2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
38 #include <linux/acpi.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
50 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
53 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55 MODULE_LICENSE("GPL");
58 UNDEFINED_CAPABLE
= 0,
59 SYSTEM_INTEL_MSR_CAPABLE
,
63 #define INTEL_MSR_RANGE (0xffff)
65 struct acpi_cpufreq_data
{
66 struct acpi_processor_performance
*acpi_data
;
67 struct cpufreq_frequency_table
*freq_table
;
69 unsigned int cpu_feature
;
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data
*, acfreq_data
);
74 /* acpi_perf_data is a pointer to percpu data. */
75 static struct acpi_processor_performance __percpu
*acpi_perf_data
;
77 static struct cpufreq_driver acpi_cpufreq_driver
;
79 static unsigned int acpi_pstate_strict
;
81 static int check_est_cpu(unsigned int cpuid
)
83 struct cpuinfo_x86
*cpu
= &cpu_data(cpuid
);
85 return cpu_has(cpu
, X86_FEATURE_EST
);
88 static unsigned extract_io(u32 value
, struct acpi_cpufreq_data
*data
)
90 struct acpi_processor_performance
*perf
;
93 perf
= data
->acpi_data
;
95 for (i
= 0; i
< perf
->state_count
; i
++) {
96 if (value
== perf
->states
[i
].status
)
97 return data
->freq_table
[i
].frequency
;
102 static unsigned extract_msr(u32 msr
, struct acpi_cpufreq_data
*data
)
105 struct acpi_processor_performance
*perf
;
107 msr
&= INTEL_MSR_RANGE
;
108 perf
= data
->acpi_data
;
110 for (i
= 0; data
->freq_table
[i
].frequency
!= CPUFREQ_TABLE_END
; i
++) {
111 if (msr
== perf
->states
[data
->freq_table
[i
].index
].status
)
112 return data
->freq_table
[i
].frequency
;
114 return data
->freq_table
[0].frequency
;
117 static unsigned extract_freq(u32 val
, struct acpi_cpufreq_data
*data
)
119 switch (data
->cpu_feature
) {
120 case SYSTEM_INTEL_MSR_CAPABLE
:
121 return extract_msr(val
, data
);
122 case SYSTEM_IO_CAPABLE
:
123 return extract_io(val
, data
);
140 const struct cpumask
*mask
;
148 /* Called via smp_call_function_single(), on the target CPU */
149 static void do_drv_read(void *_cmd
)
151 struct drv_cmd
*cmd
= _cmd
;
155 case SYSTEM_INTEL_MSR_CAPABLE
:
156 rdmsr(cmd
->addr
.msr
.reg
, cmd
->val
, h
);
158 case SYSTEM_IO_CAPABLE
:
159 acpi_os_read_port((acpi_io_address
)cmd
->addr
.io
.port
,
161 (u32
)cmd
->addr
.io
.bit_width
);
168 /* Called via smp_call_function_many(), on the target CPUs */
169 static void do_drv_write(void *_cmd
)
171 struct drv_cmd
*cmd
= _cmd
;
175 case SYSTEM_INTEL_MSR_CAPABLE
:
176 rdmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
177 lo
= (lo
& ~INTEL_MSR_RANGE
) | (cmd
->val
& INTEL_MSR_RANGE
);
178 wrmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
180 case SYSTEM_IO_CAPABLE
:
181 acpi_os_write_port((acpi_io_address
)cmd
->addr
.io
.port
,
183 (u32
)cmd
->addr
.io
.bit_width
);
190 static void drv_read(struct drv_cmd
*cmd
)
195 err
= smp_call_function_any(cmd
->mask
, do_drv_read
, cmd
, 1);
196 WARN_ON_ONCE(err
); /* smp_call_function_any() was buggy? */
199 static void drv_write(struct drv_cmd
*cmd
)
203 this_cpu
= get_cpu();
204 if (cpumask_test_cpu(this_cpu
, cmd
->mask
))
206 smp_call_function_many(cmd
->mask
, do_drv_write
, cmd
, 1);
210 static u32
get_cur_val(const struct cpumask
*mask
)
212 struct acpi_processor_performance
*perf
;
215 if (unlikely(cpumask_empty(mask
)))
218 switch (per_cpu(acfreq_data
, cpumask_first(mask
))->cpu_feature
) {
219 case SYSTEM_INTEL_MSR_CAPABLE
:
220 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
221 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_STATUS
;
223 case SYSTEM_IO_CAPABLE
:
224 cmd
.type
= SYSTEM_IO_CAPABLE
;
225 perf
= per_cpu(acfreq_data
, cpumask_first(mask
))->acpi_data
