2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
46 #include "blk-rq-qos.h"
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry
*blk_debugfs_root
;
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
58 DEFINE_IDA(blk_queue_ida
);
61 * For queue allocation
63 struct kmem_cache
*blk_requestq_cachep
;
66 * Controlling structure to kblockd
68 static struct workqueue_struct
*kblockd_workqueue
;
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
75 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
77 set_bit(flag
, &q
->queue_flags
);
79 EXPORT_SYMBOL(blk_queue_flag_set
);
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
86 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
88 clear_bit(flag
, &q
->queue_flags
);
90 EXPORT_SYMBOL(blk_queue_flag_clear
);
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
100 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
102 return test_and_set_bit(flag
, &q
->queue_flags
);
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
106 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
108 memset(rq
, 0, sizeof(*rq
));
110 INIT_LIST_HEAD(&rq
->queuelist
);
112 rq
->__sector
= (sector_t
) -1;
113 INIT_HLIST_NODE(&rq
->hash
);
114 RB_CLEAR_NODE(&rq
->rb_node
);
116 rq
->internal_tag
= -1;
117 rq
->start_time_ns
= ktime_get_ns();
120 EXPORT_SYMBOL(blk_rq_init
);
122 static const struct {
126 [BLK_STS_OK
] = { 0, "" },
127 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
128 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
129 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
130 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
131 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
132 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
133 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
134 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
135 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
136 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
137 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
142 /* everything else not covered above: */
143 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
146 blk_status_t
errno_to_blk_status(int errno
)
150 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
151 if (blk_errors
[i
].errno
== errno
)
152 return (__force blk_status_t
)i
;
155 return BLK_STS_IOERR
;
157 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
159 int blk_status_to_errno(blk_status_t status
)
161 int idx
= (__force
int)status
;
163 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
165 return blk_errors
[idx
].errno
;
167 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
169 static void print_req_error(struct request
*req
, blk_status_t status
)
171 int idx
= (__force
int)status
;
173 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
176 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__
, blk_errors
[idx
].name
,
178 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
179 (unsigned long long)blk_rq_pos(req
),
183 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
184 unsigned int nbytes
, blk_status_t error
)
187 bio
->bi_status
= error
;
189 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
190 bio_set_flag(bio
, BIO_QUIET
);
192 bio_advance(bio
, nbytes
);
194 /* don't actually finish bio if it's part of flush sequence */
195 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
199 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
201 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
202 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
203 (unsigned long long) rq
->cmd_flags
);
205 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq
),
207 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
208 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
209 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
211 EXPORT_SYMBOL(blk_dump_rq_flags
);
214 * blk_sync_queue - cancel any pending callbacks on a queue
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
222 * that the callbacks might use. The caller must already have made sure
223 * that its ->make_request_fn will not re-add plugging prior to calling
226 * This function does not cancel any asynchronous activity arising
227 * out of elevator or throttling code. That would require elevator_exit()
228 * and blkcg_exit_queue() to be called with queue lock initialized.
231 void blk_sync_queue(struct request_queue
*q
)
233 del_timer_sync(&q
->timeout
);
234 cancel_work_sync(&q
->timeout_work
);
236 if (queue_is_mq(q
)) {
237 struct blk_mq_hw_ctx
*hctx
;
240 cancel_delayed_work_sync(&q
->requeue_work
);
241 queue_for_each_hw_ctx(q
, hctx
, i
)
242 cancel_delayed_work_sync(&hctx
->run_work
);
245 EXPORT_SYMBOL(blk_sync_queue
);
248 * blk_set_pm_only - increment pm_only counter
249 * @q: request queue pointer
251 void blk_set_pm_only(struct request_queue
*q
)
253 atomic_inc(&q
->pm_only
);
255 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
257 void blk_clear_pm_only(struct request_queue
*q
)
261 pm_only
= atomic_dec_return(&q
->pm_only
);
262 WARN_ON_ONCE(pm_only
< 0);
264 wake_up_all(&q
->mq_freeze_wq
);
266 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
268 void blk_put_queue(struct request_queue
*q
)
270 kobject_put(&q
->kobj
);
272 EXPORT_SYMBOL(blk_put_queue
);
274 void blk_set_queue_dying(struct request_queue
*q
)
276 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
283 blk_freeze_queue_start(q
);
286 blk_mq_wake_waiters(q
);
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q
->mq_freeze_wq
);
291 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
293 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294 void blk_exit_queue(struct request_queue
*q
)
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
303 elevator_exit(q
, q
->elevator
);
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
319 bdi_put(q
->backing_dev_info
);
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
329 void blk_cleanup_queue(struct request_queue
*q
)
331 /* mark @q DYING, no new request or merges will be allowed afterwards */
332 mutex_lock(&q
->sysfs_lock
);
333 blk_set_queue_dying(q
);
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
337 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
338 mutex_unlock(&q
->sysfs_lock
);
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
348 blk_queue_flag_set(QUEUE_FLAG_DEAD
, q
);
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
354 * from more than one contexts.
