2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed sucessfully. If not, the process of mounting
27 * incorparates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
33 #include <linux/crc32.h>
37 * is_empty - determine whether a buffer is empty (contains all 0xff).
38 * @buf: buffer to clean
39 * @len: length of buffer
41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
44 static int is_empty(void *buf
, int len
)
49 for (i
= 0; i
< len
; i
++)
56 * first_non_ff - find offset of the first non-0xff byte.
57 * @buf: buffer to search in
58 * @len: length of buffer
60 * This function returns offset of the first non-0xff byte in @buf or %-1 if
61 * the buffer contains only 0xff bytes.
63 static int first_non_ff(void *buf
, int len
)
68 for (i
= 0; i
< len
; i
++)
75 * get_master_node - get the last valid master node allowing for corruption.
76 * @c: UBIFS file-system description object
78 * @pbuf: buffer containing the LEB read, is returned here
79 * @mst: master node, if found, is returned here
80 * @cor: corruption, if found, is returned here
82 * This function allocates a buffer, reads the LEB into it, and finds and
83 * returns the last valid master node allowing for one area of corruption.
84 * The corrupt area, if there is one, must be consistent with the assumption
85 * that it is the result of an unclean unmount while the master node was being
86 * written. Under those circumstances, it is valid to use the previously written
89 * This function returns %0 on success and a negative error code on failure.
91 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
92 struct ubifs_mst_node
**mst
, void **cor
)
94 const int sz
= c
->mst_node_alsz
;
98 sbuf
= vmalloc(c
->leb_size
);
102 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, c
->leb_size
);
103 if (err
&& err
!= -EBADMSG
)
106 /* Find the first position that is definitely not a node */
110 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
111 struct ubifs_ch
*ch
= buf
;
113 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
119 /* See if there was a valid master node before that */
126 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
127 if (ret
!= SCANNED_A_NODE
&& offs
) {
128 /* Could have been corruption so check one place back */
132 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
133 if (ret
!= SCANNED_A_NODE
)
135 * We accept only one area of corruption because
136 * we are assuming that it was caused while
137 * trying to write a master node.
141 if (ret
== SCANNED_A_NODE
) {
142 struct ubifs_ch
*ch
= buf
;
144 if (ch
->node_type
!= UBIFS_MST_NODE
)
146 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
153 /* Check for corruption */
154 if (offs
< c
->leb_size
) {
155 if (!is_empty(buf
, min_t(int, len
, sz
))) {
157 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
163 /* Check remaining empty space */
164 if (offs
< c
->leb_size
)
165 if (!is_empty(buf
, len
))
180 * write_rcvrd_mst_node - write recovered master node.
181 * @c: UBIFS file-system description object
184 * This function returns %0 on success and a negative error code on failure.
186 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
187 struct ubifs_mst_node
*mst
)
189 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
192 dbg_rcvry("recovery");
194 save_flags
= mst
->flags
;
195 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
197 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
198 err
= ubi_leb_change(c
->ubi
, lnum
, mst
, sz
, UBI_SHORTTERM
);
201 err
= ubi_leb_change(c
->ubi
, lnum
+ 1, mst
, sz
, UBI_SHORTTERM
);
205 mst
->flags
= save_flags
;
210 * ubifs_recover_master_node - recover the master node.
211 * @c: UBIFS file-system description object
213 * This function recovers the master node from corruption that may occur due to
214 * an unclean unmount.
216 * This function returns %0 on success and a negative error code on failure.
