2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
35 #define PT_LEVEL_BITS PT64_LEVEL_BITS
37 #define PT_MAX_FULL_LEVELS 4
38 #define CMPXCHG cmpxchg
40 #define CMPXCHG cmpxchg64
41 #define PT_MAX_FULL_LEVELS 2
44 #define pt_element_t u32
45 #define guest_walker guest_walker32
46 #define FNAME(name) paging##32_##name
47 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
48 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
49 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
50 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
51 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
52 #define PT_LEVEL_BITS PT32_LEVEL_BITS
53 #define PT_MAX_FULL_LEVELS 2
54 #define CMPXCHG cmpxchg
56 #error Invalid PTTYPE value
59 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
60 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
63 * The guest_walker structure emulates the behavior of the hardware page
68 gfn_t table_gfn
[PT_MAX_FULL_LEVELS
];
69 pt_element_t ptes
[PT_MAX_FULL_LEVELS
];
70 pt_element_t prefetch_ptes
[PTE_PREFETCH_NUM
];
71 gpa_t pte_gpa
[PT_MAX_FULL_LEVELS
];
78 static gfn_t
gpte_to_gfn_lvl(pt_element_t gpte
, int lvl
)
80 return (gpte
& PT_LVL_ADDR_MASK(lvl
)) >> PAGE_SHIFT
;
83 static bool FNAME(cmpxchg_gpte
)(struct kvm
*kvm
,
84 gfn_t table_gfn
, unsigned index
,
85 pt_element_t orig_pte
, pt_element_t new_pte
)
91 page
= gfn_to_page(kvm
, table_gfn
);
93 table
= kmap_atomic(page
, KM_USER0
);
94 ret
= CMPXCHG(&table
[index
], orig_pte
, new_pte
);
95 kunmap_atomic(table
, KM_USER0
);
97 kvm_release_page_dirty(page
);
99 return (ret
!= orig_pte
);
102 static unsigned FNAME(gpte_access
)(struct kvm_vcpu
*vcpu
, pt_element_t gpte
)
106 access
= (gpte
& (PT_WRITABLE_MASK
| PT_USER_MASK
)) | ACC_EXEC_MASK
;
108 if (vcpu
->arch
.mmu
.nx
)
109 access
&= ~(gpte
>> PT64_NX_SHIFT
);
115 * Fetch a guest pte for a guest virtual address
117 static int FNAME(walk_addr_generic
)(struct guest_walker
*walker
,
118 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
119 gva_t addr
, u32 access
)
123 unsigned index
, pt_access
, uninitialized_var(pte_access
);
125 bool eperm
, present
, rsvd_fault
;
126 int offset
, write_fault
, user_fault
, fetch_fault
;
128 write_fault
= access
& PFERR_WRITE_MASK
;
129 user_fault
= access
& PFERR_USER_MASK
;
130 fetch_fault
= access
& PFERR_FETCH_MASK
;
132 trace_kvm_mmu_pagetable_walk(addr
, write_fault
, user_fault
,
136 eperm
= rsvd_fault
= false;
137 walker
->level
= mmu
->root_level
;
138 pte
= mmu
->get_cr3(vcpu
);
141 if (walker
->level
== PT32E_ROOT_LEVEL
) {
142 pte
= kvm_pdptr_read_mmu(vcpu
, mmu
, (addr
>> 30) & 3);
143 trace_kvm_mmu_paging_element(pte
, walker
->level
);
144 if (!is_present_gpte(pte
)) {
151 ASSERT((!is_long_mode(vcpu
) && is_pae(vcpu
)) ||
152 (mmu
->get_cr3(vcpu
) & CR3_NONPAE_RESERVED_BITS
) == 0);
157 index
= PT_INDEX(addr
, walker
->level
);
159 table_gfn
= gpte_to_gfn(pte
);
160 offset
= index