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
359 if (queue_is_mq(q
) && blk_queue_init_done(q
))
360 blk_mq_quiesce_queue(q
);
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
365 /* @q won't process any more request, flush async actions */
366 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
373 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
378 blk_mq_free_queue(q
);
380 percpu_ref_exit(&q
->q_usage_counter
);
382 /* @q is and will stay empty, shutdown and put */
385 EXPORT_SYMBOL(blk_cleanup_queue
);
387 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
389 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
391 EXPORT_SYMBOL(blk_alloc_queue
);
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
398 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
400 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
403 bool success
= false;
406 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
412 if (pm
|| !blk_queue_pm_only(q
)) {
415 percpu_ref_put(&q
->q_usage_counter
);
423 if (flags
& BLK_MQ_REQ_NOWAIT
)
427 * read pair of barrier in blk_freeze_queue_start(),
428 * we need to order reading __PERCPU_REF_DEAD flag of
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
435 wait_event(q
->mq_freeze_wq
,
436 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
437 (pm
|| (blk_pm_request_resume(q
),
438 !blk_queue_pm_only(q
)))) ||
440 if (blk_queue_dying(q
))
445 void blk_queue_exit(struct request_queue
*q
)
447 percpu_ref_put(&q
->q_usage_counter
);
450 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
452 struct request_queue
*q
=
453 container_of(ref
, struct request_queue
, q_usage_counter
);
455 wake_up_all(&q
->mq_freeze_wq
);
458 static void blk_rq_timed_out_timer(struct timer_list
*t
)
460 struct request_queue
*q
= from_timer(q
, t
, timeout
);
462 kblockd_schedule_work(&q
->timeout_work
);
466 * blk_alloc_queue_node - allocate a request queue
467 * @gfp_mask: memory allocation flags
468 * @node_id: NUMA node to allocate memory from
470 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
472 struct request_queue
*q
;
475 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
476 gfp_mask
| __GFP_ZERO
, node_id
);
480 INIT_LIST_HEAD(&q
->queue_head
);
481 q
->last_merge
= NULL
;
483 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
487 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
491 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
492 if (!q
->backing_dev_info
)
495 q
->stats
= blk_alloc_queue_stats();
499 q
->backing_dev_info
->ra_pages
=
500 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
501 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
502 q
->backing_dev_info
->name
= "block";
505 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
506 laptop_mode_timer_fn
, 0);
507 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
508 INIT_WORK(&q
->timeout_work
, NULL
);
509 INIT_LIST_HEAD(&q
->icq_list
);
510 #ifdef CONFIG_BLK_CGROUP
511 INIT_LIST_HEAD(&q
->blkg_list
);
514 kobject_init(&q
->kobj
, &blk_queue_ktype
);
516 #ifdef CONFIG_BLK_DEV_IO_TRACE
517 mutex_init(&q
->blk_trace_mutex
);
519 mutex_init(&q
->sysfs_lock
);
520 spin_lock_init(&q
->queue_lock
);
522 init_waitqueue_head(&q
->mq_freeze_wq
);
525 * Init percpu_ref in atomic mode so that it's faster to shutdown.
526 * See blk_register_queue() for details.
528 if (percpu_ref_init(&q
->q_usage_counter
,
529 blk_queue_usage_counter_release
,
530 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
533 if (blkcg_init_queue(q
))
539 percpu_ref_exit(&q
->q_usage_counter
);
541 blk_free_queue_stats(q
->stats
);
543 bdi_put(q
->backing_dev_info
);
545 bioset_exit(&q
->bio_split
);
547 ida_simple_remove(&blk_queue_ida
, q
->id
);
549 kmem_cache_free(blk_requestq_cachep
, q
);
552 EXPORT_SYMBOL(blk_alloc_queue_node
);
554 bool blk_get_queue(struct request_queue
*q
)
556 if (likely(!blk_queue_dying(q
))) {
563 EXPORT_SYMBOL(blk_get_queue
);
566 * blk_get_request - allocate a request
567 * @q: request queue to allocate a request for
568 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
569 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
571 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
572 blk_mq_req_flags_t flags
)
576 WARN_ON_ONCE(op
& REQ_NOWAIT
);
577 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
579 req
= blk_mq_alloc_request(q
, op
, flags
);
580 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
581 q
->mq_ops
->initialize_rq_fn(req
);
585 EXPORT_SYMBOL(blk_get_request
);
587 void blk_put_request(struct request
*req
)
589 blk_mq_free_request(req
);
591 EXPORT_SYMBOL(blk_put_request
);
593 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
596 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
598 if (!ll_back_merge_fn(q
, req
, bio
))
601 trace_block_bio_backmerge(q
, req
, bio
);
603 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
604 blk_rq_set_mixed_merge(req
);
606 req
->biotail
->bi_next
= bio
;
608 req
->__data_len
