2 * (c) 2003-2010 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@ucw.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <linux/delay.h>
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
50 /* serialize freq changes */
51 static DEFINE_MUTEX(fidvid_mutex
);
53 static DEFINE_PER_CPU(struct powernow_k8_data
*, powernow_data
);
55 static int cpu_family
= CPU_OPTERON
;
57 /* core performance boost */
58 static bool cpb_capable
, cpb_enabled
;
59 static struct msr __percpu
*msrs
;
61 static struct cpufreq_driver cpufreq_amd64_driver
;
64 static inline const struct cpumask
*cpu_core_mask(int cpu
)
70 /* Return a frequency in MHz, given an input fid */
71 static u32
find_freq_from_fid(u32 fid
)
73 return 800 + (fid
* 100);
76 /* Return a frequency in KHz, given an input fid */
77 static u32
find_khz_freq_from_fid(u32 fid
)
79 return 1000 * find_freq_from_fid(fid
);
82 static u32
find_khz_freq_from_pstate(struct cpufreq_frequency_table
*data
,
85 return data
[pstate
].frequency
;
88 /* Return the vco fid for an input fid
90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91 * only from corresponding high fids. This returns "high" fid corresponding to
94 static u32
convert_fid_to_vco_fid(u32 fid
)
96 if (fid
< HI_FID_TABLE_BOTTOM
)
103 * Return 1 if the pending bit is set. Unless we just instructed the processor
104 * to transition to a new state, seeing this bit set is really bad news.
106 static int pending_bit_stuck(void)
110 if (cpu_family
== CPU_HW_PSTATE
)
113 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
114 return lo
& MSR_S_LO_CHANGE_PENDING
? 1 : 0;
118 * Update the global current fid / vid values from the status msr.
119 * Returns 1 on error.
121 static int query_current_values_with_pending_wait(struct powernow_k8_data
*data
)
126 if (cpu_family
== CPU_HW_PSTATE
) {
127 rdmsr(MSR_PSTATE_STATUS
, lo
, hi
);
128 i
= lo
& HW_PSTATE_MASK
;
129 data
->currpstate
= i
;
132 * a workaround for family 11h erratum 311 might cause
133 * an "out-of-range Pstate if the core is in Pstate-0
135 if ((boot_cpu_data
.x86
== 0x11) && (i
>= data
->numps
))
136 data
->currpstate
= HW_PSTATE_0
;
142 dprintk("detected change pending stuck\n");
145 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
146 } while (lo
& MSR_S_LO_CHANGE_PENDING
);
148 data
->currvid
= hi
& MSR_S_HI_CURRENT_VID
;
149 data
->currfid
= lo
& MSR_S_LO_CURRENT_FID
;
154 /* the isochronous relief time */
155 static void count_off_irt(struct powernow_k8_data
*data
)
157 udelay((1 << data
->irt
) * 10);
161 /* the voltage stabilization time */
162 static void count_off_vst(struct powernow_k8_data
*data
)
164 udelay(data
->vstable
* VST_UNITS_20US
);
168 /* need to init the control msr to a safe value (for each cpu) */
169 static void fidvid_msr_init(void)
174 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
175 vid
= hi
& MSR_S_HI_CURRENT_VID
;
176 fid
= lo
& MSR_S_LO_CURRENT_FID
;
177 lo
= fid
| (vid
<< MSR_C_LO_VID_SHIFT
);
178 hi
= MSR_C_HI_STP_GNT_BENIGN
;
179 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo
, hi
);
180 wrmsr(MSR_FIDVID_CTL
, lo
, hi
);
183 /* write the new fid value along with the other control fields to the msr */
184 static int write_new_fid(struct powernow_k8_data
*data
, u32 fid
)
187 u32 savevid
= data
->currvid
;
190 if ((fid
& INVALID_FID_MASK
) || (data
->currvid
& INVALID_VID_MASK
)) {
191 printk(KERN_ERR PFX
"internal error - overflow on fid write\n");
196 lo
|= (data
->currvid
<< MSR_C_LO_VID_SHIFT
);
197 lo
|= MSR_C_LO_INIT_FID_VID
;
199 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200 fid
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
203 wrmsr(MSR_FIDVID_CTL
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
206 "Hardware error - pending bit very stuck - "
207 "no further pstate changes possible\n");
210 } while (query_current_values_with_pending_wait(data
));
214 if (savevid
!= data
->currvid
) {
216 "vid change on fid trans, old 0x%x, new 0x%x\n",
217 savevid
, data
->currvid
);
221 if (fid
!= data
->currfid
) {
223 "fid trans failed, fid 0x%x, curr 0x%x\n", fid
,
231 /* Write a new vid to the hardware */
232 static int write_new_vid(struct powernow_k8_data
*data
, u32 vid
)
235 u32 savefid
= data
->currfid
;
238 if ((data
->currfid
& INVALID_FID_MASK
) || (vid
& INVALID_VID_MASK
)) {
239 printk(KERN_ERR PFX
"internal error - overflow on vid write\n");
244 lo
|= (vid
<< MSR_C_LO_VID_SHIFT
);
245 lo
|= MSR_C_LO_INIT_FID_VID
;
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid
, lo
, STOP_GRANT_5NS
);
251 wrmsr(MSR_FIDVID_CTL
, lo
, STOP_GRANT_5NS
);
253 printk(KERN_ERR PFX
"internal error - pending bit "
254 "very stuck - no further pstate "
255 "changes possible\n");
258 } while (query_current_values_with_pending_wait(data
));
260 if (savefid
!= data
->currfid
) {
261 printk(KERN_ERR PFX
"fid changed on vid trans, old "
263 savefid
, data
->currfid
);
267 if (vid
!= data
->currvid
) {
268 printk(KERN_ERR PFX
"vid trans failed, vid 0x%x, "
278 * Reduce the vid by the max of step or reqvid.
