1 /* Generic MTRR (Memory Type Range Register) driver.
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
49 #include <asm/processor.h>
58 unsigned int mtrr_usage_table
[MTRR_MAX_VAR_RANGES
];
59 static DEFINE_MUTEX(mtrr_mutex
);
61 u64 size_or_mask
, size_and_mask
;
62 static bool mtrr_aps_delayed_init
;
64 static const struct mtrr_ops
*mtrr_ops
[X86_VENDOR_NUM
];
66 const struct mtrr_ops
*mtrr_if
;
68 static void set_mtrr(unsigned int reg
, unsigned long base
,
69 unsigned long size
, mtrr_type type
);
71 void set_mtrr_ops(const struct mtrr_ops
*ops
)
73 if (ops
->vendor
&& ops
->vendor
< X86_VENDOR_NUM
)
74 mtrr_ops
[ops
->vendor
] = ops
;
77 /* Returns non-zero if we have the write-combining memory type */
78 static int have_wrcomb(void)
83 dev
= pci_get_class(PCI_CLASS_BRIDGE_HOST
<< 8, NULL
);
86 * ServerWorks LE chipsets < rev 6 have problems with
87 * write-combining. Don't allow it and leave room for other
88 * chipsets to be tagged
90 if (dev
->vendor
== PCI_VENDOR_ID_SERVERWORKS
&&
91 dev
->device
== PCI_DEVICE_ID_SERVERWORKS_LE
) {
92 pci_read_config_byte(dev
, PCI_CLASS_REVISION
, &rev
);
94 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
100 * Intel 450NX errata # 23. Non ascending cacheline evictions to
101 * write combining memory may resulting in data corruption
103 if (dev
->vendor
== PCI_VENDOR_ID_INTEL
&&
104 dev
->device
== PCI_DEVICE_ID_INTEL_82451NX
) {
105 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
111 return mtrr_if
->have_wrcomb
? mtrr_if
->have_wrcomb() : 0;
114 /* This function returns the number of variable MTRRs */
115 static void __init
set_num_var_ranges(void)
117 unsigned long config
= 0, dummy
;
120 rdmsr(MSR_MTRRcap
, config
, dummy
);
121 else if (is_cpu(AMD
))
123 else if (is_cpu(CYRIX
) || is_cpu(CENTAUR
))
126 num_var_ranges
= config
& 0xff;
129 static void __init
init_table(void)
133 max
= num_var_ranges
;
134 for (i
= 0; i
< max
; i
++)
135 mtrr_usage_table
[i
] = 1;
138 struct set_mtrr_data
{
141 unsigned long smp_base
;
142 unsigned long smp_size
;
143 unsigned int smp_reg
;
147 static DEFINE_PER_CPU(struct cpu_stop_work
, mtrr_work
);
150 * mtrr_work_handler - Synchronisation handler. Executed by "other" CPUs.
151 * @info: pointer to mtrr configuration data
155 static int mtrr_work_handler(void *info
)
158 struct set_mtrr_data
*data
= info
;
161 atomic_dec(&data
->count
);
162 while (!atomic_read(&data
->gate
))
165 local_irq_save(flags
);
167 atomic_dec(&data
->count
);
168 while (atomic_read(&data
->gate
))
171 /* The master has cleared me to execute */
172 if (data
->smp_reg
!= ~0U) {
173 mtrr_if
->set(data
->smp_reg
, data
->smp_base
,
174 data
->smp_size
, data
->smp_type
);
175 } else if (mtrr_aps_delayed_init
) {
177 * Initialize the MTRRs inaddition to the synchronisation.