218 int ubifs_recover_master_node(struct ubifs_info
*c
)
220 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
221 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
222 const int sz
= c
->mst_node_alsz
;
223 int err
, offs1
, offs2
;
225 dbg_rcvry("recovery");
227 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
231 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
236 offs1
= (void *)mst1
- buf1
;
237 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
238 (offs1
== 0 && !cor1
)) {
240 * mst1 was written by recovery at offset 0 with no
243 dbg_rcvry("recovery recovery");
246 offs2
= (void *)mst2
- buf2
;
247 if (offs1
== offs2
) {
248 /* Same offset, so must be the same */
249 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
250 (void *)mst2
+ UBIFS_CH_SZ
,
251 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
254 } else if (offs2
+ sz
== offs1
) {
255 /* 1st LEB was written, 2nd was not */
259 } else if (offs1
== 0 && offs2
+ sz
>= c
->leb_size
) {
260 /* 1st LEB was unmapped and written, 2nd not */
268 * 2nd LEB was unmapped and about to be written, so
269 * there must be only one master node in the first LEB
272 if (offs1
!= 0 || cor1
)
280 * 1st LEB was unmapped and about to be written, so there must
281 * be no room left in 2nd LEB.
283 offs2
= (void *)mst2
- buf2
;
284 if (offs2
+ sz
+ sz
<= c
->leb_size
)
289 ubifs_msg("recovered master node from LEB %d",
290 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
292 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
294 if ((c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
295 /* Read-only mode. Keep a copy for switching to rw mode */
296 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
297 if (!c
->rcvrd_mst_node
) {
301 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
304 * We had to recover the master node, which means there was an
305 * unclean reboot. However, it is possible that the master node
306 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
307 * E.g., consider the following chain of events:
309 * 1. UBIFS was cleanly unmounted, so the master node is clean
310 * 2. UBIFS is being mounted R/W and starts changing the master
311 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
312 * so this LEB ends up with some amount of garbage at the
314 * 3. UBIFS is being mounted R/O. We reach this place and
315 * recover the master node from the second LEB
316 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
317 * because we are being mounted R/O. We have to defer the
319 * 4. However, this master node (@c->mst_node) is marked as
320 * clean (since the step 1). And if we just return, the
321 * mount code will be confused and won't recover the master
322 * node when it is re-mounter R/W later.
324 * Thus, to force the recovery by marking the master node as
327 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
329 /* Write the recovered master node */
330 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
331 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
344 ubifs_err("failed to recover master node");
346 dbg_err("dumping first master node");
347 dbg_dump_node(c
, mst1
);
350 dbg_err("dumping second master node");
351 dbg_dump_node(c
, mst2
);
359 * ubifs_write_rcvrd_mst_node - write the recovered master node.
360 * @c: UBIFS file-system description object
362 * This function writes the master node that was recovered during mounting in
363 * read-only mode and must now be written because we are remounting rw.
365 * This function returns %0 on success and a negative error code on failure.
367 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
371 if (!c
->rcvrd_mst_node
)
373 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
374 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
375 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
378 kfree(c
->rcvrd_mst_node
);
379 c
->rcvrd_mst_node
= NULL
;
384 * is_last_write - determine if an offset was in the last write to a LEB.
385 * @c: UBIFS file-system description object
386 * @buf: buffer to check
387 * @offs: offset to check
389 * This function returns %1 if @offs was in the last write to the LEB whose data
390 * is in @buf, otherwise %0 is returned. The determination is made by checking
391 * for subsequent empty space starting from the next @c->min_io_size boundary.
393 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
395 int empty_offs
, check_len
;
399 * Round up to the next @c->min_io_size boundary i.e. @offs is in the
400 * last wbuf written. After that should be empty space.
402 empty_offs
= ALIGN(offs
+ 1, c
->min_io_size
);
403 check_len
= c
->leb_size
- empty_offs
;
404 p
= buf
+ empty_offs
- offs
;
405 return is_empty(p
, check_len
);
409 * clean_buf - clean the data from an LEB sitting in a buffer.
410 * @c: UBIFS file-system description object
411 * @buf: buffer to clean
412 * @lnum: LEB number to clean
413 * @offs: offset from which to clean
414 * @len: length of buffer
416 * This function pads up to the next min_io_size boundary (if there is one) and
417 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
418 * @c->min_io_size boundary.
