Linux 4.9.199
[linux/fpc-iii.git] / security / keys / key.c
blob7276d1a009d49ffef0b95084d953ee82b6a2f43f
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
48 #endif
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
54 struct key_user *key_user_lookup(kuid_t uid)
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
121 * Dispose of a user structure
123 void key_user_put(struct key_user *user)
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
129 kfree(user);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key *key)
139 struct rb_node *parent, **p;
140 struct key *xkey;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
150 spin_lock(&key_serial_lock);
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
172 spin_unlock(&key_serial_lock);
173 return;
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction method for new keyrings.
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
218 * Returns a pointer to the new key if successful and an error code otherwise.
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 int (*restrict_link)(struct key *,
229 const struct key_type *,
230 const union key_payload *))
232 struct key_user *user = NULL;
233 struct key *key;
234 size_t desclen, quotalen;
235 int ret;
237 key = ERR_PTR(-EINVAL);
238 if (!desc || !*desc)
239 goto error;
241 if (type->vet_description) {
242 ret = type->vet_description(desc);
243 if (ret < 0) {
244 key = ERR_PTR(ret);
245 goto error;
249 desclen = strlen(desc);
250 quotalen = desclen + 1 + type->def_datalen;
252 /* get hold of the key tracking for this user */
253 user = key_user_lookup(uid);
254 if (!user)
255 goto no_memory_1;
257 /* check that the user's quota permits allocation of another key and
258 * its description */
259 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
260 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxkeys : key_quota_maxkeys;
262 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
263 key_quota_root_maxbytes : key_quota_maxbytes;
265 spin_lock(&user->lock);
266 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
267 if (user->qnkeys + 1 > maxkeys ||
268 user->qnbytes + quotalen > maxbytes ||
269 user->qnbytes + quotalen < user->qnbytes)
270 goto no_quota;
273 user->qnkeys++;
274 user->qnbytes += quotalen;
275 spin_unlock(&user->lock);
278 /* allocate and initialise the key and its description */
279 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 if (!key)
281 goto no_memory_2;
283 key->index_key.desc_len = desclen;
284 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
285 if (!key->index_key.description)
286 goto no_memory_3;
288 atomic_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->index_key.type = type;
292 key->user = user;
293 key->quotalen = quotalen;
294 key->datalen = type->def_datalen;
295 key->uid = uid;
296 key->gid = gid;
297 key->perm = perm;
298 key->restrict_link = restrict_link;
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304 if (flags & KEY_ALLOC_UID_KEYRING)
305 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 #ifdef KEY_DEBUGGING
308 key->magic = KEY_DEBUG_MAGIC;
309 #endif
311 /* let the security module know about the key */
312 ret = security_key_alloc(key, cred, flags);
313 if (ret < 0)
314 goto security_error;
316 /* publish the key by giving it a serial number */
317 atomic_inc(&user->nkeys);
318 key_alloc_serial(key);
320 error:
321 return key;
323 security_error:
324 kfree(key->description);
325 kmem_cache_free(key_jar, key);
326 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
327 spin_lock(&user->lock);
328 user->qnkeys--;
329 user->qnbytes -= quotalen;
330 spin_unlock(&user->lock);
332 key_user_put(user);
333 key = ERR_PTR(ret);
334 goto error;
336 no_memory_3:
337 kmem_cache_free(key_jar, key);
338 no_memory_2:
339 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
340 spin_lock(&user->lock);
341 user->qnkeys--;
342 user->qnbytes -= quotalen;
343 spin_unlock(&user->lock);
345 key_user_put(user);
346 no_memory_1:
347 key = ERR_PTR(-ENOMEM);
348 goto error;
350 no_quota:
351 spin_unlock(&user->lock);
352 key_user_put(user);
353 key = ERR_PTR(-EDQUOT);
354 goto error;
356 EXPORT_SYMBOL(key_alloc);
359 * key_payload_reserve - Adjust data quota reservation for the key's payload
360 * @key: The key to make the reservation for.
361 * @datalen: The amount of data payload the caller now wants.
363 * Adjust the amount of the owning user's key data quota that a key reserves.
364 * If the amount is increased, then -EDQUOT may be returned if there isn't
365 * enough free quota available.
367 * If successful, 0 is returned.
