x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / arch / x86 / kvm / paging_tmpl.h
blobcd7a833a3b52250877c8e70691068e5c1d1d0adf
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
35 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #ifdef CONFIG_X86_64
37 #define PT_MAX_FULL_LEVELS 4
38 #define CMPXCHG cmpxchg
39 #else
40 #define CMPXCHG cmpxchg64
41 #define PT_MAX_FULL_LEVELS 2
42 #endif
43 #elif PTTYPE == 32
44 #define pt_element_t u32
45 #define guest_walker guest_walker32
46 #define FNAME(name) paging##32_##name
47 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
48 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
49 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
50 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
51 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
52 #define PT_LEVEL_BITS PT32_LEVEL_BITS
53 #define PT_MAX_FULL_LEVELS 2
54 #define CMPXCHG cmpxchg
55 #else
56 #error Invalid PTTYPE value
57 #endif
59 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
60 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
63 * The guest_walker structure emulates the behavior of the hardware page
64 * table walker.
66 struct guest_walker {
67 int level;
68 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
69 pt_element_t ptes[PT_MAX_FULL_LEVELS];
70 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
71 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
72 unsigned pt_access;
73 unsigned pte_access;
74 gfn_t gfn;
75 u32 error_code;
78 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
83 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
84 gfn_t table_gfn, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
87 pt_element_t ret;
88 pt_element_t *table;
89 struct page *page;
91 page = gfn_to_page(kvm, table_gfn);
93 table = kmap_atomic(page, KM_USER0);
94 ret = CMPXCHG(&table[index], orig_pte, new_pte);
95 kunmap_atomic(table, KM_USER0);
97 kvm_release_page_dirty(page);
99 return (ret != orig_pte);
102 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
104 unsigned access;
106 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
107 #if PTTYPE == 64
108 if (vcpu->arch.mmu.nx)
109 access &= ~(gpte >> PT64_NX_SHIFT);
110 #endif
111 return access;
115 * Fetch a guest pte for a guest virtual address
117 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
118 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
119 gva_t addr, u32 access)
121 pt_element_t pte;
122 gfn_t table_gfn;
123 unsigned index, pt_access, uninitialized_var(pte_access);
124 gpa_t pte_gpa;
125 bool eperm, present, rsvd_fault;
126 int offset, write_fault, user_fault, fetch_fault;
128 write_fault = access & PFERR_WRITE_MASK;
129 user_fault = access & PFERR_USER_MASK;
130 fetch_fault = access & PFERR_FETCH_MASK;
132 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
133 fetch_fault);
134 walk:
135 present = true;
136 eperm = rsvd_fault = false;
137 walker->level = mmu->root_level;
138 pte = mmu->get_cr3(vcpu);
140 #if PTTYPE == 64
141 if (walker->level == PT32E_ROOT_LEVEL) {
142 pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
143 trace_kvm_mmu_paging_element(pte, walker->level);
144 if (!is_present_gpte(pte)) {
145 present = false;
146 goto error;
148 --walker->level;
150 #endif
151 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
152 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
154 pt_access = ACC_ALL;
156 for (;;) {
157 index = PT_INDEX(addr, walker->level);
159 table_gfn = gpte_to_gfn(pte);
160 offset = index * sizeof(pt_element_t);
161 pte_gpa = gfn_to_gpa(table_gfn) + offset;
162 walker->table_gfn[walker->level - 1] = table_gfn;
163 walker->pte_gpa[walker->level - 1] = pte_gpa;
165 if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte,
166 offset, sizeof(pte),
167 PFERR_USER_MASK|PFERR_WRITE_MASK)) {
168 present = false;
169 break;
172 trace_kvm_mmu_paging_element(pte, walker->level);
174 if (!is_present_gpte(pte)) {
