x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / drivers / md / raid1.c
blob45f8324196ec61c86cd7164868e3f8bc66ada03c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
62 struct pool_info *pi = data;
63 r1bio_t *r1_bio;
64 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
67 r1_bio = kzalloc(size, gfp_flags);
68 if (!r1_bio && pi->mddev)
69 unplug_slaves(pi->mddev);
71 return r1_bio;
74 static void r1bio_pool_free(void *r1_bio, void *data)
76 kfree(r1_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
87 struct pool_info *pi = data;
88 struct page *page;
89 r1bio_t *r1_bio;
90 struct bio *bio;
91 int i, j;
93 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 if (!r1_bio) {
95 unplug_slaves(pi->mddev);
96 return NULL;
100 * Allocate bios : 1 for reading, n-1 for writing
102 for (j = pi->raid_disks ; j-- ; ) {
103 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
104 if (!bio)
105 goto out_free_bio;
106 r1_bio->bios[j] = bio;
109 * Allocate RESYNC_PAGES data pages and attach them to
110 * the first bio.
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 j = pi->raid_disks;
116 else
117 j = 1;
118 while(j--) {
119 bio = r1_bio->bios[j];
120 for (i = 0; i < RESYNC_PAGES; i++) {
121 page = alloc_page(gfp_flags);
122 if (unlikely(!page))
123 goto out_free_pages;
125 bio->bi_io_vec[i].bv_page = page;
126 bio->bi_vcnt = i+1;
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
137 r1_bio->master_bio = NULL;
139 return r1_bio;
141 out_free_pages:
142 for (j=0 ; j < pi->raid_disks; j++)
143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 j = -1;
146 out_free_bio:
147 while ( ++j < pi->raid_disks )
148 bio_put(r1_bio->bios[j]);
149 r1bio_pool_free(r1_bio, data);
150 return NULL;
153 static void r1buf_pool_free(void *__r1_bio, void *data)
155 struct pool_info *pi = data;
156 int i,j;
157 r1bio_t *r1bio = __r1_bio;
159 for (i = 0; i < RESYNC_PAGES; i++)
160 for (j = pi->raid_disks; j-- ;) {
161 if (j == 0 ||
162 r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 r1bio->bios[0]->bi_io_vec[i].bv_page)
164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
166 for (i=0 ; i < pi->raid_disks; i++)
167 bio_put(r1bio->bios[i]);
169 r1bio_pool_free(r1bio, data);
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
174 int i;
176 for (i = 0; i < conf->raid_disks; i++) {
177 struct bio **bio = r1_bio->bios + i;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r1bio(r1bio_t *r1_bio)
186 conf_t *conf = r1_bio->mddev->private;
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r1_bio);
195 mempool_free(r1_bio, conf->r1bio_pool);
198 static void put_buf(r1bio_t *r1_bio)
200 conf_t *conf = r1_bio->mddev->private;
201 int i;
203 for (i=0; i<conf->raid_disks; i++) {
204 struct bio *bio = r1_bio->bios[i];
205 if (bio->bi_end_io)
206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
209 mempool_free(r1_bio, conf->r1buf_pool);
211 lower_barrier(conf);
214 static void reschedule_retry(r1bio_t *r1_bio)
216 unsigned long flags;
217 mddev_t *mddev = r1_bio->mddev;
218 conf_t *conf = mddev->private;
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r1_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
225 wake_up(&conf->wait_barrier);
226 md_wakeup_thread(mddev->thread);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
234 static void raid_end_bio_io(r1bio_t *r1_bio)
236 struct bio *bio = r1_bio->master_bio;
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio) == WRITE) ? "write" : "read",
242 (unsigned long long) bio->bi_sector,
243 (unsigned long long) bio->bi_sector +
244 (bio->bi_size >> 9) - 1);
246 bio_endio(bio,
247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
249 free_r1bio(r1_bio);
253 * Update disk head position estimator based on IRQ completion info.
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
257 conf_t *conf = r1_bio->mddev->private;
259 conf->mirrors[disk].head_position =
260 r1_bio->sector + (r1_bio->sectors);
263 static void raid1_end_read_request(struct bio *bio, int error)
265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 r1bio_t *r1_bio = bio->bi_private;
267 int mirror;
268 conf_t *conf = r1_bio->mddev->private;
270 mirror = r1_bio->read_disk;
272 * this branch is our 'one mirror IO has finished' event handler:
274 update_head_pos(mirror, r1_bio);
276 if (uptodate)
277 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 else {
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
283 unsigned long flags;
284 spin_lock_irqsave(&conf->device_lock, flags);
285 if (r1_bio->mddev->degraded == conf->raid_disks ||
286 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 uptodate = 1;
289 spin_unlock_irqrestore(&conf->device_lock, flags);
292 if (uptodate)
293 raid_end_bio_io(r1_bio);
294 else {
296 * oops, read error:
298 char b[BDEVNAME_SIZE];
299 if (printk_ratelimit())
300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 mdname(conf->mddev),
302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 reschedule_retry(r1_bio);
306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
310 int behind)
312 if (atomic_dec_and_test(&r1_bio->remaining))
314 /* it really is the end of this request */
315 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
316 /* free extra copy of the data pages */
317 int i = vcnt;
318 while (i--)
319 safe_put_page(bv[i].bv_page);
321 /* clear the bitmap if all writes complete successfully */
322 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
323 r1_bio->sectors,
324 !test_bit(R1BIO_Degraded, &r1_bio->state),
325 behind);
326 md_write_end(r1_bio->mddev);
327 raid_end_bio_io(r1_bio);
331 static void raid1_end_write_request(struct bio *bio, int error)
333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
334 r1bio_t *r1_bio = bio->bi_private;
335 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 conf_t *conf = r1_bio->mddev->private;
337 struct bio *to_put = NULL;
340 for (mirror = 0; mirror < conf->raid_disks; mirror++)
341 if (r1_bio->bios[mirror] == bio)
342 break;
345 * 'one mirror IO has finished' event handler:
347 r1_bio->bios[mirror] = NULL;
348 to_put = bio;
349 if (!uptodate) {
350 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
351 /* an I/O failed, we can't clear the bitmap */
352 set_bit(R1BIO_Degraded, &r1_bio->state);
353 } else
355 * Set R1BIO_Uptodate in our master bio, so that we
356 * will return a good error code for to the higher
357 * levels even if IO on some other mirrored buffer
358 * fails.
360 * The 'master' represents the composite IO operation
361 * to user-side. So if something waits for IO, then it
362 * will wait for the 'master' bio.
364 set_bit(R1BIO_Uptodate, &r1_bio->state);
366 update_head_pos(mirror, r1_bio);
368 if (behind) {
369 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
370 atomic_dec(&r1_bio->behind_remaining);
373 * In behind mode, we ACK the master bio once the I/O
374 * has safely reached all non-writemostly
375 * disks. Setting the Returned bit ensures that this
376 * gets done only once -- we don't ever want to return
377 * -EIO here, instead we'll wait
379 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
380 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
381 /* Maybe we can return now */
382 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
383 struct bio *mbio = r1_bio->master_bio;
384 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
385 (unsigned long long) mbio->bi_sector,
386 (unsigned long long) mbio->bi_sector +
387 (mbio->bi_size >> 9) - 1);
388 bio_endio(mbio, 0);
392 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
395 * Let's see if all mirrored write operations have finished
396 * already.
398 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
400 if (to_put)
401 bio_put(to_put);
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
417 * The rdev for the device selected will have nr_pending incremented.
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 const sector_t this_sector = r1_bio->sector;
422 const int sectors = r1_bio->sectors;
423 int new_disk = -1;
424 int start_disk;
425 int i;
426 sector_t new_distance, current_distance;
427 mdk_rdev_t *rdev;
428 int choose_first;
430 rcu_read_lock();
432 * Check if we can balance. We can balance on the whole
433 * device if no resync is going on, or below the resync window.
434 * We take the first readable disk when above the resync window.
