x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / drivers / mtd / nand / fsl_upm.c
blobefdcca94ce559f8aa6b6e7c9a2c3c994cc6bbb84
1 /*
2 * Freescale UPM NAND driver.
4 * Copyright © 2007-2008 MontaVista Software, Inc.
6 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_platform.h>
22 #include <linux/of_gpio.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/fsl_lbc.h>
27 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
28 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
29 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
31 struct fsl_upm_nand {
32 struct device *dev;
33 struct mtd_info mtd;
34 struct nand_chip chip;
35 int last_ctrl;
36 #ifdef CONFIG_MTD_PARTITIONS
37 struct mtd_partition *parts;
38 #endif
40 struct fsl_upm upm;
41 uint8_t upm_addr_offset;
42 uint8_t upm_cmd_offset;
43 void __iomem *io_base;
44 int rnb_gpio[NAND_MAX_CHIPS];
45 uint32_t mchip_offsets[NAND_MAX_CHIPS];
46 uint32_t mchip_count;
47 uint32_t mchip_number;
48 int chip_delay;
49 uint32_t wait_flags;
52 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
54 return container_of(mtdinfo, struct fsl_upm_nand, mtd);
57 static int fun_chip_ready(struct mtd_info *mtd)
59 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
61 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
62 return 1;
64 dev_vdbg(fun->dev, "busy\n");
65 return 0;
68 static void fun_wait_rnb(struct fsl_upm_nand *fun)
70 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
71 int cnt = 1000000;
73 while (--cnt && !fun_chip_ready(&fun->mtd))
74 cpu_relax();
75 if (!cnt)
76 dev_err(fun->dev, "tired waiting for RNB\n");
77 } else {
78 ndelay(100);
82 static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
84 struct nand_chip *chip = mtd->priv;
85 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
86 u32 mar;
88 if (!(ctrl & fun->last_ctrl)) {
89 fsl_upm_end_pattern(&fun->upm);
91 if (cmd == NAND_CMD_NONE)
92 return;
94 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
97 if (ctrl & NAND_CTRL_CHANGE) {
98 if (ctrl & NAND_ALE)
99 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
100 else if (ctrl & NAND_CLE)
101 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
104 mar = (cmd << (32 - fun->upm.width)) |
105 fun->mchip_offsets[fun->mchip_number];
106 fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
108 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
109 fun_wait_rnb(fun);
112 static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
114 struct nand_chip *chip = mtd->priv;
115 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
117 if (mchip_nr == -1) {
118 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
119 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
120 fun->mchip_number = mchip_nr;
121 chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
122 chip->IO_ADDR_W = chip->IO_ADDR_R;
123 } else {
124 BUG();
128 static uint8_t fun_read_byte(struct mtd_info *mtd)
130 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
132 return in_8(fun->chip.IO_ADDR_R);
135 static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
137 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
138 int i;
140 for (i = 0; i < len; i++)
141 buf[i] = in_8(fun->chip.IO_ADDR_R);
144 static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
146 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
147 int i;
149 for (i = 0; i < len; i++) {
150 out_8(fun->chip.IO_ADDR_W, buf[i]);
151 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
152 fun_wait_rnb(fun);
154 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
155 fun_wait_rnb(fun);
158 static int __devinit fun_chip_init(struct fsl_upm_nand *fun,
159 const struct device_node *upm_np,
160 const struct resource *io_res)
162 int ret;
163 struct device_node *flash_np;
164 #ifdef CONFIG_MTD_PARTITIONS
165 static const char *part_types[] = { "cmdlinepart", NULL, };
166 #endif
168 fun->chip.IO_ADDR_R = fun->io_base;
169 fun->chip.IO_ADDR_W = fun->io_base;
170 fun->chip.cmd_ctrl = fun_cmd_ctrl;
171 fun->chip.chip_delay = fun->chip_delay;
172 fun->chip.read_byte = fun_read_byte;
173 fun->chip.read_buf = fun_read_buf;
174 fun->chip.write_buf = fun_write_buf;
175 fun->chip.ecc.mode = NAND_ECC_SOFT;
176 if (fun->mchip_count > 1)
177 fun->chip.select_chip = fun_select_chip;
179 if (fun->rnb_gpio[0] >= 0)
180 fun->chip.dev_ready = fun_chip_ready;
182 fun->mtd.priv = &fun->chip;
183 fun->mtd.owner = THIS_MODULE;
185 flash_np = of_get_next_child(upm_np, NULL);
186 if (!flash_np)
187 return -ENODEV;
189 fun->mtd.name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
190 flash_np->name);
191 if (!fun->mtd.name) {
