x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / drivers / mtd / nand / fsmc_nand.c
blob02edfba25b0cb6d5ce3e8a3c88c1a405629f5f50
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
12 * Based on drivers/mtd/nand/nomadik_nand.c
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/resource.h>
24 #include <linux/sched.h>
25 #include <linux/types.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/nand.h>
28 #include <linux/mtd/nand_ecc.h>
29 #include <linux/platform_device.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/io.h>
32 #include <linux/slab.h>
33 #include <linux/mtd/fsmc.h>
34 #include <mtd/mtd-abi.h>
36 static struct nand_ecclayout fsmc_ecc1_layout = {
37 .eccbytes = 24,
38 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
39 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
40 .oobfree = {
41 {.offset = 8, .length = 8},
42 {.offset = 24, .length = 8},
43 {.offset = 40, .length = 8},
44 {.offset = 56, .length = 8},
45 {.offset = 72, .length = 8},
46 {.offset = 88, .length = 8},
47 {.offset = 104, .length = 8},
48 {.offset = 120, .length = 8}
52 static struct nand_ecclayout fsmc_ecc4_lp_layout = {
53 .eccbytes = 104,
54 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
55 9, 10, 11, 12, 13, 14,
56 18, 19, 20, 21, 22, 23, 24,
57 25, 26, 27, 28, 29, 30,
58 34, 35, 36, 37, 38, 39, 40,
59 41, 42, 43, 44, 45, 46,
60 50, 51, 52, 53, 54, 55, 56,
61 57, 58, 59, 60, 61, 62,
62 66, 67, 68, 69, 70, 71, 72,
63 73, 74, 75, 76, 77, 78,
64 82, 83, 84, 85, 86, 87, 88,
65 89, 90, 91, 92, 93, 94,
66 98, 99, 100, 101, 102, 103, 104,
67 105, 106, 107, 108, 109, 110,
68 114, 115, 116, 117, 118, 119, 120,
69 121, 122, 123, 124, 125, 126
71 .oobfree = {
72 {.offset = 15, .length = 3},
73 {.offset = 31, .length = 3},
74 {.offset = 47, .length = 3},
75 {.offset = 63, .length = 3},
76 {.offset = 79, .length = 3},
77 {.offset = 95, .length = 3},
78 {.offset = 111, .length = 3},
79 {.offset = 127, .length = 1}
84 * ECC placement definitions in oobfree type format.
85 * There are 13 bytes of ecc for every 512 byte block and it has to be read
86 * consecutively and immediately after the 512 byte data block for hardware to
87 * generate the error bit offsets in 512 byte data.
88 * Managing the ecc bytes in the following way makes it easier for software to
89 * read ecc bytes consecutive to data bytes. This way is similar to
90 * oobfree structure maintained already in generic nand driver
92 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
93 .eccplace = {
94 {.offset = 2, .length = 13},
95 {.offset = 18, .length = 13},
96 {.offset = 34, .length = 13},
97 {.offset = 50, .length = 13},
98 {.offset = 66, .length = 13},
99 {.offset = 82, .length = 13},
100 {.offset = 98, .length = 13},
101 {.offset = 114, .length = 13}
105 static struct nand_ecclayout fsmc_ecc4_sp_layout = {
106 .eccbytes = 13,
107 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
108 9, 10, 11, 12, 13, 14
110 .oobfree = {
111 {.offset = 15, .length = 1},
115 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
116 .eccplace = {
117 {.offset = 0, .length = 4},
118 {.offset = 6, .length = 9}
123 * Default partition tables to be used if the partition information not
124 * provided through platform data
126 #define PARTITION(n, off, sz) {.name = n, .offset = off, .size = sz}
129 * Default partition layout for small page(= 512 bytes) devices
130 * Size for "Root file system" is updated in driver based on actual device size
132 static struct mtd_partition partition_info_16KB_blk[] = {
133 PARTITION("X-loader", 0, 4 * 0x4000),
134 PARTITION("U-Boot", 0x10000, 20 * 0x4000),
135 PARTITION("Kernel", 0x60000, 256 * 0x4000),
136 PARTITION("Root File System", 0x460000, 0),
140 * Default partition layout for large page(> 512 bytes) devices
141 * Size for "Root file system" is updated in driver based on actual device size
143 static struct mtd_partition partition_info_128KB_blk[] = {
144 PARTITION("X-loader", 0, 4 * 0x20000),
145 PARTITION("U-Boot", 0x80000, 12 * 0x20000),
146 PARTITION("Kernel", 0x200000, 48 * 0x20000),
147 PARTITION("Root File System", 0x800000, 0),
150 #ifdef CONFIG_MTD_CMDLINE_PARTS
151 const char *part_probes[] = { "cmdlinepart", NULL };
152 #endif
155 * struct fsmc_nand_data - atructure for FSMC NAND device state
157 * @mtd: MTD info for a NAND flash.