436 retry:
437 if (conf->mddev->recovery_cp < MaxSector &&
438 (this_sector + sectors >= conf->next_resync)) {
439 choose_first = 1;
440 start_disk = 0;
441 } else {
442 choose_first = 0;
443 start_disk = conf->last_used;
446 /* make sure the disk is operational */
447 for (i = 0 ; i < conf->raid_disks ; i++) {
448 int disk = start_disk + i;
449 if (disk >= conf->raid_disks)
450 disk -= conf->raid_disks;
452 rdev = rcu_dereference(conf->mirrors[disk].rdev);
453 if (r1_bio->bios[disk] == IO_BLOCKED
454 || rdev == NULL
455 || !test_bit(In_sync, &rdev->flags))
456 continue;
458 new_disk = disk;
459 if (!test_bit(WriteMostly, &rdev->flags))
460 break;
463 if (new_disk < 0 || choose_first)
464 goto rb_out;
467 * Don't change to another disk for sequential reads:
469 if (conf->next_seq_sect == this_sector)
470 goto rb_out;
471 if (this_sector == conf->mirrors[new_disk].head_position)
472 goto rb_out;
474 current_distance = abs(this_sector
475 - conf->mirrors[new_disk].head_position);
477 /* look for a better disk - i.e. head is closer */
478 start_disk = new_disk;
479 for (i = 1; i < conf->raid_disks; i++) {
480 int disk = start_disk + 1;
481 if (disk >= conf->raid_disks)
482 disk -= conf->raid_disks;
484 rdev = rcu_dereference(conf->mirrors[disk].rdev);
485 if (r1_bio->bios[disk] == IO_BLOCKED
486 || rdev == NULL
487 || !test_bit(In_sync, &rdev->flags)
488 || test_bit(WriteMostly, &rdev->flags))
489 continue;
491 if (!atomic_read(&rdev->nr_pending)) {
492 new_disk = disk;
493 break;
495 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 if (new_distance < current_distance) {
497 current_distance = new_distance;
498 new_disk = disk;
502 rb_out:
503 if (new_disk >= 0) {
504 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
505 if (!rdev)
506 goto retry;
507 atomic_inc(&rdev->nr_pending);
508 if (!test_bit(In_sync, &rdev->flags)) {
509 /* cannot risk returning a device that failed
510 * before we inc'ed nr_pending
512 rdev_dec_pending(rdev, conf->mddev);
513 goto retry;
515 conf->next_seq_sect = this_sector + sectors;
516 conf->last_used = new_disk;
518 rcu_read_unlock();
520 return new_disk;
523 static void unplug_slaves(mddev_t *mddev)
525 conf_t *conf = mddev->private;
526 int i;
528 rcu_read_lock();
529 for (i=0; i<mddev->raid_disks; i++) {
530 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
531 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
532 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
534 atomic_inc(&rdev->nr_pending);
535 rcu_read_unlock();
537 blk_unplug(r_queue);
539 rdev_dec_pending(rdev, mddev);
540 rcu_read_lock();
543 rcu_read_unlock();
546 static void raid1_unplug(struct request_queue *q)
548 mddev_t *mddev = q->queuedata;
550 unplug_slaves(mddev);
551 md_wakeup_thread(mddev->thread);
554 static int raid1_congested(void *data, int bits)
556 mddev_t *mddev = data;
557 conf_t *conf = mddev->private;
558 int i, ret = 0;
560 if (mddev_congested(mddev, bits))
561 return 1;
563 rcu_read_lock();
564 for (i = 0; i < mddev->raid_disks; i++) {
565 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
566 if (rdev && !test_bit(Faulty, &rdev->flags)) {
567 struct request_queue *q = bdev_get_queue(rdev->bdev);
569 /* Note the '|| 1' - when read_balance prefers
570 * non-congested targets, it can be removed
572 if ((bits & (1<<BDI_async_congested)) || 1)
573 ret |= bdi_congested(&q->backing_dev_info, bits);
574 else
575 ret &= bdi_congested(&q->backing_dev_info, bits);
578 rcu_read_unlock();
579 return ret;
583 static int flush_pending_writes(conf_t *conf)
585 /* Any writes that have been queued but are awaiting
586 * bitmap updates get flushed here.
587 * We return 1 if any requests were actually submitted.
589 int rv = 0;
591 spin_lock_irq(&conf->device_lock);
593 if (conf->pending_bio_list.head) {
594 struct bio *bio;
595 bio = bio_list_get(&conf->pending_bio_list);
596 blk_remove_plug(conf->mddev->queue);
597 spin_unlock_irq(&conf->device_lock);
598 /* flush any pending bitmap writes to
599 * disk before proceeding w/ I/O */
600 bitmap_unplug(conf->mddev->bitmap);
602 while (bio) { /* submit pending writes */
603 struct bio *next = bio->bi_next;
604 bio->bi_next = NULL;
605 generic_make_request(bio);
606 bio = next;
608 rv = 1;
609 } else
610 spin_unlock_irq(&conf->device_lock);
611 return rv;
614 /* Barriers....
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
620 * normal IO.
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
635 #define RESYNC_DEPTH 32
637 static void raise_barrier(conf_t *conf)
639 spin_lock_irq(&conf->resync_lock);
641 /* Wait until no block IO is waiting */
642 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
643 conf->resync_lock,
644 raid1_unplug(conf->mddev->queue));
646 /* block any new IO from starting */
647 conf->barrier++;
649 /* Now wait for all pending IO to complete */
650 wait_event_lock_irq(conf->wait_barrier,
651 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
652 conf->resync_lock,
653 raid1_unplug(conf->mddev->queue));
655 spin_unlock_irq(&conf->resync_lock);
658 static void lower_barrier(conf_t *conf)
660 unsigned long flags;
661 BUG_ON(conf->barrier <= 0);
662 spin_lock_irqsave(&conf->resync_lock, flags);
663 conf->barrier--;
664 spin_unlock_irqrestore(&conf->resync_lock, flags);
665 wake_up(&conf->wait_barrier);
668 static void wait_barrier(conf_t *conf)
670 spin_lock_irq(&conf->resync_lock);
671 if (conf->barrier) {
672 conf->nr_waiting++;
673 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
674 conf->resync_lock,
675 raid1_unplug(conf->mddev->queue));
676 conf->nr_waiting--;
678 conf->nr_pending++;
679 spin_unlock_irq(&conf->resync_lock);
682 static void allow_barrier(conf_t *conf)
684 unsigned long flags;
685 spin_lock_irqsave(&conf->resync_lock, flags);
686 conf->nr_pending--;
687 spin_unlock_irqrestore(&conf->resync_lock, flags);
688 wake_up(&conf->wait_barrier);
691 static void freeze_array(conf_t *conf)
693 /* stop syncio and normal IO and wait for everything to
694 * go quite.
695 * We increment barrier and nr_waiting, and then
696 * wait until nr_pending match nr_queued+1
697 * This is called in the context of one normal IO request
698 * that has failed. Thus any sync request that might be pending
699 * will be blocked by nr_pending, and we need to wait for
700 * pending IO requests to complete or be queued for re-try.
701 * Thus the number queued (nr_queued) plus this request (1)
702 * must match the number of pending IOs (nr_pending) before
703 * we continue.