+= bio
->bi_iter
.bi_size
;
610 blk_account_io_start(req
, false);
614 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
617 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
619 if (!ll_front_merge_fn(q
, req
, bio
))
622 trace_block_bio_frontmerge(q
, req
, bio
);
624 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
625 blk_rq_set_mixed_merge(req
);
627 bio
->bi_next
= req
->bio
;
630 req
->__sector
= bio
->bi_iter
.bi_sector
;
631 req
->__data_len
+= bio
->bi_iter
.bi_size
;
633 blk_account_io_start(req
, false);
637 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
640 unsigned short segments
= blk_rq_nr_discard_segments(req
);
642 if (segments
>= queue_max_discard_segments(q
))
644 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
645 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
648 req
->biotail
->bi_next
= bio
;
650 req
->__data_len
+= bio
->bi_iter
.bi_size
;
651 req
->nr_phys_segments
= segments
+ 1;
653 blk_account_io_start(req
, false);
656 req_set_nomerge(q
, req
);
661 * blk_attempt_plug_merge - try to merge with %current's plugged list
662 * @q: request_queue new bio is being queued at
663 * @bio: new bio being queued
664 * @request_count: out parameter for number of traversed plugged requests
665 * @same_queue_rq: pointer to &struct request that gets filled in when
666 * another request associated with @q is found on the plug list
667 * (optional, may be %NULL)
669 * Determine whether @bio being queued on @q can be merged with a request
670 * on %current's plugged list. Returns %true if merge was successful,
673 * Plugging coalesces IOs from the same issuer for the same purpose without
674 * going through @q->queue_lock. As such it's more of an issuing mechanism
675 * than scheduling, and the request, while may have elvpriv data, is not
676 * added on the elevator at this point. In addition, we don't have
677 * reliable access to the elevator outside queue lock. Only check basic
678 * merging parameters without querying the elevator.
680 * Caller must ensure !blk_queue_nomerges(q) beforehand.
682 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
683 struct request
**same_queue_rq
)
685 struct blk_plug
*plug
;
687 struct list_head
*plug_list
;
689 plug
= current
->plug
;
693 plug_list
= &plug
->mq_list
;
695 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
698 if (rq
->q
== q
&& same_queue_rq
) {
700 * Only blk-mq multiple hardware queues case checks the
701 * rq in the same queue, there should be only one such
707 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
710 switch (blk_try_merge(rq
, bio
)) {
711 case ELEVATOR_BACK_MERGE
:
712 merged
= bio_attempt_back_merge(q
, rq
, bio
);
714 case ELEVATOR_FRONT_MERGE
:
715 merged
= bio_attempt_front_merge(q
, rq
, bio
);
717 case ELEVATOR_DISCARD_MERGE
:
718 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
731 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
733 if (bio
->bi_opf
& REQ_RAHEAD
)
734 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
736 req
->__sector
= bio
->bi_iter
.bi_sector
;
737 req
->ioprio
= bio_prio(bio
);
738 req
->write_hint
= bio
->bi_write_hint
;
739 blk_rq_bio_prep(req
->q
, req
, bio
);
741 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
743 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
745 char b
[BDEVNAME_SIZE
];
747 printk(KERN_INFO
"attempt to access beyond end of device\n");
748 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
749 bio_devname(bio
, b
), bio
->bi_opf
,
750 (unsigned long long)bio_end_sector(bio
),
751 (long long)maxsector
);
754 #ifdef CONFIG_FAIL_MAKE_REQUEST
756 static DECLARE_FAULT_ATTR(fail_make_request
);
758 static int __init
setup_fail_make_request(char *str
)
760 return setup_fault_attr(&fail_make_request
, str
);
762 __setup("fail_make_request=", setup_fail_make_request
);
764 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
766 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
769 static int __init
fail_make_request_debugfs(void)
771 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
772 NULL
, &fail_make_request
);
774 return PTR_ERR_OR_ZERO(dir
);
777 late_initcall(fail_make_request_debugfs
);
779 #else /* CONFIG_FAIL_MAKE_REQUEST */
781 static inline bool should_fail_request(struct hd_struct
*part
,
787 #endif /* CONFIG_FAIL_MAKE_REQUEST */
789 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
791 const int op
= bio_op(bio
);
793 if (part
->policy
&& op_is_write(op
)) {
794 char b
[BDEVNAME_SIZE
];
796 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
800 "generic_make_request: Trying to write "
801 "to read-only block-device %s (partno %d)\n",
802 bio_devname(bio
, b
), part
->partno
);
803 /* Older lvm-tools actually trigger this */
810 static noinline
int should_fail_bio(struct bio
*bio
)
812 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
816 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
819 * Check whether this bio extends beyond the end of the device or partition.