175 present = false;
176 break;
179 if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
180 rsvd_fault = true;
181 break;
184 if (write_fault && !is_writable_pte(pte))
185 if (user_fault || is_write_protection(vcpu))
186 eperm = true;
188 if (user_fault && !(pte & PT_USER_MASK))
189 eperm = true;
191 #if PTTYPE == 64
192 if (fetch_fault && (pte & PT64_NX_MASK))
193 eperm = true;
194 #endif
196 if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
197 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
198 sizeof(pte));
199 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
200 index, pte, pte|PT_ACCESSED_MASK))
201 goto walk;
202 mark_page_dirty(vcpu->kvm, table_gfn);
203 pte |= PT_ACCESSED_MASK;
206 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
208 walker->ptes[walker->level - 1] = pte;
210 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
211 ((walker->level == PT_DIRECTORY_LEVEL) &&
212 is_large_pte(pte) &&
213 (PTTYPE == 64 || is_pse(vcpu))) ||
214 ((walker->level == PT_PDPE_LEVEL) &&
215 is_large_pte(pte) &&
216 mmu->root_level == PT64_ROOT_LEVEL)) {
217 int lvl = walker->level;
218 gpa_t real_gpa;
219 gfn_t gfn;
220 u32 ac;
222 gfn = gpte_to_gfn_lvl(pte, lvl);
223 gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
225 if (PTTYPE == 32 &&
226 walker->level == PT_DIRECTORY_LEVEL &&
227 is_cpuid_PSE36())
228 gfn += pse36_gfn_delta(pte);
230 ac = write_fault | fetch_fault | user_fault;
232 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
233 ac);
234 if (real_gpa == UNMAPPED_GVA)
235 return 0;
237 walker->gfn = real_gpa >> PAGE_SHIFT;
239 break;
242 pt_access = pte_access;
243 --walker->level;
246 if (!present || eperm || rsvd_fault)
247 goto error;
249 if (write_fault && !is_dirty_gpte(pte)) {
250 bool ret;
252 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
253 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
254 pte|PT_DIRTY_MASK);
255 if (ret)
256 goto walk;
257 mark_page_dirty(vcpu->kvm, table_gfn);
258 pte |= PT_DIRTY_MASK;
259 walker->ptes[walker->level - 1] = pte;
262 walker->pt_access = pt_access;
263 walker->pte_access = pte_access;
264 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
265 __func__, (u64)pte, pte_access, pt_access);
266 return 1;
268 error:
269 walker->error_code = 0;
270 if (present)
271 walker->error_code |= PFERR_PRESENT_MASK;
273 walker->error_code |= write_fault | user_fault;
275 if (fetch_fault && mmu->nx)
276 walker->error_code |= PFERR_FETCH_MASK;
277 if (rsvd_fault)
278 walker->error_code |= PFERR_RSVD_MASK;
280 vcpu->arch.fault.address = addr;
281 vcpu->arch.fault.error_code = walker->error_code;
283 trace_kvm_mmu_walker_error(walker->error_code);
284 return 0;
287 static int FNAME(walk_addr)(struct guest_walker *walker,
288 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
290 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
291 access);
294 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
295 struct kvm_vcpu *vcpu, gva_t addr,
296 u32 access)
298 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
299 addr, access);
302 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
303 u64 *spte, const void *pte)
305 pt_element_t gpte;
306 unsigned pte_access;
307 pfn_t pfn;
308 u64 new_spte;
310 gpte = *(const pt_element_t *)pte;
311 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
312 if (!is_present_gpte(gpte)) {
313 if (sp->unsync)
314 new_spte = shadow_trap_nonpresent_pte;
315 else
316 new_spte = shadow_notrap_nonpresent_pte;
317 __set_spte(spte, new_spte);
319 return;
321 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
322 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
323 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
324 return;
325 pfn = vcpu->arch.update_pte.pfn;
326 if (is_error_pfn(pfn))
327 return;
328 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
329 return;
330 kvm_get_pfn(pfn);