192 ret = -ENOMEM;
193 goto err;
196 ret = nand_scan(&fun->mtd, fun->mchip_count);
197 if (ret)
198 goto err;
200 #ifdef CONFIG_MTD_PARTITIONS
201 ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0);
203 #ifdef CONFIG_MTD_OF_PARTS
204 if (ret == 0) {
205 ret = of_mtd_parse_partitions(fun->dev, flash_np, &fun->parts);
206 if (ret < 0)
207 goto err;
209 #endif
210 if (ret > 0)
211 ret = add_mtd_partitions(&fun->mtd, fun->parts, ret);
212 else
213 #endif
214 ret = add_mtd_device(&fun->mtd);
215 err:
216 of_node_put(flash_np);
217 return ret;
220 static int __devinit fun_probe(struct platform_device *ofdev,
221 const struct of_device_id *ofid)
223 struct fsl_upm_nand *fun;
224 struct resource io_res;
225 const __be32 *prop;
226 int rnb_gpio;
227 int ret;
228 int size;
229 int i;
231 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
232 if (!fun)
233 return -ENOMEM;
235 ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
236 if (ret) {
237 dev_err(&ofdev->dev, "can't get IO base\n");
238 goto err1;
241 ret = fsl_upm_find(io_res.start, &fun->upm);
242 if (ret) {
243 dev_err(&ofdev->dev, "can't find UPM\n");
244 goto err1;
247 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
248 &size);
249 if (!prop || size != sizeof(uint32_t)) {
250 dev_err(&ofdev->dev, "can't get UPM address offset\n");
251 ret = -EINVAL;
252 goto err1;
254 fun->upm_addr_offset = *prop;
256 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
257 if (!prop || size != sizeof(uint32_t)) {
258 dev_err(&ofdev->dev, "can't get UPM command offset\n");
259 ret = -EINVAL;
260 goto err1;
262 fun->upm_cmd_offset = *prop;
264 prop = of_get_property(ofdev->dev.of_node,
265 "fsl,upm-addr-line-cs-offsets", &size);
266 if (prop && (size / sizeof(uint32_t)) > 0) {
267 fun->mchip_count = size / sizeof(uint32_t);
268 if (fun->mchip_count >= NAND_MAX_CHIPS) {
269 dev_err(&ofdev->dev, "too much multiple chips\n");
270 goto err1;
272 for (i = 0; i < fun->mchip_count; i++)
273 fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
274 } else {
275 fun->mchip_count = 1;
278 for (i = 0; i < fun->mchip_count; i++) {
279 fun->rnb_gpio[i] = -1;
280 rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
281 if (rnb_gpio >= 0) {
282 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
283 if (ret) {
284 dev_err(&ofdev->dev,
285 "can't request RNB gpio #%d\n", i);
286 goto err2;
288 gpio_direction_input(rnb_gpio);
289 fun->rnb_gpio[i] = rnb_gpio;
290 } else if (rnb_gpio == -EINVAL) {
291 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
292 goto err2;
296 prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
297 if (prop)
298 fun->chip_delay = be32_to_cpup(prop);
299 else
300 fun->chip_delay = 50;
302 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
303 if (prop && size == sizeof(uint32_t))
304 fun->wait_flags = be32_to_cpup(prop);
305 else
306 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
307 FSL_UPM_WAIT_WRITE_BYTE;
309 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
310 resource_size(&io_res));
311 if (!fun->io_base) {
312 ret = -ENOMEM;
313 goto err2;
316 fun->dev = &ofdev->dev;
317 fun->last_ctrl = NAND_CLE;
319 ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
320 if (ret)
321 goto err2;
323 dev_set_drvdata(&ofdev->dev, fun);
325 return 0;
326 err2:
327 for (i = 0; i < fun->mchip_count; i++) {
328 if (fun->rnb_gpio[i] < 0)
329 break;
330 gpio_free(fun->rnb_gpio[i]);
332 err1:
333 kfree(fun);
335 return ret;
338 static int __devexit fun_remove(struct platform_device *ofdev)
340 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
341 int i;
343 nand_release(&fun->mtd);
344 kfree(fun->mtd.name);
346 for (i = 0; i < fun->mchip_count; i++) {
347 if (fun->rnb_gpio[i] < 0)
348 break;
349 gpio_free(fun->rnb_gpio[i]);
352 kfree(fun);
354 return 0;
357 static const struct of_device_id of_fun_match[] = {
358 { .compatible = "fsl,upm-nand" },
361 MODULE_DEVICE_TABLE(of, of_fun_match);
363 static struct of_platform_driver of_fun_driver = {
364 .driver = {
365 .name = "fsl,upm-nand",
366 .owner = THIS_MODULE,
367 .of_match_table = of_fun_match,
369 .probe = fun_probe,
370 .remove = __devexit_p(fun_remove),
373 static int __init fun_module_init(void)
375 return of_register_platform_driver(&of_fun_driver);
377 module_init(fun_module_init);
379 static void __exit fun_module_exit(void)
381 of_unregister_platform_driver(&of_fun_driver);
383 module_exit(fun_module_exit);
385 MODULE_LICENSE("GPL");
386 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
387 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
388 "LocalBus User-Programmable Machine");