705 spin_lock_irq(&conf->resync_lock);
706 conf->barrier++;
707 conf->nr_waiting++;
708 wait_event_lock_irq(conf->wait_barrier,
709 conf->nr_pending == conf->nr_queued+1,
710 conf->resync_lock,
711 ({ flush_pending_writes(conf);
712 raid1_unplug(conf->mddev->queue); }));
713 spin_unlock_irq(&conf->resync_lock);
715 static void unfreeze_array(conf_t *conf)
717 /* reverse the effect of the freeze */
718 spin_lock_irq(&conf->resync_lock);
719 conf->barrier--;
720 conf->nr_waiting--;
721 wake_up(&conf->wait_barrier);
722 spin_unlock_irq(&conf->resync_lock);
726 /* duplicate the data pages for behind I/O
727 * We return a list of bio_vec rather than just page pointers
728 * as it makes freeing easier
730 static struct bio_vec *alloc_behind_pages(struct bio *bio)
732 int i;
733 struct bio_vec *bvec;
734 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
735 GFP_NOIO);
736 if (unlikely(!pages))
737 goto do_sync_io;
739 bio_for_each_segment(bvec, bio, i) {
740 pages[i].bv_page = alloc_page(GFP_NOIO);
741 if (unlikely(!pages[i].bv_page))
742 goto do_sync_io;
743 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
744 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
745 kunmap(pages[i].bv_page);
746 kunmap(bvec->bv_page);
749 return pages;
751 do_sync_io:
752 if (pages)
753 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
754 put_page(pages[i].bv_page);
755 kfree(pages);
756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757 return NULL;
760 static int make_request(mddev_t *mddev, struct bio * bio)
762 conf_t *conf = mddev->private;
763 mirror_info_t *mirror;
764 r1bio_t *r1_bio;
765 struct bio *read_bio;
766 int i, targets = 0, disks;
767 struct bitmap *bitmap;
768 unsigned long flags;
769 struct bio_vec *behind_pages = NULL;
770 const int rw = bio_data_dir(bio);
771 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
772 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
773 mdk_rdev_t *blocked_rdev;
776 * Register the new request and wait if the reconstruction
777 * thread has put up a bar for new requests.
778 * Continue immediately if no resync is active currently.
781 md_write_start(mddev, bio); /* wait on superblock update early */
783 if (bio_data_dir(bio) == WRITE &&
784 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
785 bio->bi_sector < mddev->suspend_hi) {
786 /* As the suspend_* range is controlled by
787 * userspace, we want an interruptible
788 * wait.
790 DEFINE_WAIT(w);
791 for (;;) {
792 flush_signals(current);
793 prepare_to_wait(&conf->wait_barrier,
794 &w, TASK_INTERRUPTIBLE);
795 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
796 bio->bi_sector >= mddev->suspend_hi)
797 break;
798 schedule();
800 finish_wait(&conf->wait_barrier, &w);
803 wait_barrier(conf);
805 bitmap = mddev->bitmap;
808 * make_request() can abort the operation when READA is being
809 * used and no empty request is available.
812 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
814 r1_bio->master_bio = bio;
815 r1_bio->sectors = bio->bi_size >> 9;
816 r1_bio->state = 0;
817 r1_bio->mddev = mddev;
818 r1_bio->sector = bio->bi_sector;
820 if (rw == READ) {
822 * read balancing logic:
824 int rdisk = read_balance(conf, r1_bio);
826 if (rdisk < 0) {
827 /* couldn't find anywhere to read from */
828 raid_end_bio_io(r1_bio);
829 return 0;
831 mirror = conf->mirrors + rdisk;
833 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
834 bitmap) {
835 /* Reading from a write-mostly device must
836 * take care not to over-take any writes
837 * that are 'behind'
839 wait_event(bitmap->behind_wait,
840 atomic_read(&bitmap->behind_writes) == 0);
842 r1_bio->read_disk = rdisk;
844 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
846 r1_bio->bios[rdisk] = read_bio;
848 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
849 read_bio->bi_bdev = mirror->rdev->bdev;
850 read_bio->bi_end_io = raid1_end_read_request;
851 read_bio->bi_rw = READ | do_sync;
852 read_bio->bi_private = r1_bio;
854 generic_make_request(read_bio);
855 return 0;
859 * WRITE:
861 /* first select target devices under spinlock and
862 * inc refcount on their rdev. Record them by setting
863 * bios[x] to bio
865 disks = conf->raid_disks;
866 retry_write:
867 blocked_rdev = NULL;
868 rcu_read_lock();
869 for (i = 0; i < disks; i++) {
870 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
872 atomic_inc(&rdev->nr_pending);
873 blocked_rdev = rdev;
874 break;
876 if (rdev && !test_bit(Faulty, &rdev->flags)) {
877 atomic_inc(&rdev->nr_pending);
878 if (test_bit(Faulty, &rdev->flags)) {
879 rdev_dec_pending(rdev, mddev);
880 r1_bio->bios[i] = NULL;
881 } else {
882 r1_bio->bios[i] = bio;
883 targets++;
885 } else
886 r1_bio->bios[i] = NULL;
888 rcu_read_unlock();
890 if (unlikely(blocked_rdev)) {
891 /* Wait for this device to become unblocked */
892 int j;
894 for (j = 0; j < i; j++)
895 if (r1_bio->bios[j])
896 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
898 allow_barrier(conf);
899 md_wait_for_blocked_rdev(blocked_rdev, mddev);
900 wait_barrier(conf);
901 goto retry_write;
904 BUG_ON(targets == 0); /* we never fail the last device */
906 if (targets < conf->raid_disks) {
907 /* array is degraded, we will not clear the bitmap
908 * on I/O completion (see raid1_end_write_request) */
909 set_bit(R1BIO_Degraded, &r1_bio->state);
912 /* do behind I/O ?
913 * Not if there are too many, or cannot allocate memory,
914 * or a reader on WriteMostly is waiting for behind writes
915 * to flush */
916 if (bitmap &&
917 (atomic_read(&bitmap->behind_writes)
918 < mddev->bitmap_info.max_write_behind) &&
919 !waitqueue_active(&bitmap->behind_wait) &&
920 (behind_pages = alloc_behind_pages(bio)) != NULL)
921 set_bit(R1BIO_BehindIO, &r1_bio->state);
923 atomic_set(&r1_bio->remaining, 1);
924 atomic_set(&r1_bio->behind_remaining, 0);
926 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
927 test_bit(R1BIO_BehindIO, &r1_bio->state));
928 for (i = 0; i < disks; i++) {
929 struct bio *mbio;
930 if (!r1_bio->bios[i])
931 continue;
933 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
934 r1_bio->bios[i] = mbio;
936 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
937 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
938 mbio->bi_end_io = raid1_end_write_request;
939 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
940 mbio->bi_private = r1_bio;
942 if (behind_pages) {
943 struct bio_vec *bvec;
944 int j;
946 /* Yes, I really want the '__' version so that
947 * we clear any unused pointer in the io_vec, rather
948 * than leave them unchanged. This is important
949 * because when we come to free the pages, we won't
950 * know the original bi_idx, so we just free
951 * them all
953 __bio_for_each_segment(bvec, mbio, j, 0)
954 bvec->bv_page = behind_pages[j].bv_page;
955 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
956 atomic_inc(&r1_bio->behind_remaining);
959 atomic_inc(&r1_bio->remaining);
960 spin_lock_irqsave(&conf->device_lock, flags);
961 bio_list_add(&conf->pending_bio_list, mbio);
962 blk_plug_device(mddev->queue);
963 spin_unlock_irqrestore(&conf->device_lock, flags);
965 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
966 kfree(behind_pages); /* the behind pages are attached to the bios now */
968 /* In case raid1d snuck in to freeze_array */
969 wake_up(&conf->wait_barrier);
971 if (do_sync)
972 md_wakeup_thread(mddev->thread);
974 return 0;
977 static void status(struct seq_file *seq, mddev_t *mddev)
979 conf_t *conf = mddev->private;
980 int i;
982 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
983 conf->raid_disks - mddev->degraded);
984 rcu_read_lock();
985 for (i = 0; i < conf->raid_disks; i++) {
986 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
987 seq_printf(seq, "%s",
988 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
990 rcu_read_unlock();
991 seq_printf(seq, "]");
995 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
997 char b[BDEVNAME_SIZE];
998 conf_t *conf = mddev->private;
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1006 if (test_bit(In_sync, &rdev->flags)
1007 && (conf->raid_disks - mddev->degraded) == 1) {
1009 * Don't fail the drive, act as though we were just a
1010 * normal single drive.