820 * This may well happen - the kernel calls bread() without checking the size of
821 * the device, e.g., when mounting a file system.
823 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
825 unsigned int nr_sectors
= bio_sectors(bio
);
827 if (nr_sectors
&& maxsector
&&
828 (nr_sectors
> maxsector
||
829 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
830 handle_bad_sector(bio
, maxsector
);
837 * Remap block n of partition p to block n+start(p) of the disk.
839 static inline int blk_partition_remap(struct bio
*bio
)
845 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
848 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
850 if (unlikely(bio_check_ro(bio
, p
)))
854 * Zone reset does not include bi_size so bio_sectors() is always 0.
855 * Include a test for the reset op code and perform the remap if needed.
857 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
858 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
860 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
861 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
862 bio
->bi_iter
.bi_sector
- p
->start_sect
);
871 static noinline_for_stack
bool
872 generic_make_request_checks(struct bio
*bio
)
874 struct request_queue
*q
;
875 int nr_sectors
= bio_sectors(bio
);
876 blk_status_t status
= BLK_STS_IOERR
;
877 char b
[BDEVNAME_SIZE
];
881 q
= bio
->bi_disk
->queue
;
884 "generic_make_request: Trying to access "
885 "nonexistent block-device %s (%Lu)\n",
886 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
891 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
892 * if queue is not a request based queue.
894 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_mq(q
))
897 if (should_fail_bio(bio
))
900 if (bio
->bi_partno
) {
901 if (unlikely(blk_partition_remap(bio
)))
904 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
906 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
911 * Filter flush bio's early so that make_request based
912 * drivers without flush support don't have to worry
915 if (op_is_flush(bio
->bi_opf
) &&
916 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
917 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
924 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
925 bio
->bi_opf
&= ~REQ_HIPRI
;
927 switch (bio_op(bio
)) {
929 if (!blk_queue_discard(q
))
932 case REQ_OP_SECURE_ERASE
:
933 if (!blk_queue_secure_erase(q
))
936 case REQ_OP_WRITE_SAME
:
937 if (!q
->limits
.max_write_same_sectors
)
940 case REQ_OP_ZONE_RESET
:
941 if (!blk_queue_is_zoned(q
))
944 case REQ_OP_WRITE_ZEROES
:
945 if (!q
->limits
.max_write_zeroes_sectors
)
953 * Various block parts want %current->io_context and lazy ioc
954 * allocation ends up trading a lot of pain for a small amount of
955 * memory. Just allocate it upfront. This may fail and block
956 * layer knows how to live with it.
958 create_io_context(GFP_ATOMIC
, q
->node
);
960 if (!blkcg_bio_issue_check(q
, bio
))
963 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
964 trace_block_bio_queue(q
, bio
);
965 /* Now that enqueuing has been traced, we need to trace
966 * completion as well.
968 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
973 status
= BLK_STS_NOTSUPP
;
975 bio
->bi_status
= status
;
981 * generic_make_request - hand a buffer to its device driver for I/O
982 * @bio: The bio describing the location in memory and on the device.
984 * generic_make_request() is used to make I/O requests of block
985 * devices. It is passed a &struct bio, which describes the I/O that needs
988 * generic_make_request() does not return any status. The
989 * success/failure status of the request, along with notification of
990 * completion, is delivered asynchronously through the bio->bi_end_io
991 * function described (one day) else where.
993 * The caller of generic_make_request must make sure that bi_io_vec
994 * are set to describe the memory buffer, and that bi_dev and bi_sector are
995 * set to describe the device address, and the
996 * bi_end_io and optionally bi_private are set to describe how
997 * completion notification should be signaled.
999 * generic_make_request and the drivers it calls may use bi_next if this
1000 * bio happens to be merged with someone else, and may resubmit the bio to
1001 * a lower device by calling into generic_make_request recursively, which
1002 * means the bio should NOT be touched after the call to ->make_request_fn.
