2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
79 #include <asm/uaccess.h>
81 static DEFINE_MUTEX(loop_mutex
);
82 static LIST_HEAD(loop_devices
);
83 static DEFINE_MUTEX(loop_devices_mutex
);
86 static int part_shift
;
91 static int transfer_none(struct loop_device
*lo
, int cmd
,
92 struct page
*raw_page
, unsigned raw_off
,
93 struct page
*loop_page
, unsigned loop_off
,
94 int size
, sector_t real_block
)
96 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
97 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
100 memcpy(loop_buf
, raw_buf
, size
);
102 memcpy(raw_buf
, loop_buf
, size
);
104 kunmap_atomic(loop_buf
, KM_USER1
);
105 kunmap_atomic(raw_buf
, KM_USER0
);
110 static int transfer_xor(struct loop_device
*lo
, int cmd
,
111 struct page
*raw_page
, unsigned raw_off
,
112 struct page
*loop_page
, unsigned loop_off
,
113 int size
, sector_t real_block
)
115 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
116 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
117 char *in
, *out
, *key
;
128 key
= lo
->lo_encrypt_key
;
129 keysize
= lo
->lo_encrypt_key_size
;
130 for (i
= 0; i
< size
; i
++)
131 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
133 kunmap_atomic(loop_buf
, KM_USER1
);
134 kunmap_atomic(raw_buf
, KM_USER0
);
139 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
141 if (unlikely(info
->lo_encrypt_key_size
<= 0))
146 static struct loop_func_table none_funcs
= {
147 .number
= LO_CRYPT_NONE
,
148 .transfer
= transfer_none
,
151 static struct loop_func_table xor_funcs
= {
152 .number
= LO_CRYPT_XOR
,
153 .transfer
= transfer_xor
,
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
163 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
165 loff_t size
, offset
, loopsize
;
167 /* Compute loopsize in bytes */
168 size
= i_size_read(file
->f_mapping
->host
);
169 offset
= lo
->lo_offset
;
170 loopsize
= size
- offset
;
171 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
172 loopsize
= lo
->lo_sizelimit
;
175 * Unfortunately, if we want to do I/O on the device,
176 * the number of 512-byte sectors has to fit into a sector_t.
178 return loopsize
>> 9;
182 figure_loop_size(struct loop_device
*lo
)
184 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
185 sector_t x
= (sector_t
)size
;
187 if (unlikely((loff_t
)x
!= size
))
190 set_capacity(lo
->lo_disk
, x
);
195 lo_do_transfer(struct loop_device
*lo
, int cmd
,
196 struct page
*rpage
, unsigned roffs
,
197 struct page
*lpage
, unsigned loffs
,
198 int size
, sector_t rblock
)
200 if (unlikely(!lo
->transfer
))
203 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
207 * do_lo_send_aops - helper for writing data to a loop device
209 * This is the fast version for backing filesystems which implement the address
210 * space operations write_begin and write_end.
212 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
213 loff_t pos
, struct page
*unused
)
215 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
216 struct address_space
*mapping
= file
->f_mapping
;
218 unsigned offset
, bv_offs
;
221 mutex_lock(&mapping
->host
->i_mutex
);
222 index
= pos
>> PAGE_CACHE_SHIFT
;
223 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
224 bv_offs
= bvec
->bv_offset
;
228 unsigned size
, copied
;
233 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
234 size
= PAGE_CACHE_SIZE
- offset
;
238 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
243 file_update_time(file
);
245 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
246 bvec
->bv_page
, bv_offs
, size
, IV
);
248 if (unlikely(transfer_result
))
251 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
253 if (ret
< 0 || ret
!= copied
)
256 if (unlikely(transfer_result
))
267 mutex_unlock(&mapping
->host
->i_mutex
);
275 * __do_lo_send_write - helper for writing data to a loop device
277 * This helper just factors out common code between do_lo_send_direct_write()
278 * and do_lo_send_write().
280 static int __do_lo_send_write(struct file
*file
,
281 u8
*buf
, const int len
, loff_t pos
)
284 mm_segment_t old_fs
= get_fs();
287 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
289 if (likely(bw
== len
))
291 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
292 (unsigned long long)pos
, len
);
299 * do_lo_send_direct_write - helper for writing data to a loop device
301 * This is the fast, non-transforming version for backing filesystems which do
302 * not implement the address space operations write_begin and write_end.