;
226 cmd
.addr
.io
.port
= perf
->control_register
.address
;
227 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
236 dprintk("get_cur_val = %u\n", cmd
.val
);
241 static unsigned int get_cur_freq_on_cpu(unsigned int cpu
)
243 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, cpu
);
245 unsigned int cached_freq
;
247 dprintk("get_cur_freq_on_cpu (%d)\n", cpu
);
249 if (unlikely(data
== NULL
||
250 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
254 cached_freq
= data
->freq_table
[data
->acpi_data
->state
].frequency
;
255 freq
= extract_freq(get_cur_val(cpumask_of(cpu
)), data
);
256 if (freq
!= cached_freq
) {
258 * The dreaded BIOS frequency change behind our back.
259 * Force set the frequency on next target call.
264 dprintk("cur freq = %u\n", freq
);
269 static unsigned int check_freqs(const struct cpumask
*mask
, unsigned int freq
,
270 struct acpi_cpufreq_data
*data
)
272 unsigned int cur_freq
;
275 for (i
= 0; i
< 100; i
++) {
276 cur_freq
= extract_freq(get_cur_val(mask
), data
);
277 if (cur_freq
== freq
)
284 static int acpi_cpufreq_target(struct cpufreq_policy
*policy
,
285 unsigned int target_freq
, unsigned int relation
)
287 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
288 struct acpi_processor_performance
*perf
;
289 struct cpufreq_freqs freqs
;
291 unsigned int next_state
= 0; /* Index into freq_table */
292 unsigned int next_perf_state
= 0; /* Index into perf table */
296 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq
, policy
->cpu
);
298 if (unlikely(data
== NULL
||
299 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
303 perf
= data
->acpi_data
;
304 result
= cpufreq_frequency_table_target(policy
,
307 relation
, &next_state
);
308 if (unlikely(result
)) {
313 next_perf_state
= data
->freq_table
[next_state
].index
;
314 if (perf
->state
== next_perf_state
) {
315 if (unlikely(data
->resume
)) {
316 dprintk("Called after resume, resetting to P%d\n",
320 dprintk("Already at target state (P%d)\n",
326 switch (data
->cpu_feature
) {
327 case SYSTEM_INTEL_MSR_CAPABLE
:
328 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
329 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_CTL
;
330 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
332 case SYSTEM_IO_CAPABLE
:
333 cmd
.type
= SYSTEM_IO_CAPABLE
;
334 cmd
.addr
.io
.port
= perf
->control_register
.address
;
335 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
336 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
343 /* cpufreq holds the hotplug lock, so we are safe from here on */
344 if (policy
->shared_type
!= CPUFREQ_SHARED_TYPE_ANY
)
345 cmd
.mask
= policy
->cpus
;
347 cmd
.mask
= cpumask_of(policy
->cpu
);
349 freqs
.old
= perf
->states
[perf
->state
].core_frequency
* 1000;
350 freqs
.new = data
->freq_table
[next_state
].frequency
;
351 for_each_cpu(i
, policy
->cpus
) {
353 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
358 if (acpi_pstate_strict
) {
359 if (!check_freqs(cmd
.mask
, freqs
.new, data
)) {
360 dprintk("acpi_cpufreq_target failed (%d)\n",
367 for_each_cpu(i
, policy
->cpus
) {
369 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
371 perf
->state
= next_perf_state
;
377 static int acpi_cpufreq_verify(struct cpufreq_policy
*policy
)
379 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
381 dprintk("acpi_cpufreq_verify\n");
383 return cpufreq_frequency_table_verify(policy
, data
->freq_table
);
387 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data
*data
, unsigned int cpu
)
389 struct acpi_processor_performance
*perf
= data
->acpi_data
;
392 /* search the closest match to cpu_khz */
395 unsigned long freqn
= perf
->states
[0].core_frequency