332 * we call mmu_set_spte() with reset_host_protection = true beacuse that
333 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
335 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
336 is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
337 gpte_to_gfn(gpte), pfn, true, true);
340 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
341 struct guest_walker *gw, int level)
343 pt_element_t curr_pte;
344 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
345 u64 mask;
346 int r, index;
348 if (level == PT_PAGE_TABLE_LEVEL) {
349 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
350 base_gpa = pte_gpa & ~mask;
351 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
353 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
354 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
355 curr_pte = gw->prefetch_ptes[index];
356 } else
357 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
358 &curr_pte, sizeof(curr_pte));
360 return r || curr_pte != gw->ptes[level - 1];
363 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
364 u64 *sptep)
366 struct kvm_mmu_page *sp;
367 struct kvm_mmu *mmu = &vcpu->arch.mmu;
368 pt_element_t *gptep = gw->prefetch_ptes;
369 u64 *spte;
370 int i;
372 sp = page_header(__pa(sptep));
374 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
375 return;
377 if (sp->role.direct)
378 return __direct_pte_prefetch(vcpu, sp, sptep);
380 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
381 spte = sp->spt + i;
383 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
384 pt_element_t gpte;
385 unsigned pte_access;
386 gfn_t gfn;
387 pfn_t pfn;
388 bool dirty;
390 if (spte == sptep)
391 continue;
393 if (*spte != shadow_trap_nonpresent_pte)
394 continue;
396 gpte = gptep[i];
398 if (!is_present_gpte(gpte) ||
399 is_rsvd_bits_set(mmu, gpte, PT_PAGE_TABLE_LEVEL)) {
400 if (!sp->unsync)
401 __set_spte(spte, shadow_notrap_nonpresent_pte);
402 continue;
405 if (!(gpte & PT_ACCESSED_MASK))
406 continue;
408 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
409 gfn = gpte_to_gfn(gpte);
410 dirty = is_dirty_gpte(gpte);
411 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
412 (pte_access & ACC_WRITE_MASK) && dirty);
413 if (is_error_pfn(pfn)) {
414 kvm_release_pfn_clean(pfn);
415 break;
418 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
419 dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
420 pfn, true, true);
425 * Fetch a shadow pte for a specific level in the paging hierarchy.
427 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
428 struct guest_walker *gw,
429 int user_fault, int write_fault, int hlevel,
430 int *ptwrite, pfn_t pfn)
432 unsigned access = gw->pt_access;
433 struct kvm_mmu_page *sp = NULL;
434 bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
435 int top_level;
436 unsigned direct_access;
437 struct kvm_shadow_walk_iterator it;
439 if (!is_present_gpte(gw->ptes[gw->level - 1]))
440 return NULL;
442 direct_access = gw->pt_access & gw->pte_access;
443 if (!dirty)
444 direct_access &= ~ACC_WRITE_MASK;
446 top_level = vcpu->arch.mmu.root_level;
447 if (top_level == PT32E_ROOT_LEVEL)
448 top_level = PT32_ROOT_LEVEL;
450 * Verify that the top-level gpte is still there. Since the page
451 * is a root page, it is either write protected (and cannot be
452 * changed from now on) or it is invalid (in which case, we don't
453 * really care if it changes underneath us after this point).
455 if (FNAME(gpte_changed)(vcpu, gw, top_level))
456 goto out_gpte_changed;
458 for (shadow_walk_init(&it, vcpu, addr);
459 shadow_walk_okay(&it) && it.level > gw->level;
460 shadow_walk_next(&it)) {
461 gfn_t table_gfn;
463 drop_large_spte(vcpu, it.sptep);
465 sp = NULL;
466 if (!is_shadow_present_pte(*it.sptep)) {
467 table_gfn = gw->table_gfn[it.level - 2];
468 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
469 false, access, it.sptep);
473 * Verify that the gpte in the page we've just write
474 * protected is still there.