182 atomic_dec(&data
->count
);
183 while (!atomic_read(&data
->gate
))
186 atomic_dec(&data
->count
);
187 local_irq_restore(flags
);
192 static inline int types_compatible(mtrr_type type1
, mtrr_type type2
)
194 return type1
== MTRR_TYPE_UNCACHABLE
||
195 type2
== MTRR_TYPE_UNCACHABLE
||
196 (type1
== MTRR_TYPE_WRTHROUGH
&& type2
== MTRR_TYPE_WRBACK
) ||
197 (type1
== MTRR_TYPE_WRBACK
&& type2
== MTRR_TYPE_WRTHROUGH
);
201 * set_mtrr - update mtrrs on all processors
202 * @reg: mtrr in question
207 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
209 * 1. Queue work to do the following on all processors:
210 * 2. Disable Interrupts
211 * 3. Wait for all procs to do so
212 * 4. Enter no-fill cache mode
216 * 8. Disable all range registers
217 * 9. Update the MTRRs
218 * 10. Enable all range registers
219 * 11. Flush all TLBs and caches again
220 * 12. Enter normal cache mode and reenable caching
222 * 14. Wait for buddies to catch up
223 * 15. Enable interrupts.
225 * What does that mean for us? Well, first we set data.count to the number
226 * of CPUs. As each CPU announces that it started the rendezvous handler by
227 * decrementing the count, We reset data.count and set the data.gate flag
228 * allowing all the cpu's to proceed with the work. As each cpu disables
229 * interrupts, it'll decrement data.count once. We wait until it hits 0 and
230 * proceed. We clear the data.gate flag and reset data.count. Meanwhile, they
231 * are waiting for that flag to be cleared. Once it's cleared, each
232 * CPU goes through the transition of updating MTRRs.
233 * The CPU vendors may each do it differently,
234 * so we call mtrr_if->set() callback and let them take care of it.
235 * When they're done, they again decrement data->count and wait for data.gate
237 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag
238 * Everyone then enables interrupts and we all continue on.
240 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
244 set_mtrr(unsigned int reg
, unsigned long base
, unsigned long size
, mtrr_type type
)
246 struct set_mtrr_data data
;
253 data
.smp_base
= base
;
254 data
.smp_size
= size
;
255 data
.smp_type
= type
;
256 atomic_set(&data
.count
, num_booting_cpus() - 1);
258 /* Make sure data.count is visible before unleashing other CPUs */
260 atomic_set(&data
.gate
, 0);
262 /* Start the ball rolling on other CPUs */
263 for_each_online_cpu(cpu
) {
264 struct cpu_stop_work
*work
= &per_cpu(mtrr_work
, cpu
);
266 if (cpu
== smp_processor_id())
269 stop_one_cpu_nowait(cpu
, mtrr_work_handler
, &data
, work
);
273 while (atomic_read(&data
.count
))
276 /* Ok, reset count and toggle gate */
277 atomic_set(&data
.count
, num_booting_cpus() - 1);
279 atomic_set(&data
.gate
, 1);
281 local_irq_save(flags
);
283 while (atomic_read(&data
.count
))
286 /* Ok, reset count and toggle gate */
287 atomic_set(&data
.count
, num_booting_cpus() - 1);
289 atomic_set(&data
.gate
, 0);
291 /* Do our MTRR business */
295 * We use this same function to initialize the mtrrs on boot.
296 * The state of the boot cpu's mtrrs has been saved, and we want
297 * to replicate across all the APs.
298 * If we're doing that @reg is set to something special...
301 mtrr_if
->set(reg
, base
, size
, type
);
302 else if (!mtrr_aps_delayed_init
)
305 /* Wait for the others */
306 while (atomic_read(&data
.count
))
309 atomic_set(&data
.count
, num_booting_cpus() - 1);
311 atomic_set(&data
.gate
, 1);
314 * Wait here for everyone to have seen the gate change
315 * So we're the last ones to touch 'data'
317 while (atomic_read(&data
.count
))
320 local_irq_restore(flags
);
325 * mtrr_add_page - Add a memory type region
326 * @base: Physical base address of region in pages (in units of 4 kB!)
327 * @size: Physical size of region in pages (4 kB)
328 * @type: Type of MTRR desired
329 * @increment: If this is true do usage counting on the region
331 * Memory type region registers control the caching on newer Intel and
332 * non Intel processors. This function allows drivers to request an
333 * MTRR is added. The details and hardware specifics of each processor's
334 * implementation are hidden from the caller, but nevertheless the
335 * caller should expect to need to provide a power of two size on an
336 * equivalent power of two boundary.