303 * It uses the write file operation which should be present on all writeable
306 static int do_lo_send_direct_write(struct loop_device
*lo
,
307 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
309 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
310 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
312 kunmap(bvec
->bv_page
);
318 * do_lo_send_write - helper for writing data to a loop device
320 * This is the slow, transforming version for filesystems which do not
321 * implement the address space operations write_begin and write_end. It
322 * uses the write file operation which should be present on all writeable
325 * Using fops->write is slower than using aops->{prepare,commit}_write in the
326 * transforming case because we need to double buffer the data as we cannot do
327 * the transformations in place as we do not have direct access to the
328 * destination pages of the backing file.
330 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
331 loff_t pos
, struct page
*page
)
333 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
334 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
336 return __do_lo_send_write(lo
->lo_backing_file
,
337 page_address(page
), bvec
->bv_len
,
339 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
340 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
346 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
348 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
350 struct bio_vec
*bvec
;
351 struct page
*page
= NULL
;
354 do_lo_send
= do_lo_send_aops
;
355 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
356 do_lo_send
= do_lo_send_direct_write
;
357 if (lo
->transfer
!= transfer_none
) {
358 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
362 do_lo_send
= do_lo_send_write
;
365 bio_for_each_segment(bvec
, bio
, i
) {
366 ret
= do_lo_send(lo
, bvec
, pos
, page
);
378 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
383 struct lo_read_data
{
384 struct loop_device
*lo
;
391 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
392 struct splice_desc
*sd
)
394 struct lo_read_data
*p
= sd
->u
.data
;
395 struct loop_device
*lo
= p
->lo
;
396 struct page
*page
= buf
->page
;
400 ret
= buf
->ops
->confirm(pipe
, buf
);
404 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
410 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
411 printk(KERN_ERR
"loop: transfer error block %ld\n",
416 flush_dcache_page(p
->page
);
425 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
427 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
431 do_lo_receive(struct loop_device
*lo
,
432 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
434 struct lo_read_data cookie
;
435 struct splice_desc sd
;
440 cookie
.page
= bvec
->bv_page
;
441 cookie
.offset
= bvec
->bv_offset
;
442 cookie
.bsize
= bsize
;
445 sd
.total_len
= bvec
->bv_len
;
450 file
= lo
->lo_backing_file
;
451 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
460 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
462 struct bio_vec
*bvec
;
465 bio_for_each_segment(bvec
, bio
, i
) {
466 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
474 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
479 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
481 if (bio_rw(bio
) == WRITE
) {
482 struct file
*file
= lo
->lo_backing_file
;
484 if (bio
->bi_rw
& REQ_FLUSH
) {
485 ret
= vfs_fsync(file
, 0);
486 if (unlikely(ret
&& ret
!= -EINVAL
)) {
492 ret
= lo_send(lo
, bio
, pos
);
494 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
495 ret
= vfs_fsync(file
, 0);
496 if (unlikely(ret
&& ret
!= -EINVAL
))
500 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
507 * Add bio to back of pending list
509 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
511 bio_list_add(&lo
->lo_bio_list
, bio
);
515 * Grab first pending buffer
517 static struct bio
*loop_get_bio(struct loop_device
*lo
)
519 return bio_list_pop(&lo
->lo_bio_list
);
522 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
524 struct loop_device
*lo
= q
->queuedata
;
525 int rw
= bio_rw(old_bio
);
530 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
532 spin_lock_irq(&lo
->lo_lock
);
533 if (lo
->lo_state
!= Lo_bound
)
535 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
537 loop_add_bio(lo
, old_bio
);
538 wake_up(&lo
->lo_event
);
539 spin_unlock_irq(&lo
->lo_lock
);
543 spin_unlock_irq(&lo
->lo_lock
);
544 bio_io_error(old_bio
);
549 * kick off io on the underlying address space
551 static void loop_unplug(struct request_queue
*q
)
553 struct loop_device
*lo
= q
->queuedata
;
555 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED
, q
);
556 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
559 struct switch_request
{
561 struct completion wait
;
564 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
566 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
568 if (unlikely(!bio
->bi_bdev
)) {
569 do_loop_switch(lo
, bio
->bi_private
);
572 int ret
= do_bio_filebacked(lo
, bio
);
578 * worker thread that handles reads/writes to file backed loop devices,
579 * to avoid blocking in our make_request_fn. it also does loop decrypting
580 * on reads for block backed loop, as that is too heavy to do from
581 * b_end_io context where irqs may be disabled.