* sizeof(pt_element_t
);
161 pte_gpa
= gfn_to_gpa(table_gfn
) + offset
;
162 walker
->table_gfn
[walker
->level
- 1] = table_gfn
;
163 walker
->pte_gpa
[walker
->level
- 1] = pte_gpa
;
165 if (kvm_read_guest_page_mmu(vcpu
, mmu
, table_gfn
, &pte
,
167 PFERR_USER_MASK
|PFERR_WRITE_MASK
)) {
172 trace_kvm_mmu_paging_element(pte
, walker
->level
);
174 if (!is_present_gpte(pte
)) {
179 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, pte
, walker
->level
)) {
184 if (write_fault
&& !is_writable_pte(pte
))
185 if (user_fault
|| is_write_protection(vcpu
))
188 if (user_fault
&& !(pte
& PT_USER_MASK
))
192 if (fetch_fault
&& (pte
& PT64_NX_MASK
))
196 if (!eperm
&& !rsvd_fault
&& !(pte
& PT_ACCESSED_MASK
)) {
197 trace_kvm_mmu_set_accessed_bit(table_gfn
, index
,
199 if (FNAME(cmpxchg_gpte
)(vcpu
->kvm
, table_gfn
,
200 index
, pte
, pte
|PT_ACCESSED_MASK
))
202 mark_page_dirty(vcpu
->kvm
, table_gfn
);
203 pte
|= PT_ACCESSED_MASK
;
206 pte_access
= pt_access
& FNAME(gpte_access
)(vcpu
, pte
);
208 walker
->ptes
[walker
->level
- 1] = pte
;
210 if ((walker
->level
== PT_PAGE_TABLE_LEVEL
) ||
211 ((walker
->level
== PT_DIRECTORY_LEVEL
) &&
213 (PTTYPE
== 64 || is_pse(vcpu
))) ||
214 ((walker
->level
== PT_PDPE_LEVEL
) &&
216 mmu
->root_level
== PT64_ROOT_LEVEL
)) {
217 int lvl
= walker
->level
;
222 gfn
= gpte_to_gfn_lvl(pte
, lvl
);
223 gfn
+= (addr
& PT_LVL_OFFSET_MASK(lvl
)) >> PAGE_SHIFT
;
226 walker
->level
== PT_DIRECTORY_LEVEL
&&
228 gfn
+= pse36_gfn_delta(pte
);
230 ac
= write_fault
| fetch_fault
| user_fault
;
232 real_gpa
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(gfn
),
234 if (real_gpa
== UNMAPPED_GVA
)
237 walker
->gfn
= real_gpa
>> PAGE_SHIFT
;
242 pt_access
= pte_access
;
246 if (!present
|| eperm
|| rsvd_fault
)
249 if (write_fault
&& !is_dirty_gpte(pte
)) {
252 trace_kvm_mmu_set_dirty_bit(table_gfn
, index
, sizeof(pte
));
253 ret
= FNAME(cmpxchg_gpte
)(vcpu
->kvm
, table_gfn
, index
, pte
,
257 mark_page_dirty(vcpu
->kvm
, table_gfn
);
258 pte
|= PT_DIRTY_MASK
;
259 walker
->ptes
[walker
->level
- 1] = pte
;
262 walker
->pt_access
= pt_access
;
263 walker
->pte_access
= pte_access
;
264 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
265 __func__
, (u64
)pte
, pte_access
, pt_access
);
269 walker
->error_code
= 0;
271 walker
->error_code
|= PFERR_PRESENT_MASK
;
273 walker
->error_code
|= write_fault
| user_fault
;
275 if (fetch_fault
&& mmu
->nx
)
276 walker
->error_code
|= PFERR_FETCH_MASK
;
278 walker
->error_code
|= PFERR_RSVD_MASK
;
280 vcpu
->arch
.fault
.address
= addr
;
281 vcpu
->arch
.fault
.error_code
= walker
->error_code
;
283 trace_kvm_mmu_walker_error(walker
->error_code
);
287 static int FNAME(walk_addr
)(struct guest_walker
*walker
,
288 struct kvm_vcpu
*vcpu
, gva_t addr
, u32 access
)
290 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.mmu
, addr
,
294 static int FNAME(walk_addr_nested
)(struct guest_walker
*walker
,