1011 * However don't try a recovery from this drive as
1012 * it is very likely to fail.
1014 mddev->recovery_disabled = 1;
1015 return;
1017 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1018 unsigned long flags;
1019 spin_lock_irqsave(&conf->device_lock, flags);
1020 mddev->degraded++;
1021 set_bit(Faulty, &rdev->flags);
1022 spin_unlock_irqrestore(&conf->device_lock, flags);
1024 * if recovery is running, make sure it aborts.
1026 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1027 } else
1028 set_bit(Faulty, &rdev->flags);
1029 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1030 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1031 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1032 mdname(mddev), bdevname(rdev->bdev, b),
1033 mdname(mddev), conf->raid_disks - mddev->degraded);
1036 static void print_conf(conf_t *conf)
1038 int i;
1040 printk(KERN_DEBUG "RAID1 conf printout:\n");
1041 if (!conf) {
1042 printk(KERN_DEBUG "(!conf)\n");
1043 return;
1045 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1046 conf->raid_disks);
1048 rcu_read_lock();
1049 for (i = 0; i < conf->raid_disks; i++) {
1050 char b[BDEVNAME_SIZE];
1051 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1052 if (rdev)
1053 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1054 i, !test_bit(In_sync, &rdev->flags),
1055 !test_bit(Faulty, &rdev->flags),
1056 bdevname(rdev->bdev,b));
1058 rcu_read_unlock();
1061 static void close_sync(conf_t *conf)
1063 wait_barrier(conf);
1064 allow_barrier(conf);
1066 mempool_destroy(conf->r1buf_pool);
1067 conf->r1buf_pool = NULL;
1070 static int raid1_spare_active(mddev_t *mddev)
1072 int i;
1073 conf_t *conf = mddev->private;
1074 int count = 0;
1075 unsigned long flags;
1078 * Find all failed disks within the RAID1 configuration
1079 * and mark them readable.
1080 * Called under mddev lock, so rcu protection not needed.
1082 for (i = 0; i < conf->raid_disks; i++) {
1083 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1084 if (rdev
1085 && !test_bit(Faulty, &rdev->flags)
1086 && !test_and_set_bit(In_sync, &rdev->flags)) {
1087 count++;
1088 sysfs_notify_dirent(rdev->sysfs_state);
1091 spin_lock_irqsave(&conf->device_lock, flags);
1092 mddev->degraded -= count;
1093 spin_unlock_irqrestore(&conf->device_lock, flags);
1095 print_conf(conf);
1096 return count;
1100 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1102 conf_t *conf = mddev->private;
1103 int err = -EEXIST;
1104 int mirror = 0;
1105 mirror_info_t *p;
1106 int first = 0;
1107 int last = mddev->raid_disks - 1;
1109 if (rdev->raid_disk >= 0)
1110 first = last = rdev->raid_disk;
1112 for (mirror = first; mirror <= last; mirror++)
1113 if ( !(p=conf->mirrors+mirror)->rdev) {
1115 disk_stack_limits(mddev->gendisk, rdev->bdev,
1116 rdev->data_offset << 9);
1117 /* as we don't honour merge_bvec_fn, we must
1118 * never risk violating it, so limit
1119 * ->max_segments to one lying with a single
1120 * page, as a one page request is never in
1121 * violation.
1123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1124 blk_queue_max_segments(mddev->queue, 1);
1125 blk_queue_segment_boundary(mddev->queue,
1126 PAGE_CACHE_SIZE - 1);
1129 p->head_position = 0;
1130 rdev->raid_disk = mirror;
1131 err = 0;
1132 /* As all devices are equivalent, we don't need a full recovery
1133 * if this was recently any drive of the array
1135 if (rdev->saved_raid_disk < 0)
1136 conf->fullsync = 1;
1137 rcu_assign_pointer(p->rdev, rdev);
1138 break;
1140 md_integrity_add_rdev(rdev, mddev);
1141 print_conf(conf);
1142 return err;
1145 static int raid1_remove_disk(mddev_t *mddev, int number)
1147 conf_t *conf = mddev->private;
1148 int err = 0;
1149 mdk_rdev_t *rdev;
1150 mirror_info_t *p = conf->mirrors+ number;
1152 print_conf(conf);
1153 rdev = p->rdev;
1154 if (rdev) {
1155 if (test_bit(In_sync, &rdev->flags) ||
1156 atomic_read(&rdev->nr_pending)) {
1157 err = -EBUSY;
1158 goto abort;
1160 /* Only remove non-faulty devices if recovery
1161 * is not possible.
1163 if (!test_bit(Faulty, &rdev->flags) &&
1164 mddev->degraded < conf->raid_disks) {
1165 err = -EBUSY;
1166 goto abort;
1168 p->rdev = NULL;
1169 synchronize_rcu();
1170 if (atomic_read(&rdev->nr_pending)) {
1171 /* lost the race, try later */
1172 err = -EBUSY;
1173 p->rdev = rdev;
1174 goto abort;
1176 md_integrity_register(mddev);
1178 abort:
1180 print_conf(conf);
1181 return err;
1185 static void end_sync_read(struct bio *bio, int error)
1187 r1bio_t *r1_bio = bio->bi_private;
1188 int i;
1190 for (i=r1_bio->mddev->raid_disks; i--; )
1191 if (r1_bio->bios[i] == bio)
1192 break;
1193 BUG_ON(i < 0);
1194 update_head_pos(i, r1_bio);
1196 * we have read a block, now it needs to be re-written,
1197 * or re-read if the read failed.
1198 * We don't do much here, just schedule handling by raid1d
1200 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1201 set_bit(R1BIO_Uptodate, &r1_bio->state);
1203 if (atomic_dec_and_test(&r1_bio->remaining))
1204 reschedule_retry(r1_bio);
1207 static void end_sync_write(struct bio *bio, int error)
1209 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1210 r1bio_t *r1_bio = bio->bi_private;
1211 mddev_t *mddev = r1_bio->mddev;
1212 conf_t *conf = mddev->private;
1213 int i;
1214 int mirror=0;
1216 for (i = 0; i < conf->raid_disks; i++)
1217 if (r1_bio->bios[i] == bio) {
1218 mirror = i;
1219 break;
1221 if (!uptodate) {
1222 sector_t sync_blocks = 0;
1223 sector_t s = r1_bio->sector;
1224 long sectors_to_go = r1_bio->sectors;
1225 /* make sure these bits doesn't get cleared. */
1226 do {
1227 bitmap_end_sync(mddev->bitmap, s,
1228 &sync_blocks, 1);
1229 s += sync_blocks;
1230 sectors_to_go -= sync_blocks;
1231 } while (sectors_to_go > 0);
1232 md_error(mddev, conf->mirrors[mirror].rdev);
1235 update_head_pos(mirror, r1_bio);
1237 if (atomic_dec_and_test(&r1_bio->remaining)) {
1238 sector_t s = r1_bio->sectors;
1239 put_buf(r1_bio);
1240 md_done_sync(mddev, s, uptodate);
1244 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1246 conf_t *conf = mddev->private;
1247 int i;
1248 int disks = conf->raid_disks;
1249 struct bio *bio, *wbio;
1251 bio = r1_bio->bios[r1_bio->read_disk];
1254 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1255 /* We have read all readable devices. If we haven't
1256 * got the block, then there is no hope left.
1257 * If we have, then we want to do a comparison
1258 * and skip the write if everything is the same.