583 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
584 * calling kthread_stop(). Therefore once kthread_should_stop() is
585 * true, make_request will not place any more requests. Therefore
586 * once kthread_should_stop() is true and lo_bio is NULL, we are
587 * done with the loop.
589 static int loop_thread(void *data
)
591 struct loop_device
*lo
= data
;
594 set_user_nice(current
, -20);
596 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
598 wait_event_interruptible(lo
->lo_event
,
599 !bio_list_empty(&lo
->lo_bio_list
) ||
600 kthread_should_stop());
602 if (bio_list_empty(&lo
->lo_bio_list
))
604 spin_lock_irq(&lo
->lo_lock
);
605 bio
= loop_get_bio(lo
);
606 spin_unlock_irq(&lo
->lo_lock
);
609 loop_handle_bio(lo
, bio
);
616 * loop_switch performs the hard work of switching a backing store.
617 * First it needs to flush existing IO, it does this by sending a magic
618 * BIO down the pipe. The completion of this BIO does the actual switch.
620 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
622 struct switch_request w
;
623 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
626 init_completion(&w
.wait
);
628 bio
->bi_private
= &w
;
630 loop_make_request(lo
->lo_queue
, bio
);
631 wait_for_completion(&w
.wait
);
636 * Helper to flush the IOs in loop, but keeping loop thread running
638 static int loop_flush(struct loop_device
*lo
)
640 /* loop not yet configured, no running thread, nothing to flush */
644 return loop_switch(lo
, NULL
);
648 * Do the actual switch; called from the BIO completion routine
650 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
652 struct file
*file
= p
->file
;
653 struct file
*old_file
= lo
->lo_backing_file
;
654 struct address_space
*mapping
;
656 /* if no new file, only flush of queued bios requested */
660 mapping
= file
->f_mapping
;
661 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
662 lo
->lo_backing_file
= file
;
663 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
664 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
665 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
666 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
673 * loop_change_fd switched the backing store of a loopback device to
674 * a new file. This is useful for operating system installers to free up
675 * the original file and in High Availability environments to switch to
676 * an alternative location for the content in case of server meltdown.
677 * This can only work if the loop device is used read-only, and if the
678 * new backing store is the same size and type as the old backing store.
680 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
683 struct file
*file
, *old_file
;
688 if (lo
->lo_state
!= Lo_bound
)
691 /* the loop device has to be read-only */
693 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
701 inode
= file
->f_mapping
->host
;
702 old_file
= lo
->lo_backing_file
;
706 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
709 /* size of the new backing store needs to be the same */
710 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
714 error
= loop_switch(lo
, file
);
720 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
729 static inline int is_loop_device(struct file
*file
)
731 struct inode
*i
= file
->f_mapping
->host
;
733 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
736 /* loop sysfs attributes */
738 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
739 ssize_t (*callback
)(struct loop_device
*, char *))
741 struct loop_device
*l
, *lo
= NULL
;
743 mutex_lock(&loop_devices_mutex
);
744 list_for_each_entry(l
, &loop_devices
, lo_list
)
745 if (disk_to_dev(l
->lo_disk
) == dev
) {
749 mutex_unlock(&loop_devices_mutex
);
751 return lo
? callback(lo
, page
) : -EIO
;
754 #define LOOP_ATTR_RO(_name) \
755 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
756 static ssize_t loop_attr_do_show_##_name(struct device *d, \
757 struct device_attribute *attr, char *b) \
759 return loop_attr_show(d, b, loop_attr_##_name##_show); \
761 static struct device_attribute loop_attr_##_name = \
762 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
764 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
769 mutex_lock(&lo
->lo_ctl_mutex
);
770 if (lo
->lo_backing_file
)
771 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
772 mutex_unlock(&lo
->lo_ctl_mutex
);
774 if (IS_ERR_OR_NULL(p
))
778 memmove(buf
, p
, ret
);
786 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
788 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
791 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
793 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
796 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
798 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
800 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
803 LOOP_ATTR_RO(backing_file
);
804 LOOP_ATTR_RO(offset
);
805 LOOP_ATTR_RO(sizelimit
);
806 LOOP_ATTR_RO(autoclear
);
808 static struct attribute
*loop_attrs
[] = {
809 &loop_attr_backing_file
.attr
,
810 &loop_attr_offset
.attr
,
811 &loop_attr_sizelimit
.attr
,
812 &loop_attr_autoclear
.attr
,