420 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
423 int empty_offs
, pad_len
;
426 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
428 ubifs_assert(!(*offs
& 7));
429 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
430 pad_len
= empty_offs
- *offs
;
431 ubifs_pad(c
, *buf
, pad_len
);
435 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
439 * no_more_nodes - determine if there are no more nodes in a buffer.
440 * @c: UBIFS file-system description object
441 * @buf: buffer to check
442 * @len: length of buffer
443 * @lnum: LEB number of the LEB from which @buf was read
444 * @offs: offset from which @buf was read
446 * This function ensures that the corrupted node at @offs is the last thing
447 * written to a LEB. This function returns %1 if more data is not found and
448 * %0 if more data is found.
450 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
453 struct ubifs_ch
*ch
= buf
;
454 int skip
, dlen
= le32_to_cpu(ch
->len
);
456 /* Check for empty space after the corrupt node's common header */
457 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->min_io_size
) - offs
;
458 if (is_empty(buf
+ skip
, len
- skip
))
461 * The area after the common header size is not empty, so the common
462 * header must be intact. Check it.
464 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
465 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
468 /* Now we know the corrupt node's length we can skip over it */
469 skip
= ALIGN(offs
+ dlen
, c
->min_io_size
) - offs
;
470 /* After which there should be empty space */
471 if (is_empty(buf
+ skip
, len
- skip
))
473 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
478 * fix_unclean_leb - fix an unclean LEB.
479 * @c: UBIFS file-system description object
480 * @sleb: scanned LEB information
481 * @start: offset where scan started
483 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
486 int lnum
= sleb
->lnum
, endpt
= start
;
488 /* Get the end offset of the last node we are keeping */
489 if (!list_empty(&sleb
->nodes
)) {
490 struct ubifs_scan_node
*snod
;
492 snod
= list_entry(sleb
->nodes
.prev
,
493 struct ubifs_scan_node
, list
);
494 endpt
= snod
->offs
+ snod
->len
;
497 if ((c
->vfs_sb
->s_flags
& MS_RDONLY
) && !c
->remounting_rw
) {
498 /* Add to recovery list */
499 struct ubifs_unclean_leb
*ucleb
;
501 dbg_rcvry("need to fix LEB %d start %d endpt %d",
502 lnum
, start
, sleb
->endpt
);
503 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
507 ucleb
->endpt
= endpt
;
508 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
510 /* Write the fixed LEB back to flash */
513 dbg_rcvry("fixing LEB %d start %d endpt %d",
514 lnum
, start
, sleb
->endpt
);
516 err
= ubifs_leb_unmap(c
, lnum
);
520 int len
= ALIGN(endpt
, c
->min_io_size
);
523 err
= ubi_read(c
->ubi
, lnum
, sleb
->buf
, 0,
528 /* Pad to min_io_size */
530 int pad_len
= len
- ALIGN(endpt
, 8);
533 void *buf
= sleb
->buf
+ len
- pad_len
;
535 ubifs_pad(c
, buf
, pad_len
);
538 err
= ubi_leb_change(c
->ubi
, lnum
, sleb
->buf
, len
,
548 * drop_incomplete_group - drop nodes from an incomplete group.
549 * @sleb: scanned LEB information
550 * @offs: offset of dropped nodes is returned here
552 * This function returns %1 if nodes are dropped and %0 otherwise.
554 static int drop_incomplete_group(struct ubifs_scan_leb
*sleb
, int *offs
)
558 while (!list_empty(&sleb
->nodes
)) {
559 struct ubifs_scan_node
*snod
;
562 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
565 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
567 dbg_rcvry("dropping node at %d:%d", sleb
->lnum
, snod
->offs
);
569 list_del(&snod
->list
);
571 sleb
->nodes_cnt
-= 1;
578 * ubifs_recover_leb - scan and recover a LEB.
579 * @c: UBIFS file-system description object
582 * @sbuf: LEB-sized buffer to use
583 * @grouped: nodes may be grouped for recovery
585 * This function does a scan of a LEB, but caters for errors that might have
586 * been caused by the unclean unmount from which we are attempting to recover.