158 * @nand: Chip related info for a NAND flash.
159 * @partitions: Partition info for a NAND Flash.
160 * @nr_partitions: Total number of partition of a NAND flash.
162 * @ecc_place: ECC placing locations in oobfree type format.
163 * @bank: Bank number for probed device.
164 * @clk: Clock structure for FSMC.
166 * @data_va: NAND port for Data.
167 * @cmd_va: NAND port for Command.
168 * @addr_va: NAND port for Address.
169 * @regs_va: FSMC regs base address.
171 struct fsmc_nand_data {
172 struct mtd_info mtd;
173 struct nand_chip nand;
174 struct mtd_partition *partitions;
175 unsigned int nr_partitions;
177 struct fsmc_eccplace *ecc_place;
178 unsigned int bank;
179 struct clk *clk;
181 struct resource *resregs;
182 struct resource *rescmd;
183 struct resource *resaddr;
184 struct resource *resdata;
186 void __iomem *data_va;
187 void __iomem *cmd_va;
188 void __iomem *addr_va;
189 void __iomem *regs_va;
191 void (*select_chip)(uint32_t bank, uint32_t busw);
194 /* Assert CS signal based on chipnr */
195 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
197 struct nand_chip *chip = mtd->priv;
198 struct fsmc_nand_data *host;
200 host = container_of(mtd, struct fsmc_nand_data, mtd);
202 switch (chipnr) {
203 case -1:
204 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
205 break;
206 case 0:
207 case 1:
208 case 2:
209 case 3:
210 if (host->select_chip)
211 host->select_chip(chipnr,
212 chip->options & NAND_BUSWIDTH_16);
213 break;
215 default:
216 BUG();
221 * fsmc_cmd_ctrl - For facilitaing Hardware access
222 * This routine allows hardware specific access to control-lines(ALE,CLE)
224 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
226 struct nand_chip *this = mtd->priv;
227 struct fsmc_nand_data *host = container_of(mtd,
228 struct fsmc_nand_data, mtd);
229 struct fsmc_regs *regs = host->regs_va;
230 unsigned int bank = host->bank;
232 if (ctrl & NAND_CTRL_CHANGE) {
233 if (ctrl & NAND_CLE) {
234 this->IO_ADDR_R = (void __iomem *)host->cmd_va;
235 this->IO_ADDR_W = (void __iomem *)host->cmd_va;
236 } else if (ctrl & NAND_ALE) {
237 this->IO_ADDR_R = (void __iomem *)host->addr_va;
238 this->IO_ADDR_W = (void __iomem *)host->addr_va;
239 } else {
240 this->IO_ADDR_R = (void __iomem *)host->data_va;
241 this->IO_ADDR_W = (void __iomem *)host->data_va;
244 if (ctrl & NAND_NCE) {
245 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ENABLE,
246 &regs->bank_regs[bank].pc);
247 } else {
248 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ENABLE,
249 &regs->bank_regs[bank].pc);
253 mb();
255 if (cmd != NAND_CMD_NONE)
256 writeb(cmd, this->IO_ADDR_W);
260 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
262 * This routine initializes timing parameters related to NAND memory access in
263 * FSMC registers
265 static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank,
266 uint32_t busw)
268 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
270 if (busw)
271 writel(value | FSMC_DEVWID_16, &regs->bank_regs[bank].pc);
272 else
273 writel(value | FSMC_DEVWID_8, &regs->bank_regs[bank].pc);
275 writel(readl(&regs->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1,
276 &regs->bank_regs[bank].pc);
277 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
278 &regs->bank_regs[bank].comm);
279 writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
280 &regs->bank_regs[bank].attrib);
284 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
286 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
288 struct fsmc_nand_data *host = container_of(mtd,
289 struct fsmc_nand_data, mtd);
290 struct fsmc_regs *regs = host->regs_va;
291 uint32_t bank = host->bank;
293 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256,
294 &regs->bank_regs[bank].pc);
295 writel(readl(&regs->bank_regs[bank].pc) & ~FSMC_ECCEN,
296 &regs->bank_regs[bank].pc);
297 writel(readl(&regs->bank_regs[bank].pc) | FSMC_ECCEN,
298 &regs->bank_regs[bank].pc);
302 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
303 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction upto
304 * max of 8-bits)