369 int key_payload_reserve(struct key *key, size_t datalen)
371 int delta = (int)datalen - key->datalen;
372 int ret = 0;
374 key_check(key);
376 /* contemplate the quota adjustment */
377 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
379 key_quota_root_maxbytes : key_quota_maxbytes;
381 spin_lock(&key->user->lock);
383 if (delta > 0 &&
384 (key->user->qnbytes + delta >= maxbytes ||
385 key->user->qnbytes + delta < key->user->qnbytes)) {
386 ret = -EDQUOT;
388 else {
389 key->user->qnbytes += delta;
390 key->quotalen += delta;
392 spin_unlock(&key->user->lock);
395 /* change the recorded data length if that didn't generate an error */
396 if (ret == 0)
397 key->datalen = datalen;
399 return ret;
401 EXPORT_SYMBOL(key_payload_reserve);
404 * Change the key state to being instantiated.
406 static void mark_key_instantiated(struct key *key, int reject_error)
408 /* Commit the payload before setting the state; barrier versus
409 * key_read_state().
411 smp_store_release(&key->state,
412 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416 * Instantiate a key and link it into the target keyring atomically. Must be
417 * called with the target keyring's semaphore writelocked. The target key's
418 * semaphore need not be locked as instantiation is serialised by
419 * key_construction_mutex.
421 static int __key_instantiate_and_link(struct key *key,
422 struct key_preparsed_payload *prep,
423 struct key *keyring,
424 struct key *authkey,
425 struct assoc_array_edit **_edit)
427 int ret, awaken;
429 key_check(key);
430 key_check(keyring);
432 awaken = 0;
433 ret = -EBUSY;
435 mutex_lock(&key_construction_mutex);
437 /* can't instantiate twice */
438 if (key->state == KEY_IS_UNINSTANTIATED) {
439 /* instantiate the key */
440 ret = key->type->instantiate(key, prep);
442 if (ret == 0) {
443 /* mark the key as being instantiated */
444 atomic_inc(&key->user->nikeys);
445 mark_key_instantiated(key, 0);
447 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
448 awaken = 1;
450 /* and link it into the destination keyring */
451 if (keyring) {
452 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
453 set_bit(KEY_FLAG_KEEP, &key->flags);
455 __key_link(key, _edit);
458 /* disable the authorisation key */
459 if (authkey)
460 key_revoke(authkey);
462 if (prep->expiry != TIME_T_MAX) {
463 key->expiry = prep->expiry;
464 key_schedule_gc(prep->expiry + key_gc_delay);
469 mutex_unlock(&key_construction_mutex);
471 /* wake up anyone waiting for a key to be constructed */
472 if (awaken)
473 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
475 return ret;
479 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
480 * @key: The key to instantiate.
481 * @data: The data to use to instantiate the keyring.
482 * @datalen: The length of @data.
483 * @keyring: Keyring to create a link in on success (or NULL).
484 * @authkey: The authorisation token permitting instantiation.
486 * Instantiate a key that's in the uninstantiated state using the provided data
487 * and, if successful, link it in to the destination keyring if one is
488 * supplied.
490 * If successful, 0 is returned, the authorisation token is revoked and anyone
491 * waiting for the key is woken up. If the key was already instantiated,
492 * -EBUSY will be returned.
494 int key_instantiate_and_link(struct key *key,
495 const void *data,
496 size_t datalen,
497 struct key *keyring,
498 struct key *authkey)
500 struct key_preparsed_payload prep;
501 struct assoc_array_edit *edit;
502 int ret;
504 memset(&prep, 0, sizeof(prep));
505 prep.data = data;
506 prep.datalen = datalen;
507 prep.quotalen = key->type->def_datalen;
508 prep.expiry = TIME_T_MAX;
509 if (key->type->preparse) {
510 ret = key->type->preparse(&prep);
511 if (ret < 0)
512 goto error;
515 if (keyring) {
516 if (keyring->restrict_link) {
517 ret = keyring->restrict_link(keyring, key->type,
518 &prep.payload);
519 if (ret < 0)
520 goto error;
522 ret = __key_link_begin(keyring, &key->index_key, &edit);
523 if (ret < 0)
524 goto error;
527 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
529 if (keyring)
530 __key_link_end(keyring, &key->index_key, edit);
532 error:
533 if (key->type->preparse)
534 key->type->free_preparse(&prep);
535 return ret;
538 EXPORT_SYMBOL(key_instantiate_and_link);
541 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
542 * @key: The key to instantiate.
543 * @timeout: The timeout on the negative key.
544 * @error: The error to return when the key is hit.
545 * @keyring: Keyring to create a link in on success (or NULL).
546 * @authkey: The authorisation token permitting instantiation.
