idx;
3860 if (skip_ioapic_setup)
3861 return -1;
3863 ioapic = mp_find_ioapic(gsi);
3864 if (ioapic < 0)
3865 return -1;
3867 pin = mp_find_ioapic_pin(ioapic, gsi);
3868 if (pin < 0)
3869 return -1;
3871 idx = find_irq_entry(ioapic, pin, mp_INT);
3872 if (idx < 0)
3873 return -1;
3875 *trigger = irq_trigger(idx);
3876 *polarity = irq_polarity(idx);
3877 return 0;
3881 * This function currently is only a helper for the i386 smp boot process where
3882 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3883 * so mask in all cases should simply be apic->target_cpus()
3885 #ifdef CONFIG_SMP
3886 void __init setup_ioapic_dest(void)
3888 int pin, ioapic, irq, irq_entry;
3889 struct irq_desc *desc;
3890 const struct cpumask *mask;
3892 if (skip_ioapic_setup == 1)
3893 return;
3895 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3896 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3897 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3898 if (irq_entry == -1)
3899 continue;
3900 irq = pin_2_irq(irq_entry, ioapic, pin);
3902 if ((ioapic > 0) && (irq > 16))
3903 continue;
3905 desc = irq_to_desc(irq);
3908 * Honour affinities which have been set in early boot
3910 if (desc->status &
3911 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3912 mask = desc->irq_data.affinity;
3913 else
3914 mask = apic->target_cpus();
3916 if (intr_remapping_enabled)
3917 ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3918 else
3919 ioapic_set_affinity(&desc->irq_data, mask, false);
3923 #endif
3925 #define IOAPIC_RESOURCE_NAME_SIZE 11
3927 static struct resource *ioapic_resources;
3929 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3931 unsigned long n;
3932 struct resource *res;
3933 char *mem;
3934 int i;
3936 if (nr_ioapics <= 0)
3937 return NULL;
3939 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3940 n *= nr_ioapics;
3942 mem = alloc_bootmem(n);
3943 res = (void *)mem;
3945 mem += sizeof(struct resource) * nr_ioapics;
3947 for (i = 0; i < nr_ioapics; i++) {
3948 res[i].name = mem;
3949 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3950 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3951 mem += IOAPIC_RESOURCE_NAME_SIZE;
3954 ioapic_resources = res;
3956 return res;
3959 void __init ioapic_init_mappings(void)
3961 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3962 struct resource *ioapic_res;
3963 int i;
3965 ioapic_res = ioapic_setup_resources(nr_ioapics);
3966 for (i = 0; i < nr_ioapics; i++) {
3967 if (smp_found_config) {
3968 ioapic_phys = mp_ioapics[i].apicaddr;
3969 #ifdef CONFIG_X86_32
3970 if (!ioapic_phys) {
3971 printk(KERN_ERR
3972 "WARNING: bogus zero IO-APIC "
3973 "address found in MPTABLE, "
3974 "disabling IO/APIC support!\n");
3975 smp_found_config = 0;
3976 skip_ioapic_setup = 1;
3977 goto fake_ioapic_page;
3979 #endif
3980 } else {
3981 #ifdef CONFIG_X86_32
3982 fake_ioapic_page:
3983 #endif
3984 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3985 ioapic_phys = __pa(ioapic_phys);
3987 set_fixmap_nocache(idx, ioapic_phys);
3988 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3989 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3990 ioapic_phys);
3991 idx++;
3993 ioapic_res->start = ioapic_phys;
3994 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3995 ioapic_res++;
3999 void __init ioapic_insert_resources(void)
4001 int i;
4002 struct resource *r = ioapic_resources;
4004 if (!r) {
4005 if (nr_ioapics > 0)
4006 printk(KERN_ERR
4007 "IO APIC resources couldn't be allocated.\n");
4008 return;
4011 for (i = 0; i < nr_ioapics; i++) {
4012 insert_resource(&iomem_resource, r);
4013 r++;
4017 int mp_find_ioapic(u32 gsi)
4019 int i = 0;
4021 /* Find the IOAPIC that manages this GSI. */
4022 for (i = 0; i < nr_ioapics; i++) {
4023 if ((gsi >= mp_gsi_routing[i].gsi_base)
4024 && (gsi <= mp_gsi_routing[i].gsi_end))
4025 return i;
4028 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4029 return -1;
4032 int mp_find_ioapic_pin(int ioapic, u32 gsi)
4034 if (WARN_ON(ioapic == -1))
4035 return -1;
4036 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4037 return -1;
4039 return gsi - mp_gsi_routing[ioapic].gsi_base;
4042 static int bad_ioapic(unsigned long address)
4044 if (nr_ioapics >= MAX_IO_APICS) {
4045 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4046 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4047 return 1;
4049 if (!address) {
4050 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4051 " found in table, skipping!\n");
4052 return 1;
4054 return 0;
4057 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4059 int idx = 0;
4060 int entries;
4062 if (bad_ioapic(address))
4063 return;
4065 idx = nr_ioapics;
4067 mp_ioapics[idx].type = MP_IOAPIC;
4068 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4069 mp_ioapics[idx].apicaddr = address;
4071 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4072 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4073 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4076 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4077 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4079 entries = io_apic_get_redir_entries(idx);
4080 mp_gsi_routing[idx].gsi_base = gsi_base;
4081 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4084 * The number of IO-APIC IRQ registers (== #pins):
4086 nr_ioapic_registers[idx] = entries;
4088 if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4089 gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4091 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4092 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4093 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4094 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4096 nr_ioapics++;
4099 /* Enable IOAPIC early just for system timer */
4100 void __init pre_init_apic_IRQ0(void)
4102 struct irq_cfg *cfg;
4104 printk(KERN_INFO "Early APIC setup for system timer0\n");
4105 #ifndef CONFIG_SMP
4106 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
4107 #endif
4108 /* Make sure the irq descriptor is set up */
4109 cfg = alloc_irq_and_cfg_at(0, 0);
4111 setup_local_APIC();
4113 add_pin_to_irq_node(cfg, 0, 0, 0);
4114 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4116 setup_ioapic_irq(0, 0, 0, cfg, 0, 0);