306 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
307 uint8_t *ecc)
309 struct fsmc_nand_data *host = container_of(mtd,
310 struct fsmc_nand_data, mtd);
311 struct fsmc_regs *regs = host->regs_va;
312 uint32_t bank = host->bank;
313 uint32_t ecc_tmp;
314 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
316 do {
317 if (readl(&regs->bank_regs[bank].sts) & FSMC_CODE_RDY)
318 break;
319 else
320 cond_resched();
321 } while (!time_after_eq(jiffies, deadline));
323 ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
324 ecc[0] = (uint8_t) (ecc_tmp >> 0);
325 ecc[1] = (uint8_t) (ecc_tmp >> 8);
326 ecc[2] = (uint8_t) (ecc_tmp >> 16);
327 ecc[3] = (uint8_t) (ecc_tmp >> 24);
329 ecc_tmp = readl(&regs->bank_regs[bank].ecc2);
330 ecc[4] = (uint8_t) (ecc_tmp >> 0);
331 ecc[5] = (uint8_t) (ecc_tmp >> 8);
332 ecc[6] = (uint8_t) (ecc_tmp >> 16);
333 ecc[7] = (uint8_t) (ecc_tmp >> 24);
335 ecc_tmp = readl(&regs->bank_regs[bank].ecc3);
336 ecc[8] = (uint8_t) (ecc_tmp >> 0);
337 ecc[9] = (uint8_t) (ecc_tmp >> 8);
338 ecc[10] = (uint8_t) (ecc_tmp >> 16);
339 ecc[11] = (uint8_t) (ecc_tmp >> 24);
341 ecc_tmp = readl(&regs->bank_regs[bank].sts);
342 ecc[12] = (uint8_t) (ecc_tmp >> 16);
344 return 0;
348 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
349 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction upto
350 * max of 1-bit)
352 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
353 uint8_t *ecc)
355 struct fsmc_nand_data *host = container_of(mtd,
356 struct fsmc_nand_data, mtd);
357 struct fsmc_regs *regs = host->regs_va;
358 uint32_t bank = host->bank;
359 uint32_t ecc_tmp;
361 ecc_tmp = readl(&regs->bank_regs[bank].ecc1);
362 ecc[0] = (uint8_t) (ecc_tmp >> 0);
363 ecc[1] = (uint8_t) (ecc_tmp >> 8);
364 ecc[2] = (uint8_t) (ecc_tmp >> 16);
366 return 0;
370 * fsmc_read_page_hwecc
371 * @mtd: mtd info structure
372 * @chip: nand chip info structure
373 * @buf: buffer to store read data
374 * @page: page number to read
376 * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
377 * performed in a strict sequence as follows:
378 * data(512 byte) -> ecc(13 byte)
379 * After this read, fsmc hardware generates and reports error data bits(upto a
380 * max of 8 bits)
382 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
383 uint8_t *buf, int page)
385 struct fsmc_nand_data *host = container_of(mtd,
386 struct fsmc_nand_data, mtd);
387 struct fsmc_eccplace *ecc_place = host->ecc_place;
388 int i, j, s, stat, eccsize = chip->ecc.size;
389 int eccbytes = chip->ecc.bytes;
390 int eccsteps = chip->ecc.steps;
391 uint8_t *p = buf;
392 uint8_t *ecc_calc = chip->buffers->ecccalc;
393 uint8_t *ecc_code = chip->buffers->ecccode;
394 int off, len, group = 0;
396 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
397 * end up reading 14 bytes (7 words) from oob. The local array is
398 * to maintain word alignment
400 uint16_t ecc_oob[7];
401 uint8_t *oob = (uint8_t *)&ecc_oob[0];
403 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
405 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
406 chip->ecc.hwctl(mtd, NAND_ECC_READ);
407 chip->read_buf(mtd, p, eccsize);
409 for (j = 0; j < eccbytes;) {
410 off = ecc_place->eccplace[group].offset;
411 len = ecc_place->eccplace[group].length;
412 group++;
415 * length is intentionally kept a higher multiple of 2
416 * to read at least 13 bytes even in case of 16 bit NAND
417 * devices
419 len = roundup(len, 2);
420 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
421 chip->read_buf(mtd, oob + j, len);
422 j += len;
425 memcpy(&ecc_code[i], oob, 13);
426 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
428 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
429 if (stat < 0)
430 mtd->ecc_stats.failed++;
431 else
432 mtd->ecc_stats.corrected += stat;
435 return 0;
439 * fsmc_correct_data
440 * @mtd: mtd info structure
441 * @dat: buffer of read data
442 * @read_ecc: ecc read from device spare area
443 * @calc_ecc: ecc calculated from read data
445 * calc_ecc is a 104 bit information containing maximum of 8 error
446 * offset informations of 13 bits each in 512 bytes of read data.