816 static struct attribute_group loop_attribute_group
= {
821 static int loop_sysfs_init(struct loop_device
*lo
)
823 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
824 &loop_attribute_group
);
827 static void loop_sysfs_exit(struct loop_device
*lo
)
829 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
830 &loop_attribute_group
);
833 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
834 struct block_device
*bdev
, unsigned int arg
)
836 struct file
*file
, *f
;
838 struct address_space
*mapping
;
839 unsigned lo_blocksize
;
844 /* This is safe, since we have a reference from open(). */
845 __module_get(THIS_MODULE
);
853 if (lo
->lo_state
!= Lo_unbound
)
856 /* Avoid recursion */
858 while (is_loop_device(f
)) {
859 struct loop_device
*l
;
861 if (f
->f_mapping
->host
->i_bdev
== bdev
)
864 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
865 if (l
->lo_state
== Lo_unbound
) {
869 f
= l
->lo_backing_file
;
872 mapping
= file
->f_mapping
;
873 inode
= mapping
->host
;
875 if (!(file
->f_mode
& FMODE_WRITE
))
876 lo_flags
|= LO_FLAGS_READ_ONLY
;
879 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
880 const struct address_space_operations
*aops
= mapping
->a_ops
;
882 if (aops
->write_begin
)
883 lo_flags
|= LO_FLAGS_USE_AOPS
;
884 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
885 lo_flags
|= LO_FLAGS_READ_ONLY
;
887 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
888 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
895 size
= get_loop_size(lo
, file
);
897 if ((loff_t
)(sector_t
)size
!= size
) {
902 if (!(mode
& FMODE_WRITE
))
903 lo_flags
|= LO_FLAGS_READ_ONLY
;
905 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
907 lo
->lo_blocksize
= lo_blocksize
;
908 lo
->lo_device
= bdev
;
909 lo
->lo_flags
= lo_flags
;
910 lo
->lo_backing_file
= file
;
911 lo
->transfer
= transfer_none
;
913 lo
->lo_sizelimit
= 0;
914 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
915 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
917 bio_list_init(&lo
->lo_bio_list
);
920 * set queue make_request_fn, and add limits based on lower level
923 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
924 lo
->lo_queue
->queuedata
= lo
;
925 lo
->lo_queue
->unplug_fn
= loop_unplug
;
927 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
928 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
930 set_capacity(lo
->lo_disk
, size
);
931 bd_set_size(bdev
, size
<< 9);
933 /* let user-space know about the new size */
934 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
936 set_blocksize(bdev
, lo_blocksize
);
938 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
940 if (IS_ERR(lo
->lo_thread
)) {
941 error
= PTR_ERR(lo
->lo_thread
);
944 lo
->lo_state
= Lo_bound
;
945 wake_up_process(lo
->lo_thread
);
947 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
952 lo
->lo_thread
= NULL
;
953 lo
->lo_device
= NULL
;
954 lo
->lo_backing_file
= NULL
;
956 set_capacity(lo
->lo_disk
, 0);
957 invalidate_bdev(bdev
);
958 bd_set_size(bdev
, 0);
959 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
960 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
961 lo
->lo_state
= Lo_unbound
;
965 /* This is safe: open() is still holding a reference. */
966 module_put(THIS_MODULE
);
971 loop_release_xfer(struct loop_device
*lo
)
974 struct loop_func_table
*xfer
= lo
->lo_encryption
;
978 err
= xfer
->release(lo
);
980 lo
->lo_encryption
= NULL
;
981 module_put(xfer
->owner
);
987 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
988 const struct loop_info64
*i
)
993 struct module
*owner
= xfer
->owner
;
995 if (!try_module_get(owner
))
998 err
= xfer
->init(lo
, i
);
1002 lo
->lo_encryption
= xfer
;
1007 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
1009 struct file
*filp
= lo
->lo_backing_file
;
1010 gfp_t gfp
= lo
->old_gfp_mask
;
1012 if (lo
->lo_state
!= Lo_bound
)
1015 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
1021 spin_lock_irq(&lo
->lo_lock
);
1022 lo
->lo_state
= Lo_rundown
;
1023 spin_unlock_irq(&lo
->lo_lock
);
1025 kthread_stop(lo
->lo_thread
);
1027 lo
->lo_queue
->unplug_fn
= NULL
;
1028 lo
->lo_backing_file
= NULL
;
1030 loop_release_xfer(lo
);
1031 lo
->transfer
= NULL
;
1033 lo
->lo_device
= NULL
;
1034 lo
->lo_encryption
= NULL
;
1036 lo
->lo_sizelimit
= 0;
1037 lo
->lo_encrypt_key_size
= 0;
1039 lo
->lo_thread
= NULL
;
1040 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1041 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1042 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1044 invalidate_bdev(bdev
);
1045 set_capacity(lo
->lo_disk
, 0);
1046 loop_sysfs_exit(lo
);
1048 bd_set_size(bdev
, 0);
1049 /* let user-space know about this change */
1050 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1052 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1053 lo
->lo_state
= Lo_unbound
;
1054 /* This is safe: open() is still holding a reference. */
1055 module_put(THIS_MODULE
);
1056 if (max_part
> 0 && bdev
)
1057 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1058 mutex_unlock(&lo
->lo_ctl_mutex
);
1060 * Need not hold lo_ctl_mutex to fput backing file.