548 * Negatively instantiate a key that's in the uninstantiated state and, if
549 * successful, set its timeout and stored error and link it in to the
550 * destination keyring if one is supplied. The key and any links to the key
551 * will be automatically garbage collected after the timeout expires.
553 * Negative keys are used to rate limit repeated request_key() calls by causing
554 * them to return the stored error code (typically ENOKEY) until the negative
555 * key expires.
557 * If successful, 0 is returned, the authorisation token is revoked and anyone
558 * waiting for the key is woken up. If the key was already instantiated,
559 * -EBUSY will be returned.
561 int key_reject_and_link(struct key *key,
562 unsigned timeout,
563 unsigned error,
564 struct key *keyring,
565 struct key *authkey)
567 struct assoc_array_edit *edit;
568 struct timespec now;
569 int ret, awaken, link_ret = 0;
571 key_check(key);
572 key_check(keyring);
574 awaken = 0;
575 ret = -EBUSY;
577 if (keyring) {
578 if (keyring->restrict_link)
579 return -EPERM;
581 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
584 mutex_lock(&key_construction_mutex);
586 /* can't instantiate twice */
587 if (key->state == KEY_IS_UNINSTANTIATED) {
588 /* mark the key as being negatively instantiated */
589 atomic_inc(&key->user->nikeys);
590 mark_key_instantiated(key, -error);
591 now = current_kernel_time();
592 key->expiry = now.tv_sec + timeout;
593 key_schedule_gc(key->expiry + key_gc_delay);
595 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
596 awaken = 1;
598 ret = 0;
600 /* and link it into the destination keyring */
601 if (keyring && link_ret == 0)
602 __key_link(key, &edit);
604 /* disable the authorisation key */
605 if (authkey)
606 key_revoke(authkey);
609 mutex_unlock(&key_construction_mutex);
611 if (keyring && link_ret == 0)
612 __key_link_end(keyring, &key->index_key, edit);
614 /* wake up anyone waiting for a key to be constructed */
615 if (awaken)
616 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
618 return ret == 0 ? link_ret : ret;
620 EXPORT_SYMBOL(key_reject_and_link);
623 * key_put - Discard a reference to a key.
624 * @key: The key to discard a reference from.
626 * Discard a reference to a key, and when all the references are gone, we
627 * schedule the cleanup task to come and pull it out of the tree in process
628 * context at some later time.
630 void key_put(struct key *key)
632 if (key) {
633 key_check(key);
635 if (atomic_dec_and_test(&key->usage))
636 schedule_work(&key_gc_work);
639 EXPORT_SYMBOL(key_put);
642 * Find a key by its serial number.
644 struct key *key_lookup(key_serial_t id)
646 struct rb_node *n;
647 struct key *key;
649 spin_lock(&key_serial_lock);
651 /* search the tree for the specified key */
652 n = key_serial_tree.rb_node;
653 while (n) {
654 key = rb_entry(n, struct key, serial_node);
656 if (id < key->serial)
657 n = n->rb_left;
658 else if (id > key->serial)
659 n = n->rb_right;
660 else
661 goto found;
664 not_found:
665 key = ERR_PTR(-ENOKEY);
666 goto error;
668 found:
669 /* pretend it doesn't exist if it is awaiting deletion */
670 if (atomic_read(&key->usage) == 0)
671 goto not_found;
673 /* this races with key_put(), but that doesn't matter since key_put()
674 * doesn't actually change the key
676 __key_get(key);
678 error:
679 spin_unlock(&key_serial_lock);
680 return key;
684 * Find and lock the specified key type against removal.
686 * We return with the sem read-locked if successful. If the type wasn't
687 * available -ENOKEY is returned instead.
689 struct key_type *key_type_lookup(const char *type)
691 struct key_type *ktype;
693 down_read(&key_types_sem);
695 /* look up the key type to see if it's one of the registered kernel
696 * types */
697 list_for_each_entry(ktype, &key_types_list, link) {
698 if (strcmp(ktype->name, type) == 0)
699 goto found_kernel_type;
702 up_read(&key_types_sem);
703 ktype = ERR_PTR(-ENOKEY);
705 found_kernel_type:
706 return ktype;
709 void key_set_timeout(struct key *key, unsigned timeout)
711 struct timespec now;
712 time_t expiry = 0;
714 /* make the changes with the locks held to prevent races */
715 down_write(&key->sem);
717 if (timeout > 0) {
718 now = current_kernel_time();
719 expiry = now.tv_sec + timeout;
722 key->expiry = expiry;
723 key_schedule_gc(key->expiry + key_gc_delay);
725 up_write(&key->sem);
727 EXPORT_SYMBOL_GPL(key_set_timeout);
730 * Unlock a key type locked by key_type_lookup().