476 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
477 goto out_gpte_changed;
479 if (sp)
480 link_shadow_page(it.sptep, sp);
483 for (;
484 shadow_walk_okay(&it) && it.level > hlevel;
485 shadow_walk_next(&it)) {
486 gfn_t direct_gfn;
488 validate_direct_spte(vcpu, it.sptep, direct_access);
490 drop_large_spte(vcpu, it.sptep);
492 if (is_shadow_present_pte(*it.sptep))
493 continue;
495 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
497 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
498 true, direct_access, it.sptep);
499 link_shadow_page(it.sptep, sp);
502 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
503 user_fault, write_fault, dirty, ptwrite, it.level,
504 gw->gfn, pfn, false, true);
505 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
507 return it.sptep;
509 out_gpte_changed:
510 if (sp)
511 kvm_mmu_put_page(sp, it.sptep);
512 kvm_release_pfn_clean(pfn);
513 return NULL;
517 * Page fault handler. There are several causes for a page fault:
518 * - there is no shadow pte for the guest pte
519 * - write access through a shadow pte marked read only so that we can set
520 * the dirty bit
521 * - write access to a shadow pte marked read only so we can update the page
522 * dirty bitmap, when userspace requests it
523 * - mmio access; in this case we will never install a present shadow pte
524 * - normal guest page fault due to the guest pte marked not present, not
525 * writable, or not executable
527 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
528 * a negative value on error.
530 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
531 u32 error_code)
533 int write_fault = error_code & PFERR_WRITE_MASK;
534 int user_fault = error_code & PFERR_USER_MASK;
535 struct guest_walker walker;
536 u64 *sptep;
537 int write_pt = 0;
538 int r;
539 pfn_t pfn;
540 int level = PT_PAGE_TABLE_LEVEL;
541 unsigned long mmu_seq;
543 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
545 r = mmu_topup_memory_caches(vcpu);
546 if (r)
547 return r;
550 * Look up the guest pte for the faulting address.
552 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
555 * The page is not mapped by the guest. Let the guest handle it.
557 if (!r) {
558 pgprintk("%s: guest page fault\n", __func__);
559 inject_page_fault(vcpu);
560 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
561 return 0;
564 if (walker.level >= PT_DIRECTORY_LEVEL) {
565 level = min(walker.level, mapping_level(vcpu, walker.gfn));
566 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
569 mmu_seq = vcpu->kvm->mmu_notifier_seq;
570 smp_rmb();
571 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
573 /* mmio */
574 if (is_error_pfn(pfn))
575 return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
577 spin_lock(&vcpu->kvm->mmu_lock);
578 if (mmu_notifier_retry(vcpu, mmu_seq))
579 goto out_unlock;
581 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
582 kvm_mmu_free_some_pages(vcpu);
583 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
584 level, &write_pt, pfn);
585 (void)sptep;
586 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
587 sptep, *sptep, write_pt);
589 if (!write_pt)
590 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
592 ++vcpu->stat.pf_fixed;
593 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
594 spin_unlock(&vcpu->kvm->mmu_lock);
596 return write_pt;
598 out_unlock:
599 spin_unlock(&vcpu->kvm->mmu_lock);
600 kvm_release_pfn_clean(pfn);
601 return 0;
604 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
606 struct kvm_shadow_walk_iterator iterator;
607 struct kvm_mmu_page *sp;
608 gpa_t pte_gpa = -1;
609 int level;
610 u64 *sptep;
611 int need_flush = 0;
613 spin_lock(&vcpu->kvm->mmu_lock);
615 for_each_shadow_entry(vcpu, gva, iterator) {
616 level = iterator.level;
617 sptep = iterator.sptep;
619 sp = page_header(__pa(sptep));
620 if (is_last_spte(*sptep, level)) {
621 int offset, shift;
623 if (!sp->unsync)
624 break;
626 shift = PAGE_SHIFT -
627 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
628 offset = sp->role.quadrant << shift;
630 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
631 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
633 if (is_shadow_present_pte(*sptep)) {
634 if (is_large_pte(*sptep))
635 --vcpu->kvm->stat.lpages;