338 * If the region cannot be added either because all regions are in use
339 * or the CPU cannot support it a negative value is returned. On success
340 * the register number for this entry is returned, but should be treated
343 * On a multiprocessor machine the changes are made to all processors.
344 * This is required on x86 by the Intel processors.
346 * The available types are
348 * %MTRR_TYPE_UNCACHABLE - No caching
350 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
352 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
354 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
356 * BUGS: Needs a quiet flag for the cases where drivers do not mind
357 * failures and do not wish system log messages to be sent.
359 int mtrr_add_page(unsigned long base
, unsigned long size
,
360 unsigned int type
, bool increment
)
362 unsigned long lbase
, lsize
;
363 int i
, replace
, error
;
369 error
= mtrr_if
->validate_add_page(base
, size
, type
);
373 if (type
>= MTRR_NUM_TYPES
) {
374 pr_warning("mtrr: type: %u invalid\n", type
);
378 /* If the type is WC, check that this processor supports it */
379 if ((type
== MTRR_TYPE_WRCOMB
) && !have_wrcomb()) {
380 pr_warning("mtrr: your processor doesn't support write-combining\n");
385 pr_warning("mtrr: zero sized request\n");
389 if (base
& size_or_mask
|| size
& size_or_mask
) {
390 pr_warning("mtrr: base or size exceeds the MTRR width\n");
397 /* No CPU hotplug when we change MTRR entries */
400 /* Search for existing MTRR */
401 mutex_lock(&mtrr_mutex
);
402 for (i
= 0; i
< num_var_ranges
; ++i
) {
403 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
404 if (!lsize
|| base
> lbase
+ lsize
- 1 ||
405 base
+ size
- 1 < lbase
)
408 * At this point we know there is some kind of
411 if (base
< lbase
|| base
+ size
- 1 > lbase
+ lsize
- 1) {
413 base
+ size
- 1 >= lbase
+ lsize
- 1) {
414 /* New region encloses an existing region */
416 replace
= replace
== -1 ? i
: -2;
418 } else if (types_compatible(type
, ltype
))
421 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
422 " 0x%lx000,0x%lx000\n", base
, size
, lbase
,
426 /* New region is enclosed by an existing region */
428 if (types_compatible(type
, ltype
))
430 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
431 base
, size
, mtrr_attrib_to_str(ltype
),
432 mtrr_attrib_to_str(type
));
436 ++mtrr_usage_table
[i
];
440 /* Search for an empty MTRR */
441 i
= mtrr_if
->get_free_region(base
, size
, replace
);
443 set_mtrr(i
, base
, size
, type
);
444 if (likely(replace
< 0)) {
445 mtrr_usage_table
[i
] = 1;
447 mtrr_usage_table
[i
] = mtrr_usage_table
[replace
];
449 mtrr_usage_table
[i
]++;
450 if (unlikely(replace
!= i
)) {
451 set_mtrr(replace
, 0, 0, 0);
452 mtrr_usage_table
[replace
] = 0;
456 pr_info("mtrr: no more MTRRs available\n");
460 mutex_unlock(&mtrr_mutex
);
465 static int mtrr_check(unsigned long base
, unsigned long size
)
467 if ((base
& (PAGE_SIZE
- 1)) || (size
& (PAGE_SIZE
- 1))) {
468 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
469 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size
, base
);
477 * mtrr_add - Add a memory type region
478 * @base: Physical base address of region
479 * @size: Physical size of region
480 * @type: Type of MTRR desired
481 * @increment: If this is true do usage counting on the region
483 * Memory type region registers control the caching on newer Intel and
484 * non Intel processors. This function allows drivers to request an
485 * MTRR is added. The details and hardware specifics of each processor's
486 * implementation are hidden from the caller, but nevertheless the
487 * caller should expect to need to provide a power of two size on an
488 * equivalent power of two boundary.