587 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
588 * found, and a negative error code in case of failure.
590 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
591 int offs
, void *sbuf
, int grouped
)
593 int err
, len
= c
->leb_size
- offs
, need_clean
= 0, quiet
= 1;
594 int empty_chkd
= 0, start
= offs
;
595 struct ubifs_scan_leb
*sleb
;
596 void *buf
= sbuf
+ offs
;
598 dbg_rcvry("%d:%d", lnum
, offs
);
600 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
610 dbg_scan("look at LEB %d:%d (%d bytes left)",
616 * Scan quietly until there is an error from which we cannot
619 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
621 if (ret
== SCANNED_A_NODE
) {
622 /* A valid node, and not a padding node */
623 struct ubifs_ch
*ch
= buf
;
626 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
629 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
637 /* Padding bytes or a valid padding node */
644 if (ret
== SCANNED_EMPTY_SPACE
) {
645 if (!is_empty(buf
, len
)) {
646 if (!is_last_write(c
, buf
, offs
))
648 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
655 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
)
656 if (is_last_write(c
, buf
, offs
)) {
657 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
663 if (ret
== SCANNED_A_CORRUPT_NODE
)
664 if (no_more_nodes(c
, buf
, len
, lnum
, offs
)) {
665 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
672 /* Redo the last scan but noisily */
678 case SCANNED_GARBAGE
:
681 case SCANNED_A_CORRUPT_NODE
:
682 case SCANNED_A_BAD_PAD_NODE
:
692 if (!empty_chkd
&& !is_empty(buf
, len
)) {
693 if (is_last_write(c
, buf
, offs
)) {
694 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
697 int corruption
= first_non_ff(buf
, len
);
699 ubifs_err("corrupt empty space LEB %d:%d, corruption "
700 "starts at %d", lnum
, offs
, corruption
);
701 /* Make sure we dump interesting non-0xFF data */
708 /* Drop nodes from incomplete group */
709 if (grouped
&& drop_incomplete_group(sleb
, &offs
)) {
711 len
= c
->leb_size
- offs
;
712 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
716 if (offs
% c
->min_io_size
) {
717 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
721 ubifs_end_scan(c
, sleb
, lnum
, offs
);
724 err
= fix_unclean_leb(c
, sleb
, start
);
732 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
735 ubifs_err("LEB %d scanning failed", lnum
);
736 ubifs_scan_destroy(sleb
);
741 * get_cs_sqnum - get commit start sequence number.
742 * @c: UBIFS file-system description object
743 * @lnum: LEB number of commit start node
744 * @offs: offset of commit start node
745 * @cs_sqnum: commit start sequence number is returned here
747 * This function returns %0 on success and a negative error code on failure.
749 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
750 unsigned long long *cs_sqnum
)
752 struct ubifs_cs_node
*cs_node
= NULL
;
755 dbg_rcvry("at %d:%d", lnum
, offs
);
756 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
759 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
761 err
= ubi_read(c
->ubi
, lnum
, (void *)cs_node
, offs
, UBIFS_CS_NODE_SZ
);
762 if (err
&& err
!= -EBADMSG
)
764 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
765 if (ret
!= SCANNED_A_NODE
) {
766 dbg_err("Not a valid node");
769 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
770 dbg_err("Node a CS node, type is %d", cs_node
->ch
.node_type
);
773 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
774 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
775 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
779 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
780 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
787 ubifs_err("failed to get CS sqnum");
793 * ubifs_recover_log_leb - scan and recover a log LEB.
794 * @c: UBIFS file-system description object
797 * @sbuf: LEB-sized buffer to use
799 * This function does a scan of a LEB, but caters for errors that might have
800 * been caused by the unclean unmount from which we are attempting to recover.
802 * This function returns %0 on success and a negative error code on failure.