732 void key_type_put(struct key_type *ktype)
734 up_read(&key_types_sem);
738 * Attempt to update an existing key.
740 * The key is given to us with an incremented refcount that we need to discard
741 * if we get an error.
743 static inline key_ref_t __key_update(key_ref_t key_ref,
744 struct key_preparsed_payload *prep)
746 struct key *key = key_ref_to_ptr(key_ref);
747 int ret;
749 /* need write permission on the key to update it */
750 ret = key_permission(key_ref, KEY_NEED_WRITE);
751 if (ret < 0)
752 goto error;
754 ret = -EEXIST;
755 if (!key->type->update)
756 goto error;
758 down_write(&key->sem);
760 ret = key->type->update(key, prep);
761 if (ret == 0)
762 /* Updating a negative key positively instantiates it */
763 mark_key_instantiated(key, 0);
765 up_write(&key->sem);
767 if (ret < 0)
768 goto error;
769 out:
770 return key_ref;
772 error:
773 key_put(key);
774 key_ref = ERR_PTR(ret);
775 goto out;
779 * key_create_or_update - Update or create and instantiate a key.
780 * @keyring_ref: A pointer to the destination keyring with possession flag.
781 * @type: The type of key.
782 * @description: The searchable description for the key.
783 * @payload: The data to use to instantiate or update the key.
784 * @plen: The length of @payload.
785 * @perm: The permissions mask for a new key.
786 * @flags: The quota flags for a new key.
788 * Search the destination keyring for a key of the same description and if one
789 * is found, update it, otherwise create and instantiate a new one and create a
790 * link to it from that keyring.
792 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
793 * concocted.
795 * Returns a pointer to the new key if successful, -ENODEV if the key type
796 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
797 * caller isn't permitted to modify the keyring or the LSM did not permit
798 * creation of the key.
800 * On success, the possession flag from the keyring ref will be tacked on to
801 * the key ref before it is returned.
803 key_ref_t key_create_or_update(key_ref_t keyring_ref,
804 const char *type,
805 const char *description,
806 const void *payload,
807 size_t plen,
808 key_perm_t perm,
809 unsigned long flags)
811 struct keyring_index_key index_key = {
812 .description = description,
814 struct key_preparsed_payload prep;
815 struct assoc_array_edit *edit;
816 const struct cred *cred = current_cred();
817 struct key *keyring, *key = NULL;
818 key_ref_t key_ref;
819 int ret;
820 int (*restrict_link)(struct key *,
821 const struct key_type *,
822 const union key_payload *) = NULL;
824 /* look up the key type to see if it's one of the registered kernel
825 * types */
826 index_key.type = key_type_lookup(type);
827 if (IS_ERR(index_key.type)) {
828 key_ref = ERR_PTR(-ENODEV);
829 goto error;
832 key_ref = ERR_PTR(-EINVAL);
833 if (!index_key.type->instantiate ||
834 (!index_key.description && !index_key.type->preparse))
835 goto error_put_type;
837 keyring = key_ref_to_ptr(keyring_ref);
839 key_check(keyring);
841 key_ref = ERR_PTR(-EPERM);
842 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
843 restrict_link = keyring->restrict_link;
845 key_ref = ERR_PTR(-ENOTDIR);
846 if (keyring->type != &key_type_keyring)
847 goto error_put_type;
849 memset(&prep, 0, sizeof(prep));
850 prep.data = payload;
851 prep.datalen = plen;
852 prep.quotalen = index_key.type->def_datalen;
853 prep.expiry = TIME_T_MAX;
854 if (index_key.type->preparse) {
855 ret = index_key.type->preparse(&prep);
856 if (ret < 0) {
857 key_ref = ERR_PTR(ret);
858 goto error_free_prep;
860 if (!index_key.description)
861 index_key.description = prep.description;
862 key_ref = ERR_PTR(-EINVAL);
863 if (!index_key.description)
864 goto error_free_prep;
866 index_key.desc_len = strlen(index_key.description);
868 if (restrict_link) {
869 ret = restrict_link(keyring, index_key.type, &prep.payload);
870 if (ret < 0) {
871 key_ref = ERR_PTR(ret);
872 goto error_free_prep;
876 ret = __key_link_begin(keyring, &index_key, &edit);
877 if (ret < 0) {
878 key_ref = ERR_PTR(ret);
879 goto error_free_prep;