* 1000;
397 for (i
= 0; i
< (perf
->state_count
-1); i
++) {
399 freqn
= perf
->states
[i
+1].core_frequency
* 1000;
400 if ((2 * cpu_khz
) > (freqn
+ freq
)) {
405 perf
->state
= perf
->state_count
-1;
408 /* assume CPU is at P0... */
410 return perf
->states
[0].core_frequency
* 1000;
414 static void free_acpi_perf_data(void)
418 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
419 for_each_possible_cpu(i
)
420 free_cpumask_var(per_cpu_ptr(acpi_perf_data
, i
)
422 free_percpu(acpi_perf_data
);
426 * acpi_cpufreq_early_init - initialize ACPI P-States library
428 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
429 * in order to determine correct frequency and voltage pairings. We can
430 * do _PDC and _PSD and find out the processor dependency for the
431 * actual init that will happen later...
433 static int __init
acpi_cpufreq_early_init(void)
436 dprintk("acpi_cpufreq_early_init\n");
438 acpi_perf_data
= alloc_percpu(struct acpi_processor_performance
);
439 if (!acpi_perf_data
) {
440 dprintk("Memory allocation error for acpi_perf_data.\n");
443 for_each_possible_cpu(i
) {
444 if (!zalloc_cpumask_var_node(
445 &per_cpu_ptr(acpi_perf_data
, i
)->shared_cpu_map
,
446 GFP_KERNEL
, cpu_to_node(i
))) {
448 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
449 free_acpi_perf_data();
454 /* Do initialization in ACPI core */
455 acpi_processor_preregister_performance(acpi_perf_data
);
461 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
462 * or do it in BIOS firmware and won't inform about it to OS. If not
463 * detected, this has a side effect of making CPU run at a different speed
464 * than OS intended it to run at. Detect it and handle it cleanly.
466 static int bios_with_sw_any_bug
;
468 static int sw_any_bug_found(const struct dmi_system_id
*d
)
470 bios_with_sw_any_bug
= 1;
474 static const struct dmi_system_id sw_any_bug_dmi_table
[] = {
476 .callback
= sw_any_bug_found
,
477 .ident
= "Supermicro Server X6DLP",
479 DMI_MATCH(DMI_SYS_VENDOR
, "Supermicro"),
480 DMI_MATCH(DMI_BIOS_VERSION
, "080010"),
481 DMI_MATCH(DMI_PRODUCT_NAME
, "X6DLP"),
487 static int acpi_cpufreq_blacklist(struct cpuinfo_x86
*c
)
489 /* Intel Xeon Processor 7100 Series Specification Update
490 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
491 * AL30: A Machine Check Exception (MCE) Occurring during an
492 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
493 * Both Processor Cores to Lock Up. */
494 if (c
->x86_vendor
== X86_VENDOR_INTEL
) {
495 if ((c
->x86
== 15) &&
496 (c
->x86_model
== 6) &&
497 (c
->x86_mask
== 8)) {
498 printk(KERN_INFO
"acpi-cpufreq: Intel(R) "
499 "Xeon(R) 7100 Errata AL30, processors may "
500 "lock up on frequency changes: disabling "
509 static int acpi_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
512 unsigned int valid_states
= 0;
513 unsigned int cpu
= policy
->cpu
;
514 struct acpi_cpufreq_data
*data
;
515 unsigned int result
= 0;
516 struct cpuinfo_x86
*c
= &cpu_data(policy
->cpu
);
517 struct acpi_processor_performance
*perf
;
519 static int blacklisted
;
522 dprintk("acpi_cpufreq_cpu_init\n");
527 blacklisted
= acpi_cpufreq_blacklist(c
);
532 data
= kzalloc(sizeof(struct acpi_cpufreq_data
), GFP_KERNEL
);
536 data
->acpi_data
= per_cpu_ptr(acpi_perf_data
, cpu
);
537 per_cpu(acfreq_data
, cpu
) = data
;
539 if (cpu_has(c
, X86_FEATURE_CONSTANT_TSC
))
540 acpi_cpufreq_driver
.flags
|= CPUFREQ_CONST_LOOPS
;
542 result
= acpi_processor_register_performance(data
->acpi_data
, cpu
);
546 perf
= data
->acpi_data
;
547 policy
->shared_type
= perf
->shared_type
;
550 * Will let policy->cpus know about dependency only when software
551 * coordination is required.