1061 * Calling fput holding lo_ctl_mutex triggers a circular
1062 * lock dependency possibility warning as fput can take
1063 * bd_mutex which is usually taken before lo_ctl_mutex.
1070 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1073 struct loop_func_table
*xfer
;
1074 uid_t uid
= current_uid();
1076 if (lo
->lo_encrypt_key_size
&&
1077 lo
->lo_key_owner
!= uid
&&
1078 !capable(CAP_SYS_ADMIN
))
1080 if (lo
->lo_state
!= Lo_bound
)
1082 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1085 err
= loop_release_xfer(lo
);
1089 if (info
->lo_encrypt_type
) {
1090 unsigned int type
= info
->lo_encrypt_type
;
1092 if (type
>= MAX_LO_CRYPT
)
1094 xfer
= xfer_funcs
[type
];
1100 err
= loop_init_xfer(lo
, xfer
, info
);
1104 if (lo
->lo_offset
!= info
->lo_offset
||
1105 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1106 lo
->lo_offset
= info
->lo_offset
;
1107 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1108 if (figure_loop_size(lo
))
1112 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1113 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1114 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1115 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1119 lo
->transfer
= xfer
->transfer
;
1120 lo
->ioctl
= xfer
->ioctl
;
1122 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1123 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1124 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1126 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1127 lo
->lo_init
[0] = info
->lo_init
[0];
1128 lo
->lo_init
[1] = info
->lo_init
[1];
1129 if (info
->lo_encrypt_key_size
) {
1130 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1131 info
->lo_encrypt_key_size
);
1132 lo
->lo_key_owner
= uid
;
1139 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1141 struct file
*file
= lo
->lo_backing_file
;
1145 if (lo
->lo_state
!= Lo_bound
)
1147 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1150 memset(info
, 0, sizeof(*info
));
1151 info
->lo_number
= lo
->lo_number
;
1152 info
->lo_device
= huge_encode_dev(stat
.dev
);
1153 info
->lo_inode
= stat
.ino
;
1154 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1155 info
->lo_offset
= lo
->lo_offset
;
1156 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1157 info
->lo_flags
= lo
->lo_flags
;
1158 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1159 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1160 info
->lo_encrypt_type
=
1161 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1162 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1163 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1164 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1165 lo
->lo_encrypt_key_size
);
1171 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1173 memset(info64
, 0, sizeof(*info64
));
1174 info64
->lo_number
= info
->lo_number
;
1175 info64
->lo_device
= info
->lo_device
;
1176 info64
->lo_inode
= info
->lo_inode
;
1177 info64
->lo_rdevice
= info
->lo_rdevice
;
1178 info64
->lo_offset
= info
->lo_offset
;
1179 info64
->lo_sizelimit
= 0;
1180 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1181 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1182 info64
->lo_flags
= info
->lo_flags
;
1183 info64
->lo_init
[0] = info
->lo_init
[0];
1184 info64
->lo_init
[1] = info
->lo_init
[1];
1185 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1186 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1188 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1189 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1193 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1195 memset(info
, 0, sizeof(*info
));
1196 info
->lo_number
= info64
->lo_number
;
1197 info
->lo_device
= info64
->lo_device
;
1198 info
->lo_inode
= info64
->lo_inode
;
1199 info
->lo_rdevice
= info64
->lo_rdevice
;
1200 info
->lo_offset
= info64
->lo_offset
;
1201 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1202 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1203 info
->lo_flags
= info64
->lo_flags
;
1204 info
->lo_init
[0] = info64
->lo_init
[0];