448 static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat,
449 uint8_t *read_ecc, uint8_t *calc_ecc)
451 struct fsmc_nand_data *host = container_of(mtd,
452 struct fsmc_nand_data, mtd);
453 struct fsmc_regs *regs = host->regs_va;
454 unsigned int bank = host->bank;
455 uint16_t err_idx[8];
456 uint64_t ecc_data[2];
457 uint32_t num_err, i;
459 /* The calculated ecc is actually the correction index in data */
460 memcpy(ecc_data, calc_ecc, 13);
463 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
464 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
466 * calc_ecc is a 104 bit information containing maximum of 8 error
467 * offset informations of 13 bits each. calc_ecc is copied into a
468 * uint64_t array and error offset indexes are populated in err_idx
469 * array
471 for (i = 0; i < 8; i++) {
472 if (i == 4) {
473 err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0];
474 ecc_data[1] >>= 1;
475 continue;
477 err_idx[i] = (ecc_data[i/4] & 0x1FFF);
478 ecc_data[i/4] >>= 13;
481 num_err = (readl(&regs->bank_regs[bank].sts) >> 10) & 0xF;
483 if (num_err == 0xF)
484 return -EBADMSG;
486 i = 0;
487 while (num_err--) {
488 change_bit(0, (unsigned long *)&err_idx[i]);
489 change_bit(1, (unsigned long *)&err_idx[i]);
491 if (err_idx[i] <= 512 * 8) {
492 change_bit(err_idx[i], (unsigned long *)dat);
493 i++;
496 return i;
500 * fsmc_nand_probe - Probe function
501 * @pdev: platform device structure
503 static int __init fsmc_nand_probe(struct platform_device *pdev)
505 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
506 struct fsmc_nand_data *host;
507 struct mtd_info *mtd;
508 struct nand_chip *nand;
509 struct fsmc_regs *regs;
510 struct resource *res;
511 int nr_parts, ret = 0;
513 if (!pdata) {
514 dev_err(&pdev->dev, "platform data is NULL\n");
515 return -EINVAL;
518 /* Allocate memory for the device structure (and zero it) */
519 host = kzalloc(sizeof(*host), GFP_KERNEL);
520 if (!host) {
521 dev_err(&pdev->dev, "failed to allocate device structure\n");
522 return -ENOMEM;
525 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
526 if (!res) {
527 ret = -EIO;
528 goto err_probe1;
531 host->resdata = request_mem_region(res->start, resource_size(res),
532 pdev->name);
533 if (!host->resdata) {
534 ret = -EIO;
535 goto err_probe1;
538 host->data_va = ioremap(res->start, resource_size(res));
539 if (!host->data_va) {
540 ret = -EIO;
541 goto err_probe1;
544 host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE,
545 resource_size(res), pdev->name);
546 if (!host->resaddr) {
547 ret = -EIO;
548 goto err_probe1;
551 host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res));
552 if (!host->addr_va) {
553 ret = -EIO;
554 goto err_probe1;
557 host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE,
558 resource_size(res), pdev->name);
