x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / arch / x86 / kernel / ftrace.c
blob3afb33f14d2d2c86a3c961d87aaae531d2631ac8
1 /*
2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/spinlock.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <linux/ftrace.h>
18 #include <linux/percpu.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
23 #include <trace/syscall.h>
25 #include <asm/cacheflush.h>
26 #include <asm/ftrace.h>
27 #include <asm/nops.h>
28 #include <asm/nmi.h>
31 #ifdef CONFIG_DYNAMIC_FTRACE
34 * modifying_code is set to notify NMIs that they need to use
35 * memory barriers when entering or exiting. But we don't want
36 * to burden NMIs with unnecessary memory barriers when code
37 * modification is not being done (which is most of the time).
39 * A mutex is already held when ftrace_arch_code_modify_prepare
40 * and post_process are called. No locks need to be taken here.
42 * Stop machine will make sure currently running NMIs are done
43 * and new NMIs will see the updated variable before we need
44 * to worry about NMIs doing memory barriers.
46 static int modifying_code __read_mostly;
47 static DEFINE_PER_CPU(int, save_modifying_code);
49 int ftrace_arch_code_modify_prepare(void)
51 set_kernel_text_rw();
52 modifying_code = 1;
53 return 0;
56 int ftrace_arch_code_modify_post_process(void)
58 modifying_code = 0;
59 set_kernel_text_ro();
60 return 0;
63 union ftrace_code_union {
64 char code[MCOUNT_INSN_SIZE];
65 struct {
66 char e8;
67 int offset;
68 } __attribute__((packed));
71 static int ftrace_calc_offset(long ip, long addr)
73 return (int)(addr - ip);
76 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
78 static union ftrace_code_union calc;
80 calc.e8 = 0xe8;
81 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
84 * No locking needed, this must be called via kstop_machine
85 * which in essence is like running on a uniprocessor machine.
87 return calc.code;
91 * Modifying code must take extra care. On an SMP machine, if
92 * the code being modified is also being executed on another CPU
93 * that CPU will have undefined results and possibly take a GPF.
94 * We use kstop_machine to stop other CPUS from exectuing code.
95 * But this does not stop NMIs from happening. We still need
96 * to protect against that. We separate out the modification of
97 * the code to take care of this.
99 * Two buffers are added: An IP buffer and a "code" buffer.
101 * 1) Put the instruction pointer into the IP buffer
102 * and the new code into the "code" buffer.
103 * 2) Wait for any running NMIs to finish and set a flag that says
104 * we are modifying code, it is done in an atomic operation.
105 * 3) Write the code
106 * 4) clear the flag.
107 * 5) Wait for any running NMIs to finish.
109 * If an NMI is executed, the first thing it does is to call
110 * "ftrace_nmi_enter". This will check if the flag is set to write
111 * and if it is, it will write what is in the IP and "code" buffers.
113 * The trick is, it does not matter if everyone is writing the same
114 * content to the code location. Also, if a CPU is executing code
115 * it is OK to write to that code location if the contents being written
116 * are the same as what exists.
119 #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
120 static atomic_t nmi_running = ATOMIC_INIT(0);
121 static int mod_code_status; /* holds return value of text write */
122 static void *mod_code_ip; /* holds the IP to write to */
123 static void *mod_code_newcode; /* holds the text to write to the IP */
125 static unsigned nmi_wait_count;
126 static atomic_t nmi_update_count = ATOMIC_INIT(0);
128 int ftrace_arch_read_dyn_info(char *buf, int size)
130 int r;
132 r = snprintf(buf, size, "%u %u",
133 nmi_wait_count,
134 atomic_read(&nmi_update_count));
135 return r;
138 static void clear_mod_flag(void)
140 int old = atomic_read(&nmi_running);
142 for (;;) {
143 int new = old & ~MOD_CODE_WRITE_FLAG;
145 if (old == new)
146 break;
148 old = atomic_cmpxchg(&nmi_running, old, new);
152 static void ftrace_mod_code(void)
155 * Yes, more than one CPU process can be writing to mod_code_status.
156 * (and the code itself)
157 * But if one were to fail, then they all should, and if one were
158 * to succeed, then they all should.
160 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
161 MCOUNT_INSN_SIZE);
163 /* if we fail, then kill any new writers */
164 if (mod_code_status)
165 clear_mod_flag();
168 void ftrace_nmi_enter(void)
170 __get_cpu_var(save_modifying_code) = modifying_code;
172 if (!__get_cpu_var(save_modifying_code))
173 return;
175 if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
176 smp_rmb();
177 ftrace_mod_code();
178 atomic_inc(&nmi_update_count);
180 /* Must have previous changes seen before executions */
181 smp_mb();
184 void ftrace_nmi_exit(void)
186 if (!__get_cpu_var(save_modifying_code))
187 return;
189 /* Finish all executions before clearing nmi_running */
190 smp_mb();
191 atomic_dec(&nmi_running);
194 static void wait_for_nmi_and_set_mod_flag(void)
196 if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
197 return;
199 do {
200 cpu_relax();
201 } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
203 nmi_wait_count++;
206 static void wait_for_nmi(void)
208 if (!atomic_read(&nmi_running))
209 return;
211 do {
212 cpu_relax();
213 } while (atomic_read(&nmi_running));
215 nmi_wait_count++;
218 static inline int
219 within(unsigned long addr, unsigned long start, unsigned long end)
221 return addr >= start && addr < end;
224 static int
225 do_ftrace_mod_code(unsigned long ip, void *new_code)
228 * On x86_64, kernel text mappings are mapped read-only with
229 * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
230 * of the kernel text mapping to modify the kernel text.