1259 * If any blocks failed to read, then we need to
1260 * attempt an over-write
1262 int primary;
1263 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1264 for (i=0; i<mddev->raid_disks; i++)
1265 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1266 md_error(mddev, conf->mirrors[i].rdev);
1268 md_done_sync(mddev, r1_bio->sectors, 1);
1269 put_buf(r1_bio);
1270 return;
1272 for (primary=0; primary<mddev->raid_disks; primary++)
1273 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1274 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1275 r1_bio->bios[primary]->bi_end_io = NULL;
1276 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1277 break;
1279 r1_bio->read_disk = primary;
1280 for (i=0; i<mddev->raid_disks; i++)
1281 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1282 int j;
1283 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1284 struct bio *pbio = r1_bio->bios[primary];
1285 struct bio *sbio = r1_bio->bios[i];
1287 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1288 for (j = vcnt; j-- ; ) {
1289 struct page *p, *s;
1290 p = pbio->bi_io_vec[j].bv_page;
1291 s = sbio->bi_io_vec[j].bv_page;
1292 if (memcmp(page_address(p),
1293 page_address(s),
1294 PAGE_SIZE))
1295 break;
1297 } else
1298 j = 0;
1299 if (j >= 0)
1300 mddev->resync_mismatches += r1_bio->sectors;
1301 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1302 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1303 sbio->bi_end_io = NULL;
1304 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1305 } else {
1306 /* fixup the bio for reuse */
1307 int size;
1308 sbio->bi_vcnt = vcnt;
1309 sbio->bi_size = r1_bio->sectors << 9;
1310 sbio->bi_idx = 0;
1311 sbio->bi_phys_segments = 0;
1312 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1313 sbio->bi_flags |= 1 << BIO_UPTODATE;
1314 sbio->bi_next = NULL;
1315 sbio->bi_sector = r1_bio->sector +
1316 conf->mirrors[i].rdev->data_offset;
1317 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1318 size = sbio->bi_size;
1319 for (j = 0; j < vcnt ; j++) {
1320 struct bio_vec *bi;
1321 bi = &sbio->bi_io_vec[j];
1322 bi->bv_offset = 0;
1323 if (size > PAGE_SIZE)
1324 bi->bv_len = PAGE_SIZE;
1325 else
1326 bi->bv_len = size;
1327 size -= PAGE_SIZE;
1328 memcpy(page_address(bi->bv_page),
1329 page_address(pbio->bi_io_vec[j].bv_page),
1330 PAGE_SIZE);
1336 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1337 /* ouch - failed to read all of that.
1338 * Try some synchronous reads of other devices to get
1339 * good data, much like with normal read errors. Only
1340 * read into the pages we already have so we don't
1341 * need to re-issue the read request.
1342 * We don't need to freeze the array, because being in an
1343 * active sync request, there is no normal IO, and
1344 * no overlapping syncs.
1346 sector_t sect = r1_bio->sector;
1347 int sectors = r1_bio->sectors;
1348 int idx = 0;
1350 while(sectors) {
1351 int s = sectors;
1352 int d = r1_bio->read_disk;
1353 int success = 0;
1354 mdk_rdev_t *rdev;
1356 if (s > (PAGE_SIZE>>9))
1357 s = PAGE_SIZE >> 9;
1358 do {
1359 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1360 /* No rcu protection needed here devices
1361 * can only be removed when no resync is
1362 * active, and resync is currently active
1364 rdev = conf->mirrors[d].rdev;
1365 if (sync_page_io(rdev,
1366 sect + rdev->data_offset,
1367 s<<9,
1368 bio->bi_io_vec[idx].bv_page,
1369 READ)) {
1370 success = 1;
1371 break;
1374 d++;
1375 if (d == conf->raid_disks)
1376 d = 0;
1377 } while (!success && d != r1_bio->read_disk);
1379 if (success) {
1380 int start = d;
1381 /* write it back and re-read */
1382 set_bit(R1BIO_Uptodate, &r1_bio->state);
1383 while (d != r1_bio->read_disk) {
1384 if (d == 0)
1385 d = conf->raid_disks;
1386 d--;
1387 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1388 continue;
1389 rdev = conf->mirrors[d].rdev;
1390 atomic_add(s, &rdev->corrected_errors);
1391 if (sync_page_io(rdev,
1392 sect + rdev->data_offset,
1393 s<<9,
1394 bio->bi_io_vec[idx].bv_page,
1395 WRITE) == 0)
1396 md_error(mddev, rdev);
1398 d = start;
1399 while (d != r1_bio->read_disk) {
1400 if (d == 0)
1401 d = conf->raid_disks;
1402 d--;
1403 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1404 continue;
1405 rdev = conf->mirrors[d].rdev;
1406 if (sync_page_io(rdev,
1407 sect + rdev->data_offset,
1408 s<<9,
1409 bio->bi_io_vec[idx].bv_page,
1410 READ) == 0)
1411 md_error(mddev, rdev);
1413 } else {
1414 char b[BDEVNAME_SIZE];
1415 /* Cannot read from anywhere, array is toast */
1416 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1417 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1418 " for block %llu\n",
1419 mdname(mddev),
1420 bdevname(bio->bi_bdev, b),
1421 (unsigned long long)r1_bio->sector);
1422 md_done_sync(mddev, r1_bio->sectors, 0);
1423 put_buf(r1_bio);
1424 return;
1426 sectors -= s;
1427 sect += s;
1428 idx ++;
1433 * schedule writes
1435 atomic_set(&r1_bio->remaining, 1);
1436 for (i = 0; i < disks ; i++) {
1437 wbio = r1_bio->bios[i];
1438 if (wbio->bi_end_io == NULL ||
1439 (wbio->bi_end_io == end_sync_read &&
1440 (i == r1_bio->read_disk ||
1441 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1442 continue;
1444 wbio->bi_rw = WRITE;
1445 wbio->bi_end_io = end_sync_write;
1446 atomic_inc(&r1_bio->remaining);
1447 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1449 generic_make_request(wbio);
1452 if (atomic_dec_and_test(&r1_bio->remaining)) {
1453 /* if we're here, all write(s) have completed, so clean up */
1454 md_done_sync(mddev, r1_bio->sectors, 1);
1455 put_buf(r1_bio);
1460 * This is a kernel thread which:
1462 * 1. Retries failed read operations on working mirrors.
1463 * 2. Updates the raid superblock when problems encounter.
1464 * 3. Performs writes following reads for array syncronising.
1467 static void fix_read_error(conf_t *conf, int read_disk,
1468 sector_t sect, int sectors)
1470 mddev_t *mddev = conf->mddev;
1471 while(sectors) {
1472 int s = sectors;
1473 int d = read_disk;
1474 int success = 0;
1475 int start;
1476 mdk_rdev_t *rdev;
1478 if (s > (PAGE_SIZE>>9))
1479 s = PAGE_SIZE >> 9;
1481 do {
1482 /* Note: no rcu protection needed here
1483 * as this is synchronous in the raid1d thread
1484 * which is the thread that might remove
1485 * a device. If raid1d ever becomes multi-threaded....