279 * Decreasing vid codes represent increasing voltages:
280 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
282 static int decrease_vid_code_by_step(struct powernow_k8_data
*data
,
283 u32 reqvid
, u32 step
)
285 if ((data
->currvid
- reqvid
) > step
)
286 reqvid
= data
->currvid
- step
;
288 if (write_new_vid(data
, reqvid
))
296 /* Change hardware pstate by single MSR write */
297 static int transition_pstate(struct powernow_k8_data
*data
, u32 pstate
)
299 wrmsr(MSR_PSTATE_CTRL
, pstate
, 0);
300 data
->currpstate
= pstate
;
304 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
305 static int transition_fid_vid(struct powernow_k8_data
*data
,
306 u32 reqfid
, u32 reqvid
)
308 if (core_voltage_pre_transition(data
, reqvid
, reqfid
))
311 if (core_frequency_transition(data
, reqfid
))
314 if (core_voltage_post_transition(data
, reqvid
))
317 if (query_current_values_with_pending_wait(data
))
320 if ((reqfid
!= data
->currfid
) || (reqvid
!= data
->currvid
)) {
321 printk(KERN_ERR PFX
"failed (cpu%d): req 0x%x 0x%x, "
324 reqfid
, reqvid
, data
->currfid
, data
->currvid
);
328 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329 smp_processor_id(), data
->currfid
, data
->currvid
);
334 /* Phase 1 - core voltage transition ... setup voltage */
335 static int core_voltage_pre_transition(struct powernow_k8_data
*data
,
336 u32 reqvid
, u32 reqfid
)
338 u32 rvosteps
= data
->rvo
;
339 u32 savefid
= data
->currfid
;
340 u32 maxvid
, lo
, rvomult
= 1;
342 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343 "reqvid 0x%x, rvo 0x%x\n",
345 data
->currfid
, data
->currvid
, reqvid
, data
->rvo
);
347 if ((savefid
< LO_FID_TABLE_TOP
) && (reqfid
< LO_FID_TABLE_TOP
))
350 rdmsr(MSR_FIDVID_STATUS
, lo
, maxvid
);
351 maxvid
= 0x1f & (maxvid
>> 16);
352 dprintk("ph1 maxvid=0x%x\n", maxvid
);
353 if (reqvid
< maxvid
) /* lower numbers are higher voltages */
356 while (data
->currvid
> reqvid
) {
357 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
358 data
->currvid
, reqvid
);
359 if (decrease_vid_code_by_step(data
, reqvid
, data
->vidmvs
))
363 while ((rvosteps
> 0) &&
364 ((rvomult
* data
->rvo
+ data
->currvid
) > reqvid
)) {
365 if (data
->currvid
== maxvid
) {
368 dprintk("ph1: changing vid for rvo, req 0x%x\n",
370 if (decrease_vid_code_by_step(data
, data
->currvid
-1, 1))
376 if (query_current_values_with_pending_wait(data
))
379 if (savefid
!= data
->currfid
) {
380 printk(KERN_ERR PFX
"ph1 err, currfid changed 0x%x\n",
385 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386 data
->currfid
, data
->currvid
);
391 /* Phase 2 - core frequency transition */
392 static int core_frequency_transition(struct powernow_k8_data
*data
, u32 reqfid
)
394 u32 vcoreqfid
, vcocurrfid
, vcofiddiff
;
395 u32 fid_interval
, savevid
= data
->currvid
;
397 if (data
->currfid
== reqfid
) {
398 printk(KERN_ERR PFX
"ph2 null fid transition 0x%x\n",
403 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
406 data
->currfid
, data
->currvid
, reqfid
);
408 vcoreqfid
= convert_fid_to_vco_fid(reqfid
);
409 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
410 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
411 : vcoreqfid
- vcocurrfid
;
413 if ((reqfid
<= LO_FID_TABLE_TOP
) && (data
->currfid
<= LO_FID_TABLE_TOP
))
416 while (vcofiddiff
> 2) {
417 (data
->currfid
& 1) ? (fid_interval
= 1) : (fid_interval
= 2);
419 if (reqfid
> data
->currfid
) {
420 if (data
->currfid
> LO_FID_TABLE_TOP
) {
421 if (write_new_fid(data
,
422 data
->currfid
+ fid_interval
))
427 2 + convert_fid_to_vco_fid(data
->currfid
)))
431 if (write_new_fid(data
, data
->currfid
- fid_interval
))
435 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
436 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
437 : vcoreqfid
- vcocurrfid
;
440 if (write_new_fid(data
, reqfid
))
443 if (query_current_values_with_pending_wait(data
))
446 if (data
->currfid
!= reqfid
) {
448 "ph2: mismatch, failed fid transition, "
449 "curr 0x%x, req 0x%x\n",
450 data
->currfid
, reqfid
);