1205 info
->lo_init
[1] = info64
->lo_init
[1];
1206 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1207 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1209 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1210 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1212 /* error in case values were truncated */
1213 if (info
->lo_device
!= info64
->lo_device
||
1214 info
->lo_rdevice
!= info64
->lo_rdevice
||
1215 info
->lo_inode
!= info64
->lo_inode
||
1216 info
->lo_offset
!= info64
->lo_offset
)
1223 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1225 struct loop_info info
;
1226 struct loop_info64 info64
;
1228 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1230 loop_info64_from_old(&info
, &info64
);
1231 return loop_set_status(lo
, &info64
);
1235 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1237 struct loop_info64 info64
;
1239 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1241 return loop_set_status(lo
, &info64
);
1245 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1246 struct loop_info info
;
1247 struct loop_info64 info64
;
1253 err
= loop_get_status(lo
, &info64
);
1255 err
= loop_info64_to_old(&info64
, &info
);
1256 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1263 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1264 struct loop_info64 info64
;
1270 err
= loop_get_status(lo
, &info64
);
1271 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1277 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1284 if (unlikely(lo
->lo_state
!= Lo_bound
))
1286 err
= figure_loop_size(lo
);
1289 sec
= get_capacity(lo
->lo_disk
);
1290 /* the width of sector_t may be narrow for bit-shift */
1293 mutex_lock(&bdev
->bd_mutex
);
1294 bd_set_size(bdev
, sz
);
1295 /* let user-space know about the new size */
1296 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1297 mutex_unlock(&bdev
->bd_mutex
);
1303 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1304 unsigned int cmd
, unsigned long arg
)
1306 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1309 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1312 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1314 case LOOP_CHANGE_FD
:
1315 err
= loop_change_fd(lo
, bdev
, arg
);
1318 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1319 err
= loop_clr_fd(lo
, bdev
);
1323 case LOOP_SET_STATUS
:
1324 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1326 case LOOP_GET_STATUS
:
1327 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1329 case LOOP_SET_STATUS64
:
1330 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1332 case LOOP_GET_STATUS64
:
1333 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1335 case LOOP_SET_CAPACITY
:
1337 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1338 err
= loop_set_capacity(lo
, bdev
);
1341 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1343 mutex_unlock(&lo
->lo_ctl_mutex
);
1349 #ifdef CONFIG_COMPAT
1350 struct compat_loop_info
{
1351 compat_int_t lo_number
; /* ioctl r/o */
1352 compat_dev_t lo_device
; /* ioctl r/o */
1353 compat_ulong_t lo_inode
; /* ioctl r/o */
1354 compat_dev_t lo_rdevice
; /* ioctl r/o */
1355 compat_int_t lo_offset
;
1356 compat_int_t lo_encrypt_type
;
1357 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1358 compat_int_t lo_flags
; /* ioctl r/o */
1359 char lo_name
[LO_NAME_SIZE
];
1360 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1361 compat_ulong_t lo_init
[2];
1366 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1367 * - noinlined to reduce stack space usage in main part of driver
1370 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1371 struct loop_info64
*info64
)
1373 struct compat_loop_info info
;
1375 if (copy_from_user(&info
, arg
, sizeof(info
)))
1378 memset(info64
, 0, sizeof(*info64
));
1379 info64
->lo_number
= info
.lo_number
;
1380 info64
->lo_device
= info
.lo_device
;
1381 info64
->lo_inode
= info
.lo_inode
;
1382 info64
->lo_rdevice
= info
.lo_rdevice
;
1383 info64
->lo_offset
= info
.lo_offset
;
1384 info64
->lo_sizelimit
= 0;