553 if (policy
->shared_type
== CPUFREQ_SHARED_TYPE_ALL
||
554 policy
->shared_type
== CPUFREQ_SHARED_TYPE_ANY
) {
555 cpumask_copy(policy
->cpus
, perf
->shared_cpu_map
);
557 cpumask_copy(policy
->related_cpus
, perf
->shared_cpu_map
);
560 dmi_check_system(sw_any_bug_dmi_table
);
561 if (bios_with_sw_any_bug
&& cpumask_weight(policy
->cpus
) == 1) {
562 policy
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
563 cpumask_copy(policy
->cpus
, cpu_core_mask(cpu
));
567 /* capability check */
568 if (perf
->state_count
<= 1) {
569 dprintk("No P-States\n");
574 if (perf
->control_register
.space_id
!= perf
->status_register
.space_id
) {
579 switch (perf
->control_register
.space_id
) {
580 case ACPI_ADR_SPACE_SYSTEM_IO
:
581 dprintk("SYSTEM IO addr space\n");
582 data
->cpu_feature
= SYSTEM_IO_CAPABLE
;
584 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
585 dprintk("HARDWARE addr space\n");
586 if (!check_est_cpu(cpu
)) {
590 data
->cpu_feature
= SYSTEM_INTEL_MSR_CAPABLE
;
593 dprintk("Unknown addr space %d\n",
594 (u32
) (perf
->control_register
.space_id
));
599 data
->freq_table
= kmalloc(sizeof(struct cpufreq_frequency_table
) *
600 (perf
->state_count
+1), GFP_KERNEL
);
601 if (!data
->freq_table
) {
606 /* detect transition latency */
607 policy
->cpuinfo
.transition_latency
= 0;
608 for (i
= 0; i
< perf
->state_count
; i
++) {
609 if ((perf
->states
[i
].transition_latency
* 1000) >
610 policy
->cpuinfo
.transition_latency
)
611 policy
->cpuinfo
.transition_latency
=
612 perf
->states
[i
].transition_latency
* 1000;
615 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
616 if (perf
->control_register
.space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
&&
617 policy
->cpuinfo
.transition_latency
> 20 * 1000) {
618 policy
->cpuinfo
.transition_latency
= 20 * 1000;
619 printk_once(KERN_INFO
620 "P-state transition latency capped at 20 uS\n");
624 for (i
= 0; i
< perf
->state_count
; i
++) {
625 if (i
> 0 && perf
->states
[i
].core_frequency
>=
626 data
->freq_table
[valid_states
-1].frequency
/ 1000)
629 data
->freq_table
[valid_states
].index
= i
;
630 data
->freq_table
[valid_states
].frequency
=
631 perf
->states
[i
].core_frequency
* 1000;
634 data
->freq_table
[valid_states
].frequency
= CPUFREQ_TABLE_END
;
637 result
= cpufreq_frequency_table_cpuinfo(policy
, data
->freq_table
);
641 if (perf
->states
[0].core_frequency
* 1000 != policy
->cpuinfo
.max_freq
)
642 printk(KERN_WARNING FW_WARN
"P-state 0 is not max freq\n");
644 switch (perf
->control_register
.space_id
) {
645 case ACPI_ADR_SPACE_SYSTEM_IO
:
646 /* Current speed is unknown and not detectable by IO port */
647 policy
->cur
= acpi_cpufreq_guess_freq(data
, policy
->cpu
);