559 if (!host->rescmd) {
560 ret = -EIO;
561 goto err_probe1;
564 host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res));
565 if (!host->cmd_va) {
566 ret = -EIO;
567 goto err_probe1;
570 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
571 if (!res) {
572 ret = -EIO;
573 goto err_probe1;
576 host->resregs = request_mem_region(res->start, resource_size(res),
577 pdev->name);
578 if (!host->resregs) {
579 ret = -EIO;
580 goto err_probe1;
583 host->regs_va = ioremap(res->start, resource_size(res));
584 if (!host->regs_va) {
585 ret = -EIO;
586 goto err_probe1;
589 host->clk = clk_get(&pdev->dev, NULL);
590 if (IS_ERR(host->clk)) {
591 dev_err(&pdev->dev, "failed to fetch block clock\n");
592 ret = PTR_ERR(host->clk);
593 host->clk = NULL;
594 goto err_probe1;
597 ret = clk_enable(host->clk);
598 if (ret)
599 goto err_probe1;
601 host->bank = pdata->bank;
602 host->select_chip = pdata->select_bank;
603 regs = host->regs_va;
605 /* Link all private pointers */
606 mtd = &host->mtd;
607 nand = &host->nand;
608 mtd->priv = nand;
609 nand->priv = host;
611 host->mtd.owner = THIS_MODULE;
612 nand->IO_ADDR_R = host->data_va;
613 nand->IO_ADDR_W = host->data_va;
614 nand->cmd_ctrl = fsmc_cmd_ctrl;
615 nand->chip_delay = 30;
617 nand->ecc.mode = NAND_ECC_HW;
618 nand->ecc.hwctl = fsmc_enable_hwecc;
619 nand->ecc.size = 512;
620 nand->options = pdata->options;
621 nand->select_chip = fsmc_select_chip;
623 if (pdata->width == FSMC_NAND_BW16)
624 nand->options |= NAND_BUSWIDTH_16;
626 fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16);
628 if (get_fsmc_version(host->regs_va) == FSMC_VER8) {
629 nand->ecc.read_page = fsmc_read_page_hwecc;
630 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
631 nand->ecc.correct = fsmc_correct_data;
632 nand->ecc.bytes = 13;
633 } else {
634 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
635 nand->ecc.correct = nand_correct_data;
636 nand->ecc.bytes = 3;
640 * Scan to find existance of the device
642 if (nand_scan_ident(&host->mtd, 1, NULL)) {
643 ret = -ENXIO;
644 dev_err(&pdev->dev, "No NAND Device found!\n");
645 goto err_probe;
648 if (get_fsmc_version(host->regs_va) == FSMC_VER8) {
649 if (host->mtd.writesize == 512) {
650 nand->ecc.layout = &fsmc_ecc4_sp_layout;
651 host->ecc_place = &fsmc_ecc4_sp_place;
652 } else {
653 nand->ecc.layout = &fsmc_ecc4_lp_layout;
654 host->ecc_place = &fsmc_ecc4_lp_place;
656 } else {
657 nand->ecc.layout = &fsmc_ecc1_layout;
660 /* Second stage of scan to fill MTD data-structures */
661 if (nand_scan_tail(&host->mtd)) {
662 ret = -ENXIO;
663 goto err_probe;
667 * The partition information can is accessed by (in the same precedence)
669 * command line through Bootloader,
670 * platform data,
671 * default partition information present in driver.