490 * If the region cannot be added either because all regions are in use
491 * or the CPU cannot support it a negative value is returned. On success
492 * the register number for this entry is returned, but should be treated
495 * On a multiprocessor machine the changes are made to all processors.
496 * This is required on x86 by the Intel processors.
498 * The available types are
500 * %MTRR_TYPE_UNCACHABLE - No caching
502 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
504 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
506 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
508 * BUGS: Needs a quiet flag for the cases where drivers do not mind
509 * failures and do not wish system log messages to be sent.
511 int mtrr_add(unsigned long base
, unsigned long size
, unsigned int type
,
514 if (mtrr_check(base
, size
))
516 return mtrr_add_page(base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
, type
,
519 EXPORT_SYMBOL(mtrr_add
);
522 * mtrr_del_page - delete a memory type region
523 * @reg: Register returned by mtrr_add
524 * @base: Physical base address
525 * @size: Size of region
527 * If register is supplied then base and size are ignored. This is
528 * how drivers should call it.
530 * Releases an MTRR region. If the usage count drops to zero the
531 * register is freed and the region returns to default state.
532 * On success the register is returned, on failure a negative error
535 int mtrr_del_page(int reg
, unsigned long base
, unsigned long size
)
539 unsigned long lbase
, lsize
;
545 max
= num_var_ranges
;
546 /* No CPU hotplug when we change MTRR entries */
548 mutex_lock(&mtrr_mutex
);
550 /* Search for existing MTRR */
551 for (i
= 0; i
< max
; ++i
) {
552 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
553 if (lbase
== base
&& lsize
== size
) {
559 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
565 pr_warning("mtrr: register: %d too big\n", reg
);
568 mtrr_if
->get(reg
, &lbase
, &lsize
, <ype
);
570 pr_warning("mtrr: MTRR %d not used\n", reg
);
573 if (mtrr_usage_table
[reg
] < 1) {
574 pr_warning("mtrr: reg: %d has count=0\n", reg
);
577 if (--mtrr_usage_table
[reg
] < 1)
578 set_mtrr(reg
, 0, 0, 0);
581 mutex_unlock(&mtrr_mutex
);
587 * mtrr_del - delete a memory type region
588 * @reg: Register returned by mtrr_add
589 * @base: Physical base address
590 * @size: Size of region
592 * If register is supplied then base and size are ignored. This is
593 * how drivers should call it.
595 * Releases an MTRR region. If the usage count drops to zero the
596 * register is freed and the region returns to default state.
597 * On success the register is returned, on failure a negative error
600 int mtrr_del(int reg
, unsigned long base
, unsigned long size
)
602 if (mtrr_check(base
, size
))
604 return mtrr_del_page(reg
, base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
);
606 EXPORT_SYMBOL(mtrr_del
);
610 * These should be called implicitly, but we can't yet until all the initcall
613 static void __init
init_ifs(void)
615 #ifndef CONFIG_X86_64
622 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
623 * MTRR driver doesn't require this
631 static struct mtrr_value mtrr_value
[MTRR_MAX_VAR_RANGES
];
633 static int mtrr_save(struct sys_device
*sysdev
, pm_message_t state
)
637 for (i
= 0; i
< num_var_ranges
; i
++) {
638 mtrr_if
->get(i
, &mtrr_value
[i
].lbase
,
639 &mtrr_value
[i
].lsize
,
640 &mtrr_value
[i
].ltype
);
645 static int mtrr_restore(struct sys_device
*sysdev
)
649 for (i
= 0; i
< num_var_ranges
; i
++) {
650 if (mtrr_value
[i
].lsize
) {
651 set_mtrr(i
, mtrr_value
[i
].lbase
,
653 mtrr_value
[i
].ltype
);
661 static struct sysdev_driver mtrr_sysdev_driver
= {
662 .suspend
= mtrr_save
,
663 .resume
= mtrr_restore
,
666 int __initdata changed_by_mtrr_cleanup
;
669 * mtrr_bp_init - initialize mtrrs on the boot CPU
671 * This needs to be called early; before any of the other CPUs are
672 * initialized (i.e. before smp_init()).