804 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
805 int offs
, void *sbuf
)
807 struct ubifs_scan_leb
*sleb
;
810 dbg_rcvry("LEB %d", lnum
);
811 next_lnum
= lnum
+ 1;
812 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
813 next_lnum
= UBIFS_LOG_LNUM
;
814 if (next_lnum
!= c
->ltail_lnum
) {
816 * We can only recover at the end of the log, so check that the
817 * next log LEB is empty or out of date.
819 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
, 0);
822 if (sleb
->nodes_cnt
) {
823 struct ubifs_scan_node
*snod
;
824 unsigned long long cs_sqnum
= c
->cs_sqnum
;
826 snod
= list_entry(sleb
->nodes
.next
,
827 struct ubifs_scan_node
, list
);
831 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
833 ubifs_scan_destroy(sleb
);
837 if (snod
->sqnum
> cs_sqnum
) {
838 ubifs_err("unrecoverable log corruption "
840 ubifs_scan_destroy(sleb
);
841 return ERR_PTR(-EUCLEAN
);
844 ubifs_scan_destroy(sleb
);
846 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, 0);
850 * recover_head - recover a head.
851 * @c: UBIFS file-system description object
852 * @lnum: LEB number of head to recover
853 * @offs: offset of head to recover
854 * @sbuf: LEB-sized buffer to use
856 * This function ensures that there is no data on the flash at a head location.
858 * This function returns %0 on success and a negative error code on failure.
860 static int recover_head(const struct ubifs_info
*c
, int lnum
, int offs
,
865 if (c
->min_io_size
> 1)
866 len
= c
->min_io_size
;
869 if (offs
+ len
> c
->leb_size
)
870 len
= c
->leb_size
- offs
;
875 /* Read at the head location and check it is empty flash */
876 err
= ubi_read(c
->ubi
, lnum
, sbuf
, offs
, len
);
877 if (err
|| !is_empty(sbuf
, len
)) {
878 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
880 return ubifs_leb_unmap(c
, lnum
);
881 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, offs
);
884 return ubi_leb_change(c
->ubi
, lnum
, sbuf
, offs
, UBI_UNKNOWN
);
891 * ubifs_recover_inl_heads - recover index and LPT heads.
892 * @c: UBIFS file-system description object
893 * @sbuf: LEB-sized buffer to use
895 * This function ensures that there is no data on the flash at the index and
896 * LPT head locations.
898 * This deals with the recovery of a half-completed journal commit. UBIFS is
899 * careful never to overwrite the last version of the index or the LPT. Because
900 * the index and LPT are wandering trees, data from a half-completed commit will
901 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
902 * assumed to be empty and will be unmapped anyway before use, or in the index
905 * This function returns %0 on success and a negative error code on failure.
907 int ubifs_recover_inl_heads(const struct ubifs_info
*c
, void *sbuf
)
911 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
) || c
->remounting_rw
);
913 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
914 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
918 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
919 err
= recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
927 * clean_an_unclean_leb - read and write a LEB to remove corruption.
928 * @c: UBIFS file-system description object
929 * @ucleb: unclean LEB information
930 * @sbuf: LEB-sized buffer to use
932 * This function reads a LEB up to a point pre-determined by the mount recovery,
933 * checks the nodes, and writes the result back to the flash, thereby cleaning
934 * off any following corruption, or non-fatal ECC errors.
936 * This function returns %0 on success and a negative error code on failure.