636 drop_spte(vcpu->kvm, sptep,
637 shadow_trap_nonpresent_pte);
638 need_flush = 1;
639 } else
640 __set_spte(sptep, shadow_trap_nonpresent_pte);
641 break;
644 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
645 break;
648 if (need_flush)
649 kvm_flush_remote_tlbs(vcpu->kvm);
651 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
653 spin_unlock(&vcpu->kvm->mmu_lock);
655 if (pte_gpa == -1)
656 return;
658 if (mmu_topup_memory_caches(vcpu))
659 return;
660 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
663 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
664 u32 *error)
666 struct guest_walker walker;
667 gpa_t gpa = UNMAPPED_GVA;
668 int r;
670 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
672 if (r) {
673 gpa = gfn_to_gpa(walker.gfn);
674 gpa |= vaddr & ~PAGE_MASK;
675 } else if (error)
676 *error = walker.error_code;
678 return gpa;
681 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
682 u32 access, u32 *error)
684 struct guest_walker walker;
685 gpa_t gpa = UNMAPPED_GVA;
686 int r;
688 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
690 if (r) {
691 gpa = gfn_to_gpa(walker.gfn);
692 gpa |= vaddr & ~PAGE_MASK;
693 } else if (error)
694 *error = walker.error_code;
696 return gpa;
699 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
700 struct kvm_mmu_page *sp)
702 int i, j, offset, r;
703 pt_element_t pt[256 / sizeof(pt_element_t)];
704 gpa_t pte_gpa;
706 if (sp->role.direct
707 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
708 nonpaging_prefetch_page(vcpu, sp);
709 return;
712 pte_gpa = gfn_to_gpa(sp->gfn);
713 if (PTTYPE == 32) {
714 offset = sp->role.quadrant << PT64_LEVEL_BITS;
715 pte_gpa += offset * sizeof(pt_element_t);
718 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
719 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
720 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
721 for (j = 0; j < ARRAY_SIZE(pt); ++j)
722 if (r || is_present_gpte(pt[j]))
723 sp->spt[i+j] = shadow_trap_nonpresent_pte;
724 else
725 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
730 * Using the cached information from sp->gfns is safe because:
731 * - The spte has a reference to the struct page, so the pfn for a given gfn
732 * can't change unless all sptes pointing to it are nuked first.
734 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
735 bool clear_unsync)
737 int i, offset, nr_present;
738 bool reset_host_protection;
739 gpa_t first_pte_gpa;
741 offset = nr_present = 0;
743 /* direct kvm_mmu_page can not be unsync. */
744 BUG_ON(sp->role.direct);
746 if (PTTYPE == 32)
747 offset = sp->role.quadrant << PT64_LEVEL_BITS;
749 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
751 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
752 unsigned pte_access;
753 pt_element_t gpte;
754 gpa_t pte_gpa;
755 gfn_t gfn;
757 if (!is_shadow_present_pte(sp->spt[i]))
758 continue;
760 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
762 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
763 sizeof(pt_element_t)))
764 return -EINVAL;
766 gfn = gpte_to_gfn(gpte);
767 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)
768 || gfn != sp->gfns[i] || !is_present_gpte(gpte)
769 || !(gpte & PT_ACCESSED_MASK)) {
770 u64 nonpresent;
772 if (is_present_gpte(gpte) || !clear_unsync)
773 nonpresent = shadow_trap_nonpresent_pte;
774 else
775 nonpresent = shadow_notrap_nonpresent_pte;
776 drop_spte(vcpu->kvm, &sp->spt[i], nonpresent);
777 continue;
780 nr_present++;
781 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
782 if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
783 pte_access &= ~ACC_WRITE_MASK;
784 reset_host_protection = 0;
785 } else {
786 reset_host_protection = 1;
788 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
789 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
790 spte_to_pfn(sp->spt[i]), true, false,
791 reset_host_protection);
794 return !nr_present;
797 #undef pt_element_t
798 #undef guest_walker
799 #undef FNAME
800 #undef PT_BASE_ADDR_MASK
801 #undef PT_INDEX
802 #undef PT_LEVEL_MASK
803 #undef PT_LVL_ADDR_MASK
804 #undef PT_LVL_OFFSET_MASK
805 #undef PT_LEVEL_BITS
806 #undef PT_MAX_FULL_LEVELS
807 #undef gpte_to_gfn
808 #undef gpte_to_gfn_lvl
809 #undef CMPXCHG