454 if (savevid
!= data
->currvid
) {
455 printk(KERN_ERR PFX
"ph2: vid changed, save 0x%x, curr 0x%x\n",
456 savevid
, data
->currvid
);
460 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461 data
->currfid
, data
->currvid
);
466 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
467 static int core_voltage_post_transition(struct powernow_k8_data
*data
,
470 u32 savefid
= data
->currfid
;
471 u32 savereqvid
= reqvid
;
473 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
475 data
->currfid
, data
->currvid
);
477 if (reqvid
!= data
->currvid
) {
478 if (write_new_vid(data
, reqvid
))
481 if (savefid
!= data
->currfid
) {
483 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
484 savefid
, data
->currfid
);
488 if (data
->currvid
!= reqvid
) {
490 "ph3: failed vid transition\n, "
491 "req 0x%x, curr 0x%x",
492 reqvid
, data
->currvid
);
497 if (query_current_values_with_pending_wait(data
))
500 if (savereqvid
!= data
->currvid
) {
501 dprintk("ph3 failed, currvid 0x%x\n", data
->currvid
);
505 if (savefid
!= data
->currfid
) {
506 dprintk("ph3 failed, currfid changed 0x%x\n",
511 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512 data
->currfid
, data
->currvid
);
517 static void check_supported_cpu(void *_rc
)
519 u32 eax
, ebx
, ecx
, edx
;
524 if (current_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
)
527 eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
528 if (((eax
& CPUID_XFAM
) != CPUID_XFAM_K8
) &&
529 ((eax
& CPUID_XFAM
) < CPUID_XFAM_10H
))
532 if ((eax
& CPUID_XFAM
) == CPUID_XFAM_K8
) {
533 if (((eax
& CPUID_USE_XFAM_XMOD
) != CPUID_USE_XFAM_XMOD
) ||
534 ((eax
& CPUID_XMOD
) > CPUID_XMOD_REV_MASK
)) {
536 "Processor cpuid %x not supported\n", eax
);
540 eax
= cpuid_eax(CPUID_GET_MAX_CAPABILITIES
);
541 if (eax
< CPUID_FREQ_VOLT_CAPABILITIES
) {
543 "No frequency change capabilities detected\n");
547 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
548 if ((edx
& P_STATE_TRANSITION_CAPABLE
)
549 != P_STATE_TRANSITION_CAPABLE
) {
551 "Power state transitions not supported\n");
554 } else { /* must be a HW Pstate capable processor */
555 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
556 if ((edx
& USE_HW_PSTATE
) == USE_HW_PSTATE
)
557 cpu_family
= CPU_HW_PSTATE
;
565 static int check_pst_table(struct powernow_k8_data
*data
, struct pst_s
*pst
,
571 for (j
= 0; j
< data
->numps
; j
++) {
572 if (pst
[j
].vid
> LEAST_VID
) {
573 printk(KERN_ERR FW_BUG PFX
"vid %d invalid : 0x%x\n",
577 if (pst
[j
].vid
< data
->rvo
) {
579 printk(KERN_ERR FW_BUG PFX
"0 vid exceeded with pstate"
583 if (pst
[j
].vid
< maxvid
+ data
->rvo
) {
584 /* vid + rvo >= maxvid */
585 printk(KERN_ERR FW_BUG PFX
"maxvid exceeded with pstate"
589 if (pst
[j
].fid
> MAX_FID
) {
590 printk(KERN_ERR FW_BUG PFX
"maxfid exceeded with pstate"
594 if (j
&& (pst
[j
].fid
< HI_FID_TABLE_BOTTOM
)) {
595 /* Only first fid is allowed to be in "low" range */
596 printk(KERN_ERR FW_BUG PFX
"two low fids - %d : "
597 "0x%x\n", j
, pst
[j
].fid
);
600 if (pst
[j
].fid
< lastfid
)
601 lastfid
= pst
[j
].fid
;
604 printk(KERN_ERR FW_BUG PFX
"lastfid invalid\n");
607 if (lastfid
> LO_FID_TABLE_TOP
)
608 printk(KERN_INFO FW_BUG PFX
609 "first fid not from lo freq table\n");
614 static void invalidate_entry(struct cpufreq_frequency_table
*powernow_table
,
617 powernow_table
[entry
].frequency
= CPUFREQ_ENTRY_INVALID
;
620 static void print_basics(struct powernow_k8_data
*data
)
623 for (j
= 0; j
< data
->numps
; j
++) {
624 if (data
->powernow_table
[j
].frequency
!=
625 CPUFREQ_ENTRY_INVALID
) {
626 if (cpu_family
== CPU_HW_PSTATE
) {
628 " %d : pstate %d (%d MHz)\n", j
,
629 data
->powernow_table
[j
].index
,
630 data
->powernow_table
[j
].frequency
/1000);
633 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
635 data
->powernow_table
[j
].index
& 0xff,
636 data
->powernow_table
[j
].frequency
/1000,
637 data
->powernow_table
[j
].index
>> 8);
642 printk(KERN_INFO PFX
"Only %d pstates on battery\n",
646 static u32
freq_from_fid_did(u32 fid