938 static int clean_an_unclean_leb(const struct ubifs_info
*c
,
939 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
941 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
944 dbg_rcvry("LEB %d len %d", lnum
, len
);
947 /* Nothing to read, just unmap it */
948 err
= ubifs_leb_unmap(c
, lnum
);
954 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
955 if (err
&& err
!= -EBADMSG
)
963 /* Scan quietly until there is an error */
964 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
966 if (ret
== SCANNED_A_NODE
) {
967 /* A valid node, and not a padding node */
968 struct ubifs_ch
*ch
= buf
;
971 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
979 /* Padding bytes or a valid padding node */
986 if (ret
== SCANNED_EMPTY_SPACE
) {
987 ubifs_err("unexpected empty space at %d:%d",
993 /* Redo the last scan but noisily */
998 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
1002 /* Pad to min_io_size */
1003 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
1004 if (len
> ucleb
->endpt
) {
1005 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
1008 buf
= c
->sbuf
+ len
- pad_len
;
1009 ubifs_pad(c
, buf
, pad_len
);
1013 /* Write back the LEB atomically */
1014 err
= ubi_leb_change(c
->ubi
, lnum
, sbuf
, len
, UBI_UNKNOWN
);
1018 dbg_rcvry("cleaned LEB %d", lnum
);
1024 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1025 * @c: UBIFS file-system description object
1026 * @sbuf: LEB-sized buffer to use
1028 * This function cleans a LEB identified during recovery that needs to be
1029 * written but was not because UBIFS was mounted read-only. This happens when
1030 * remounting to read-write mode.
1032 * This function returns %0 on success and a negative error code on failure.
1034 int ubifs_clean_lebs(const struct ubifs_info
*c
, void *sbuf
)
1036 dbg_rcvry("recovery");
1037 while (!list_empty(&c
->unclean_leb_list
)) {
1038 struct ubifs_unclean_leb
*ucleb
;
1041 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1042 struct ubifs_unclean_leb
, list
);
1043 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1046 list_del(&ucleb
->list
);
1053 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1054 * @c: UBIFS file-system description object
1056 * Out-of-place garbage collection requires always one empty LEB with which to
1057 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1058 * written to the master node on unmounting. In the case of an unclean unmount
1059 * the value of gc_lnum recorded in the master node is out of date and cannot
1060 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1061 * However, there may not be enough empty space, in which case it must be
1062 * possible to GC the dirtiest LEB into the GC head LEB.
1064 * This function also runs the commit which causes the TNC updates from
1065 * size-recovery and orphans to be written to the flash. That is important to
1066 * ensure correct replay order for subsequent mounts.
1068 * This function returns %0 on success and a negative error code on failure.
1070 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1072 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1073 struct ubifs_lprops lp
;
1077 if (wbuf
->lnum
== -1) {
1078 dbg_rcvry("no GC head LEB");
1082 * See whether the used space in the dirtiest LEB fits in the GC head
1085 if (wbuf
->offs
== c
->leb_size
) {
1086 dbg_rcvry("no room in GC head LEB");
1089 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1092 dbg_err("could not find a dirty LEB");
1095 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
1097 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
1098 /* An empty LEB was returned */
1099 if (lp
.free
!= c
->leb_size
) {
1100 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
,
1105 err
= ubifs_leb_unmap(c
, lnum
);
1109 dbg_rcvry("allocated LEB %d for GC", lnum
);
1110 /* Run the commit */
1111 dbg_rcvry("committing");
1112 return ubifs_run_commit(c
);
1115 * There was no empty LEB so the used space in the dirtiest LEB must fit
1116 * in the GC head LEB.
1118 if (lp
.free
+ lp
.dirty
< wbuf
->offs
) {
1119 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1120 lnum
, wbuf
->lnum
, wbuf
->offs
);
1121 err
= ubifs_return_leb(c
, lnum
);
1127 * We run the commit before garbage collection otherwise subsequent
1128 * mounts will see the GC and orphan deletion in a different order.
1130 dbg_rcvry("committing");
1131 err
= ubifs_run_commit(c
);
1135 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1136 * - use locking to keep 'ubifs_assert()' happy.
1138 dbg_rcvry("GC'ing LEB %d", lnum
);
1139 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1140 err
= ubifs_garbage_collect_leb(c
, &lp
);
1142 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1147 mutex_unlock(&wbuf
->io_mutex
);
1149 dbg_err("GC failed, error %d", err
);
1154 if (err
!= LEB_RETAINED
) {
1155 dbg_err("GC returned %d", err
);
1158 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1161 dbg_rcvry("allocated LEB %d for GC", lnum
);
1166 * There is no GC head LEB or the free space in the GC head LEB is too
1167 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1170 lnum
= ubifs_find_free_leb_for_idx(c
);
1172 dbg_err("could not find an empty LEB");
1175 /* And reset the index flag */
1176 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1181 dbg_rcvry("allocated LEB %d for GC", lnum
);
1182 /* Run the commit */
1183 dbg_rcvry("committing");
1184 return ubifs_run_commit(c
);
1188 * struct size_entry - inode size information for recovery.