882 /* if we're going to allocate a new key, we're going to have
883 * to modify the keyring */
884 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
885 if (ret < 0) {
886 key_ref = ERR_PTR(ret);
887 goto error_link_end;
890 /* if it's possible to update this type of key, search for an existing
891 * key of the same type and description in the destination keyring and
892 * update that instead if possible
894 if (index_key.type->update) {
895 key_ref = find_key_to_update(keyring_ref, &index_key);
896 if (key_ref)
897 goto found_matching_key;
900 /* if the client doesn't provide, decide on the permissions we want */
901 if (perm == KEY_PERM_UNDEF) {
902 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
903 perm |= KEY_USR_VIEW;
905 if (index_key.type->read)
906 perm |= KEY_POS_READ;
908 if (index_key.type == &key_type_keyring ||
909 index_key.type->update)
910 perm |= KEY_POS_WRITE;
913 /* allocate a new key */
914 key = key_alloc(index_key.type, index_key.description,
915 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
916 if (IS_ERR(key)) {
917 key_ref = ERR_CAST(key);
918 goto error_link_end;
921 /* instantiate it and link it into the target keyring */
922 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
923 if (ret < 0) {
924 key_put(key);
925 key_ref = ERR_PTR(ret);
926 goto error_link_end;
929 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
931 error_link_end:
932 __key_link_end(keyring, &index_key, edit);
933 error_free_prep:
934 if (index_key.type->preparse)
935 index_key.type->free_preparse(&prep);
936 error_put_type:
937 key_type_put(index_key.type);
938 error:
939 return key_ref;
941 found_matching_key:
942 /* we found a matching key, so we're going to try to update it
943 * - we can drop the locks first as we have the key pinned
945 __key_link_end(keyring, &index_key, edit);
947 key = key_ref_to_ptr(key_ref);
948 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
949 ret = wait_for_key_construction(key, true);
950 if (ret < 0) {
951 key_ref_put(key_ref);
952 key_ref = ERR_PTR(ret);
953 goto error_free_prep;
957 key_ref = __key_update(key_ref, &prep);
958 goto error_free_prep;
960 EXPORT_SYMBOL(key_create_or_update);
963 * key_update - Update a key's contents.
964 * @key_ref: The pointer (plus possession flag) to the key.
965 * @payload: The data to be used to update the key.
966 * @plen: The length of @payload.
968 * Attempt to update the contents of a key with the given payload data. The
969 * caller must be granted Write permission on the key. Negative keys can be
970 * instantiated by this method.
972 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
973 * type does not support updating. The key type may return other errors.
975 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
977 struct key_preparsed_payload prep;
978 struct key *key = key_ref_to_ptr(key_ref);
979 int ret;
981 key_check(key);
983 /* the key must be writable */
984 ret = key_permission(key_ref, KEY_NEED_WRITE);
985 if (ret < 0)
986 return ret;
988 /* attempt to update it if supported */
989 if (!key->type->update)
990 return -EOPNOTSUPP;
992 memset(&prep, 0, sizeof(prep));
993 prep.data = payload;
994 prep.datalen = plen;
995 prep.quotalen = key->type->def_datalen;
996 prep.expiry = TIME_T_MAX;
997 if (key->type->preparse) {
998 ret = key->type->preparse(&prep);
999 if (ret < 0)
1000 goto error;
1003 down_write(&key->sem);
1005 ret = key->type->update(key, &prep);
1006 if (ret == 0)
1007 /* Updating a negative key positively instantiates it */
1008 mark_key_instantiated(key, 0);
1010 up_write(&key->sem);
1012 error:
1013 if (key->type->preparse)
1014 key->type->free_preparse(&prep);
1015 return ret;
1017 EXPORT_SYMBOL(key_update);
1020 * key_revoke - Revoke a key.
1021 * @key: The key to be revoked.
1023 * Mark a key as being revoked and ask the type to free up its resources. The
1024 * revocation timeout is set and the key and all its links will be
1025 * automatically garbage collected after key_gc_delay amount of time if they
1026 * are not manually dealt with first.