, u32 did
)
650 if (boot_cpu_data
.x86
== 0x10)
651 mhz
= (100 * (fid
+ 0x10)) >> did
;
652 else if (boot_cpu_data
.x86
== 0x11)
653 mhz
= (100 * (fid
+ 8)) >> did
;
660 static int fill_powernow_table(struct powernow_k8_data
*data
,
661 struct pst_s
*pst
, u8 maxvid
)
663 struct cpufreq_frequency_table
*powernow_table
;
667 /* use ACPI support to get full speed on mains power */
668 printk(KERN_WARNING PFX
669 "Only %d pstates usable (use ACPI driver for full "
670 "range\n", data
->batps
);
671 data
->numps
= data
->batps
;
674 for (j
= 1; j
< data
->numps
; j
++) {
675 if (pst
[j
-1].fid
>= pst
[j
].fid
) {
676 printk(KERN_ERR PFX
"PST out of sequence\n");
681 if (data
->numps
< 2) {
682 printk(KERN_ERR PFX
"no p states to transition\n");
686 if (check_pst_table(data
, pst
, maxvid
))
689 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
690 * (data
->numps
+ 1)), GFP_KERNEL
);
691 if (!powernow_table
) {
692 printk(KERN_ERR PFX
"powernow_table memory alloc failure\n");
696 for (j
= 0; j
< data
->numps
; j
++) {
698 powernow_table
[j
].index
= pst
[j
].fid
; /* lower 8 bits */
699 powernow_table
[j
].index
|= (pst
[j
].vid
<< 8); /* upper 8 bits */
700 freq
= find_khz_freq_from_fid(pst
[j
].fid
);
701 powernow_table
[j
].frequency
= freq
;
703 powernow_table
[data
->numps
].frequency
= CPUFREQ_TABLE_END
;
704 powernow_table
[data
->numps
].index
= 0;
706 if (query_current_values_with_pending_wait(data
)) {
707 kfree(powernow_table
);
711 dprintk("cfid 0x%x, cvid 0x%x\n", data
->currfid
, data
->currvid
);
712 data
->powernow_table
= powernow_table
;
713 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
716 for (j
= 0; j
< data
->numps
; j
++)
717 if ((pst
[j
].fid
== data
->currfid
) &&
718 (pst
[j
].vid
== data
->currvid
))
721 dprintk("currfid/vid do not match PST, ignoring\n");
725 /* Find and validate the PSB/PST table in BIOS. */
726 static int find_psb_table(struct powernow_k8_data
*data
)
735 for (i
= 0xc0000; i
< 0xffff0; i
+= 0x10) {
736 /* Scan BIOS looking for the signature. */
737 /* It can not be at ffff0 - it is too big. */
739 psb
= phys_to_virt(i
);
740 if (memcmp(psb
, PSB_ID_STRING
, PSB_ID_STRING_LEN
) != 0)
743 dprintk("found PSB header at 0x%p\n", psb
);
745 dprintk("table vers: 0x%x\n", psb
->tableversion
);
746 if (psb
->tableversion
!= PSB_VERSION_1_4
) {
747 printk(KERN_ERR FW_BUG PFX
"PSB table is not v1.4\n");
751 dprintk("flags: 0x%x\n", psb
->flags1
);
753 printk(KERN_ERR FW_BUG PFX
"unknown flags\n");
757 data
->vstable
= psb
->vstable
;
758 dprintk("voltage stabilization time: %d(*20us)\n",
761 dprintk("flags2: 0x%x\n", psb
->flags2
);
762 data
->rvo
= psb
->flags2
& 3;
763 data
->irt
= ((psb
->flags2
) >> 2) & 3;
764 mvs
= ((psb
->flags2
) >> 4) & 3;
765 data
->vidmvs
= 1 << mvs
;
766 data
->batps
= ((psb
->flags2
) >> 6) & 3;
768 dprintk("ramp voltage offset: %d\n", data
->rvo
);
769 dprintk("isochronous relief time: %d\n", data
->irt
);
770 dprintk("maximum voltage step: %d - 0x%x\n", mvs
, data
->vidmvs
);
772 dprintk("numpst: 0x%x\n", psb
->num_tables
);
773 cpst
= psb
->num_tables
;
774 if ((psb
->cpuid
== 0x00000fc0) ||
775 (psb
->cpuid
== 0x00000fe0)) {
776 thiscpuid
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
777 if ((thiscpuid
== 0x00000fc0) ||
778 (thiscpuid
== 0x00000fe0))
782 printk(KERN_ERR FW_BUG PFX
"numpst must be 1\n");
786 data
->plllock
= psb
->plllocktime
;
787 dprintk("plllocktime: 0x%x (units 1us)\n", psb
->plllocktime
);
788 dprintk("maxfid: 0x%x\n", psb
->maxfid
);
789 dprintk("maxvid: 0x%x\n", psb
->maxvid
);
790 maxvid
= psb
->maxvid
;
792 data
->numps
= psb
->numps
;
793 dprintk("numpstates: 0x%x\n", data
->numps
);
794 return fill_powernow_table(data
,
795 (struct pst_s
*)(psb
+1), maxvid
);
798 * If you see this message, complain to BIOS manufacturer. If
799 * he tells you "we do not support Linux" or some similar
800 * nonsense, remember that Windows 2000 uses the same legacy
801 * mechanism that the old Linux PSB driver uses. Tell them it
802 * is broken with Windows 2000.