1189 * @rb: link in the RB-tree of sizes
1190 * @inum: inode number
1191 * @i_size: size on inode
1192 * @d_size: maximum size based on data nodes
1193 * @exists: indicates whether the inode exists
1194 * @inode: inode if pinned in memory awaiting rw mode to fix it
1202 struct inode
*inode
;
1206 * add_ino - add an entry to the size tree.
1207 * @c: UBIFS file-system description object
1208 * @inum: inode number
1209 * @i_size: size on inode
1210 * @d_size: maximum size based on data nodes
1211 * @exists: indicates whether the inode exists
1213 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1214 loff_t d_size
, int exists
)
1216 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1217 struct size_entry
*e
;
1221 e
= rb_entry(parent
, struct size_entry
, rb
);
1225 p
= &(*p
)->rb_right
;
1228 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1237 rb_link_node(&e
->rb
, parent
, p
);
1238 rb_insert_color(&e
->rb
, &c
->size_tree
);
1244 * find_ino - find an entry on the size tree.
1245 * @c: UBIFS file-system description object
1246 * @inum: inode number
1248 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1250 struct rb_node
*p
= c
->size_tree
.rb_node
;
1251 struct size_entry
*e
;
1254 e
= rb_entry(p
, struct size_entry
, rb
);
1257 else if (inum
> e
->inum
)
1266 * remove_ino - remove an entry from the size tree.
1267 * @c: UBIFS file-system description object
1268 * @inum: inode number
1270 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1272 struct size_entry
*e
= find_ino(c
, inum
);
1276 rb_erase(&e
->rb
, &c
->size_tree
);
1281 * ubifs_destroy_size_tree - free resources related to the size tree.
1282 * @c: UBIFS file-system description object
1284 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1286 struct rb_node
*this = c
->size_tree
.rb_node
;
1287 struct size_entry
*e
;
1290 if (this->rb_left
) {
1291 this = this->rb_left
;
1293 } else if (this->rb_right
) {
1294 this = this->rb_right
;
1297 e
= rb_entry(this, struct size_entry
, rb
);
1300 this = rb_parent(this);
1302 if (this->rb_left
== &e
->rb
)
1303 this->rb_left
= NULL
;
1305 this->rb_right
= NULL
;
1309 c
->size_tree
= RB_ROOT
;
1313 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1314 * @c: UBIFS file-system description object
1316 * @deletion: node is for a deletion
1317 * @new_size: inode size
1319 * This function has two purposes:
1320 * 1) to ensure there are no data nodes that fall outside the inode size
1321 * 2) to ensure there are no data nodes for inodes that do not exist
1322 * To accomplish those purposes, a rb-tree is constructed containing an entry
1323 * for each inode number in the journal that has not been deleted, and recording
1324 * the size from the inode node, the maximum size of any data node (also altered
1325 * by truncations) and a flag indicating a inode number for which no inode node
1326 * was present in the journal.
1328 * Note that there is still the possibility that there are data nodes that have
1329 * been committed that are beyond the inode size, however the only way to find
1330 * them would be to scan the entire index. Alternatively, some provision could
1331 * be made to record the size of inodes at the start of commit, which would seem
1332 * very cumbersome for a scenario that is quite unlikely and the only negative
1333 * consequence of which is wasted space.
1335 * This functions returns %0 on success and a negative error code on failure.