1004 blk_qc_t
generic_make_request(struct bio
*bio
)
1007 * bio_list_on_stack[0] contains bios submitted by the current
1009 * bio_list_on_stack[1] contains bios that were submitted before
1010 * the current make_request_fn, but that haven't been processed
1013 struct bio_list bio_list_on_stack
[2];
1014 blk_mq_req_flags_t flags
= 0;
1015 struct request_queue
*q
= bio
->bi_disk
->queue
;
1016 blk_qc_t ret
= BLK_QC_T_NONE
;
1018 if (bio
->bi_opf
& REQ_NOWAIT
)
1019 flags
= BLK_MQ_REQ_NOWAIT
;
1020 if (bio_flagged(bio
, BIO_QUEUE_ENTERED
))
1021 blk_queue_enter_live(q
);
1022 else if (blk_queue_enter(q
, flags
) < 0) {
1023 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
1024 bio_wouldblock_error(bio
);
1030 if (!generic_make_request_checks(bio
))
1034 * We only want one ->make_request_fn to be active at a time, else
1035 * stack usage with stacked devices could be a problem. So use
1036 * current->bio_list to keep a list of requests submited by a
1037 * make_request_fn function. current->bio_list is also used as a
1038 * flag to say if generic_make_request is currently active in this
1039 * task or not. If it is NULL, then no make_request is active. If
1040 * it is non-NULL, then a make_request is active, and new requests
1041 * should be added at the tail
1043 if (current
->bio_list
) {
1044 bio_list_add(¤t
->bio_list
[0], bio
);
1048 /* following loop may be a bit non-obvious, and so deserves some
1050 * Before entering the loop, bio->bi_next is NULL (as all callers
1051 * ensure that) so we have a list with a single bio.
1052 * We pretend that we have just taken it off a longer list, so
1053 * we assign bio_list to a pointer to the bio_list_on_stack,
1054 * thus initialising the bio_list of new bios to be
1055 * added. ->make_request() may indeed add some more bios
1056 * through a recursive call to generic_make_request. If it
1057 * did, we find a non-NULL value in bio_list and re-enter the loop
1058 * from the top. In this case we really did just take the bio
1059 * of the top of the list (no pretending) and so remove it from
1060 * bio_list, and call into ->make_request() again.
1062 BUG_ON(bio
->bi_next
);
1063 bio_list_init(&bio_list_on_stack
[0]);
1064 current
->bio_list
= bio_list_on_stack
;
1066 bool enter_succeeded
= true;
1068 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
1071 q
= bio
->bi_disk
->queue
;
1073 if (bio
->bi_opf
& REQ_NOWAIT
)
1074 flags
= BLK_MQ_REQ_NOWAIT
;
1075 if (blk_queue_enter(q
, flags
) < 0) {
1076 enter_succeeded
= false;
1081 if (enter_succeeded
) {
1082 struct bio_list lower
, same
;
1084 /* Create a fresh bio_list for all subordinate requests */
1085 bio_list_on_stack
[1] = bio_list_on_stack
[0];
1086 bio_list_init(&bio_list_on_stack
[0]);
1087 ret
= q
->make_request_fn(q
, bio
);
1089 /* sort new bios into those for a lower level
1090 * and those for the same level
1092 bio_list_init(&lower
);
1093 bio_list_init(&same
);
1094 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
1095 if (q
== bio
->bi_disk
->queue
)
1096 bio_list_add(&same
, bio
);
1098 bio_list_add(&lower
, bio
);
1099 /* now assemble so we handle the lowest level first */
1100 bio_list_merge(&bio_list_on_stack
[0], &lower
);
1101 bio_list_merge(&bio_list_on_stack
[0], &same
);
1102 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
1104 if (unlikely(!blk_queue_dying(q
) &&
1105 (bio
->bi_opf
& REQ_NOWAIT
)))
1106 bio_wouldblock_error(bio
);
1110 bio
= bio_list_pop(&bio_list_on_stack
[0]);
1112 current
->bio_list
= NULL
; /* deactivate */
1119 EXPORT_SYMBOL(generic_make_request
);
1122 * direct_make_request - hand a buffer directly to its device driver for I/O
1123 * @bio: The bio describing the location in memory and on the device.
1125 * This function behaves like generic_make_request(), but does not protect
1126 * against recursion. Must only be used if the called driver is known
1127 * to not call generic_make_request (or direct_make_request) again from
1128 * its make_request function. (Calling direct_make_request again from
1129 * a workqueue is perfectly fine as that doesn't recurse).
1131 blk_qc_t
direct_make_request(struct bio
*bio
)
1133 struct request_queue
*q
= bio
->bi_disk
->queue
;
1134 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
1137 if (!generic_make_request_checks(bio
))
1138 return BLK_QC_T_NONE
;
1140 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
1141 if (nowait
&& !blk_queue_dying(q
))
1142 bio
->bi_status
= BLK_STS_AGAIN
;
1144 bio
->bi_status
= BLK_STS_IOERR
;
1146 return BLK_QC_T_NONE
;
1149 ret
= q
->make_request_fn(q
, bio
);
1153 EXPORT_SYMBOL_GPL(direct_make_request
);
1156 * submit_bio - submit a bio to the block device layer for I/O
1157 * @bio: The &struct bio which describes the I/O
1159 * submit_bio() is very similar in purpose to generic_make_request(), and
1160 * uses that function to do most of the work. Both are fairly rough
1161 * interfaces; @bio must be presetup and ready for I/O.
1164 blk_qc_t
submit_bio(struct bio
*bio
)
1167 * If it's a regular read/write or a barrier with data attached,
1168 * go through the normal accounting stuff before submission.