1385 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1386 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1387 info64
->lo_flags
= info
.lo_flags
;
1388 info64
->lo_init
[0] = info
.lo_init
[0];
1389 info64
->lo_init
[1] = info
.lo_init
[1];
1390 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1391 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1393 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1394 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1399 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1400 * - noinlined to reduce stack space usage in main part of driver
1403 loop_info64_to_compat(const struct loop_info64
*info64
,
1404 struct compat_loop_info __user
*arg
)
1406 struct compat_loop_info info
;
1408 memset(&info
, 0, sizeof(info
));
1409 info
.lo_number
= info64
->lo_number
;
1410 info
.lo_device
= info64
->lo_device
;
1411 info
.lo_inode
= info64
->lo_inode
;
1412 info
.lo_rdevice
= info64
->lo_rdevice
;
1413 info
.lo_offset
= info64
->lo_offset
;
1414 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1415 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1416 info
.lo_flags
= info64
->lo_flags
;
1417 info
.lo_init
[0] = info64
->lo_init
[0];
1418 info
.lo_init
[1] = info64
->lo_init
[1];
1419 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1420 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1422 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1423 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1425 /* error in case values were truncated */
1426 if (info
.lo_device
!= info64
->lo_device
||
1427 info
.lo_rdevice
!= info64
->lo_rdevice
||
1428 info
.lo_inode
!= info64
->lo_inode
||
1429 info
.lo_offset
!= info64
->lo_offset
||
1430 info
.lo_init
[0] != info64
->lo_init
[0] ||
1431 info
.lo_init
[1] != info64
->lo_init
[1])
1434 if (copy_to_user(arg
, &info
, sizeof(info
)))
1440 loop_set_status_compat(struct loop_device
*lo
,
1441 const struct compat_loop_info __user
*arg
)
1443 struct loop_info64 info64
;
1446 ret
= loop_info64_from_compat(arg
, &info64
);
1449 return loop_set_status(lo
, &info64
);
1453 loop_get_status_compat(struct loop_device
*lo
,
1454 struct compat_loop_info __user
*arg
)
1456 struct loop_info64 info64
;
1462 err
= loop_get_status(lo
, &info64
);
1464 err
= loop_info64_to_compat(&info64
, arg
);
1468 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1469 unsigned int cmd
, unsigned long arg
)
1471 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1475 case LOOP_SET_STATUS
:
1476 mutex_lock(&lo
->lo_ctl_mutex
);
1477 err
= loop_set_status_compat(
1478 lo
, (const struct compat_loop_info __user
*) arg
);
1479 mutex_unlock(&lo
->lo_ctl_mutex
);
1481 case LOOP_GET_STATUS
:
1482 mutex_lock(&lo
->lo_ctl_mutex
);
1483 err
= loop_get_status_compat(
1484 lo
, (struct compat_loop_info __user
*) arg
);
1485 mutex_unlock(&lo
->lo_ctl_mutex
);
1487 case LOOP_SET_CAPACITY
:
1489 case LOOP_GET_STATUS64
:
1490 case LOOP_SET_STATUS64
:
1491 arg
= (unsigned long) compat_ptr(arg
);
1493 case LOOP_CHANGE_FD
:
1494 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1504 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1506 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1508 mutex_lock(&loop_mutex
);
1509 mutex_lock(&lo
->lo_ctl_mutex
);
1511 mutex_unlock(&lo
->lo_ctl_mutex
);
1512 mutex_unlock(&loop_mutex
);
1517 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1519 struct loop_device
*lo
= disk
->private_data
;
1522 mutex_lock(&loop_mutex
);
1523 mutex_lock(&lo
->lo_ctl_mutex
);
1525 if (--lo
->lo_refcnt
)
1528 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1530 * In autoclear mode, stop the loop thread
1531 * and remove configuration after last close.
1533 err
= loop_clr_fd(lo
, NULL
);
1538 * Otherwise keep thread (if running) and config,
1539 * but flush possible ongoing bios in thread.
1545 mutex_unlock(&lo
->lo_ctl_mutex
);
1547 mutex_unlock(&loop_mutex
);
1551 static const struct block_device_operations lo_fops
= {
1552 .owner
= THIS_MODULE
,
1554 .release
= lo_release
,
1556 #ifdef CONFIG_COMPAT
1557 .compat_ioctl
= lo_compat_ioctl
,
1562 * And now the modules code and kernel interface.