1487 rdev = conf->mirrors[d].rdev;
1488 if (rdev &&
1489 test_bit(In_sync, &rdev->flags) &&
1490 sync_page_io(rdev,
1491 sect + rdev->data_offset,
1492 s<<9,
1493 conf->tmppage, READ))
1494 success = 1;
1495 else {
1496 d++;
1497 if (d == conf->raid_disks)
1498 d = 0;
1500 } while (!success && d != read_disk);
1502 if (!success) {
1503 /* Cannot read from anywhere -- bye bye array */
1504 md_error(mddev, conf->mirrors[read_disk].rdev);
1505 break;
1507 /* write it back and re-read */
1508 start = d;
1509 while (d != read_disk) {
1510 if (d==0)
1511 d = conf->raid_disks;
1512 d--;
1513 rdev = conf->mirrors[d].rdev;
1514 if (rdev &&
1515 test_bit(In_sync, &rdev->flags)) {
1516 if (sync_page_io(rdev,
1517 sect + rdev->data_offset,
1518 s<<9, conf->tmppage, WRITE)
1519 == 0)
1520 /* Well, this device is dead */
1521 md_error(mddev, rdev);
1524 d = start;
1525 while (d != read_disk) {
1526 char b[BDEVNAME_SIZE];
1527 if (d==0)
1528 d = conf->raid_disks;
1529 d--;
1530 rdev = conf->mirrors[d].rdev;
1531 if (rdev &&
1532 test_bit(In_sync, &rdev->flags)) {
1533 if (sync_page_io(rdev,
1534 sect + rdev->data_offset,
1535 s<<9, conf->tmppage, READ)
1536 == 0)
1537 /* Well, this device is dead */
1538 md_error(mddev, rdev);
1539 else {
1540 atomic_add(s, &rdev->corrected_errors);
1541 printk(KERN_INFO
1542 "md/raid1:%s: read error corrected "
1543 "(%d sectors at %llu on %s)\n",
1544 mdname(mddev), s,
1545 (unsigned long long)(sect +
1546 rdev->data_offset),
1547 bdevname(rdev->bdev, b));
1551 sectors -= s;
1552 sect += s;
1556 static void raid1d(mddev_t *mddev)
1558 r1bio_t *r1_bio;
1559 struct bio *bio;
1560 unsigned long flags;
1561 conf_t *conf = mddev->private;
1562 struct list_head *head = &conf->retry_list;
1563 int unplug=0;
1564 mdk_rdev_t *rdev;
1566 md_check_recovery(mddev);
1568 for (;;) {
1569 char b[BDEVNAME_SIZE];
1571 unplug += flush_pending_writes(conf);
1573 spin_lock_irqsave(&conf->device_lock, flags);
1574 if (list_empty(head)) {
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 break;
1578 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1579 list_del(head->prev);
1580 conf->nr_queued--;
1581 spin_unlock_irqrestore(&conf->device_lock, flags);
1583 mddev = r1_bio->mddev;
1584 conf = mddev->private;
1585 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1586 sync_request_write(mddev, r1_bio);
1587 unplug = 1;
1588 } else {
1589 int disk;
1591 /* we got a read error. Maybe the drive is bad. Maybe just
1592 * the block and we can fix it.
1593 * We freeze all other IO, and try reading the block from
1594 * other devices. When we find one, we re-write
1595 * and check it that fixes the read error.
1596 * This is all done synchronously while the array is
1597 * frozen
1599 if (mddev->ro == 0) {
1600 freeze_array(conf);
1601 fix_read_error(conf, r1_bio->read_disk,
1602 r1_bio->sector,
1603 r1_bio->sectors);
1604 unfreeze_array(conf);
1605 } else
1606 md_error(mddev,
1607 conf->mirrors[r1_bio->read_disk].rdev);
1609 bio = r1_bio->bios[r1_bio->read_disk];
1610 if ((disk=read_balance(conf, r1_bio)) == -1) {
1611 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1612 " read error for block %llu\n",
1613 mdname(mddev),
1614 bdevname(bio->bi_bdev,b),
1615 (unsigned long long)r1_bio->sector);
1616 raid_end_bio_io(r1_bio);
1617 } else {
1618 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1619 r1_bio->bios[r1_bio->read_disk] =
1620 mddev->ro ? IO_BLOCKED : NULL;
1621 r1_bio->read_disk = disk;
1622 bio_put(bio);
1623 bio = bio_clone_mddev(r1_bio->master_bio,
1624 GFP_NOIO, mddev);
1625 r1_bio->bios[r1_bio->read_disk] = bio;
1626 rdev = conf->mirrors[disk].rdev;
1627 if (printk_ratelimit())
1628 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1629 " other mirror: %s\n",
1630 mdname(mddev),
1631 (unsigned long long)r1_bio->sector,
1632 bdevname(rdev->bdev,b));
1633 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1634 bio->bi_bdev = rdev->bdev;
1635 bio->bi_end_io = raid1_end_read_request;
1636 bio->bi_rw = READ | do_sync;
1637 bio->bi_private = r1_bio;
1638 unplug = 1;
1639 generic_make_request(bio);
1642 cond_resched();
1644 if (unplug)
1645 unplug_slaves(mddev);
1649 static int init_resync(conf_t *conf)
1651 int buffs;
1653 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1654 BUG_ON(conf->r1buf_pool);
1655 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1656 conf->poolinfo);
1657 if (!conf->r1buf_pool)
1658 return -ENOMEM;
1659 conf->next_resync = 0;
1660 return 0;
1664 * perform a "sync" on one "block"
1666 * We need to make sure that no normal I/O request - particularly write
1667 * requests - conflict with active sync requests.
1669 * This is achieved by tracking pending requests and a 'barrier' concept
1670 * that can be installed to exclude normal IO requests.
1673 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1675 conf_t *conf = mddev->private;
1676 r1bio_t *r1_bio;
1677 struct bio *bio;
1678 sector_t max_sector, nr_sectors;
1679 int disk = -1;
1680 int i;
1681 int wonly = -1;
1682 int write_targets = 0, read_targets = 0;
1683 sector_t sync_blocks;
1684 int still_degraded = 0;
1686 if (!conf->r1buf_pool)
1687 if (init_resync(conf))
1688 return 0;
1690 max_sector = mddev->dev_sectors;
1691 if (sector_nr >= max_sector) {
1692 /* If we aborted, we need to abort the
1693 * sync on the 'current' bitmap chunk (there will
1694 * only be one in raid1 resync.
1695 * We can find the current addess in mddev->curr_resync
1697 if (mddev->curr_resync < max_sector) /* aborted */
1698 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1699 &sync_blocks, 1);
1700 else /* completed sync */
1701 conf->fullsync = 0;
1703 bitmap_close_sync(mddev->bitmap);
1704 close_sync(conf);
1705 return 0;
1708 if (mddev->bitmap == NULL &&
1709 mddev->recovery_cp == MaxSector &&
1710 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1711 conf->fullsync == 0) {
1712 *skipped = 1;
1713 return max_sector - sector_nr;
1715 /* before building a request, check if we can skip these blocks..
1716 * This call the bitmap_start_sync doesn't actually record anything
1718 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1719 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1720 /* We can skip this block, and probably several more */
1721 *skipped = 1;
1722 return sync_blocks;
1725 * If there is non-resync activity waiting for a turn,
1726 * and resync is going fast enough,
1727 * then let it though before starting on this new sync request.
1729 if (!go_faster && conf->nr_waiting)
1730 msleep_interruptible(1000);
1732 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1733 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1734 raise_barrier(conf);
1736 conf->next_resync = sector_nr;
1738 rcu_read_lock();
1740 * If we get a correctably read error during resync or recovery,
1741 * we might want to read from a different device. So we
1742 * flag all drives that could conceivably be read from for READ,
1743 * and any others (which will be non-In_sync devices) for WRITE.
1744 * If a read fails, we try reading from something else for which READ
1745 * is OK.