804 * The reference to the AMD documentation is chapter 9 in the
805 * BIOS and Kernel Developer's Guide, which is available on
808 printk(KERN_ERR FW_BUG PFX
"No PSB or ACPI _PSS objects\n");
809 printk(KERN_ERR PFX
"Make sure that your BIOS is up to date"
810 " and Cool'N'Quiet support is enabled in BIOS setup\n");
814 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
,
819 if (!data
->acpi_data
.state_count
|| (cpu_family
== CPU_HW_PSTATE
))
822 control
= data
->acpi_data
.states
[index
].control
;
823 data
->irt
= (control
>> IRT_SHIFT
) & IRT_MASK
;
824 data
->rvo
= (control
>> RVO_SHIFT
) & RVO_MASK
;
825 data
->exttype
= (control
>> EXT_TYPE_SHIFT
) & EXT_TYPE_MASK
;
826 data
->plllock
= (control
>> PLL_L_SHIFT
) & PLL_L_MASK
;
827 data
->vidmvs
= 1 << ((control
>> MVS_SHIFT
) & MVS_MASK
);
828 data
->vstable
= (control
>> VST_SHIFT
) & VST_MASK
;
831 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
)
833 struct cpufreq_frequency_table
*powernow_table
;
834 int ret_val
= -ENODEV
;
837 if (acpi_processor_register_performance(&data
->acpi_data
, data
->cpu
)) {
838 dprintk("register performance failed: bad ACPI data\n");
842 /* verify the data contained in the ACPI structures */
843 if (data
->acpi_data
.state_count
<= 1) {
844 dprintk("No ACPI P-States\n");
848 control
= data
->acpi_data
.control_register
.space_id
;
849 status
= data
->acpi_data
.status_register
.space_id
;
851 if ((control
!= ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
852 (status
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
853 dprintk("Invalid control/status registers (%x - %x)\n",
858 /* fill in data->powernow_table */
859 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
860 * (data
->acpi_data
.state_count
+ 1)), GFP_KERNEL
);
861 if (!powernow_table
) {
862 dprintk("powernow_table memory alloc failure\n");
867 data
->numps
= data
->acpi_data
.state_count
;
868 powernow_k8_acpi_pst_values(data
, 0);
870 if (cpu_family
== CPU_HW_PSTATE
)
871 ret_val
= fill_powernow_table_pstate(data
, powernow_table
);
873 ret_val
= fill_powernow_table_fidvid(data
, powernow_table
);
877 powernow_table
[data
->acpi_data
.state_count
].frequency
=
879 powernow_table
[data
->acpi_data
.state_count
].index
= 0;
880 data
->powernow_table
= powernow_table
;
882 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
885 /* notify BIOS that we exist */
886 acpi_processor_notify_smm(THIS_MODULE
);
888 if (!zalloc_cpumask_var(&data
->acpi_data
.shared_cpu_map
, GFP_KERNEL
)) {
890 "unable to alloc powernow_k8_data cpumask\n");
898 kfree(powernow_table
);
901 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
903 /* data->acpi_data.state_count informs us at ->exit()
904 * whether ACPI was used */
905 data
->acpi_data
.state_count
= 0;
910 static int fill_powernow_table_pstate(struct powernow_k8_data
*data
,
911 struct cpufreq_frequency_table
*powernow_table
)
915 rdmsr(MSR_PSTATE_CUR_LIMIT
, lo
, hi
);
916 data
->max_hw_pstate
= (lo
& HW_PSTATE_MAX_MASK
) >> HW_PSTATE_MAX_SHIFT
;
918 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
921 index
= data
->acpi_data
.states
[i
].control
& HW_PSTATE_MASK
;
922 if (index
> data
->max_hw_pstate
) {
923 printk(KERN_ERR PFX
"invalid pstate %d - "
924 "bad value %d.\n", i
, index
);
925 printk(KERN_ERR PFX
"Please report to BIOS "
927 invalidate_entry(powernow_table
, i
);
930 rdmsr(MSR_PSTATE_DEF_BASE
+ index
, lo
, hi
);
931 if (!(hi
& HW_PSTATE_VALID_MASK
)) {
932 dprintk("invalid pstate %d, ignoring\n", index
);
933 invalidate_entry(powernow_table
, i
);
937 powernow_table
[i
].index
= index
;
939 /* Frequency may be rounded for these */
940 if ((boot_cpu_data
.x86
== 0x10 && boot_cpu_data
.x86_model
< 10)
941 || boot_cpu_data
.x86
== 0x11) {
942 powernow_table
[i
].frequency
=
943 freq_from_fid_did(lo
& 0x3f, (lo
>> 6) & 7);
945 powernow_table
[i
].frequency
=
946 data
->acpi_data
.states
[i
].core_frequency
* 1000;
951 static int fill_powernow_table_fidvid(struct powernow_k8_data
*data
,
952 struct cpufreq_frequency_table
*powernow_table
)
956 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
963 status
= data
->acpi_data
.states
[i
].status
;
964 fid
= status
& EXT_FID_MASK
;
965 vid
= (status
>> VID_SHIFT
) & EXT_VID_MASK
;
967 control
= data
->acpi_data
.states
[i
].control
;
968 fid
= control
& FID_MASK
;
969 vid
= (control
>> VID_SHIFT
) & VID_MASK
;
972 dprintk(" %d : fid 0x%x, vid 0x%x\n", i
, fid
, vid
);
974 index
= fid
| (vid
<<8);
975 powernow_table
[i
].index
= index
;
977 freq
= find_khz_freq_from_fid(fid
);
978 powernow_table
[i
].frequency
= freq
;
980 /* verify frequency is OK */
981 if ((freq
> (MAX_FREQ
* 1000)) || (freq
< (MIN_FREQ
* 1000))) {
982 dprintk("invalid freq %u kHz, ignoring\n", freq
);
983 invalidate_entry(powernow_table
, i
);
987 /* verify voltage is OK -
988 * BIOSs are using "off" to indicate invalid */
989 if (vid
== VID_OFF
) {
990 dprintk("invalid vid %u, ignoring\n", vid
);
991 invalidate_entry(powernow_table
, i
);
995 if (freq
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
996 printk(KERN_INFO PFX
"invalid freq entries "
997 "%u kHz vs. %u kHz\n", freq
,
999 (data
->acpi_data
.states
[i
].core_frequency
1001 invalidate_entry(powernow_table
, i
);
1008 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
)
1010 if (data
->acpi_data
.state_count
)
1011 acpi_processor_unregister_performance(&data
->acpi_data
,
1013 free_cpumask_var(data
->acpi_data
.shared_cpu_map
);
1016 static int get_transition_latency(struct powernow_k8_data
*data
)
1018 int max_latency
= 0;
1020 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
1021 int cur_latency
= data
->acpi_data
.states
[i
].transition_latency
1022 + data
->acpi_data
.states
[i
].bus_master_latency
;
1023 if (cur_latency
> max_latency
)
1024 max_latency
= cur_latency
;
1026 if (max_latency
== 0) {
1028 * Fam 11h and later may return 0 as transition latency. This
1029 * is intended and means "very fast". While cpufreq core and
1030 * governors currently can handle that gracefully, better set it
1031 * to 1 to avoid problems in the future.