1170 if (bio_has_data(bio
)) {
1173 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1174 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
1176 count
= bio_sectors(bio
);
1178 if (op_is_write(bio_op(bio
))) {
1179 count_vm_events(PGPGOUT
, count
);
1181 task_io_account_read(bio
->bi_iter
.bi_size
);
1182 count_vm_events(PGPGIN
, count
);
1185 if (unlikely(block_dump
)) {
1186 char b
[BDEVNAME_SIZE
];
1187 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1188 current
->comm
, task_pid_nr(current
),
1189 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
1190 (unsigned long long)bio
->bi_iter
.bi_sector
,
1191 bio_devname(bio
, b
), count
);
1195 return generic_make_request(bio
);
1197 EXPORT_SYMBOL(submit_bio
);
1200 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1201 * for new the queue limits
1203 * @rq: the request being checked
1206 * @rq may have been made based on weaker limitations of upper-level queues
1207 * in request stacking drivers, and it may violate the limitation of @q.
1208 * Since the block layer and the underlying device driver trust @rq
1209 * after it is inserted to @q, it should be checked against @q before
1210 * the insertion using this generic function.
1212 * Request stacking drivers like request-based dm may change the queue
1213 * limits when retrying requests on other queues. Those requests need
1214 * to be checked against the new queue limits again during dispatch.
1216 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
1219 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
1220 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1225 * queue's settings related to segment counting like q->bounce_pfn
1226 * may differ from that of other stacking queues.
1227 * Recalculate it to check the request correctly on this queue's
1230 blk_recalc_rq_segments(rq
);
1231 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1232 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1240 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1241 * @q: the queue to submit the request
1242 * @rq: the request being queued
1244 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1248 if (blk_cloned_rq_check_limits(q
, rq
))
1249 return BLK_STS_IOERR
;
1252 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1253 return BLK_STS_IOERR
;
1255 if (blk_queue_io_stat(q
))
1256 blk_account_io_start(rq
, true);
1259 * Since we have a scheduler attached on the top device,
1260 * bypass a potential scheduler on the bottom device for
1263 return blk_mq_try_issue_directly(rq
->mq_hctx
, rq
, &unused
, true, true);
1265 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1268 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1269 * @rq: request to examine
1272 * A request could be merge of IOs which require different failure
1273 * handling. This function determines the number of bytes which
1274 * can be failed from the beginning of the request without
1275 * crossing into area which need to be retried further.
1278 * The number of bytes to fail.
1280 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1282 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1283 unsigned int bytes
= 0;
1286 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
1287 return blk_rq_bytes(rq
);
1290 * Currently the only 'mixing' which can happen is between
1291 * different fastfail types. We can safely fail portions
1292 * which have all the failfast bits that the first one has -
1293 * the ones which are at least as eager to fail as the first
1296 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1297 if ((bio
->bi_opf
& ff
) != ff
)
1299 bytes
+= bio
->bi_iter
.bi_size
;
1302 /* this could lead to infinite loop */
1303 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1306 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1308 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1310 if (blk_do_io_stat(req
)) {
1311 const int sgrp
= op_stat_group(req_op(req
));
1312 struct hd_struct
*part
;
1316 part_stat_add(part
, sectors
[sgrp
], bytes
>> 9);
1321 void blk_account_io_done(struct request
*req
, u64 now
)
1324 * Account IO completion. flush_rq isn't accounted as a
1325 * normal IO on queueing nor completion. Accounting the
1326 * containing request is enough.
1328 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
1329 const int sgrp
= op_stat_group(req_op(req
));
1330 struct hd_struct
*part
;
1335 update_io_ticks(part
, jiffies
);
1336 part_stat_inc(part
, ios
[sgrp
]);
1337 part_stat_add(part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1338 part_stat_add(part
, time_in_queue
, nsecs_to_jiffies64(now
- req
->start_time_ns
));
1339 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
1341 hd_struct_put(part
);
1346 void blk_account_io_start(struct request
*rq
, bool new_io
)
1348 struct hd_struct
*part
;
1349 int rw
= rq_data_dir(rq
);
1351 if (!blk_do_io_stat(rq
))
1358 part_stat_inc(part
, merges
[rw
]);
1360 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
1361 if (!hd_struct_try_get(part
)) {
1363 * The partition is already being removed,
1364 * the request will be accounted on the disk only
1366 * We take a reference on disk->part0 although that
1367 * partition will never be deleted, so we can treat
1368 * it as any other partition.
1370 part
= &rq
->rq_disk
->part0
;
1371 hd_struct_get(part
);
1373 part_inc_in_flight(rq
->q
, part
, rw
);
1377 update_io_ticks(part
, jiffies
);
1383 * Steal bios from a request and add them to a bio list.
1384 * The request must not have been partially completed before.