1748 r1_bio->mddev = mddev;
1749 r1_bio->sector = sector_nr;
1750 r1_bio->state = 0;
1751 set_bit(R1BIO_IsSync, &r1_bio->state);
1753 for (i=0; i < conf->raid_disks; i++) {
1754 mdk_rdev_t *rdev;
1755 bio = r1_bio->bios[i];
1757 /* take from bio_init */
1758 bio->bi_next = NULL;
1759 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1760 bio->bi_flags |= 1 << BIO_UPTODATE;
1761 bio->bi_comp_cpu = -1;
1762 bio->bi_rw = READ;
1763 bio->bi_vcnt = 0;
1764 bio->bi_idx = 0;
1765 bio->bi_phys_segments = 0;
1766 bio->bi_size = 0;
1767 bio->bi_end_io = NULL;
1768 bio->bi_private = NULL;
1770 rdev = rcu_dereference(conf->mirrors[i].rdev);
1771 if (rdev == NULL ||
1772 test_bit(Faulty, &rdev->flags)) {
1773 still_degraded = 1;
1774 continue;
1775 } else if (!test_bit(In_sync, &rdev->flags)) {
1776 bio->bi_rw = WRITE;
1777 bio->bi_end_io = end_sync_write;
1778 write_targets ++;
1779 } else {
1780 /* may need to read from here */
1781 bio->bi_rw = READ;
1782 bio->bi_end_io = end_sync_read;
1783 if (test_bit(WriteMostly, &rdev->flags)) {
1784 if (wonly < 0)
1785 wonly = i;
1786 } else {
1787 if (disk < 0)
1788 disk = i;
1790 read_targets++;
1792 atomic_inc(&rdev->nr_pending);
1793 bio->bi_sector = sector_nr + rdev->data_offset;
1794 bio->bi_bdev = rdev->bdev;
1795 bio->bi_private = r1_bio;
1797 rcu_read_unlock();
1798 if (disk < 0)
1799 disk = wonly;
1800 r1_bio->read_disk = disk;
1802 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1803 /* extra read targets are also write targets */
1804 write_targets += read_targets-1;
1806 if (write_targets == 0 || read_targets == 0) {
1807 /* There is nowhere to write, so all non-sync
1808 * drives must be failed - so we are finished
1810 sector_t rv = max_sector - sector_nr;
1811 *skipped = 1;
1812 put_buf(r1_bio);
1813 return rv;
1816 if (max_sector > mddev->resync_max)
1817 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1818 nr_sectors = 0;
1819 sync_blocks = 0;
1820 do {
1821 struct page *page;
1822 int len = PAGE_SIZE;
1823 if (sector_nr + (len>>9) > max_sector)
1824 len = (max_sector - sector_nr) << 9;
1825 if (len == 0)
1826 break;
1827 if (sync_blocks == 0) {
1828 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1829 &sync_blocks, still_degraded) &&
1830 !conf->fullsync &&
1831 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1832 break;
1833 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1834 if ((len >> 9) > sync_blocks)
1835 len = sync_blocks<<9;
1838 for (i=0 ; i < conf->raid_disks; i++) {
1839 bio = r1_bio->bios[i];
1840 if (bio->bi_end_io) {
1841 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1842 if (bio_add_page(bio, page, len, 0) == 0) {
1843 /* stop here */
1844 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1845 while (i > 0) {
1846 i--;
1847 bio = r1_bio->bios[i];
1848 if (bio->bi_end_io==NULL)
1849 continue;
1850 /* remove last page from this bio */
1851 bio->bi_vcnt--;
1852 bio->bi_size -= len;
1853 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1855 goto bio_full;
1859 nr_sectors += len>>9;
1860 sector_nr += len>>9;
1861 sync_blocks -= (len>>9);
1862 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1863 bio_full:
1864 r1_bio->sectors = nr_sectors;
1866 /* For a user-requested sync, we read all readable devices and do a
1867 * compare
1869 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1870 atomic_set(&r1_bio->remaining, read_targets);
1871 for (i=0; i<conf->raid_disks; i++) {
1872 bio = r1_bio->bios[i];
1873 if (bio->bi_end_io == end_sync_read) {
1874 md_sync_acct(bio->bi_bdev, nr_sectors);
1875 generic_make_request(bio);
1878 } else {
1879 atomic_set(&r1_bio->remaining, 1);
1880 bio = r1_bio->bios[r1_bio->read_disk];
1881 md_sync_acct(bio->bi_bdev, nr_sectors);
1882 generic_make_request(bio);
1885 return nr_sectors;
1888 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1890 if (sectors)
1891 return sectors;
1893 return mddev->dev_sectors;
1896 static conf_t *setup_conf(mddev_t *mddev)
1898 conf_t *conf;
1899 int i;
1900 mirror_info_t *disk;
1901 mdk_rdev_t *rdev;
1902 int err = -ENOMEM;
1904 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1905 if (!conf)
1906 goto abort;
1908 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1909 GFP_KERNEL);
1910 if (!conf->mirrors)
1911 goto abort;
1913 conf->tmppage = alloc_page(GFP_KERNEL);
1914 if (!conf->tmppage)
1915 goto abort;
1917 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1918 if (!conf->poolinfo)
1919 goto abort;
1920 conf->poolinfo->raid_disks = mddev->raid_disks;
1921 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1922 r1bio_pool_free,
1923 conf->poolinfo);
1924 if (!conf->r1bio_pool)
1925 goto abort;
1927 conf->poolinfo->mddev = mddev;
1929 spin_lock_init(&conf->device_lock);
1930 list_for_each_entry(rdev, &mddev->disks, same_set) {
1931 int disk_idx = rdev->raid_disk;
1932 if (disk_idx >= mddev->raid_disks
1933 || disk_idx < 0)
1934 continue;
1935 disk = conf->mirrors + disk_idx;
1937 disk->rdev = rdev;
1939 disk->head_position = 0;
1941 conf->raid_disks = mddev->raid_disks;
1942 conf->mddev = mddev;
1943 INIT_LIST_HEAD(&conf->retry_list);
1945 spin_lock_init(&conf->resync_lock);
1946 init_waitqueue_head(&conf->wait_barrier);
1948 bio_list_init(&conf->pending_bio_list);
1950 conf->last_used = -1;
1951 for (i = 0; i < conf->raid_disks; i++) {
1953 disk = conf->mirrors + i;
1955 if (!disk->rdev ||
1956 !test_bit(In_sync, &disk->rdev->flags)) {
1957 disk->head_position = 0;
1958 if (disk->rdev)
1959 conf->fullsync = 1;
1960 } else if (conf->last_used < 0)
1962 * The first working device is used as a
1963 * starting point to read balancing.
1965 conf->last_used = i;
1968 err = -EIO;
1969 if (conf->last_used < 0) {
1970 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1971 mdname(mddev));
1972 goto abort;
1974 err = -ENOMEM;
1975 conf->thread = md_register_thread(raid1d, mddev, NULL);
1976 if (!conf->thread) {
1977 printk(KERN_ERR
1978 "md/raid1:%s: couldn't allocate thread\n",
1979 mdname(mddev));
1980 goto abort;
1983 return conf;
1985 abort:
1986 if (conf) {
1987 if (conf->r1bio_pool)
1988 mempool_destroy(conf->r1bio_pool);
1989 kfree(conf->mirrors);
1990 safe_put_page(conf->tmppage);
1991 kfree(conf->poolinfo);
1992 kfree(conf);
1994 return ERR_PTR(err);
1997 static int run(mddev_t *mddev)
1999 conf_t *conf;
2000 int i;
2001 mdk_rdev_t *rdev;
2003 if (mddev->level != 1) {
2004 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2005 mdname(mddev), mddev->level);
2006 return -EIO;
2008 if (mddev->reshape_position != MaxSector) {
2009 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2010 mdname(mddev));
2011 return -EIO;
2014 * copy the already verified devices into our private RAID1
2015 * bookkeeping area. [whatever we allocate in run(),
2016 * should be freed in stop()]
2018 if (mddev->private == NULL)
2019 conf = setup_conf(mddev);
2020 else
2021 conf = mddev->private;
2023 if (IS_ERR(conf))
2024 return PTR_ERR(conf);
2026 mddev->queue->queue_lock = &conf->device_lock;
2027 list_for_each_entry(rdev, &mddev->disks, same_set) {
2028 disk_stack_limits(mddev->gendisk, rdev->bdev,
2029 rdev->data_offset << 9);
2030 /* as we don't honour merge_bvec_fn, we must never risk
2031 * violating it, so limit ->max_segments to 1 lying within
2032 * a single page, as a one page request is never in violation.