1033 if (boot_cpu_data
.x86
< 0x11)
1034 printk(KERN_ERR FW_WARN PFX
"Invalid zero transition "
1038 /* value in usecs, needs to be in nanoseconds */
1039 return 1000 * max_latency
;
1042 /* Take a frequency, and issue the fid/vid transition command */
1043 static int transition_frequency_fidvid(struct powernow_k8_data
*data
,
1049 struct cpufreq_freqs freqs
;
1051 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
1053 /* fid/vid correctness check for k8 */
1054 /* fid are the lower 8 bits of the index we stored into
1055 * the cpufreq frequency table in find_psb_table, vid
1056 * are the upper 8 bits.
1058 fid
= data
->powernow_table
[index
].index
& 0xFF;
1059 vid
= (data
->powernow_table
[index
].index
& 0xFF00) >> 8;
1061 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid
, vid
);
1063 if (query_current_values_with_pending_wait(data
))
1066 if ((data
->currvid
== vid
) && (data
->currfid
== fid
)) {
1067 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1072 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1073 smp_processor_id(), fid
, vid
);
1074 freqs
.old
= find_khz_freq_from_fid(data
->currfid
);
1075 freqs
.new = find_khz_freq_from_fid(fid
);
1077 for_each_cpu(i
, data
->available_cores
) {
1079 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1082 res
= transition_fid_vid(data
, fid
, vid
);
1083 freqs
.new = find_khz_freq_from_fid(data
->currfid
);
1085 for_each_cpu(i
, data
->available_cores
) {
1087 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1092 /* Take a frequency, and issue the hardware pstate transition command */
1093 static int transition_frequency_pstate(struct powernow_k8_data
*data
,
1098 struct cpufreq_freqs freqs
;
1100 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
1102 /* get MSR index for hardware pstate transition */
1103 pstate
= index
& HW_PSTATE_MASK
;
1104 if (pstate
> data
->max_hw_pstate
)
1106 freqs
.old
= find_khz_freq_from_pstate(data
->powernow_table
,
1108 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1110 for_each_cpu(i
, data
->available_cores
) {
1112 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1115 res
= transition_pstate(data
, pstate
);
1116 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1118 for_each_cpu(i
, data
->available_cores
) {
1120 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1125 /* Driver entry point to switch to the target frequency */
1126 static int powernowk8_target(struct cpufreq_policy
*pol
,
1127 unsigned targfreq
, unsigned relation
)
1129 cpumask_var_t oldmask
;
1130 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1133 unsigned int newstate
;
1139 checkfid
= data
->currfid
;
1140 checkvid
= data
->currvid
;
1142 /* only run on specific CPU from here on. */
1143 /* This is poor form: use a workqueue or smp_call_function_single */
1144 if (!alloc_cpumask_var(&oldmask
, GFP_KERNEL
))
1147 cpumask_copy(oldmask
, tsk_cpus_allowed(current
));
1148 set_cpus_allowed_ptr(current
, cpumask_of(pol
->cpu
));
1150 if (smp_processor_id() != pol
->cpu
) {
1151 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1155 if (pending_bit_stuck()) {
1156 printk(KERN_ERR PFX
"failing targ, change pending bit set\n");
1160 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1161 pol
->cpu
, targfreq
, pol
->min
, pol
->max
, relation
);
1163 if (query_current_values_with_pending_wait(data
))
1166 if (cpu_family
!= CPU_HW_PSTATE
) {
1167 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1168 data
->currfid
, data
->currvid
);
1170 if ((checkvid
!= data
->currvid
) ||
1171 (checkfid
!= data
->currfid
)) {
1172 printk(KERN_INFO PFX
1173 "error - out of sync, fix 0x%x 0x%x, "
1175 checkfid
, data
->currfid
,
1176 checkvid
, data
->currvid
);
1180 if (cpufreq_frequency_table_target(pol
, data
->powernow_table
,
1181 targfreq
, relation
, &newstate
))
1184 mutex_lock(&fidvid_mutex
);
1186 powernow_k8_acpi_pst_values(data
, newstate
);
1188 if (cpu_family
== CPU_HW_PSTATE
)
1189 ret
= transition_frequency_pstate(data
, newstate
);
1191 ret
= transition_frequency_fidvid(data
, newstate
);
1193 printk(KERN_ERR PFX
"transition frequency failed\n");
1195 mutex_unlock(&fidvid_mutex
);
1198 mutex_unlock(&fidvid_mutex
);
1200 if (cpu_family
== CPU_HW_PSTATE
)
1201 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1204 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1208 set_cpus_allowed_ptr(current
, oldmask
);
1209 free_cpumask_var(oldmask
);
1213 /* Driver entry point to verify the policy and range of frequencies */
1214 static int powernowk8_verify(struct cpufreq_policy
*pol
)
1216 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1221 return cpufreq_frequency_table_verify(pol