1386 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
1390 list
->tail
->bi_next
= rq
->bio
;
1392 list
->head
= rq
->bio
;
1393 list
->tail
= rq
->biotail
;
1401 EXPORT_SYMBOL_GPL(blk_steal_bios
);
1404 * blk_update_request - Special helper function for request stacking drivers
1405 * @req: the request being processed
1406 * @error: block status code
1407 * @nr_bytes: number of bytes to complete @req
1410 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1411 * the request structure even if @req doesn't have leftover.
1412 * If @req has leftover, sets it up for the next range of segments.
1414 * This special helper function is only for request stacking drivers
1415 * (e.g. request-based dm) so that they can handle partial completion.
1416 * Actual device drivers should use blk_end_request instead.
1418 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419 * %false return from this function.
1422 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423 * blk_rq_bytes() and in blk_update_request().
1426 * %false - this request doesn't have any more data
1427 * %true - this request has more data
1429 bool blk_update_request(struct request
*req
, blk_status_t error
,
1430 unsigned int nr_bytes
)
1434 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
1439 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
1440 !(req
->rq_flags
& RQF_QUIET
)))
1441 print_req_error(req
, error
);
1443 blk_account_io_completion(req
, nr_bytes
);
1447 struct bio
*bio
= req
->bio
;
1448 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
1450 if (bio_bytes
== bio
->bi_iter
.bi_size
)
1451 req
->bio
= bio
->bi_next
;
1453 /* Completion has already been traced */
1454 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1455 req_bio_endio(req
, bio
, bio_bytes
, error
);
1457 total_bytes
+= bio_bytes
;
1458 nr_bytes
-= bio_bytes
;
1469 * Reset counters so that the request stacking driver
1470 * can find how many bytes remain in the request
1473 req
->__data_len
= 0;
1477 req
->__data_len
-= total_bytes
;
1479 /* update sector only for requests with clear definition of sector */
1480 if (!blk_rq_is_passthrough(req
))
1481 req
->__sector
+= total_bytes
>> 9;
1483 /* mixed attributes always follow the first bio */
1484 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1485 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1486 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1489 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1491 * If total number of sectors is less than the first segment
1492 * size, something has gone terribly wrong.
1494 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1495 blk_dump_rq_flags(req
, "request botched");
1496 req
->__data_len
= blk_rq_cur_bytes(req
);
1499 /* recalculate the number of segments */
1500 blk_recalc_rq_segments(req
);
1505 EXPORT_SYMBOL_GPL(blk_update_request
);
1507 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
1510 if (bio_has_data(bio
))
1511 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
1512 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1513 rq
->nr_phys_segments
= 1;
1515 rq
->__data_len
= bio
->bi_iter
.bi_size
;
1516 rq
->bio
= rq
->biotail
= bio
;
1519 rq
->rq_disk
= bio
->bi_disk
;
1522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1524 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1525 * @rq: the request to be flushed
1528 * Flush all pages in @rq.
1530 void rq_flush_dcache_pages(struct request
*rq
)
1532 struct req_iterator iter
;
1533 struct bio_vec bvec
;
1535 rq_for_each_segment(bvec
, rq
, iter
)
1536 flush_dcache_page(bvec
.bv_page
);
1538 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
1542 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1543 * @q : the queue of the device being checked
1546 * Check if underlying low-level drivers of a device are busy.
1547 * If the drivers want to export their busy state, they must set own
1548 * exporting function using blk_queue_lld_busy() first.
1550 * Basically, this function is used only by request stacking drivers
1551 * to stop dispatching requests to underlying devices when underlying
1552 * devices are busy. This behavior helps more I/O merging on the queue
1553 * of the request stacking driver and prevents I/O throughput regression
1554 * on burst I/O load.
1557 * 0 - Not busy (The request stacking driver should dispatch request)
1558 * 1 - Busy (The request stacking driver should stop dispatching request)
1560 int blk_lld_busy(struct request_queue
*q
)
1562 if (queue_is_mq(q
) && q
->mq_ops
->busy
)
1563 return q
->mq_ops
->busy(q
);
1567 EXPORT_SYMBOL_GPL(blk_lld_busy
);
1570 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1571 * @rq: the clone request to be cleaned up
1574 * Free all bios in @rq for a cloned request.
1576 void blk_rq_unprep_clone(struct request
*rq
)
1580 while ((bio
= rq
->bio
) != NULL
) {
1581 rq
->bio
= bio
->bi_next
;
1586 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
1589 * Copy attributes of the original request to the clone request.