675 void __init
mtrr_bp_init(void)
684 mtrr_if
= &generic_mtrr_ops
;
685 size_or_mask
= 0xff000000; /* 36 bits */
686 size_and_mask
= 0x00f00000;
690 * This is an AMD specific MSR, but we assume(hope?) that
691 * Intel will implement it to when they extend the address
694 if (cpuid_eax(0x80000000) >= 0x80000008) {
695 phys_addr
= cpuid_eax(0x80000008) & 0xff;
696 /* CPUID workaround for Intel 0F33/0F34 CPU */
697 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
698 boot_cpu_data
.x86
== 0xF &&
699 boot_cpu_data
.x86_model
== 0x3 &&
700 (boot_cpu_data
.x86_mask
== 0x3 ||
701 boot_cpu_data
.x86_mask
== 0x4))
704 size_or_mask
= ~((1ULL << (phys_addr
- PAGE_SHIFT
)) - 1);
705 size_and_mask
= ~size_or_mask
& 0xfffff00000ULL
;
706 } else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
&&
707 boot_cpu_data
.x86
== 6) {
709 * VIA C* family have Intel style MTRRs,
710 * but don't support PAE
712 size_or_mask
= 0xfff00000; /* 32 bits */
717 switch (boot_cpu_data
.x86_vendor
) {
719 if (cpu_has_k6_mtrr
) {
720 /* Pre-Athlon (K6) AMD CPU MTRRs */
721 mtrr_if
= mtrr_ops
[X86_VENDOR_AMD
];
722 size_or_mask
= 0xfff00000; /* 32 bits */
726 case X86_VENDOR_CENTAUR
:
727 if (cpu_has_centaur_mcr
) {
728 mtrr_if
= mtrr_ops
[X86_VENDOR_CENTAUR
];
729 size_or_mask
= 0xfff00000; /* 32 bits */
733 case X86_VENDOR_CYRIX
:
734 if (cpu_has_cyrix_arr
) {
735 mtrr_if
= mtrr_ops
[X86_VENDOR_CYRIX
];
736 size_or_mask
= 0xfff00000; /* 32 bits */
746 set_num_var_ranges();
751 if (mtrr_cleanup(phys_addr
)) {
752 changed_by_mtrr_cleanup
= 1;
759 void mtrr_ap_init(void)
761 if (!use_intel() || mtrr_aps_delayed_init
)
764 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
765 * changed, but this routine will be called in cpu boot time,
766 * holding the lock breaks it.
768 * This routine is called in two cases:
770 * 1. very earily time of software resume, when there absolutely
771 * isn't mtrr entry changes;
773 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
774 * lock to prevent mtrr entry changes
776 set_mtrr(~0U, 0, 0, 0);
780 * Save current fixed-range MTRR state of the BSP
782 void mtrr_save_state(void)
784 smp_call_function_single(0, mtrr_save_fixed_ranges
, NULL
, 1);
787 void set_mtrr_aps_delayed_init(void)
792 mtrr_aps_delayed_init
= true;
796 * MTRR initialization for all AP's
798 void mtrr_aps_init(void)
803 set_mtrr(~0U, 0, 0, 0);
804 mtrr_aps_delayed_init
= false;
807 void mtrr_bp_restore(void)
815 static int __init
mtrr_init_finialize(void)
821 if (!changed_by_mtrr_cleanup
)
827 * The CPU has no MTRR and seems to not support SMP. They have
828 * specific drivers, we use a tricky method to support
829 * suspend/resume for them.
831 * TBD: is there any system with such CPU which supports
832 * suspend/resume? If no, we should remove the code.
834 sysdev_driver_register(&cpu_sysdev_class
, &mtrr_sysdev_driver
);
838 subsys_initcall(mtrr_init_finialize
);