2034 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2035 blk_queue_max_segments(mddev->queue, 1);
2036 blk_queue_segment_boundary(mddev->queue,
2037 PAGE_CACHE_SIZE - 1);
2041 mddev->degraded = 0;
2042 for (i=0; i < conf->raid_disks; i++)
2043 if (conf->mirrors[i].rdev == NULL ||
2044 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2045 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2046 mddev->degraded++;
2048 if (conf->raid_disks - mddev->degraded == 1)
2049 mddev->recovery_cp = MaxSector;
2051 if (mddev->recovery_cp != MaxSector)
2052 printk(KERN_NOTICE "md/raid1:%s: not clean"
2053 " -- starting background reconstruction\n",
2054 mdname(mddev));
2055 printk(KERN_INFO
2056 "md/raid1:%s: active with %d out of %d mirrors\n",
2057 mdname(mddev), mddev->raid_disks - mddev->degraded,
2058 mddev->raid_disks);
2061 * Ok, everything is just fine now
2063 mddev->thread = conf->thread;
2064 conf->thread = NULL;
2065 mddev->private = conf;
2067 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2069 mddev->queue->unplug_fn = raid1_unplug;
2070 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2071 mddev->queue->backing_dev_info.congested_data = mddev;
2072 md_integrity_register(mddev);
2073 return 0;
2076 static int stop(mddev_t *mddev)
2078 conf_t *conf = mddev->private;
2079 struct bitmap *bitmap = mddev->bitmap;
2081 /* wait for behind writes to complete */
2082 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2083 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2084 mdname(mddev));
2085 /* need to kick something here to make sure I/O goes? */
2086 wait_event(bitmap->behind_wait,
2087 atomic_read(&bitmap->behind_writes) == 0);
2090 raise_barrier(conf);
2091 lower_barrier(conf);
2093 md_unregister_thread(mddev->thread);
2094 mddev->thread = NULL;
2095 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2096 if (conf->r1bio_pool)
2097 mempool_destroy(conf->r1bio_pool);
2098 kfree(conf->mirrors);
2099 kfree(conf->poolinfo);
2100 kfree(conf);
2101 mddev->private = NULL;
2102 return 0;
2105 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2107 /* no resync is happening, and there is enough space
2108 * on all devices, so we can resize.
2109 * We need to make sure resync covers any new space.
2110 * If the array is shrinking we should possibly wait until
2111 * any io in the removed space completes, but it hardly seems
2112 * worth it.
2114 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2115 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2116 return -EINVAL;
2117 set_capacity(mddev->gendisk, mddev->array_sectors);
2118 revalidate_disk(mddev->gendisk);
2119 if (sectors > mddev->dev_sectors &&
2120 mddev->recovery_cp == MaxSector) {
2121 mddev->recovery_cp = mddev->dev_sectors;
2122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2124 mddev->dev_sectors = sectors;
2125 mddev->resync_max_sectors = sectors;
2126 return 0;
2129 static int raid1_reshape(mddev_t *mddev)
2131 /* We need to:
2132 * 1/ resize the r1bio_pool
2133 * 2/ resize conf->mirrors
2135 * We allocate a new r1bio_pool if we can.
2136 * Then raise a device barrier and wait until all IO stops.
2137 * Then resize conf->mirrors and swap in the new r1bio pool.
2139 * At the same time, we "pack" the devices so that all the missing
2140 * devices have the higher raid_disk numbers.
2142 mempool_t *newpool, *oldpool;
2143 struct pool_info *newpoolinfo;
2144 mirror_info_t *newmirrors;
2145 conf_t *conf = mddev->private;
2146 int cnt, raid_disks;
2147 unsigned long flags;
2148 int d, d2, err;
2150 /* Cannot change chunk_size, layout, or level */
2151 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2152 mddev->layout != mddev->new_layout ||
2153 mddev->level != mddev->new_level) {
2154 mddev->new_chunk_sectors = mddev->chunk_sectors;
2155 mddev->new_layout = mddev->layout;
2156 mddev->new_level = mddev->level;
2157 return -EINVAL;
2160 err = md_allow_write(mddev);
2161 if (err)
2162 return err;
2164 raid_disks = mddev->raid_disks + mddev->delta_disks;
2166 if (raid_disks < conf->raid_disks) {
2167 cnt=0;
2168 for (d= 0; d < conf->raid_disks; d++)
2169 if (conf->mirrors[d].rdev)
2170 cnt++;
2171 if (cnt > raid_disks)
2172 return -EBUSY;
2175 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2176 if (!newpoolinfo)
2177 return -ENOMEM;
2178 newpoolinfo->mddev = mddev;
2179 newpoolinfo->raid_disks = raid_disks;
2181 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2182 r1bio_pool_free, newpoolinfo);
2183 if (!newpool) {
2184 kfree(newpoolinfo);
2185 return -ENOMEM;
2187 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2188 if (!newmirrors) {
2189 kfree(newpoolinfo);
2190 mempool_destroy(newpool);
2191 return -ENOMEM;
2194 raise_barrier(conf);
2196 /* ok, everything is stopped */
2197 oldpool = conf->r1bio_pool;
2198 conf->r1bio_pool = newpool;
2200 for (d = d2 = 0; d < conf->raid_disks; d++) {
2201 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2202 if (rdev && rdev->raid_disk != d2) {
2203 char nm[20];
2204 sprintf(nm, "rd%d", rdev->raid_disk);
2205 sysfs_remove_link(&mddev->kobj, nm);
2206 rdev->raid_disk = d2;
2207 sprintf(nm, "rd%d", rdev->raid_disk);
2208 sysfs_remove_link(&mddev->kobj, nm);
2209 if (sysfs_create_link(&mddev->kobj,
2210 &rdev->kobj, nm))
2211 printk(KERN_WARNING
2212 "md/raid1:%s: cannot register "
2213 "%s\n",
2214 mdname(mddev), nm);
2216 if (rdev)
2217 newmirrors[d2++].rdev = rdev;
2219 kfree(conf->mirrors);
2220 conf->mirrors = newmirrors;
2221 kfree(conf->poolinfo);
2222 conf->poolinfo = newpoolinfo;
2224 spin_lock_irqsave(&conf->device_lock, flags);
2225 mddev->degraded += (raid_disks - conf->raid_disks);
2226 spin_unlock_irqrestore(&conf->device_lock, flags);
2227 conf->raid_disks = mddev->raid_disks = raid_disks;
2228 mddev->delta_disks = 0;
2230 conf->last_used = 0; /* just make sure it is in-range */
2231 lower_barrier(conf);
2233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2234 md_wakeup_thread(mddev->thread);
2236 mempool_destroy(oldpool);
2237 return 0;
2240 static void raid1_quiesce(mddev_t *mddev, int state)
2242 conf_t *conf = mddev->private;
2244 switch(state) {
2245 case 2: /* wake for suspend */
2246 wake_up(&conf->wait_barrier);
2247 break;
2248 case 1:
2249 raise_barrier(conf);
2250 break;
2251 case 0:
2252 lower_barrier(conf);
2253 break;
2257 static void *raid1_takeover(mddev_t *mddev)
2259 /* raid1 can take over:
2260 * raid5 with 2 devices, any layout or chunk size
2262 if (mddev->level == 5 && mddev->raid_disks == 2) {
2263 conf_t *conf;
2264 mddev->new_level = 1;
2265 mddev->new_layout = 0;
2266 mddev->new_chunk_sectors = 0;
2267 conf = setup_conf(mddev);
2268 if (!IS_ERR(conf))
2269 conf->barrier = 1;
2270 return conf;
2272 return ERR_PTR(-EINVAL);
2275 static struct mdk_personality raid1_personality =
2277 .name = "raid1",
2278 .level = 1,
2279 .owner = THIS_MODULE,
2280 .make_request = make_request,
2281 .run = run,
2282 .stop = stop,
2283 .status = status,
2284 .error_handler = error,
2285 .hot_add_disk = raid1_add_disk,
2286 .hot_remove_disk= raid1_remove_disk,
2287 .spare_active = raid1_spare_active,
2288 .sync_request = sync_request,
2289 .resize = raid1_resize,
2290 .size = raid1_size,
2291 .check_reshape = raid1_reshape,
2292 .quiesce = raid1_quiesce,
2293 .takeover = raid1_takeover,
2296 static int __init raid_init(void)
2298 return register_md_personality(&raid1_personality);
2301 static void raid_exit(void)
2303 unregister_md_personality(&raid1_personality);
2306 module_init(raid_init);
2307 module_exit(raid_exit);
2308 MODULE_LICENSE("GPL");
2309 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2310 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2311 MODULE_ALIAS("md-raid1");
2312 MODULE_ALIAS("md-level-1");