1564 static int max_loop
;
1565 module_param(max_loop
, int, 0);
1566 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1567 module_param(max_part
, int, 0);
1568 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1572 int loop_register_transfer(struct loop_func_table
*funcs
)
1574 unsigned int n
= funcs
->number
;
1576 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1578 xfer_funcs
[n
] = funcs
;
1582 int loop_unregister_transfer(int number
)
1584 unsigned int n
= number
;
1585 struct loop_device
*lo
;
1586 struct loop_func_table
*xfer
;
1588 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1591 xfer_funcs
[n
] = NULL
;
1593 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1594 mutex_lock(&lo
->lo_ctl_mutex
);
1596 if (lo
->lo_encryption
== xfer
)
1597 loop_release_xfer(lo
);
1599 mutex_unlock(&lo
->lo_ctl_mutex
);
1605 EXPORT_SYMBOL(loop_register_transfer
);
1606 EXPORT_SYMBOL(loop_unregister_transfer
);
1608 static struct loop_device
*loop_alloc(int i
)
1610 struct loop_device
*lo
;
1611 struct gendisk
*disk
;
1613 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1617 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1621 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1623 goto out_free_queue
;
1625 mutex_init(&lo
->lo_ctl_mutex
);
1627 lo
->lo_thread
= NULL
;
1628 init_waitqueue_head(&lo
->lo_event
);
1629 spin_lock_init(&lo
->lo_lock
);
1630 disk
->major
= LOOP_MAJOR
;
1631 disk
->first_minor
= i
<< part_shift
;
1632 disk
->fops
= &lo_fops
;
1633 disk
->private_data
= lo
;
1634 disk
->queue
= lo
->lo_queue
;
1635 sprintf(disk
->disk_name
, "loop%d", i
);
1639 blk_cleanup_queue(lo
->lo_queue
);
1646 static void loop_free(struct loop_device
*lo
)
1648 blk_cleanup_queue(lo
->lo_queue
);
1649 put_disk(lo
->lo_disk
);
1650 list_del(&lo
->lo_list
);
1654 static struct loop_device
*loop_init_one(int i
)
1656 struct loop_device
*lo
;
1658 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1659 if (lo
->lo_number
== i
)
1665 add_disk(lo
->lo_disk
);
1666 list_add_tail(&lo
->lo_list
, &loop_devices
);
1671 static void loop_del_one(struct loop_device
*lo
)
1673 del_gendisk(lo
->lo_disk
);
1677 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1679 struct loop_device
*lo
;
1680 struct kobject
*kobj
;
1682 mutex_lock(&loop_devices_mutex
);
1683 lo
= loop_init_one(dev
& MINORMASK
);
1684 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1685 mutex_unlock(&loop_devices_mutex
);
1691 static int __init
loop_init(void)
1694 unsigned long range
;
1695 struct loop_device
*lo
, *next
;
1698 * loop module now has a feature to instantiate underlying device
1699 * structure on-demand, provided that there is an access dev node.
1700 * However, this will not work well with user space tool that doesn't
1701 * know about such "feature". In order to not break any existing
1702 * tool, we do the following:
1704 * (1) if max_loop is specified, create that many upfront, and this
1705 * also becomes a hard limit.
1706 * (2) if max_loop is not specified, create 8 loop device on module
1707 * load, user can further extend loop device by create dev node
1708 * themselves and have kernel automatically instantiate actual
1714 part_shift
= fls(max_part
);
1716 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1724 range
= 1UL << (MINORBITS
- part_shift
);
1727 if (register_blkdev(LOOP_MAJOR
, "loop"))
1730 for (i
= 0; i
< nr
; i
++) {
1734 list_add_tail(&lo
->lo_list
, &loop_devices
);
1737 /* point of no return */
1739 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1740 add_disk(lo
->lo_disk
);
1742 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1743 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1745 printk(KERN_INFO
"loop: module loaded\n");
1749 printk(KERN_INFO
"loop: out of memory\n");
1751 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1754 unregister_blkdev(LOOP_MAJOR
, "loop");
1758 static void __exit
loop_exit(void)
1760 unsigned long range
;
1761 struct loop_device
*lo
, *next
;
1763 range
= max_loop
? max_loop
: 1UL << (MINORBITS
- part_shift
);
1765 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1768 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1769 unregister_blkdev(LOOP_MAJOR
, "loop");
1772 module_init(loop_init
);
1773 module_exit(loop_exit
);
1776 static int __init
max_loop_setup(char *str
)
1778 max_loop
= simple_strtol(str
, NULL
, 0);
1782 __setup("max_loop=", max_loop_setup
);