295 struct kvm_vcpu
*vcpu
, gva_t addr
,
298 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.nested_mmu
,
302 static void FNAME(update_pte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
303 u64
*spte
, const void *pte
)
310 gpte
= *(const pt_element_t
*)pte
;
311 if (~gpte
& (PT_PRESENT_MASK
| PT_ACCESSED_MASK
)) {
312 if (!is_present_gpte(gpte
)) {
314 new_spte
= shadow_trap_nonpresent_pte
;
316 new_spte
= shadow_notrap_nonpresent_pte
;
317 __set_spte(spte
, new_spte
);
321 pgprintk("%s: gpte %llx spte %p\n", __func__
, (u64
)gpte
, spte
);
322 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
323 if (gpte_to_gfn(gpte
) != vcpu
->arch
.update_pte
.gfn
)
325 pfn
= vcpu
->arch
.update_pte
.pfn
;
326 if (is_error_pfn(pfn
))
328 if (mmu_notifier_retry(vcpu
, vcpu
->arch
.update_pte
.mmu_seq
))
332 * we call mmu_set_spte() with reset_host_protection = true beacuse that
333 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
335 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
336 is_dirty_gpte(gpte
), NULL
, PT_PAGE_TABLE_LEVEL
,
337 gpte_to_gfn(gpte
), pfn
, true, true);
340 static bool FNAME(gpte_changed
)(struct kvm_vcpu
*vcpu
,
341 struct guest_walker
*gw
, int level
)
343 pt_element_t curr_pte
;
344 gpa_t base_gpa
, pte_gpa
= gw
->pte_gpa
[level
- 1];
348 if (level
== PT_PAGE_TABLE_LEVEL
) {
349 mask
= PTE_PREFETCH_NUM
* sizeof(pt_element_t
) - 1;
350 base_gpa
= pte_gpa
& ~mask
;
351 index
= (pte_gpa
- base_gpa
) / sizeof(pt_element_t
);
353 r
= kvm_read_guest_atomic(vcpu
->kvm
, base_gpa
,
354 gw
->prefetch_ptes
, sizeof(gw
->prefetch_ptes
));
355 curr_pte
= gw
->prefetch_ptes
[index
];
357 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
,
358 &curr_pte
, sizeof(curr_pte
));
360 return r
|| curr_pte
!= gw
->ptes
[level
- 1];
363 static void FNAME(pte_prefetch
)(struct kvm_vcpu
*vcpu
, struct guest_walker
*gw
,
366 struct kvm_mmu_page
*sp
;
367 struct kvm_mmu
*mmu
= &vcpu
->arch
.mmu
;
368 pt_element_t
*gptep
= gw
->prefetch_ptes
;
372 sp
= page_header(__pa(sptep
));
374 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
378 return __direct_pte_prefetch(vcpu
, sp
, sptep
);
380 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
383 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
393 if (*spte
!= shadow_trap_nonpresent_pte
)
398 if (!is_present_gpte(gpte
) ||
399 is_rsvd_bits_set(mmu
, gpte
, PT_PAGE_TABLE_LEVEL
)) {
401 __set_spte(spte
, shadow_notrap_nonpresent_pte
);
405 if (!(gpte
& PT_ACCESSED_MASK
))
408 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
409 gfn
= gpte_to_gfn(gpte
);
410 dirty
= is_dirty_gpte(gpte
);
411 pfn
= pte_prefetch_gfn_to_pfn(vcpu
, gfn
,
412 (pte_access
& ACC_WRITE_MASK
) && dirty
);
413 if (is_error_pfn(pfn
)) {
414 kvm_release_pfn_clean(pfn
);
418 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
419 dirty
, NULL
, PT_PAGE_TABLE_LEVEL
, gfn
,
425 * Fetch a shadow pte for a specific level in the paging hierarchy.