649 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
650 acpi_cpufreq_driver
.get
= get_cur_freq_on_cpu
;
651 policy
->cur
= get_cur_freq_on_cpu(cpu
);
657 /* notify BIOS that we exist */
658 acpi_processor_notify_smm(THIS_MODULE
);
660 /* Check for APERF/MPERF support in hardware */
661 if (cpu_has(c
, X86_FEATURE_APERFMPERF
))
662 acpi_cpufreq_driver
.getavg
= cpufreq_get_measured_perf
;
664 dprintk("CPU%u - ACPI performance management activated.\n", cpu
);
665 for (i
= 0; i
< perf
->state_count
; i
++)
666 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
667 (i
== perf
->state
? '*' : ' '), i
,
668 (u32
) perf
->states
[i
].core_frequency
,
669 (u32
) perf
->states
[i
].power
,
670 (u32
) perf
->states
[i
].transition_latency
);
672 cpufreq_frequency_table_get_attr(data
->freq_table
, policy
->cpu
);
675 * the first call to ->target() should result in us actually
676 * writing something to the appropriate registers.
683 kfree(data
->freq_table
);
685 acpi_processor_unregister_performance(perf
, cpu
);
688 per_cpu(acfreq_data
, cpu
) = NULL
;
693 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
695 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
697 dprintk("acpi_cpufreq_cpu_exit\n");
700 cpufreq_frequency_table_put_attr(policy
->cpu
);
701 per_cpu(acfreq_data
, policy
->cpu
) = NULL
;
702 acpi_processor_unregister_performance(data
->acpi_data
,
704 kfree(data
->freq_table
);
711 static int acpi_cpufreq_resume(struct cpufreq_policy
*policy
)
713 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
715 dprintk("acpi_cpufreq_resume\n");
722 static struct freq_attr
*acpi_cpufreq_attr
[] = {
723 &cpufreq_freq_attr_scaling_available_freqs
,
727 static struct cpufreq_driver acpi_cpufreq_driver
= {
728 .verify
= acpi_cpufreq_verify
,
729 .target
= acpi_cpufreq_target
,
730 .bios_limit
= acpi_processor_get_bios_limit
,
731 .init
= acpi_cpufreq_cpu_init
,
732 .exit
= acpi_cpufreq_cpu_exit
,
733 .resume
= acpi_cpufreq_resume
,
734 .name
= "acpi-cpufreq",
735 .owner
= THIS_MODULE
,
736 .attr
= acpi_cpufreq_attr
,
739 static int __init
acpi_cpufreq_init(void)
746 dprintk("acpi_cpufreq_init\n");
748 ret
= acpi_cpufreq_early_init();
752 ret
= cpufreq_register_driver(&acpi_cpufreq_driver
);
754 free_acpi_perf_data();
759 static void __exit
acpi_cpufreq_exit(void)
761 dprintk("acpi_cpufreq_exit\n");
763 cpufreq_unregister_driver(&acpi_cpufreq_driver
);
765 free_percpu(acpi_perf_data
);
768 module_param(acpi_pstate_strict
, uint
, 0644);
769 MODULE_PARM_DESC(acpi_pstate_strict
,
770 "value 0 or non-zero. non-zero -> strict ACPI checks are "
771 "performed during frequency changes.");
773 late_initcall(acpi_cpufreq_init
);
774 module_exit(acpi_cpufreq_exit
);
776 MODULE_ALIAS("acpi");