1337 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1338 int deletion
, loff_t new_size
)
1340 ino_t inum
= key_inum(c
, key
);
1341 struct size_entry
*e
;
1344 switch (key_type(c
, key
)) {
1347 remove_ino(c
, inum
);
1349 e
= find_ino(c
, inum
);
1351 e
->i_size
= new_size
;
1354 err
= add_ino(c
, inum
, new_size
, 0, 1);
1360 case UBIFS_DATA_KEY
:
1361 e
= find_ino(c
, inum
);
1363 if (new_size
> e
->d_size
)
1364 e
->d_size
= new_size
;
1366 err
= add_ino(c
, inum
, 0, new_size
, 0);
1371 case UBIFS_TRUN_KEY
:
1372 e
= find_ino(c
, inum
);
1374 e
->d_size
= new_size
;
1381 * fix_size_in_place - fix inode size in place on flash.
1382 * @c: UBIFS file-system description object
1383 * @e: inode size information for recovery
1385 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1387 struct ubifs_ino_node
*ino
= c
->sbuf
;
1389 union ubifs_key key
;
1390 int err
, lnum
, offs
, len
;
1394 /* Locate the inode node LEB number and offset */
1395 ino_key_init(c
, &key
, e
->inum
);
1396 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1400 * If the size recorded on the inode node is greater than the size that
1401 * was calculated from nodes in the journal then don't change the inode.
1403 i_size
= le64_to_cpu(ino
->size
);
1404 if (i_size
>= e
->d_size
)
1407 err
= ubi_read(c
->ubi
, lnum
, c
->sbuf
, 0, c
->leb_size
);
1410 /* Change the size field and recalculate the CRC */
1411 ino
= c
->sbuf
+ offs
;
1412 ino
->size
= cpu_to_le64(e
->d_size
);
1413 len
= le32_to_cpu(ino
->ch
.len
);
1414 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1415 ino
->ch
.crc
= cpu_to_le32(crc
);
1416 /* Work out where data in the LEB ends and free space begins */
1418 len
= c
->leb_size
- 1;
1419 while (p
[len
] == 0xff)
1421 len
= ALIGN(len
+ 1, c
->min_io_size
);
1422 /* Atomically write the fixed LEB back again */
1423 err
= ubi_leb_change(c
->ubi
, lnum
, c
->sbuf
, len
, UBI_UNKNOWN
);
1426 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1427 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1431 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1432 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1437 * ubifs_recover_size - recover inode size.
1438 * @c: UBIFS file-system description object
1440 * This function attempts to fix inode size discrepancies identified by the
1441 * 'ubifs_recover_size_accum()' function.
1443 * This functions returns %0 on success and a negative error code on failure.
1445 int ubifs_recover_size(struct ubifs_info
*c
)
1447 struct rb_node
*this = rb_first(&c
->size_tree
);
1450 struct size_entry
*e
;
1453 e
= rb_entry(this, struct size_entry
, rb
);
1455 union ubifs_key key
;
1457 ino_key_init(c
, &key
, e
->inum
);
1458 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1459 if (err
&& err
!= -ENOENT
)
1461 if (err
== -ENOENT
) {
1462 /* Remove data nodes that have no inode */
1463 dbg_rcvry("removing ino %lu",
1464 (unsigned long)e
->inum
);
1465 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1469 struct ubifs_ino_node
*ino
= c
->sbuf
;
1472 e
->i_size
= le64_to_cpu(ino
->size
);
1475 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1476 if (!e
->inode
&& (c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1477 /* Fix the inode size and pin it in memory */
1478 struct inode
*inode
;
1480 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1482 return PTR_ERR(inode
);
1483 if (inode
->i_size
< e
->d_size
) {
1484 dbg_rcvry("ino %lu size %lld -> %lld",
1485 (unsigned long)e
->inum
,
1486 e
->d_size
, inode
->i_size
);
1487 inode
->i_size
= e
->d_size
;
1488 ubifs_inode(inode
)->ui_size
= e
->d_size
;
1490 this = rb_next(this);
1495 /* Fix the size in place */
1496 err
= fix_size_in_place(c
, e
);
1503 this = rb_next(this);
1504 rb_erase(&e
->rb
, &c
->size_tree
);