427 static u64
*FNAME(fetch
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
428 struct guest_walker
*gw
,
429 int user_fault
, int write_fault
, int hlevel
,
430 int *ptwrite
, pfn_t pfn
)
432 unsigned access
= gw
->pt_access
;
433 struct kvm_mmu_page
*sp
= NULL
;
434 bool dirty
= is_dirty_gpte(gw
->ptes
[gw
->level
- 1]);
436 unsigned direct_access
;
437 struct kvm_shadow_walk_iterator it
;
439 if (!is_present_gpte(gw
->ptes
[gw
->level
- 1]))
442 direct_access
= gw
->pt_access
& gw
->pte_access
;
444 direct_access
&= ~ACC_WRITE_MASK
;
446 top_level
= vcpu
->arch
.mmu
.root_level
;
447 if (top_level
== PT32E_ROOT_LEVEL
)
448 top_level
= PT32_ROOT_LEVEL
;
450 * Verify that the top-level gpte is still there. Since the page
451 * is a root page, it is either write protected (and cannot be
452 * changed from now on) or it is invalid (in which case, we don't
453 * really care if it changes underneath us after this point).
455 if (FNAME(gpte_changed
)(vcpu
, gw
, top_level
))
456 goto out_gpte_changed
;
458 for (shadow_walk_init(&it
, vcpu
, addr
);
459 shadow_walk_okay(&it
) && it
.level
> gw
->level
;
460 shadow_walk_next(&it
)) {
463 drop_large_spte(vcpu
, it
.sptep
);
466 if (!is_shadow_present_pte(*it
.sptep
)) {
467 table_gfn
= gw
->table_gfn
[it
.level
- 2];
468 sp
= kvm_mmu_get_page(vcpu
, table_gfn
, addr
, it
.level
-1,
469 false, access
, it
.sptep
);
473 * Verify that the gpte in the page we've just write
474 * protected is still there.
476 if (FNAME(gpte_changed
)(vcpu
, gw
, it
.level
- 1))
477 goto out_gpte_changed
;
480 link_shadow_page(it
.sptep
, sp
);
484 shadow_walk_okay(&it
) && it
.level
> hlevel
;
485 shadow_walk_next(&it
)) {
488 validate_direct_spte(vcpu
, it
.sptep
, direct_access
);
490 drop_large_spte(vcpu
, it
.sptep
);
492 if (is_shadow_present_pte(*it
.sptep
))
495 direct_gfn
= gw
->gfn
& ~(KVM_PAGES_PER_HPAGE(it
.level
) - 1);
497 sp
= kvm_mmu_get_page(vcpu
, direct_gfn
, addr
, it
.level
-1,
498 true, direct_access
, it
.sptep
);
499 link_shadow_page(it
.sptep
, sp
);
502 mmu_set_spte(vcpu
, it
.sptep
, access
, gw
->pte_access
& access
,
503 user_fault
, write_fault
, dirty
, ptwrite
, it
.level
,
504 gw
->gfn
, pfn
, false, true);
505 FNAME(pte_prefetch
)(vcpu
, gw
, it
.sptep
);
511 kvm_mmu_put_page(sp
, it
.sptep
);
512 kvm_release_pfn_clean(pfn
);
517 * Page fault handler. There are several causes for a page fault:
518 * - there is no shadow pte for the guest pte
519 * - write access through a shadow pte marked read only so that we can set
521 * - write access to a shadow pte marked read only so we can update the page
522 * dirty bitmap, when userspace requests it
523 * - mmio access; in this case we will never install a present shadow pte
524 * - normal guest page fault due to the guest pte marked not present, not
525 * writable, or not executable
527 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
528 * a negative value on error.
530 static int FNAME(page_fault
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
533 int write_fault
= error_code
& PFERR_WRITE_MASK
;
534 int user_fault
= error_code
& PFERR_USER_MASK
;
535 struct guest_walker walker
;
540 int level
= PT_PAGE_TABLE_LEVEL
;
541 unsigned long mmu_seq
;
543 pgprintk("%s: addr %lx err %x\n", __func__
, addr
, error_code
);
545 r
= mmu_topup_memory_caches(vcpu
);
550 * Look up the guest pte for the faulting address.
552 r
= FNAME(walk_addr
)(&walker
, vcpu
, addr
, error_code
);
555 * The page is not mapped by the guest. Let the guest handle it.
558 pgprintk("%s: guest page fault\n", __func__
);
559 inject_page_fault(vcpu
);
560 vcpu
->arch
.last_pt_write_count
= 0; /* reset fork detector */
564 if (walker
.level
>= PT_DIRECTORY_LEVEL
) {
565 level
= min(walker
.level
, mapping_level(vcpu
, walker
.gfn
));
566 walker
.gfn
= walker
.gfn
& ~(KVM_PAGES_PER_HPAGE(level
) - 1);
569 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
571 pfn
= gfn_to_pfn(vcpu
->kvm
, walker
.gfn
);
574 if (is_error_pfn(pfn
))
575 return kvm_handle_bad_page(vcpu
->kvm
, walker
.gfn
, pfn
);
577 spin_lock(&vcpu
->kvm
->mmu_lock
);
578 if (mmu_notifier_retry(vcpu
, mmu_seq
))
581 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_PAGE_FAULT
);
582 kvm_mmu_free_some_pages(vcpu
);
583 sptep
= FNAME(fetch
)(vcpu
, addr
, &walker
, user_fault
, write_fault
,
584 level
, &write_pt
, pfn
);
586 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__
,
587 sptep
, *sptep
, write_pt
);
590 vcpu
->arch
.last_pt_write_count
= 0; /* reset fork detector */
592 ++vcpu
->stat
.pf_fixed
;
593 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_PAGE_FAULT
);
594 spin_unlock(&vcpu
->kvm
->mmu_lock
);
599 spin_unlock(&vcpu
->kvm
->mmu_lock
);
600 kvm_release_pfn_clean(pfn
);
604 static void FNAME(invlpg
)(struct kvm_vcpu
*vcpu
, gva_t gva
)
606 struct kvm_shadow_walk_iterator iterator
;
607 struct kvm_mmu_page
*sp
;
613 spin_lock(&vcpu
->kvm
->mmu_lock
);
615 for_each_shadow_entry(vcpu
, gva
, iterator
) {
616 level
= iterator
.level
;
617 sptep
= iterator
.sptep
;
619 sp
= page_header(__pa(sptep
));
620 if (is_last_spte(*sptep
, level
)) {
627 (PT_LEVEL_BITS
- PT64_LEVEL_BITS
) * level
;
628 offset
= sp
->role
.quadrant
<< shift
;
630 pte_gpa
= (sp
->gfn
<< PAGE_SHIFT
) + offset
;
631 pte_gpa
+= (sptep
- sp
->spt
) * sizeof(pt_element_t
);
633 if (is_shadow_present_pte(*sptep
)) {
634 if (is_large_pte(*sptep
))
635 --vcpu
->kvm
->stat
.lpages
;
636 drop_spte(vcpu
->kvm
, sptep
,
637 shadow_trap_nonpresent_pte
);
640 __set_spte(sptep
, shadow_trap_nonpresent_pte
);
644 if (!is_shadow_present_pte(*sptep
) || !sp
->unsync_children
)
649 kvm_flush_remote_tlbs(vcpu
->kvm
);
651 atomic_inc(&vcpu
->kvm
->arch
.invlpg_counter
);
653 spin_unlock(&vcpu
->kvm
->mmu_lock
);
658 if (mmu_topup_memory_caches(vcpu
))
660 kvm_mmu_pte_write(vcpu
, pte_gpa
, NULL
, sizeof(pt_element_t
), 0);
663 static gpa_t
FNAME(gva_to_gpa
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
, u32 access
,
666 struct guest_walker walker
;
667 gpa_t gpa
= UNMAPPED_GVA
;
670 r
= FNAME(walk_addr
)(&walker
, vcpu
, vaddr
, access
);
673 gpa
= gfn_to_gpa(walker
.gfn
);
674 gpa
|= vaddr
& ~PAGE_MASK
;
676 *error
= walker
.error_code
;
681 static gpa_t
FNAME(gva_to_gpa_nested
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
682 u32 access
, u32
*error
)
684 struct guest_walker walker
;
685 gpa_t gpa
= UNMAPPED_GVA
;
688 r
= FNAME(walk_addr_nested
)(&walker
, vcpu
, vaddr
, access
);
691 gpa
= gfn_to_gpa(walker
.gfn
);
692 gpa
|= vaddr
& ~PAGE_MASK
;
694 *error
= walker
.error_code
;
699 static void FNAME(prefetch_page
)(struct kvm_vcpu
*vcpu
,
700 struct kvm_mmu_page
*sp
)
703 pt_element_t pt
[256 / sizeof(pt_element_t
)];
707 || (PTTYPE
== 32 && sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)) {
708 nonpaging_prefetch_page(vcpu
, sp
);
712 pte_gpa
= gfn_to_gpa(sp
->gfn
);
714 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
715 pte_gpa
+= offset
* sizeof(pt_element_t
);
718 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
+= ARRAY_SIZE(pt
)) {
719 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, pt
, sizeof pt
);
720 pte_gpa
+= ARRAY_SIZE(pt
) * sizeof(pt_element_t
);
721 for (j
= 0; j
< ARRAY_SIZE(pt
); ++j
)
722 if (r
|| is_present_gpte(pt
[j
]))
723 sp
->spt
[i
+j
] = shadow_trap_nonpresent_pte
;
725 sp
->spt
[i
+j
] = shadow_notrap_nonpresent_pte
;
730 * Using the cached information from sp->gfns is safe because:
731 * - The spte has a reference to the struct page, so the pfn for a given gfn
732 * can't change unless all sptes pointing to it are nuked first.
734 static int FNAME(sync_page
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
737 int i
, offset
, nr_present
;
738 bool reset_host_protection
;
741 offset
= nr_present
= 0;
743 /* direct kvm_mmu_page can not be unsync. */
744 BUG_ON(sp
->role
.direct
);
747 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
749 first_pte_gpa
= gfn_to_gpa(sp
->gfn
) + offset
* sizeof(pt_element_t
);
751 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
++) {
757 if (!is_shadow_present_pte(sp
->spt
[i
]))
760 pte_gpa
= first_pte_gpa
+ i
* sizeof(pt_element_t
);
762 if (kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, &gpte
,
763 sizeof(pt_element_t
)))
766 gfn
= gpte_to_gfn(gpte
);
767 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, gpte
, PT_PAGE_TABLE_LEVEL
)
768 || gfn
!= sp
->gfns
[i
] || !is_present_gpte(gpte
)
769 || !(gpte
& PT_ACCESSED_MASK
)) {
772 if (is_present_gpte(gpte
) || !clear_unsync
)
773 nonpresent
= shadow_trap_nonpresent_pte
;
775 nonpresent
= shadow_notrap_nonpresent_pte
;
776 drop_spte(vcpu
->kvm
, &sp
->spt
[i
], nonpresent
);
781 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
);
782 if (!(sp
->spt
[i
] & SPTE_HOST_WRITEABLE
)) {
783 pte_access
&= ~ACC_WRITE_MASK
;
784 reset_host_protection
= 0;
786 reset_host_protection
= 1;
788 set_spte(vcpu
, &sp
->spt
[i
], pte_access
, 0, 0,
789 is_dirty_gpte(gpte
), PT_PAGE_TABLE_LEVEL
, gfn
,
790 spte_to_pfn(sp
->spt
[i
]), true, false,
791 reset_host_protection
);
800 #undef PT_BASE_ADDR_MASK
803 #undef PT_LVL_ADDR_MASK
804 #undef PT_LVL_OFFSET_MASK
806 #undef PT_MAX_FULL_LEVELS
808 #undef gpte_to_gfn_lvl