, data
->powernow_table
);
1224 struct init_on_cpu
{
1225 struct powernow_k8_data
*data
;
1229 static void __cpuinit
powernowk8_cpu_init_on_cpu(void *_init_on_cpu
)
1231 struct init_on_cpu
*init_on_cpu
= _init_on_cpu
;
1233 if (pending_bit_stuck()) {
1234 printk(KERN_ERR PFX
"failing init, change pending bit set\n");
1235 init_on_cpu
->rc
= -ENODEV
;
1239 if (query_current_values_with_pending_wait(init_on_cpu
->data
)) {
1240 init_on_cpu
->rc
= -ENODEV
;
1244 if (cpu_family
== CPU_OPTERON
)
1247 init_on_cpu
->rc
= 0;
1250 /* per CPU init entry point to the driver */
1251 static int __cpuinit
powernowk8_cpu_init(struct cpufreq_policy
*pol
)
1253 static const char ACPI_PSS_BIOS_BUG_MSG
[] =
1254 KERN_ERR FW_BUG PFX
"No compatible ACPI _PSS objects found.\n"
1255 FW_BUG PFX
"Try again with latest BIOS.\n";
1256 struct powernow_k8_data
*data
;
1257 struct init_on_cpu init_on_cpu
;
1259 struct cpuinfo_x86
*c
= &cpu_data(pol
->cpu
);
1261 if (!cpu_online(pol
->cpu
))
1264 smp_call_function_single(pol
->cpu
, check_supported_cpu
, &rc
, 1);
1268 data
= kzalloc(sizeof(struct powernow_k8_data
), GFP_KERNEL
);
1270 printk(KERN_ERR PFX
"unable to alloc powernow_k8_data");
1274 data
->cpu
= pol
->cpu
;
1275 data
->currpstate
= HW_PSTATE_INVALID
;
1277 if (powernow_k8_cpu_init_acpi(data
)) {
1279 * Use the PSB BIOS structure. This is only availabe on
1280 * an UP version, and is deprecated by AMD.
1282 if (num_online_cpus() != 1) {
1283 printk_once(ACPI_PSS_BIOS_BUG_MSG
);
1286 if (pol
->cpu
!= 0) {
1287 printk(KERN_ERR FW_BUG PFX
"No ACPI _PSS objects for "
1288 "CPU other than CPU0. Complain to your BIOS "
1292 rc
= find_psb_table(data
);
1296 /* Take a crude guess here.
1297 * That guess was in microseconds, so multiply with 1000 */
1298 pol
->cpuinfo
.transition_latency
= (
1299 ((data
->rvo
+ 8) * data
->vstable
* VST_UNITS_20US
) +
1300 ((1 << data
->irt
) * 30)) * 1000;
1301 } else /* ACPI _PSS objects available */
1302 pol
->cpuinfo
.transition_latency
= get_transition_latency(data
);
1304 /* only run on specific CPU from here on */
1305 init_on_cpu
.data
= data
;
1306 smp_call_function_single(data
->cpu
, powernowk8_cpu_init_on_cpu
,
1308 rc
= init_on_cpu
.rc
;
1310 goto err_out_exit_acpi
;
1312 if (cpu_family
== CPU_HW_PSTATE
)
1313 cpumask_copy(pol
->cpus
, cpumask_of(pol
->cpu
));
1315 cpumask_copy(pol
->cpus
, cpu_core_mask(pol
->cpu
));
1316 data
->available_cores
= pol
->cpus
;
1318 if (cpu_family
== CPU_HW_PSTATE
)
1319 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1322 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1323 dprintk("policy current frequency %d kHz\n", pol
->cur
);
1325 /* min/max the cpu is capable of */
1326 if (cpufreq_frequency_table_cpuinfo(pol
, data
->powernow_table
)) {
1327 printk(KERN_ERR FW_BUG PFX
"invalid powernow_table\n");
1328 powernow_k8_cpu_exit_acpi(data
);
1329 kfree(data
->powernow_table
);
1334 /* Check for APERF/MPERF support in hardware */
1335 if (cpu_has(c
, X86_FEATURE_APERFMPERF
))
1336 cpufreq_amd64_driver
.getavg
= cpufreq_get_measured_perf
;
1338 cpufreq_frequency_table_get_attr(data
->powernow_table
, pol
->cpu
);
1340 if (cpu_family
== CPU_HW_PSTATE
)
1341 dprintk("cpu_init done, current pstate 0x%x\n",
1344 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1345 data
->currfid
, data
->currvid
);
1347 per_cpu(powernow_data
, pol
->cpu
) = data
;
1352 powernow_k8_cpu_exit_acpi(data
);
1359 static int __devexit
powernowk8_cpu_exit(struct cpufreq_policy
*pol
)
1361 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1366 powernow_k8_cpu_exit_acpi(data
);
1368 cpufreq_frequency_table_put_attr(pol
->cpu
);
1370 kfree(data
->powernow_table
);
1372 per_cpu(powernow_data
, pol
->cpu
) = NULL
;
1377 static void query_values_on_cpu(void *_err
)
1380 struct powernow_k8_data
*data
= __get_cpu_var(powernow_data
);
1382 *err
= query_current_values_with_pending_wait(data
);
1385 static unsigned int powernowk8_get(unsigned int cpu
)
1387 struct powernow_k8_data
*data
= per_cpu(powernow_data
, cpu
);
1388 unsigned int khz
= 0;
1394 smp_call_function_single(cpu
, query_values_on_cpu
, &err
, true);
1398 if (cpu_family
== CPU_HW_PSTATE
)
1399 khz
= find_khz_freq_from_pstate(data
->powernow_table
,
1402 khz
= find_khz_freq_from_fid(data
->currfid
);
1409 static void _cpb_toggle_msrs(bool t
)
1415 rdmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1417 for_each_cpu(cpu
, cpu_online_mask
) {
1418 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
1424 wrmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1430 * Switch on/off core performance boosting.