1590 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1592 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
1594 dst
->__sector
= blk_rq_pos(src
);
1595 dst
->__data_len
= blk_rq_bytes(src
);
1596 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
1597 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
1598 dst
->special_vec
= src
->special_vec
;
1600 dst
->nr_phys_segments
= src
->nr_phys_segments
;
1601 dst
->ioprio
= src
->ioprio
;
1602 dst
->extra_len
= src
->extra_len
;
1606 * blk_rq_prep_clone - Helper function to setup clone request
1607 * @rq: the request to be setup
1608 * @rq_src: original request to be cloned
1609 * @bs: bio_set that bios for clone are allocated from
1610 * @gfp_mask: memory allocation mask for bio
1611 * @bio_ctr: setup function to be called for each clone bio.
1612 * Returns %0 for success, non %0 for failure.
1613 * @data: private data to be passed to @bio_ctr
1616 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1617 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1618 * are not copied, and copying such parts is the caller's responsibility.
1619 * Also, pages which the original bios are pointing to are not copied
1620 * and the cloned bios just point same pages.
1621 * So cloned bios must be completed before original bios, which means
1622 * the caller must complete @rq before @rq_src.
1624 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
1625 struct bio_set
*bs
, gfp_t gfp_mask
,
1626 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
1629 struct bio
*bio
, *bio_src
;
1634 __rq_for_each_bio(bio_src
, rq_src
) {
1635 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
1639 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
1643 rq
->biotail
->bi_next
= bio
;
1646 rq
->bio
= rq
->biotail
= bio
;
1649 __blk_rq_prep_clone(rq
, rq_src
);
1656 blk_rq_unprep_clone(rq
);
1660 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
1662 int kblockd_schedule_work(struct work_struct
*work
)
1664 return queue_work(kblockd_workqueue
, work
);
1666 EXPORT_SYMBOL(kblockd_schedule_work
);
1668 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
1670 return queue_work_on(cpu
, kblockd_workqueue
, work
);
1672 EXPORT_SYMBOL(kblockd_schedule_work_on
);
1674 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
1675 unsigned long delay
)
1677 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
1679 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
1682 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1683 * @plug: The &struct blk_plug that needs to be initialized
1686 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1687 * pending I/O should the task end up blocking between blk_start_plug() and
1688 * blk_finish_plug(). This is important from a performance perspective, but
1689 * also ensures that we don't deadlock. For instance, if the task is blocking
1690 * for a memory allocation, memory reclaim could end up wanting to free a
1691 * page belonging to that request that is currently residing in our private
1692 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1693 * this kind of deadlock.
1695 void blk_start_plug(struct blk_plug
*plug
)
1697 struct task_struct
*tsk
= current
;
1700 * If this is a nested plug, don't actually assign it.
1705 INIT_LIST_HEAD(&plug
->mq_list
);
1706 INIT_LIST_HEAD(&plug
->cb_list
);
1708 plug
->multiple_queues
= false;
1711 * Store ordering should not be needed here, since a potential
1712 * preempt will imply a full memory barrier
1716 EXPORT_SYMBOL(blk_start_plug
);
1718 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
1720 LIST_HEAD(callbacks
);
1722 while (!list_empty(&plug
->cb_list
)) {
1723 list_splice_init(&plug
->cb_list
, &callbacks
);
1725 while (!list_empty(&callbacks
)) {
1726 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
1729 list_del(&cb
->list
);
1730 cb
->callback(cb
, from_schedule
);
1735 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
1738 struct blk_plug
*plug
= current
->plug
;
1739 struct blk_plug_cb
*cb
;
1744 list_for_each_entry(cb
, &plug
->cb_list
, list
)
1745 if (cb
->callback
== unplug
&& cb
->data
== data
)
1748 /* Not currently on the callback list */
1749 BUG_ON(size
< sizeof(*cb
));
1750 cb
= kzalloc(size
, GFP_ATOMIC
);
1753 cb
->callback
= unplug
;
1754 list_add(&cb
->list
, &plug
->cb_list
);
1758 EXPORT_SYMBOL(blk_check_plugged
);
1760 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1762 flush_plug_callbacks(plug
, from_schedule
);
1764 if (!list_empty(&plug
->mq_list
))
1765 blk_mq_flush_plug_list(plug
, from_schedule
);
1768 void blk_finish_plug(struct blk_plug
*plug
)
1770 if (plug
!= current
->plug
)
1772 blk_flush_plug_list(plug
, false);
1774 current
->plug
= NULL
;
1776 EXPORT_SYMBOL(blk_finish_plug
);
1778 int __init
blk_dev_init(void)
1780 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
1781 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1782 FIELD_SIZEOF(struct request
, cmd_flags
));
1783 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1784 FIELD_SIZEOF(struct bio
, bi_opf
));
1786 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1787 kblockd_workqueue
= alloc_workqueue("kblockd",
1788 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1789 if (!kblockd_workqueue
)
1790 panic("Failed to create kblockd\n");
1792 blk_requestq_cachep
= kmem_cache_create("request_queue",
1793 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
1795 #ifdef CONFIG_DEBUG_FS
1796 blk_debugfs_root
= debugfs_create_dir("block", NULL
);