673 #ifdef CONFIG_MTD_PARTITIONS
674 #ifdef CONFIG_MTD_CMDLINE_PARTS
676 * Check if partition info passed via command line
678 host->mtd.name = "nand";
679 nr_parts = parse_mtd_partitions(&host->mtd, part_probes,
680 &host->partitions, 0);
681 if (nr_parts > 0) {
682 host->nr_partitions = nr_parts;
683 } else {
684 #endif
686 * Check if partition info passed via command line
688 if (pdata->partitions) {
689 host->partitions = pdata->partitions;
690 host->nr_partitions = pdata->nr_partitions;
691 } else {
692 struct mtd_partition *partition;
693 int i;
695 /* Select the default partitions info */
696 switch (host->mtd.size) {
697 case 0x01000000:
698 case 0x02000000:
699 case 0x04000000:
700 host->partitions = partition_info_16KB_blk;
701 host->nr_partitions =
702 sizeof(partition_info_16KB_blk) /
703 sizeof(struct mtd_partition);
704 break;
705 case 0x08000000:
706 case 0x10000000:
707 case 0x20000000:
708 case 0x40000000:
709 host->partitions = partition_info_128KB_blk;
710 host->nr_partitions =
711 sizeof(partition_info_128KB_blk) /
712 sizeof(struct mtd_partition);
713 break;
714 default:
715 ret = -ENXIO;
716 pr_err("Unsupported NAND size\n");
717 goto err_probe;
720 partition = host->partitions;
721 for (i = 0; i < host->nr_partitions; i++, partition++) {
722 if (partition->size == 0) {
723 partition->size = host->mtd.size -
724 partition->offset;
725 break;
729 #ifdef CONFIG_MTD_CMDLINE_PARTS
731 #endif
733 if (host->partitions) {
734 ret = add_mtd_partitions(&host->mtd, host->partitions,
735 host->nr_partitions);
736 if (ret)
737 goto err_probe;
739 #else
740 dev_info(&pdev->dev, "Registering %s as whole device\n", mtd->name);
741 if (!add_mtd_device(mtd)) {
742 ret = -ENXIO;
743 goto err_probe;
745 #endif
747 platform_set_drvdata(pdev, host);
748 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
749 return 0;
751 err_probe:
752 clk_disable(host->clk);
753 err_probe1:
754 if (host->clk)
755 clk_put(host->clk);
756 if (host->regs_va)
757 iounmap(host->regs_va);
758 if (host->resregs)
759 release_mem_region(host->resregs->start,
760 resource_size(host->resregs));
761 if (host->cmd_va)
762 iounmap(host->cmd_va);
763 if (host->rescmd)
764 release_mem_region(host->rescmd->start,
765 resource_size(host->rescmd));
766 if (host->addr_va)
767 iounmap(host->addr_va);
768 if (host->resaddr)
769 release_mem_region(host->resaddr->start,
770 resource_size(host->resaddr));
771 if (host->data_va)
772 iounmap(host->data_va);
773 if (host->resdata)
774 release_mem_region(host->resdata->start,
775 resource_size(host->resdata));
777 kfree(host);
778 return ret;
782 * Clean up routine
784 static int fsmc_nand_remove(struct platform_device *pdev)
786 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
788 platform_set_drvdata(pdev, NULL);
790 if (host) {
791 #ifdef CONFIG_MTD_PARTITIONS
792 del_mtd_partitions(&host->mtd);
793 #else
794 del_mtd_device(&host->mtd);
795 #endif
796 clk_disable(host->clk);
797 clk_put(host->clk);
799 iounmap(host->regs_va);
800 release_mem_region(host->resregs->start,
801 resource_size(host->resregs));
802 iounmap(host->cmd_va);
803 release_mem_region(host->rescmd->start,
804 resource_size(host->rescmd));
805 iounmap(host->addr_va);
806 release_mem_region(host->resaddr->start,
807 resource_size(host->resaddr));
808 iounmap(host->data_va);
809 release_mem_region(host->resdata->start,
810 resource_size(host->resdata));
812 kfree(host);
814 return 0;
817 #ifdef CONFIG_PM
818 static int fsmc_nand_suspend(struct device *dev)
820 struct fsmc_nand_data *host = dev_get_drvdata(dev);
821 if (host)
822 clk_disable(host->clk);
823 return 0;
826 static int fsmc_nand_resume(struct device *dev)
828 struct fsmc_nand_data *host = dev_get_drvdata(dev);
829 if (host)
830 clk_enable(host->clk);
831 return 0;
834 static const struct dev_pm_ops fsmc_nand_pm_ops = {
835 .suspend = fsmc_nand_suspend,
836 .resume = fsmc_nand_resume,
838 #endif
840 static struct platform_driver fsmc_nand_driver = {
841 .remove = fsmc_nand_remove,
842 .driver = {
843 .owner = THIS_MODULE,
844 .name = "fsmc-nand",
845 #ifdef CONFIG_PM
846 .pm = &fsmc_nand_pm_ops,
847 #endif
851 static int __init fsmc_nand_init(void)
853 return platform_driver_probe(&fsmc_nand_driver,
854 fsmc_nand_probe);
856 module_init(fsmc_nand_init);
858 static void __exit fsmc_nand_exit(void)
860 platform_driver_unregister(&fsmc_nand_driver);
862 module_exit(fsmc_nand_exit);
864 MODULE_LICENSE("GPL");
865 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
866 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");