1435 static void cpb_toggle(bool t
)
1440 if (t
&& !cpb_enabled
) {
1442 _cpb_toggle_msrs(t
);
1443 printk(KERN_INFO PFX
"Core Boosting enabled.\n");
1444 } else if (!t
&& cpb_enabled
) {
1445 cpb_enabled
= false;
1446 _cpb_toggle_msrs(t
);
1447 printk(KERN_INFO PFX
"Core Boosting disabled.\n");
1451 static ssize_t
store_cpb(struct cpufreq_policy
*policy
, const char *buf
,
1455 unsigned long val
= 0;
1457 ret
= strict_strtoul(buf
, 10, &val
);
1458 if (!ret
&& (val
== 0 || val
== 1) && cpb_capable
)
1466 static ssize_t
show_cpb(struct cpufreq_policy
*policy
, char *buf
)
1468 return sprintf(buf
, "%u\n", cpb_enabled
);
1471 #define define_one_rw(_name) \
1472 static struct freq_attr _name = \
1473 __ATTR(_name, 0644, show_##_name, store_##_name)
1477 static struct freq_attr
*powernow_k8_attr
[] = {
1478 &cpufreq_freq_attr_scaling_available_freqs
,
1483 static struct cpufreq_driver cpufreq_amd64_driver
= {
1484 .verify
= powernowk8_verify
,
1485 .target
= powernowk8_target
,
1486 .bios_limit
= acpi_processor_get_bios_limit
,
1487 .init
= powernowk8_cpu_init
,
1488 .exit
= __devexit_p(powernowk8_cpu_exit
),
1489 .get
= powernowk8_get
,
1490 .name
= "powernow-k8",
1491 .owner
= THIS_MODULE
,
1492 .attr
= powernow_k8_attr
,
1496 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1497 * cannot block the remaining ones from boosting. On the CPU_UP path we
1498 * simply keep the boost-disable flag in sync with the current global
1501 static int cpb_notify(struct notifier_block
*nb
, unsigned long action
,
1504 unsigned cpu
= (long)hcpu
;
1508 case CPU_UP_PREPARE
:
1509 case CPU_UP_PREPARE_FROZEN
:
1512 rdmsr_on_cpu(cpu
, MSR_K7_HWCR
, &lo
, &hi
);
1514 wrmsr_on_cpu(cpu
, MSR_K7_HWCR
, lo
, hi
);
1518 case CPU_DOWN_PREPARE
:
1519 case CPU_DOWN_PREPARE_FROZEN
:
1520 rdmsr_on_cpu(cpu
, MSR_K7_HWCR
, &lo
, &hi
);
1522 wrmsr_on_cpu(cpu
, MSR_K7_HWCR
, lo
, hi
);
1532 static struct notifier_block cpb_nb
= {
1533 .notifier_call
= cpb_notify
,
1536 /* driver entry point for init */
1537 static int __cpuinit
powernowk8_init(void)
1539 unsigned int i
, supported_cpus
= 0, cpu
;
1541 for_each_online_cpu(i
) {
1543 smp_call_function_single(i
, check_supported_cpu
, &rc
, 1);
1548 if (supported_cpus
!= num_online_cpus())
1551 printk(KERN_INFO PFX
"Found %d %s (%d cpu cores) (" VERSION
")\n",
1552 num_online_nodes(), boot_cpu_data
.x86_model_id
, supported_cpus
);
1554 if (boot_cpu_has(X86_FEATURE_CPB
)) {
1558 register_cpu_notifier(&cpb_nb
);
1560 msrs
= msrs_alloc();
1562 printk(KERN_ERR
"%s: Error allocating msrs!\n", __func__
);
1566 rdmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1568 for_each_cpu(cpu
, cpu_online_mask
) {
1569 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
1570 cpb_enabled
|= !(!!(reg
->l
& BIT(25)));
1573 printk(KERN_INFO PFX
"Core Performance Boosting: %s.\n",
1574 (cpb_enabled
? "on" : "off"));
1577 return cpufreq_register_driver(&cpufreq_amd64_driver
);
1580 /* driver entry point for term */
1581 static void __exit
powernowk8_exit(void)
1585 if (boot_cpu_has(X86_FEATURE_CPB
)) {
1589 unregister_cpu_notifier(&cpb_nb
);
1592 cpufreq_unregister_driver(&cpufreq_amd64_driver
);
1595 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1596 "Mark Langsdorf <mark.langsdorf@amd.com>");
1597 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1598 MODULE_LICENSE("GPL");
1600 late_initcall(powernowk8_init
);
1601 module_exit(powernowk8_exit
);