1028 void key_revoke(struct key *key)
1030 struct timespec now;
1031 time_t time;
1033 key_check(key);
1035 /* make sure no one's trying to change or use the key when we mark it
1036 * - we tell lockdep that we might nest because we might be revoking an
1037 * authorisation key whilst holding the sem on a key we've just
1038 * instantiated
1040 down_write_nested(&key->sem, 1);
1041 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1042 key->type->revoke)
1043 key->type->revoke(key);
1045 /* set the death time to no more than the expiry time */
1046 now = current_kernel_time();
1047 time = now.tv_sec;
1048 if (key->revoked_at == 0 || key->revoked_at > time) {
1049 key->revoked_at = time;
1050 key_schedule_gc(key->revoked_at + key_gc_delay);
1053 up_write(&key->sem);
1055 EXPORT_SYMBOL(key_revoke);
1058 * key_invalidate - Invalidate a key.
1059 * @key: The key to be invalidated.
1061 * Mark a key as being invalidated and have it cleaned up immediately. The key
1062 * is ignored by all searches and other operations from this point.
1064 void key_invalidate(struct key *key)
1066 kenter("%d", key_serial(key));
1068 key_check(key);
1070 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1071 down_write_nested(&key->sem, 1);
1072 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1073 key_schedule_gc_links();
1074 up_write(&key->sem);
1077 EXPORT_SYMBOL(key_invalidate);
1080 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1081 * @key: The key to be instantiated
1082 * @prep: The preparsed data to load.
1084 * Instantiate a key from preparsed data. We assume we can just copy the data
1085 * in directly and clear the old pointers.
1087 * This can be pointed to directly by the key type instantiate op pointer.
1089 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1091 int ret;
1093 pr_devel("==>%s()\n", __func__);
1095 ret = key_payload_reserve(key, prep->quotalen);
1096 if (ret == 0) {
1097 rcu_assign_keypointer(key, prep->payload.data[0]);
1098 key->payload.data[1] = prep->payload.data[1];
1099 key->payload.data[2] = prep->payload.data[2];
1100 key->payload.data[3] = prep->payload.data[3];
1101 prep->payload.data[0] = NULL;
1102 prep->payload.data[1] = NULL;
1103 prep->payload.data[2] = NULL;
1104 prep->payload.data[3] = NULL;
1106 pr_devel("<==%s() = %d\n", __func__, ret);
1107 return ret;
1109 EXPORT_SYMBOL(generic_key_instantiate);
1112 * register_key_type - Register a type of key.
1113 * @ktype: The new key type.
1115 * Register a new key type.
1117 * Returns 0 on success or -EEXIST if a type of this name already exists.
1119 int register_key_type(struct key_type *ktype)
1121 struct key_type *p;
1122 int ret;
1124 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1126 ret = -EEXIST;
1127 down_write(&key_types_sem);
1129 /* disallow key types with the same name */
1130 list_for_each_entry(p, &key_types_list, link) {
1131 if (strcmp(p->name, ktype->name) == 0)
1132 goto out;
1135 /* store the type */
1136 list_add(&ktype->link, &key_types_list);
1138 pr_notice("Key type %s registered\n", ktype->name);
1139 ret = 0;
1141 out:
1142 up_write(&key_types_sem);
1143 return ret;
1145 EXPORT_SYMBOL(register_key_type);
1148 * unregister_key_type - Unregister a type of key.
1149 * @ktype: The key type.
1151 * Unregister a key type and mark all the extant keys of this type as dead.
1152 * Those keys of this type are then destroyed to get rid of their payloads and
1153 * they and their links will be garbage collected as soon as possible.
1155 void unregister_key_type(struct key_type *ktype)
1157 down_write(&key_types_sem);
1158 list_del_init(&ktype->link);
1159 downgrade_write(&key_types_sem);
1160 key_gc_keytype(ktype);
1161 pr_notice("Key type %s unregistered\n", ktype->name);
1162 up_read(&key_types_sem);
1164 EXPORT_SYMBOL(unregister_key_type);
1167 * Initialise the key management state.
1169 void __init key_init(void)
1171 /* allocate a slab in which we can store keys */
1172 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1173 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1175 /* add the special key types */
1176 list_add_tail(&key_type_keyring.link, &key_types_list);
1177 list_add_tail(&key_type_dead.link, &key_types_list);
1178 list_add_tail(&key_type_user.link, &key_types_list);
1179 list_add_tail(&key_type_logon.link, &key_types_list);
1181 /* record the root user tracking */
1182 rb_link_node(&root_key_user.node,
1183 NULL,
1184 &key_user_tree.rb_node);
1186 rb_insert_color(&root_key_user.node,
1187 &key_user_tree);