232 * For 32bit kernels, these mappings are same and we can use
233 * kernel identity mapping to modify code.
235 if (within(ip, (unsigned long)_text, (unsigned long)_etext))
236 ip = (unsigned long)__va(__pa(ip));
238 mod_code_ip = (void *)ip;
239 mod_code_newcode = new_code;
241 /* The buffers need to be visible before we let NMIs write them */
242 smp_mb();
244 wait_for_nmi_and_set_mod_flag();
246 /* Make sure all running NMIs have finished before we write the code */
247 smp_mb();
249 ftrace_mod_code();
251 /* Make sure the write happens before clearing the bit */
252 smp_mb();
254 clear_mod_flag();
255 wait_for_nmi();
257 return mod_code_status;
260 static unsigned char *ftrace_nop_replace(void)
262 return ideal_nop5;
265 static int
266 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
267 unsigned char *new_code)
269 unsigned char replaced[MCOUNT_INSN_SIZE];
272 * Note: Due to modules and __init, code can
273 * disappear and change, we need to protect against faulting
274 * as well as code changing. We do this by using the
275 * probe_kernel_* functions.
277 * No real locking needed, this code is run through
278 * kstop_machine, or before SMP starts.
281 /* read the text we want to modify */
282 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
283 return -EFAULT;
285 /* Make sure it is what we expect it to be */
286 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
287 return -EINVAL;
289 /* replace the text with the new text */
290 if (do_ftrace_mod_code(ip, new_code))
291 return -EPERM;
293 sync_core();
295 return 0;
298 int ftrace_make_nop(struct module *mod,
299 struct dyn_ftrace *rec, unsigned long addr)
301 unsigned char *new, *old;
302 unsigned long ip = rec->ip;
304 old = ftrace_call_replace(ip, addr);
305 new = ftrace_nop_replace();
307 return ftrace_modify_code(rec->ip, old, new);
310 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
312 unsigned char *new, *old;
313 unsigned long ip = rec->ip;
315 old = ftrace_nop_replace();
316 new = ftrace_call_replace(ip, addr);
318 return ftrace_modify_code(rec->ip, old, new);
321 int ftrace_update_ftrace_func(ftrace_func_t func)
323 unsigned long ip = (unsigned long)(&ftrace_call);
324 unsigned char old[MCOUNT_INSN_SIZE], *new;
325 int ret;
327 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
328 new = ftrace_call_replace(ip, (unsigned long)func);
329 ret = ftrace_modify_code(ip, old, new);
331 return ret;
334 int __init ftrace_dyn_arch_init(void *data)
336 /* The return code is retured via data */
337 *(unsigned long *)data = 0;
339 return 0;
341 #endif
343 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
345 #ifdef CONFIG_DYNAMIC_FTRACE
346 extern void ftrace_graph_call(void);
348 static int ftrace_mod_jmp(unsigned long ip,
349 int old_offset, int new_offset)
351 unsigned char code[MCOUNT_INSN_SIZE];
353 if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
354 return -EFAULT;
356 if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
357 return -EINVAL;
359 *(int *)(&code[1]) = new_offset;
361 if (do_ftrace_mod_code(ip, &code))
362 return -EPERM;
364 return 0;
367 int ftrace_enable_ftrace_graph_caller(void)
369 unsigned long ip = (unsigned long)(&ftrace_graph_call);
370 int old_offset, new_offset;
372 old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
373 new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
375 return ftrace_mod_jmp(ip, old_offset, new_offset);
378 int ftrace_disable_ftrace_graph_caller(void)
380 unsigned long ip = (unsigned long)(&ftrace_graph_call);
381 int old_offset, new_offset;
383 old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
384 new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
386 return ftrace_mod_jmp(ip, old_offset, new_offset);
389 #endif /* !CONFIG_DYNAMIC_FTRACE */
392 * Hook the return address and push it in the stack of return addrs
393 * in current thread info.
395 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
396 unsigned long frame_pointer)
398 unsigned long old;
399 int faulted;
400 struct ftrace_graph_ent trace;
401 unsigned long return_hooker = (unsigned long)
402 &return_to_handler;
404 if (unlikely(atomic_read(&current->tracing_graph_pause)))
405 return;
408 * Protect against fault, even if it shouldn't
409 * happen. This tool is too much intrusive to
410 * ignore such a protection.
412 asm volatile(
413 "1: " _ASM_MOV " (%[parent]), %[old]\n"
414 "2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
415 " movl $0, %[faulted]\n"
416 "3:\n"
418 ".section .fixup, \"ax\"\n"
419 "4: movl $1, %[faulted]\n"
420 " jmp 3b\n"
421 ".previous\n"
423 _ASM_EXTABLE(1b, 4b)
424 _ASM_EXTABLE(2b, 4b)
426 : [old] "=&r" (old), [faulted] "=r" (faulted)
427 : [parent] "r" (parent), [return_hooker] "r" (return_hooker)
428 : "memory"
431 if (unlikely(faulted)) {
432 ftrace_graph_stop();
433 WARN_ON(1);
434 return;
437 if (ftrace_push_return_trace(old, self_addr, &trace.depth,
438 frame_pointer) == -EBUSY) {
439 *parent = old;
440 return;
443 trace.func = self_addr;
445 /* Only trace if the calling function expects to */
446 if (!ftrace_graph_entry(&trace)) {
447 current->curr_ret_stack--;
448 *parent = old;
451 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */