4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
50 #include <asm/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <asm/fixmap.h>
53 #include <asm/mmu_context.h>
54 #include <asm/setup.h>
55 #include <asm/paravirt.h>
57 #include <asm/linkage.h>
62 #include <asm/xen/hypercall.h>
63 #include <asm/xen/hypervisor.h>
67 #include <xen/interface/xen.h>
68 #include <xen/interface/hvm/hvm_op.h>
69 #include <xen/interface/version.h>
70 #include <xen/interface/memory.h>
71 #include <xen/hvc-console.h>
73 #include "multicalls.h"
77 #define MMU_UPDATE_HISTO 30
80 * Protects atomic reservation decrease/increase against concurrent increases.
81 * Also protects non-atomic updates of current_pages and driver_pages, and
84 DEFINE_SPINLOCK(xen_reservation_lock
);
86 #ifdef CONFIG_XEN_DEBUG_FS
90 u32 pgd_update_pinned
;
91 u32 pgd_update_batched
;
94 u32 pud_update_pinned
;
95 u32 pud_update_batched
;
98 u32 pmd_update_pinned
;
99 u32 pmd_update_batched
;
102 u32 pte_update_pinned
;
103 u32 pte_update_batched
;
106 u32 mmu_update_extended
;
107 u32 mmu_update_histo
[MMU_UPDATE_HISTO
];
110 u32 prot_commit_batched
;
113 u32 set_pte_at_batched
;
114 u32 set_pte_at_pinned
;
115 u32 set_pte_at_current
;
116 u32 set_pte_at_kernel
;
119 static u8 zero_stats
;
121 static inline void check_zero(void)
123 if (unlikely(zero_stats
)) {
124 memset(&mmu_stats
, 0, sizeof(mmu_stats
));
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
132 #else /* !CONFIG_XEN_DEBUG_FS */
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
136 #endif /* CONFIG_XEN_DEBUG_FS */
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
150 #endif /* CONFIG_X86_64 */
153 * Note about cr3 (pagetable base) values:
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
166 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
177 * Xen leaves the responsibility for maintaining p2m mappings to the
178 * guests themselves, but it must also access and update the p2m array
179 * during suspend/resume when all the pages are reallocated.
181 * The p2m table is logically a flat array, but we implement it as a
182 * three-level tree to allow the address space to be sparse.
186 * p2m_top p2m_top_mfn
188 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
190 * p2m p2m p2m p2m p2m p2m p2m ...
192 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
194 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
195 * maximum representable pseudo-physical address space is:
196 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
198 * P2M_PER_PAGE depends on the architecture, as a mfn is always
199 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
200 * 512 and 1024 entries respectively.
203 unsigned long xen_max_p2m_pfn __read_mostly
;
205 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
206 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
207 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
209 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
211 /* Placeholders for holes in the address space */
212 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing
, P2M_PER_PAGE
);
213 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing
, P2M_MID_PER_PAGE
);
214 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn
, P2M_MID_PER_PAGE
);
216 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top
, P2M_TOP_PER_PAGE
);
217 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn
, P2M_TOP_PER_PAGE
);
218 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p
, P2M_TOP_PER_PAGE
);
220 RESERVE_BRK(p2m_mid
, PAGE_SIZE
* (MAX_DOMAIN_PAGES
/ (P2M_PER_PAGE
* P2M_MID_PER_PAGE
)));
221 RESERVE_BRK(p2m_mid_mfn
, PAGE_SIZE
* (MAX_DOMAIN_PAGES
/ (P2M_PER_PAGE
* P2M_MID_PER_PAGE
)));
223 static inline unsigned p2m_top_index(unsigned long pfn
)
225 BUG_ON(pfn
>= MAX_P2M_PFN
);
226 return pfn
/ (P2M_MID_PER_PAGE
* P2M_PER_PAGE
);
229 static inline unsigned p2m_mid_index(unsigned long pfn
)
231 return (pfn
/ P2M_PER_PAGE
) % P2M_MID_PER_PAGE
;
234 static inline unsigned p2m_index(unsigned long pfn
)
236 return pfn
% P2M_PER_PAGE
;
239 static void p2m_top_init(unsigned long ***top
)
243 for (i
= 0; i
< P2M_TOP_PER_PAGE
; i
++)
244 top
[i
] = p2m_mid_missing
;
247 static void p2m_top_mfn_init(unsigned long *top
)
251 for (i
= 0; i
< P2M_TOP_PER_PAGE
; i
++)
252 top
[i
] = virt_to_mfn(p2m_mid_missing_mfn
);
255 static void p2m_top_mfn_p_init(unsigned long **top
)
259 for (i
= 0; i
< P2M_TOP_PER_PAGE
; i
++)
260 top
[i
] = p2m_mid_missing_mfn
;
263 static void p2m_mid_init(unsigned long **mid
)
267 for (i
= 0; i
< P2M_MID_PER_PAGE
; i
++)
268 mid
[i
] = p2m_missing
;
271 static void p2m_mid_mfn_init(unsigned long *mid
)
275 for (i
= 0; i
< P2M_MID_PER_PAGE
; i
++)
276 mid
[i
] = virt_to_mfn(p2m_missing
);
279 static void p2m_init(unsigned long *p2m
)
283 for (i
= 0; i
< P2M_MID_PER_PAGE
; i
++)
284 p2m
[i
] = INVALID_P2M_ENTRY
;
288 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
290 * This is called both at boot time, and after resuming from suspend:
291 * - At boot time we're called very early, and must use extend_brk()
292 * to allocate memory.
294 * - After resume we're called from within stop_machine, but the mfn
295 * tree should alreay be completely allocated.
297 void xen_build_mfn_list_list(void)
301 /* Pre-initialize p2m_top_mfn to be completely missing */
302 if (p2m_top_mfn
== NULL
) {
303 p2m_mid_missing_mfn
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
304 p2m_mid_mfn_init(p2m_mid_missing_mfn
);
306 p2m_top_mfn_p
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
307 p2m_top_mfn_p_init(p2m_top_mfn_p
);
309 p2m_top_mfn
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
310 p2m_top_mfn_init(p2m_top_mfn
);
312 /* Reinitialise, mfn's all change after migration */
313 p2m_mid_mfn_init(p2m_mid_missing_mfn
);
316 for (pfn
= 0; pfn
< xen_max_p2m_pfn
; pfn
+= P2M_PER_PAGE
) {
317 unsigned topidx
= p2m_top_index(pfn
);
318 unsigned mididx
= p2m_mid_index(pfn
);
320 unsigned long *mid_mfn_p
;
322 mid
= p2m_top
[topidx
];
323 mid_mfn_p
= p2m_top_mfn_p
[topidx
];
325 /* Don't bother allocating any mfn mid levels if
326 * they're just missing, just update the stored mfn,
327 * since all could have changed over a migrate.
329 if (mid
== p2m_mid_missing
) {
331 BUG_ON(mid_mfn_p
!= p2m_mid_missing_mfn
);
332 p2m_top_mfn
[topidx
] = virt_to_mfn(p2m_mid_missing_mfn
);
333 pfn
+= (P2M_MID_PER_PAGE
- 1) * P2M_PER_PAGE
;
337 if (mid_mfn_p
== p2m_mid_missing_mfn
) {
339 * XXX boot-time only! We should never find
340 * missing parts of the mfn tree after
341 * runtime. extend_brk() will BUG if we call
344 mid_mfn_p
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
345 p2m_mid_mfn_init(mid_mfn_p
);
347 p2m_top_mfn_p
[topidx
] = mid_mfn_p
;
350 p2m_top_mfn
[topidx
] = virt_to_mfn(mid_mfn_p
);
351 mid_mfn_p
[mididx
] = virt_to_mfn(mid
[mididx
]);
355 void xen_setup_mfn_list_list(void)
357 BUG_ON(HYPERVISOR_shared_info
== &xen_dummy_shared_info
);
359 HYPERVISOR_shared_info
->arch
.pfn_to_mfn_frame_list_list
=
360 virt_to_mfn(p2m_top_mfn
);
361 HYPERVISOR_shared_info
->arch
.max_pfn
= xen_max_p2m_pfn
;
364 /* Set up p2m_top to point to the domain-builder provided p2m pages */
365 void __init
xen_build_dynamic_phys_to_machine(void)
367 unsigned long *mfn_list
= (unsigned long *)xen_start_info
->mfn_list
;
368 unsigned long max_pfn
= min(MAX_DOMAIN_PAGES
, xen_start_info
->nr_pages
);
371 xen_max_p2m_pfn
= max_pfn
;
373 p2m_missing
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
374 p2m_init(p2m_missing
);
376 p2m_mid_missing
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
377 p2m_mid_init(p2m_mid_missing
);
379 p2m_top
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
380 p2m_top_init(p2m_top
);
383 * The domain builder gives us a pre-constructed p2m array in
384 * mfn_list for all the pages initially given to us, so we just
385 * need to graft that into our tree structure.
387 for (pfn
= 0; pfn
< max_pfn
; pfn
+= P2M_PER_PAGE
) {
388 unsigned topidx
= p2m_top_index(pfn
);
389 unsigned mididx
= p2m_mid_index(pfn
);
391 if (p2m_top
[topidx
] == p2m_mid_missing
) {
392 unsigned long **mid
= extend_brk(PAGE_SIZE
, PAGE_SIZE
);
395 p2m_top
[topidx
] = mid
;
398 p2m_top
[topidx
][mididx
] = &mfn_list
[pfn
];
402 unsigned long get_phys_to_machine(unsigned long pfn
)
404 unsigned topidx
, mididx
, idx
;
406 if (unlikely(pfn
>= MAX_P2M_PFN
))
407 return INVALID_P2M_ENTRY
;
409 topidx
= p2m_top_index(pfn
);
410 mididx
= p2m_mid_index(pfn
);
411 idx
= p2m_index(pfn
);
413 return p2m_top
[topidx
][mididx
][idx
];
415 EXPORT_SYMBOL_GPL(get_phys_to_machine
);
417 static void *alloc_p2m_page(void)
419 return (void *)__get_free_page(GFP_KERNEL
| __GFP_REPEAT
);
422 static void free_p2m_page(void *p
)
424 free_page((unsigned long)p
);
428 * Fully allocate the p2m structure for a given pfn. We need to check
429 * that both the top and mid levels are allocated, and make sure the
430 * parallel mfn tree is kept in sync. We may race with other cpus, so
431 * the new pages are installed with cmpxchg; if we lose the race then
432 * simply free the page we allocated and use the one that's there.
434 static bool alloc_p2m(unsigned long pfn
)
436 unsigned topidx
, mididx
;
437 unsigned long ***top_p
, **mid
;
438 unsigned long *top_mfn_p
, *mid_mfn
;
440 topidx
= p2m_top_index(pfn
);
441 mididx
= p2m_mid_index(pfn
);
443 top_p
= &p2m_top
[topidx
];
446 if (mid
== p2m_mid_missing
) {
447 /* Mid level is missing, allocate a new one */
448 mid
= alloc_p2m_page();
454 if (cmpxchg(top_p
, p2m_mid_missing
, mid
) != p2m_mid_missing
)
458 top_mfn_p
= &p2m_top_mfn
[topidx
];
459 mid_mfn
= p2m_top_mfn_p
[topidx
];
461 BUG_ON(virt_to_mfn(mid_mfn
) != *top_mfn_p
);
463 if (mid_mfn
== p2m_mid_missing_mfn
) {
464 /* Separately check the mid mfn level */
465 unsigned long missing_mfn
;
466 unsigned long mid_mfn_mfn
;
468 mid_mfn
= alloc_p2m_page();
472 p2m_mid_mfn_init(mid_mfn
);
474 missing_mfn
= virt_to_mfn(p2m_mid_missing_mfn
);
475 mid_mfn_mfn
= virt_to_mfn(mid_mfn
);
476 if (cmpxchg(top_mfn_p
, missing_mfn
, mid_mfn_mfn
) != missing_mfn
)
477 free_p2m_page(mid_mfn
);
479 p2m_top_mfn_p
[topidx
] = mid_mfn
;
482 if (p2m_top
[topidx
][mididx
] == p2m_missing
) {
483 /* p2m leaf page is missing */
486 p2m
= alloc_p2m_page();
492 if (cmpxchg(&mid
[mididx
], p2m_missing
, p2m
) != p2m_missing
)
495 mid_mfn
[mididx
] = virt_to_mfn(p2m
);
501 /* Try to install p2m mapping; fail if intermediate bits missing */
502 bool __set_phys_to_machine(unsigned long pfn
, unsigned long mfn
)
504 unsigned topidx
, mididx
, idx
;
506 if (unlikely(pfn
>= MAX_P2M_PFN
)) {
507 BUG_ON(mfn
!= INVALID_P2M_ENTRY
);
511 topidx
= p2m_top_index(pfn
);
512 mididx
= p2m_mid_index(pfn
);
513 idx
= p2m_index(pfn
);
515 if (p2m_top
[topidx
][mididx
] == p2m_missing
)
516 return mfn
== INVALID_P2M_ENTRY
;
518 p2m_top
[topidx
][mididx
][idx
] = mfn
;
523 bool set_phys_to_machine(unsigned long pfn
, unsigned long mfn
)
525 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap
))) {
526 BUG_ON(pfn
!= mfn
&& mfn
!= INVALID_P2M_ENTRY
);
530 if (unlikely(!__set_phys_to_machine(pfn
, mfn
))) {
534 if (!__set_phys_to_machine(pfn
, mfn
))
541 unsigned long arbitrary_virt_to_mfn(void *vaddr
)
543 xmaddr_t maddr
= arbitrary_virt_to_machine(vaddr
);
545 return PFN_DOWN(maddr
.maddr
);
548 xmaddr_t
arbitrary_virt_to_machine(void *vaddr
)
550 unsigned long address
= (unsigned long)vaddr
;
556 * if the PFN is in the linear mapped vaddr range, we can just use
557 * the (quick) virt_to_machine() p2m lookup
559 if (virt_addr_valid(vaddr
))
560 return virt_to_machine(vaddr
);
562 /* otherwise we have to do a (slower) full page-table walk */
564 pte
= lookup_address(address
, &level
);
566 offset
= address
& ~PAGE_MASK
;
567 return XMADDR(((phys_addr_t
)pte_mfn(*pte
) << PAGE_SHIFT
) + offset
);
570 void make_lowmem_page_readonly(void *vaddr
)
573 unsigned long address
= (unsigned long)vaddr
;
576 pte
= lookup_address(address
, &level
);
578 return; /* vaddr missing */
580 ptev
= pte_wrprotect(*pte
);
582 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
586 void make_lowmem_page_readwrite(void *vaddr
)
589 unsigned long address
= (unsigned long)vaddr
;
592 pte
= lookup_address(address
, &level
);
594 return; /* vaddr missing */
596 ptev
= pte_mkwrite(*pte
);
598 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
603 static bool xen_page_pinned(void *ptr
)
605 struct page
*page
= virt_to_page(ptr
);
607 return PagePinned(page
);
610 static bool xen_iomap_pte(pte_t pte
)
612 return pte_flags(pte
) & _PAGE_IOMAP
;
615 void xen_set_domain_pte(pte_t
*ptep
, pte_t pteval
, unsigned domid
)
617 struct multicall_space mcs
;
618 struct mmu_update
*u
;
620 mcs
= xen_mc_entry(sizeof(*u
));
623 /* ptep might be kmapped when using 32-bit HIGHPTE */
624 u
->ptr
= arbitrary_virt_to_machine(ptep
).maddr
;
625 u
->val
= pte_val_ma(pteval
);
627 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, domid
);
629 xen_mc_issue(PARAVIRT_LAZY_MMU
);
631 EXPORT_SYMBOL_GPL(xen_set_domain_pte
);
633 static void xen_set_iomap_pte(pte_t
*ptep
, pte_t pteval
)
635 xen_set_domain_pte(ptep
, pteval
, DOMID_IO
);
638 static void xen_extend_mmu_update(const struct mmu_update
*update
)
640 struct multicall_space mcs
;
641 struct mmu_update
*u
;
643 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
645 if (mcs
.mc
!= NULL
) {
646 ADD_STATS(mmu_update_extended
, 1);
647 ADD_STATS(mmu_update_histo
[mcs
.mc
->args
[1]], -1);
651 if (mcs
.mc
->args
[1] < MMU_UPDATE_HISTO
)
652 ADD_STATS(mmu_update_histo
[mcs
.mc
->args
[1]], 1);
654 ADD_STATS(mmu_update_histo
[0], 1);
656 ADD_STATS(mmu_update
, 1);
657 mcs
= __xen_mc_entry(sizeof(*u
));
658 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
659 ADD_STATS(mmu_update_histo
[1], 1);
666 void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
674 /* ptr may be ioremapped for 64-bit pagetable setup */
675 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
676 u
.val
= pmd_val_ma(val
);
677 xen_extend_mmu_update(&u
);
679 ADD_STATS(pmd_update_batched
, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
);
681 xen_mc_issue(PARAVIRT_LAZY_MMU
);
686 void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
688 ADD_STATS(pmd_update
, 1);
690 /* If page is not pinned, we can just update the entry
692 if (!xen_page_pinned(ptr
)) {
697 ADD_STATS(pmd_update_pinned
, 1);
699 xen_set_pmd_hyper(ptr
, val
);
703 * Associate a virtual page frame with a given physical page frame
704 * and protection flags for that frame.
706 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
708 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
711 void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
712 pte_t
*ptep
, pte_t pteval
)
714 if (xen_iomap_pte(pteval
)) {
715 xen_set_iomap_pte(ptep
, pteval
);
719 ADD_STATS(set_pte_at
, 1);
720 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
721 ADD_STATS(set_pte_at_current
, mm
== current
->mm
);
722 ADD_STATS(set_pte_at_kernel
, mm
== &init_mm
);
724 if (mm
== current
->mm
|| mm
== &init_mm
) {
725 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
) {
726 struct multicall_space mcs
;
727 mcs
= xen_mc_entry(0);
729 MULTI_update_va_mapping(mcs
.mc
, addr
, pteval
, 0);
730 ADD_STATS(set_pte_at_batched
, 1);
731 xen_mc_issue(PARAVIRT_LAZY_MMU
);
734 if (HYPERVISOR_update_va_mapping(addr
, pteval
, 0) == 0)
737 xen_set_pte(ptep
, pteval
);
742 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
743 unsigned long addr
, pte_t
*ptep
)
745 /* Just return the pte as-is. We preserve the bits on commit */
749 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
750 pte_t
*ptep
, pte_t pte
)
756 u
.ptr
= arbitrary_virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
757 u
.val
= pte_val_ma(pte
);
758 xen_extend_mmu_update(&u
);
760 ADD_STATS(prot_commit
, 1);
761 ADD_STATS(prot_commit_batched
, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
);
763 xen_mc_issue(PARAVIRT_LAZY_MMU
);
766 /* Assume pteval_t is equivalent to all the other *val_t types. */
767 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
769 if (val
& _PAGE_PRESENT
) {
770 unsigned long mfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
771 pteval_t flags
= val
& PTE_FLAGS_MASK
;
772 val
= ((pteval_t
)mfn_to_pfn(mfn
) << PAGE_SHIFT
) | flags
;
778 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
780 if (val
& _PAGE_PRESENT
) {
781 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
782 pteval_t flags
= val
& PTE_FLAGS_MASK
;
783 unsigned long mfn
= pfn_to_mfn(pfn
);
786 * If there's no mfn for the pfn, then just create an
787 * empty non-present pte. Unfortunately this loses
788 * information about the original pfn, so
789 * pte_mfn_to_pfn is asymmetric.
791 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
796 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
802 static pteval_t
iomap_pte(pteval_t val
)
804 if (val
& _PAGE_PRESENT
) {
805 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
806 pteval_t flags
= val
& PTE_FLAGS_MASK
;
808 /* We assume the pte frame number is a MFN, so
809 just use it as-is. */
810 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
816 pteval_t
xen_pte_val(pte_t pte
)
818 pteval_t pteval
= pte
.pte
;
820 /* If this is a WC pte, convert back from Xen WC to Linux WC */
821 if ((pteval
& (_PAGE_PAT
| _PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PAT
) {
822 WARN_ON(!pat_enabled
);
823 pteval
= (pteval
& ~_PAGE_PAT
) | _PAGE_PWT
;
826 if (xen_initial_domain() && (pteval
& _PAGE_IOMAP
))
829 return pte_mfn_to_pfn(pteval
);
831 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
833 pgdval_t
xen_pgd_val(pgd_t pgd
)
835 return pte_mfn_to_pfn(pgd
.pgd
);
837 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
840 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
841 * are reserved for now, to correspond to the Intel-reserved PAT
844 * We expect Linux's PAT set as follows:
846 * Idx PTE flags Linux Xen Default
853 * 6 PAT PCD UC- UC UC-
854 * 7 PAT PCD PWT UC UC UC
857 void xen_set_pat(u64 pat
)
859 /* We expect Linux to use a PAT setting of
860 * UC UC- WC WB (ignoring the PAT flag) */
861 WARN_ON(pat
!= 0x0007010600070106ull
);
864 pte_t
xen_make_pte(pteval_t pte
)
866 phys_addr_t addr
= (pte
& PTE_PFN_MASK
);
868 /* If Linux is trying to set a WC pte, then map to the Xen WC.
869 * If _PAGE_PAT is set, then it probably means it is really
870 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
871 * things work out OK...
873 * (We should never see kernel mappings with _PAGE_PSE set,
874 * but we could see hugetlbfs mappings, I think.).
876 if (pat_enabled
&& !WARN_ON(pte
& _PAGE_PAT
)) {
877 if ((pte
& (_PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PWT
)
878 pte
= (pte
& ~(_PAGE_PCD
| _PAGE_PWT
)) | _PAGE_PAT
;
882 * Unprivileged domains are allowed to do IOMAPpings for
883 * PCI passthrough, but not map ISA space. The ISA
884 * mappings are just dummy local mappings to keep other
885 * parts of the kernel happy.
887 if (unlikely(pte
& _PAGE_IOMAP
) &&
888 (xen_initial_domain() || addr
>= ISA_END_ADDRESS
)) {
889 pte
= iomap_pte(pte
);
892 pte
= pte_pfn_to_mfn(pte
);
895 return native_make_pte(pte
);
897 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
899 pgd_t
xen_make_pgd(pgdval_t pgd
)
901 pgd
= pte_pfn_to_mfn(pgd
);
902 return native_make_pgd(pgd
);
904 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
906 pmdval_t
xen_pmd_val(pmd_t pmd
)
908 return pte_mfn_to_pfn(pmd
.pmd
);
910 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
912 void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
920 /* ptr may be ioremapped for 64-bit pagetable setup */
921 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
922 u
.val
= pud_val_ma(val
);
923 xen_extend_mmu_update(&u
);
925 ADD_STATS(pud_update_batched
, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
);
927 xen_mc_issue(PARAVIRT_LAZY_MMU
);
932 void xen_set_pud(pud_t
*ptr
, pud_t val
)
934 ADD_STATS(pud_update
, 1);
936 /* If page is not pinned, we can just update the entry
938 if (!xen_page_pinned(ptr
)) {
943 ADD_STATS(pud_update_pinned
, 1);
945 xen_set_pud_hyper(ptr
, val
);
948 void xen_set_pte(pte_t
*ptep
, pte_t pte
)
950 if (xen_iomap_pte(pte
)) {
951 xen_set_iomap_pte(ptep
, pte
);
955 ADD_STATS(pte_update
, 1);
956 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
957 ADD_STATS(pte_update_batched
, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
);
959 #ifdef CONFIG_X86_PAE
960 ptep
->pte_high
= pte
.pte_high
;
962 ptep
->pte_low
= pte
.pte_low
;
968 #ifdef CONFIG_X86_PAE
969 void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
971 if (xen_iomap_pte(pte
)) {
972 xen_set_iomap_pte(ptep
, pte
);
976 set_64bit((u64
*)ptep
, native_pte_val(pte
));
979 void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
982 smp_wmb(); /* make sure low gets written first */
986 void xen_pmd_clear(pmd_t
*pmdp
)
988 set_pmd(pmdp
, __pmd(0));
990 #endif /* CONFIG_X86_PAE */
992 pmd_t
xen_make_pmd(pmdval_t pmd
)
994 pmd
= pte_pfn_to_mfn(pmd
);
995 return native_make_pmd(pmd
);
997 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
999 #if PAGETABLE_LEVELS == 4
1000 pudval_t
xen_pud_val(pud_t pud
)
1002 return pte_mfn_to_pfn(pud
.pud
);
1004 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
1006 pud_t
xen_make_pud(pudval_t pud
)
1008 pud
= pte_pfn_to_mfn(pud
);
1010 return native_make_pud(pud
);
1012 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
1014 pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
1016 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
1017 unsigned offset
= pgd
- pgd_page
;
1018 pgd_t
*user_ptr
= NULL
;
1020 if (offset
< pgd_index(USER_LIMIT
)) {
1021 struct page
*page
= virt_to_page(pgd_page
);
1022 user_ptr
= (pgd_t
*)page
->private;
1030 static void __xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
1032 struct mmu_update u
;
1034 u
.ptr
= virt_to_machine(ptr
).maddr
;
1035 u
.val
= pgd_val_ma(val
);
1036 xen_extend_mmu_update(&u
);
1040 * Raw hypercall-based set_pgd, intended for in early boot before
1041 * there's a page structure. This implies:
1042 * 1. The only existing pagetable is the kernel's
1043 * 2. It is always pinned
1044 * 3. It has no user pagetable attached to it
1046 void __init
xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
1052 __xen_set_pgd_hyper(ptr
, val
);
1054 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1059 void xen_set_pgd(pgd_t
*ptr
, pgd_t val
)
1061 pgd_t
*user_ptr
= xen_get_user_pgd(ptr
);
1063 ADD_STATS(pgd_update
, 1);
1065 /* If page is not pinned, we can just update the entry
1067 if (!xen_page_pinned(ptr
)) {
1070 WARN_ON(xen_page_pinned(user_ptr
));
1076 ADD_STATS(pgd_update_pinned
, 1);
1077 ADD_STATS(pgd_update_batched
, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU
);
1079 /* If it's pinned, then we can at least batch the kernel and
1080 user updates together. */
1083 __xen_set_pgd_hyper(ptr
, val
);
1085 __xen_set_pgd_hyper(user_ptr
, val
);
1087 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1089 #endif /* PAGETABLE_LEVELS == 4 */
1092 * (Yet another) pagetable walker. This one is intended for pinning a
1093 * pagetable. This means that it walks a pagetable and calls the
1094 * callback function on each page it finds making up the page table,
1095 * at every level. It walks the entire pagetable, but it only bothers
1096 * pinning pte pages which are below limit. In the normal case this
1097 * will be STACK_TOP_MAX, but at boot we need to pin up to
1100 * For 32-bit the important bit is that we don't pin beyond there,
1101 * because then we start getting into Xen's ptes.
1103 * For 64-bit, we must skip the Xen hole in the middle of the address
1104 * space, just after the big x86-64 virtual hole.
1106 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
1107 int (*func
)(struct mm_struct
*mm
, struct page
*,
1109 unsigned long limit
)
1112 unsigned hole_low
, hole_high
;
1113 unsigned pgdidx_limit
, pudidx_limit
, pmdidx_limit
;
1114 unsigned pgdidx
, pudidx
, pmdidx
;
1116 /* The limit is the last byte to be touched */
1118 BUG_ON(limit
>= FIXADDR_TOP
);
1120 if (xen_feature(XENFEAT_auto_translated_physmap
))
1124 * 64-bit has a great big hole in the middle of the address
1125 * space, which contains the Xen mappings. On 32-bit these
1126 * will end up making a zero-sized hole and so is a no-op.
1128 hole_low
= pgd_index(USER_LIMIT
);
1129 hole_high
= pgd_index(PAGE_OFFSET
);
1131 pgdidx_limit
= pgd_index(limit
);
1132 #if PTRS_PER_PUD > 1
1133 pudidx_limit
= pud_index(limit
);
1137 #if PTRS_PER_PMD > 1
1138 pmdidx_limit
= pmd_index(limit
);
1143 for (pgdidx
= 0; pgdidx
<= pgdidx_limit
; pgdidx
++) {
1146 if (pgdidx
>= hole_low
&& pgdidx
< hole_high
)
1149 if (!pgd_val(pgd
[pgdidx
]))
1152 pud
= pud_offset(&pgd
[pgdidx
], 0);
1154 if (PTRS_PER_PUD
> 1) /* not folded */
1155 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
1157 for (pudidx
= 0; pudidx
< PTRS_PER_PUD
; pudidx
++) {
1160 if (pgdidx
== pgdidx_limit
&&
1161 pudidx
> pudidx_limit
)
1164 if (pud_none(pud
[pudidx
]))
1167 pmd
= pmd_offset(&pud
[pudidx
], 0);
1169 if (PTRS_PER_PMD
> 1) /* not folded */
1170 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
1172 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++) {
1175 if (pgdidx
== pgdidx_limit
&&
1176 pudidx
== pudidx_limit
&&
1177 pmdidx
> pmdidx_limit
)
1180 if (pmd_none(pmd
[pmdidx
]))
1183 pte
= pmd_page(pmd
[pmdidx
]);
1184 flush
|= (*func
)(mm
, pte
, PT_PTE
);
1190 /* Do the top level last, so that the callbacks can use it as
1191 a cue to do final things like tlb flushes. */
1192 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
1197 static int xen_pgd_walk(struct mm_struct
*mm
,
1198 int (*func
)(struct mm_struct
*mm
, struct page
*,
1200 unsigned long limit
)
1202 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
1205 /* If we're using split pte locks, then take the page's lock and
1206 return a pointer to it. Otherwise return NULL. */
1207 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
1209 spinlock_t
*ptl
= NULL
;
1211 #if USE_SPLIT_PTLOCKS
1212 ptl
= __pte_lockptr(page
);
1213 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
1219 static void xen_pte_unlock(void *v
)
1221 spinlock_t
*ptl
= v
;
1225 static void xen_do_pin(unsigned level
, unsigned long pfn
)
1227 struct mmuext_op
*op
;
1228 struct multicall_space mcs
;
1230 mcs
= __xen_mc_entry(sizeof(*op
));
1233 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1234 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1237 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
1238 enum pt_level level
)
1240 unsigned pgfl
= TestSetPagePinned(page
);
1244 flush
= 0; /* already pinned */
1245 else if (PageHighMem(page
))
1246 /* kmaps need flushing if we found an unpinned
1250 void *pt
= lowmem_page_address(page
);
1251 unsigned long pfn
= page_to_pfn(page
);
1252 struct multicall_space mcs
= __xen_mc_entry(0);
1258 * We need to hold the pagetable lock between the time
1259 * we make the pagetable RO and when we actually pin
1260 * it. If we don't, then other users may come in and
1261 * attempt to update the pagetable by writing it,
1262 * which will fail because the memory is RO but not
1263 * pinned, so Xen won't do the trap'n'emulate.
1265 * If we're using split pte locks, we can't hold the
1266 * entire pagetable's worth of locks during the
1267 * traverse, because we may wrap the preempt count (8
1268 * bits). The solution is to mark RO and pin each PTE
1269 * page while holding the lock. This means the number
1270 * of locks we end up holding is never more than a
1271 * batch size (~32 entries, at present).
1273 * If we're not using split pte locks, we needn't pin
1274 * the PTE pages independently, because we're
1275 * protected by the overall pagetable lock.
1278 if (level
== PT_PTE
)
1279 ptl
= xen_pte_lock(page
, mm
);
1281 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
1282 pfn_pte(pfn
, PAGE_KERNEL_RO
),
1283 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
1286 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
1288 /* Queue a deferred unlock for when this batch
1290 xen_mc_callback(xen_pte_unlock
, ptl
);
1297 /* This is called just after a mm has been created, but it has not
1298 been used yet. We need to make sure that its pagetable is all
1299 read-only, and can be pinned. */
1300 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
1304 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
1305 /* re-enable interrupts for flushing */
1308 kmap_flush_unused();
1313 #ifdef CONFIG_X86_64
1315 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1317 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
1320 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
1321 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
1322 PFN_DOWN(__pa(user_pgd
)));
1325 #else /* CONFIG_X86_32 */
1326 #ifdef CONFIG_X86_PAE
1327 /* Need to make sure unshared kernel PMD is pinnable */
1328 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
1331 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
1332 #endif /* CONFIG_X86_64 */
1336 static void xen_pgd_pin(struct mm_struct
*mm
)
1338 __xen_pgd_pin(mm
, mm
->pgd
);
1342 * On save, we need to pin all pagetables to make sure they get their
1343 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1344 * them (unpinned pgds are not currently in use, probably because the
1345 * process is under construction or destruction).
1347 * Expected to be called in stop_machine() ("equivalent to taking
1348 * every spinlock in the system"), so the locking doesn't really
1349 * matter all that much.
1351 void xen_mm_pin_all(void)
1353 unsigned long flags
;
1356 spin_lock_irqsave(&pgd_lock
, flags
);
1358 list_for_each_entry(page
, &pgd_list
, lru
) {
1359 if (!PagePinned(page
)) {
1360 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
1361 SetPageSavePinned(page
);
1365 spin_unlock_irqrestore(&pgd_lock
, flags
);
1369 * The init_mm pagetable is really pinned as soon as its created, but
1370 * that's before we have page structures to store the bits. So do all
1371 * the book-keeping now.
1373 static __init
int xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
1374 enum pt_level level
)
1376 SetPagePinned(page
);
1380 static void __init
xen_mark_init_mm_pinned(void)
1382 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
1385 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
1386 enum pt_level level
)
1388 unsigned pgfl
= TestClearPagePinned(page
);
1390 if (pgfl
&& !PageHighMem(page
)) {
1391 void *pt
= lowmem_page_address(page
);
1392 unsigned long pfn
= page_to_pfn(page
);
1393 spinlock_t
*ptl
= NULL
;
1394 struct multicall_space mcs
;
1397 * Do the converse to pin_page. If we're using split
1398 * pte locks, we must be holding the lock for while
1399 * the pte page is unpinned but still RO to prevent
1400 * concurrent updates from seeing it in this
1401 * partially-pinned state.
1403 if (level
== PT_PTE
) {
1404 ptl
= xen_pte_lock(page
, mm
);
1407 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
1410 mcs
= __xen_mc_entry(0);
1412 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
1413 pfn_pte(pfn
, PAGE_KERNEL
),
1414 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
1417 /* unlock when batch completed */
1418 xen_mc_callback(xen_pte_unlock
, ptl
);
1422 return 0; /* never need to flush on unpin */
1425 /* Release a pagetables pages back as normal RW */
1426 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
1430 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1432 #ifdef CONFIG_X86_64
1434 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1437 xen_do_pin(MMUEXT_UNPIN_TABLE
,
1438 PFN_DOWN(__pa(user_pgd
)));
1439 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
1444 #ifdef CONFIG_X86_PAE
1445 /* Need to make sure unshared kernel PMD is unpinned */
1446 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
1450 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
1455 static void xen_pgd_unpin(struct mm_struct
*mm
)
1457 __xen_pgd_unpin(mm
, mm
->pgd
);
1461 * On resume, undo any pinning done at save, so that the rest of the
1462 * kernel doesn't see any unexpected pinned pagetables.
1464 void xen_mm_unpin_all(void)
1466 unsigned long flags
;
1469 spin_lock_irqsave(&pgd_lock
, flags
);
1471 list_for_each_entry(page
, &pgd_list
, lru
) {
1472 if (PageSavePinned(page
)) {
1473 BUG_ON(!PagePinned(page
));
1474 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
1475 ClearPageSavePinned(page
);
1479 spin_unlock_irqrestore(&pgd_lock
, flags
);
1482 void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
1484 spin_lock(&next
->page_table_lock
);
1486 spin_unlock(&next
->page_table_lock
);
1489 void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
1491 spin_lock(&mm
->page_table_lock
);
1493 spin_unlock(&mm
->page_table_lock
);
1498 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1499 we need to repoint it somewhere else before we can unpin it. */
1500 static void drop_other_mm_ref(void *info
)
1502 struct mm_struct
*mm
= info
;
1503 struct mm_struct
*active_mm
;
1505 active_mm
= percpu_read(cpu_tlbstate
.active_mm
);
1507 if (active_mm
== mm
)
1508 leave_mm(smp_processor_id());
1510 /* If this cpu still has a stale cr3 reference, then make sure
1511 it has been flushed. */
1512 if (percpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
1513 load_cr3(swapper_pg_dir
);
1516 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1521 if (current
->active_mm
== mm
) {
1522 if (current
->mm
== mm
)
1523 load_cr3(swapper_pg_dir
);
1525 leave_mm(smp_processor_id());
1528 /* Get the "official" set of cpus referring to our pagetable. */
1529 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1530 for_each_online_cpu(cpu
) {
1531 if (!cpumask_test_cpu(cpu
, mm_cpumask(mm
))
1532 && per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1534 smp_call_function_single(cpu
, drop_other_mm_ref
, mm
, 1);
1538 cpumask_copy(mask
, mm_cpumask(mm
));
1540 /* It's possible that a vcpu may have a stale reference to our
1541 cr3, because its in lazy mode, and it hasn't yet flushed
1542 its set of pending hypercalls yet. In this case, we can
1543 look at its actual current cr3 value, and force it to flush
1545 for_each_online_cpu(cpu
) {
1546 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1547 cpumask_set_cpu(cpu
, mask
);
1550 if (!cpumask_empty(mask
))
1551 smp_call_function_many(mask
, drop_other_mm_ref
, mm
, 1);
1552 free_cpumask_var(mask
);
1555 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1557 if (current
->active_mm
== mm
)
1558 load_cr3(swapper_pg_dir
);
1563 * While a process runs, Xen pins its pagetables, which means that the
1564 * hypervisor forces it to be read-only, and it controls all updates
1565 * to it. This means that all pagetable updates have to go via the
1566 * hypervisor, which is moderately expensive.
1568 * Since we're pulling the pagetable down, we switch to use init_mm,
1569 * unpin old process pagetable and mark it all read-write, which
1570 * allows further operations on it to be simple memory accesses.
1572 * The only subtle point is that another CPU may be still using the
1573 * pagetable because of lazy tlb flushing. This means we need need to
1574 * switch all CPUs off this pagetable before we can unpin it.
1576 void xen_exit_mmap(struct mm_struct
*mm
)
1578 get_cpu(); /* make sure we don't move around */
1579 xen_drop_mm_ref(mm
);
1582 spin_lock(&mm
->page_table_lock
);
1584 /* pgd may not be pinned in the error exit path of execve */
1585 if (xen_page_pinned(mm
->pgd
))
1588 spin_unlock(&mm
->page_table_lock
);
1591 static __init
void xen_pagetable_setup_start(pgd_t
*base
)
1595 static void xen_post_allocator_init(void);
1597 static __init
void xen_pagetable_setup_done(pgd_t
*base
)
1599 xen_setup_shared_info();
1600 xen_post_allocator_init();
1603 static void xen_write_cr2(unsigned long cr2
)
1605 percpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1608 static unsigned long xen_read_cr2(void)
1610 return percpu_read(xen_vcpu
)->arch
.cr2
;
1613 unsigned long xen_read_cr2_direct(void)
1615 return percpu_read(xen_vcpu_info
.arch
.cr2
);
1618 static void xen_flush_tlb(void)
1620 struct mmuext_op
*op
;
1621 struct multicall_space mcs
;
1625 mcs
= xen_mc_entry(sizeof(*op
));
1628 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1629 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1631 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1636 static void xen_flush_tlb_single(unsigned long addr
)
1638 struct mmuext_op
*op
;
1639 struct multicall_space mcs
;
1643 mcs
= xen_mc_entry(sizeof(*op
));
1645 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1646 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1647 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1649 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1654 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1655 struct mm_struct
*mm
, unsigned long va
)
1658 struct mmuext_op op
;
1659 DECLARE_BITMAP(mask
, NR_CPUS
);
1661 struct multicall_space mcs
;
1663 if (cpumask_empty(cpus
))
1664 return; /* nothing to do */
1666 mcs
= xen_mc_entry(sizeof(*args
));
1668 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1670 /* Remove us, and any offline CPUS. */
1671 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1672 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1674 if (va
== TLB_FLUSH_ALL
) {
1675 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1677 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1678 args
->op
.arg1
.linear_addr
= va
;
1681 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1683 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1686 static unsigned long xen_read_cr3(void)
1688 return percpu_read(xen_cr3
);
1691 static void set_current_cr3(void *v
)
1693 percpu_write(xen_current_cr3
, (unsigned long)v
);
1696 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1698 struct mmuext_op
*op
;
1699 struct multicall_space mcs
;
1703 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1707 WARN_ON(mfn
== 0 && kernel
);
1709 mcs
= __xen_mc_entry(sizeof(*op
));
1712 op
->cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1715 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1718 percpu_write(xen_cr3
, cr3
);
1720 /* Update xen_current_cr3 once the batch has actually
1722 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1726 static void xen_write_cr3(unsigned long cr3
)
1728 BUG_ON(preemptible());
1730 xen_mc_batch(); /* disables interrupts */
1732 /* Update while interrupts are disabled, so its atomic with
1734 percpu_write(xen_cr3
, cr3
);
1736 __xen_write_cr3(true, cr3
);
1738 #ifdef CONFIG_X86_64
1740 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1742 __xen_write_cr3(false, __pa(user_pgd
));
1744 __xen_write_cr3(false, 0);
1748 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1751 static int xen_pgd_alloc(struct mm_struct
*mm
)
1753 pgd_t
*pgd
= mm
->pgd
;
1756 BUG_ON(PagePinned(virt_to_page(pgd
)));
1758 #ifdef CONFIG_X86_64
1760 struct page
*page
= virt_to_page(pgd
);
1763 BUG_ON(page
->private != 0);
1767 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1768 page
->private = (unsigned long)user_pgd
;
1770 if (user_pgd
!= NULL
) {
1771 user_pgd
[pgd_index(VSYSCALL_START
)] =
1772 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1776 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1783 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1785 #ifdef CONFIG_X86_64
1786 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1789 free_page((unsigned long)user_pgd
);
1793 static __init pte_t
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
1795 unsigned long pfn
= pte_pfn(pte
);
1797 #ifdef CONFIG_X86_32
1798 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1799 if (pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1800 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1805 * If the new pfn is within the range of the newly allocated
1806 * kernel pagetable, and it isn't being mapped into an
1807 * early_ioremap fixmap slot, make sure it is RO.
1809 if (!is_early_ioremap_ptep(ptep
) &&
1810 pfn
>= e820_table_start
&& pfn
< e820_table_end
)
1811 pte
= pte_wrprotect(pte
);
1816 /* Init-time set_pte while constructing initial pagetables, which
1817 doesn't allow RO pagetable pages to be remapped RW */
1818 static __init
void xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1820 pte
= mask_rw_pte(ptep
, pte
);
1822 xen_set_pte(ptep
, pte
);
1825 static void pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1827 struct mmuext_op op
;
1829 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1830 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1834 /* Early in boot, while setting up the initial pagetable, assume
1835 everything is pinned. */
1836 static __init
void xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1838 #ifdef CONFIG_FLATMEM
1839 BUG_ON(mem_map
); /* should only be used early */
1841 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1842 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1845 /* Used for pmd and pud */
1846 static __init
void xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1848 #ifdef CONFIG_FLATMEM
1849 BUG_ON(mem_map
); /* should only be used early */
1851 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1854 /* Early release_pte assumes that all pts are pinned, since there's
1855 only init_mm and anything attached to that is pinned. */
1856 static __init
void xen_release_pte_init(unsigned long pfn
)
1858 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1859 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1862 static __init
void xen_release_pmd_init(unsigned long pfn
)
1864 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1867 /* This needs to make sure the new pte page is pinned iff its being
1868 attached to a pinned pagetable. */
1869 static void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
, unsigned level
)
1871 struct page
*page
= pfn_to_page(pfn
);
1873 if (PagePinned(virt_to_page(mm
->pgd
))) {
1874 SetPagePinned(page
);
1876 if (!PageHighMem(page
)) {
1877 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn
)));
1878 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1879 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1881 /* make sure there are no stray mappings of
1883 kmap_flush_unused();
1888 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1890 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1893 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1895 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1898 /* This should never happen until we're OK to use struct page */
1899 static void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1901 struct page
*page
= pfn_to_page(pfn
);
1903 if (PagePinned(page
)) {
1904 if (!PageHighMem(page
)) {
1905 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1907 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1909 ClearPagePinned(page
);
1913 static void xen_release_pte(unsigned long pfn
)
1915 xen_release_ptpage(pfn
, PT_PTE
);
1918 static void xen_release_pmd(unsigned long pfn
)
1920 xen_release_ptpage(pfn
, PT_PMD
);
1923 #if PAGETABLE_LEVELS == 4
1924 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1926 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1929 static void xen_release_pud(unsigned long pfn
)
1931 xen_release_ptpage(pfn
, PT_PUD
);
1935 void __init
xen_reserve_top(void)
1937 #ifdef CONFIG_X86_32
1938 unsigned long top
= HYPERVISOR_VIRT_START
;
1939 struct xen_platform_parameters pp
;
1941 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1942 top
= pp
.virt_start
;
1944 reserve_top_address(-top
);
1945 #endif /* CONFIG_X86_32 */
1949 * Like __va(), but returns address in the kernel mapping (which is
1950 * all we have until the physical memory mapping has been set up.
1952 static void *__ka(phys_addr_t paddr
)
1954 #ifdef CONFIG_X86_64
1955 return (void *)(paddr
+ __START_KERNEL_map
);
1961 /* Convert a machine address to physical address */
1962 static unsigned long m2p(phys_addr_t maddr
)
1966 maddr
&= PTE_PFN_MASK
;
1967 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1972 /* Convert a machine address to kernel virtual */
1973 static void *m2v(phys_addr_t maddr
)
1975 return __ka(m2p(maddr
));
1978 /* Set the page permissions on an identity-mapped pages */
1979 static void set_page_prot(void *addr
, pgprot_t prot
)
1981 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1982 pte_t pte
= pfn_pte(pfn
, prot
);
1984 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, 0))
1988 static __init
void xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1990 unsigned pmdidx
, pteidx
;
1994 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1999 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
2002 /* Reuse or allocate a page of ptes */
2003 if (pmd_present(pmd
[pmdidx
]))
2004 pte_page
= m2v(pmd
[pmdidx
].pmd
);
2006 /* Check for free pte pages */
2007 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
2010 pte_page
= &level1_ident_pgt
[ident_pte
];
2011 ident_pte
+= PTRS_PER_PTE
;
2013 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
2016 /* Install mappings */
2017 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
2020 if (pfn
> max_pfn_mapped
)
2021 max_pfn_mapped
= pfn
;
2023 if (!pte_none(pte_page
[pteidx
]))
2026 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
2027 pte_page
[pteidx
] = pte
;
2031 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
2032 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
2034 set_page_prot(pmd
, PAGE_KERNEL_RO
);
2037 #ifdef CONFIG_X86_64
2038 static void convert_pfn_mfn(void *v
)
2043 /* All levels are converted the same way, so just treat them
2045 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
2046 pte
[i
] = xen_make_pte(pte
[i
].pte
);
2050 * Set up the inital kernel pagetable.
2052 * We can construct this by grafting the Xen provided pagetable into
2053 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
2054 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
2055 * means that only the kernel has a physical mapping to start with -
2056 * but that's enough to get __va working. We need to fill in the rest
2057 * of the physical mapping once some sort of allocator has been set
2060 __init pgd_t
*xen_setup_kernel_pagetable(pgd_t
*pgd
,
2061 unsigned long max_pfn
)
2066 /* Zap identity mapping */
2067 init_level4_pgt
[0] = __pgd(0);
2069 /* Pre-constructed entries are in pfn, so convert to mfn */
2070 convert_pfn_mfn(init_level4_pgt
);
2071 convert_pfn_mfn(level3_ident_pgt
);
2072 convert_pfn_mfn(level3_kernel_pgt
);
2074 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
2075 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
2077 memcpy(level2_ident_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
2078 memcpy(level2_kernel_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
2080 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
+ PMD_SIZE
)].pgd
);
2081 l2
= m2v(l3
[pud_index(__START_KERNEL_map
+ PMD_SIZE
)].pud
);
2082 memcpy(level2_fixmap_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
2084 /* Set up identity map */
2085 xen_map_identity_early(level2_ident_pgt
, max_pfn
);
2087 /* Make pagetable pieces RO */
2088 set_page_prot(init_level4_pgt
, PAGE_KERNEL_RO
);
2089 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
2090 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
2091 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
2092 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
2093 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
2095 /* Pin down new L4 */
2096 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
2097 PFN_DOWN(__pa_symbol(init_level4_pgt
)));
2099 /* Unpin Xen-provided one */
2100 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2103 pgd
= init_level4_pgt
;
2106 * At this stage there can be no user pgd, and no page
2107 * structure to attach it to, so make sure we just set kernel
2111 __xen_write_cr3(true, __pa(pgd
));
2112 xen_mc_issue(PARAVIRT_LAZY_CPU
);
2114 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
2115 __pa(xen_start_info
->pt_base
+
2116 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
2121 #else /* !CONFIG_X86_64 */
2122 static RESERVE_BRK_ARRAY(pmd_t
, level2_kernel_pgt
, PTRS_PER_PMD
);
2124 __init pgd_t
*xen_setup_kernel_pagetable(pgd_t
*pgd
,
2125 unsigned long max_pfn
)
2129 level2_kernel_pgt
= extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2131 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->pt_base
) +
2132 xen_start_info
->nr_pt_frames
* PAGE_SIZE
+
2135 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
2136 memcpy(level2_kernel_pgt
, kernel_pmd
, sizeof(pmd_t
) * PTRS_PER_PMD
);
2138 xen_map_identity_early(level2_kernel_pgt
, max_pfn
);
2140 memcpy(swapper_pg_dir
, pgd
, sizeof(pgd_t
) * PTRS_PER_PGD
);
2141 set_pgd(&swapper_pg_dir
[KERNEL_PGD_BOUNDARY
],
2142 __pgd(__pa(level2_kernel_pgt
) | _PAGE_PRESENT
));
2144 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
2145 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
2146 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
2148 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2150 xen_write_cr3(__pa(swapper_pg_dir
));
2152 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(swapper_pg_dir
)));
2154 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
2155 __pa(xen_start_info
->pt_base
+
2156 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
2159 return swapper_pg_dir
;
2161 #endif /* CONFIG_X86_64 */
2163 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2165 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2169 phys
>>= PAGE_SHIFT
;
2172 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2173 #ifdef CONFIG_X86_F00F_BUG
2176 #ifdef CONFIG_X86_32
2179 # ifdef CONFIG_HIGHMEM
2180 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
2183 case VSYSCALL_LAST_PAGE
... VSYSCALL_FIRST_PAGE
:
2185 case FIX_TEXT_POKE0
:
2186 case FIX_TEXT_POKE1
:
2187 /* All local page mappings */
2188 pte
= pfn_pte(phys
, prot
);
2191 #ifdef CONFIG_X86_LOCAL_APIC
2192 case FIX_APIC_BASE
: /* maps dummy local APIC */
2193 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2197 #ifdef CONFIG_X86_IO_APIC
2198 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2200 * We just don't map the IO APIC - all access is via
2201 * hypercalls. Keep the address in the pte for reference.
2203 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2207 case FIX_PARAVIRT_BOOTMAP
:
2208 /* This is an MFN, but it isn't an IO mapping from the
2210 pte
= mfn_pte(phys
, prot
);
2214 /* By default, set_fixmap is used for hardware mappings */
2215 pte
= mfn_pte(phys
, __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
));
2219 __native_set_fixmap(idx
, pte
);
2221 #ifdef CONFIG_X86_64
2222 /* Replicate changes to map the vsyscall page into the user
2223 pagetable vsyscall mapping. */
2224 if (idx
>= VSYSCALL_LAST_PAGE
&& idx
<= VSYSCALL_FIRST_PAGE
) {
2225 unsigned long vaddr
= __fix_to_virt(idx
);
2226 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2231 __init
void xen_ident_map_ISA(void)
2236 * If we're dom0, then linear map the ISA machine addresses into
2237 * the kernel's address space.
2239 if (!xen_initial_domain())
2242 xen_raw_printk("Xen: setup ISA identity maps\n");
2244 for (pa
= ISA_START_ADDRESS
; pa
< ISA_END_ADDRESS
; pa
+= PAGE_SIZE
) {
2245 pte_t pte
= mfn_pte(PFN_DOWN(pa
), PAGE_KERNEL_IO
);
2247 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET
+ pa
, pte
, 0))
2254 static __init
void xen_post_allocator_init(void)
2256 pv_mmu_ops
.set_pte
= xen_set_pte
;
2257 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
2258 pv_mmu_ops
.set_pud
= xen_set_pud
;
2259 #if PAGETABLE_LEVELS == 4
2260 pv_mmu_ops
.set_pgd
= xen_set_pgd
;
2263 /* This will work as long as patching hasn't happened yet
2264 (which it hasn't) */
2265 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
2266 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
2267 pv_mmu_ops
.release_pte
= xen_release_pte
;
2268 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
2269 #if PAGETABLE_LEVELS == 4
2270 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
2271 pv_mmu_ops
.release_pud
= xen_release_pud
;
2274 #ifdef CONFIG_X86_64
2275 SetPagePinned(virt_to_page(level3_user_vsyscall
));
2277 xen_mark_init_mm_pinned();
2280 static void xen_leave_lazy_mmu(void)
2284 paravirt_leave_lazy_mmu();
2288 static const struct pv_mmu_ops xen_mmu_ops __initdata
= {
2289 .read_cr2
= xen_read_cr2
,
2290 .write_cr2
= xen_write_cr2
,
2292 .read_cr3
= xen_read_cr3
,
2293 .write_cr3
= xen_write_cr3
,
2295 .flush_tlb_user
= xen_flush_tlb
,
2296 .flush_tlb_kernel
= xen_flush_tlb
,
2297 .flush_tlb_single
= xen_flush_tlb_single
,
2298 .flush_tlb_others
= xen_flush_tlb_others
,
2300 .pte_update
= paravirt_nop
,
2301 .pte_update_defer
= paravirt_nop
,
2303 .pgd_alloc
= xen_pgd_alloc
,
2304 .pgd_free
= xen_pgd_free
,
2306 .alloc_pte
= xen_alloc_pte_init
,
2307 .release_pte
= xen_release_pte_init
,
2308 .alloc_pmd
= xen_alloc_pmd_init
,
2309 .release_pmd
= xen_release_pmd_init
,
2311 .set_pte
= xen_set_pte_init
,
2312 .set_pte_at
= xen_set_pte_at
,
2313 .set_pmd
= xen_set_pmd_hyper
,
2315 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2316 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2318 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2319 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2321 .make_pte
= PV_CALLEE_SAVE(xen_make_pte
),
2322 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2324 #ifdef CONFIG_X86_PAE
2325 .set_pte_atomic
= xen_set_pte_atomic
,
2326 .pte_clear
= xen_pte_clear
,
2327 .pmd_clear
= xen_pmd_clear
,
2328 #endif /* CONFIG_X86_PAE */
2329 .set_pud
= xen_set_pud_hyper
,
2331 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2332 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2334 #if PAGETABLE_LEVELS == 4
2335 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2336 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2337 .set_pgd
= xen_set_pgd_hyper
,
2339 .alloc_pud
= xen_alloc_pmd_init
,
2340 .release_pud
= xen_release_pmd_init
,
2341 #endif /* PAGETABLE_LEVELS == 4 */
2343 .activate_mm
= xen_activate_mm
,
2344 .dup_mmap
= xen_dup_mmap
,
2345 .exit_mmap
= xen_exit_mmap
,
2348 .enter
= paravirt_enter_lazy_mmu
,
2349 .leave
= xen_leave_lazy_mmu
,
2352 .set_fixmap
= xen_set_fixmap
,
2355 void __init
xen_init_mmu_ops(void)
2357 x86_init
.paging
.pagetable_setup_start
= xen_pagetable_setup_start
;
2358 x86_init
.paging
.pagetable_setup_done
= xen_pagetable_setup_done
;
2359 pv_mmu_ops
= xen_mmu_ops
;
2361 vmap_lazy_unmap
= false;
2363 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2366 /* Protected by xen_reservation_lock. */
2367 #define MAX_CONTIG_ORDER 9 /* 2MB */
2368 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2370 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2371 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2372 unsigned long *in_frames
,
2373 unsigned long *out_frames
)
2376 struct multicall_space mcs
;
2379 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2380 mcs
= __xen_mc_entry(0);
2383 in_frames
[i
] = virt_to_mfn(vaddr
);
2385 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2386 set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2389 out_frames
[i
] = virt_to_pfn(vaddr
);
2395 * Update the pfn-to-mfn mappings for a virtual address range, either to
2396 * point to an array of mfns, or contiguously from a single starting
2399 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2400 unsigned long *mfns
,
2401 unsigned long first_mfn
)
2408 limit
= 1u << order
;
2409 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2410 struct multicall_space mcs
;
2413 mcs
= __xen_mc_entry(0);
2417 mfn
= first_mfn
+ i
;
2419 if (i
< (limit
- 1))
2423 flags
= UVMF_INVLPG
| UVMF_ALL
;
2425 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2428 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2429 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2431 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2438 * Perform the hypercall to exchange a region of our pfns to point to
2439 * memory with the required contiguous alignment. Takes the pfns as
2440 * input, and populates mfns as output.
2442 * Returns a success code indicating whether the hypervisor was able to
2443 * satisfy the request or not.
2445 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2446 unsigned long *pfns_in
,
2447 unsigned long extents_out
,
2448 unsigned int order_out
,
2449 unsigned long *mfns_out
,
2450 unsigned int address_bits
)
2455 struct xen_memory_exchange exchange
= {
2457 .nr_extents
= extents_in
,
2458 .extent_order
= order_in
,
2459 .extent_start
= pfns_in
,
2463 .nr_extents
= extents_out
,
2464 .extent_order
= order_out
,
2465 .extent_start
= mfns_out
,
2466 .address_bits
= address_bits
,
2471 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2473 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2474 success
= (exchange
.nr_exchanged
== extents_in
);
2476 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2477 BUG_ON(success
&& (rc
!= 0));
2482 int xen_create_contiguous_region(unsigned long vstart
, unsigned int order
,
2483 unsigned int address_bits
)
2485 unsigned long *in_frames
= discontig_frames
, out_frame
;
2486 unsigned long flags
;
2490 * Currently an auto-translated guest will not perform I/O, nor will
2491 * it require PAE page directories below 4GB. Therefore any calls to
2492 * this function are redundant and can be ignored.
2495 if (xen_feature(XENFEAT_auto_translated_physmap
))
2498 if (unlikely(order
> MAX_CONTIG_ORDER
))
2501 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2503 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2505 /* 1. Zap current PTEs, remembering MFNs. */
2506 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2508 /* 2. Get a new contiguous memory extent. */
2509 out_frame
= virt_to_pfn(vstart
);
2510 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2511 1, order
, &out_frame
,
2514 /* 3. Map the new extent in place of old pages. */
2516 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2518 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2520 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2522 return success
? 0 : -ENOMEM
;
2524 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2526 void xen_destroy_contiguous_region(unsigned long vstart
, unsigned int order
)
2528 unsigned long *out_frames
= discontig_frames
, in_frame
;
2529 unsigned long flags
;
2532 if (xen_feature(XENFEAT_auto_translated_physmap
))
2535 if (unlikely(order
> MAX_CONTIG_ORDER
))
2538 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2540 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2542 /* 1. Find start MFN of contiguous extent. */
2543 in_frame
= virt_to_mfn(vstart
);
2545 /* 2. Zap current PTEs. */
2546 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2548 /* 3. Do the exchange for non-contiguous MFNs. */
2549 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2552 /* 4. Map new pages in place of old pages. */
2554 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2556 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2558 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2560 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2562 #ifdef CONFIG_XEN_PVHVM
2563 static void xen_hvm_exit_mmap(struct mm_struct
*mm
)
2565 struct xen_hvm_pagetable_dying a
;
2568 a
.domid
= DOMID_SELF
;
2569 a
.gpa
= __pa(mm
->pgd
);
2570 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2571 WARN_ON_ONCE(rc
< 0);
2574 static int is_pagetable_dying_supported(void)
2576 struct xen_hvm_pagetable_dying a
;
2579 a
.domid
= DOMID_SELF
;
2581 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2583 printk(KERN_DEBUG
"HVMOP_pagetable_dying not supported\n");
2589 void __init
xen_hvm_init_mmu_ops(void)
2591 if (is_pagetable_dying_supported())
2592 pv_mmu_ops
.exit_mmap
= xen_hvm_exit_mmap
;
2596 #define REMAP_BATCH_SIZE 16
2601 struct mmu_update
*mmu_update
;
2604 static int remap_area_mfn_pte_fn(pte_t
*ptep
, pgtable_t token
,
2605 unsigned long addr
, void *data
)
2607 struct remap_data
*rmd
= data
;
2608 pte_t pte
= pte_mkspecial(pfn_pte(rmd
->mfn
++, rmd
->prot
));
2610 rmd
->mmu_update
->ptr
= arbitrary_virt_to_machine(ptep
).maddr
;
2611 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2617 int xen_remap_domain_mfn_range(struct vm_area_struct
*vma
,
2619 unsigned long mfn
, int nr
,
2620 pgprot_t prot
, unsigned domid
)
2622 struct remap_data rmd
;
2623 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2625 unsigned long range
;
2628 prot
= __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
);
2630 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
2636 batch
= min(REMAP_BATCH_SIZE
, nr
);
2637 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2639 rmd
.mmu_update
= mmu_update
;
2640 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2641 remap_area_mfn_pte_fn
, &rmd
);
2646 if (HYPERVISOR_mmu_update(mmu_update
, batch
, NULL
, domid
) < 0)
2660 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range
);
2662 #ifdef CONFIG_XEN_DEBUG_FS
2664 static struct dentry
*d_mmu_debug
;
2666 static int __init
xen_mmu_debugfs(void)
2668 struct dentry
*d_xen
= xen_init_debugfs();
2673 d_mmu_debug
= debugfs_create_dir("mmu", d_xen
);
2675 debugfs_create_u8("zero_stats", 0644, d_mmu_debug
, &zero_stats
);
2677 debugfs_create_u32("pgd_update", 0444, d_mmu_debug
, &mmu_stats
.pgd_update
);
2678 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug
,
2679 &mmu_stats
.pgd_update_pinned
);
2680 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug
,
2681 &mmu_stats
.pgd_update_pinned
);
2683 debugfs_create_u32("pud_update", 0444, d_mmu_debug
, &mmu_stats
.pud_update
);
2684 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug
,
2685 &mmu_stats
.pud_update_pinned
);
2686 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug
,
2687 &mmu_stats
.pud_update_pinned
);
2689 debugfs_create_u32("pmd_update", 0444, d_mmu_debug
, &mmu_stats
.pmd_update
);
2690 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug
,
2691 &mmu_stats
.pmd_update_pinned
);
2692 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug
,
2693 &mmu_stats
.pmd_update_pinned
);
2695 debugfs_create_u32("pte_update", 0444, d_mmu_debug
, &mmu_stats
.pte_update
);
2696 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2697 // &mmu_stats.pte_update_pinned);
2698 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug
,
2699 &mmu_stats
.pte_update_pinned
);
2701 debugfs_create_u32("mmu_update", 0444, d_mmu_debug
, &mmu_stats
.mmu_update
);
2702 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug
,
2703 &mmu_stats
.mmu_update_extended
);
2704 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug
,
2705 mmu_stats
.mmu_update_histo
, 20);
2707 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug
, &mmu_stats
.set_pte_at
);
2708 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug
,
2709 &mmu_stats
.set_pte_at_batched
);
2710 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug
,
2711 &mmu_stats
.set_pte_at_current
);
2712 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug
,
2713 &mmu_stats
.set_pte_at_kernel
);
2715 debugfs_create_u32("prot_commit", 0444, d_mmu_debug
, &mmu_stats
.prot_commit
);
2716 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug
,
2717 &mmu_stats
.prot_commit_batched
);
2721 fs_initcall(xen_mmu_debugfs
);
2723 #endif /* CONFIG_XEN_DEBUG_FS */