Linux 4.9.199
[linux/fpc-iii.git] / security / selinux / avc.c
blob52f3c550abcc4f99d9933a7bf17703f17d9d48b6
1 /*
2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
101 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
105 * avc_dump_av - Display an access vector in human-readable form.
106 * @tclass: target security class
107 * @av: access vector
109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
111 const char **perms;
112 int i, perm;
114 if (av == 0) {
115 audit_log_format(ab, " null");
116 return;
119 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
120 perms = secclass_map[tclass-1].perms;
122 audit_log_format(ab, " {");
123 i = 0;
124 perm = 1;
125 while (i < (sizeof(av) * 8)) {
126 if ((perm & av) && perms[i]) {
127 audit_log_format(ab, " %s", perms[i]);
128 av &= ~perm;
130 i++;
131 perm <<= 1;
134 if (av)
135 audit_log_format(ab, " 0x%x", av);
137 audit_log_format(ab, " }");
141 * avc_dump_query - Display a SID pair and a class in human-readable form.
142 * @ssid: source security identifier
143 * @tsid: target security identifier
144 * @tclass: target security class
146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
148 int rc;
149 char *scontext;
150 u32 scontext_len;
152 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
153 if (rc)
154 audit_log_format(ab, "ssid=%d", ssid);
155 else {
156 audit_log_format(ab, "scontext=%s", scontext);
157 kfree(scontext);
160 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
161 if (rc)
162 audit_log_format(ab, " tsid=%d", tsid);
163 else {
164 audit_log_format(ab, " tcontext=%s", scontext);
165 kfree(scontext);
168 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
169 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
173 * avc_init - Initialize the AVC.
175 * Initialize the access vector cache.
177 void __init avc_init(void)
179 int i;
181 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
182 INIT_HLIST_HEAD(&avc_cache.slots[i]);
183 spin_lock_init(&avc_cache.slots_lock[i]);
185 atomic_set(&avc_cache.active_nodes, 0);
186 atomic_set(&avc_cache.lru_hint, 0);
188 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
189 0, SLAB_PANIC, NULL);
190 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
191 sizeof(struct avc_xperms_node),
192 0, SLAB_PANIC, NULL);
193 avc_xperms_decision_cachep = kmem_cache_create(
194 "avc_xperms_decision_node",
195 sizeof(struct avc_xperms_decision_node),
196 0, SLAB_PANIC, NULL);
197 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
198 sizeof(struct extended_perms_data),
199 0, SLAB_PANIC, NULL);
201 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
204 int avc_get_hash_stats(char *page)
206 int i, chain_len, max_chain_len, slots_used;
207 struct avc_node *node;
208 struct hlist_head *head;
210 rcu_read_lock();
212 slots_used = 0;
213 max_chain_len = 0;
214 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
215 head = &avc_cache.slots[i];
216 if (!hlist_empty(head)) {
217 slots_used++;
218 chain_len = 0;
219 hlist_for_each_entry_rcu(node, head, list)
220 chain_len++;
221 if (chain_len > max_chain_len)
222 max_chain_len = chain_len;
226 rcu_read_unlock();
228 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
229 "longest chain: %d\n",
230 atomic_read(&avc_cache.active_nodes),
231 slots_used, AVC_CACHE_SLOTS, max_chain_len);
235 * using a linked list for extended_perms_decision lookup because the list is
236 * always small. i.e. less than 5, typically 1
238 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
239 struct avc_xperms_node *xp_node)
241 struct avc_xperms_decision_node *xpd_node;
243 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
244 if (xpd_node->xpd.driver == driver)
245 return &xpd_node->xpd;
247 return NULL;
250 static inline unsigned int
251 avc_xperms_has_perm(struct extended_perms_decision *xpd,
252 u8 perm, u8 which)
254 unsigned int rc = 0;
256 if ((which == XPERMS_ALLOWED) &&
257 (xpd->used & XPERMS_ALLOWED))
258 rc = security_xperm_test(xpd->allowed->p, perm);
259 else if ((which == XPERMS_AUDITALLOW) &&
260 (xpd->used & XPERMS_AUDITALLOW))
261 rc = security_xperm_test(xpd->auditallow->p, perm);
262 else if ((which == XPERMS_DONTAUDIT) &&
263 (xpd->used & XPERMS_DONTAUDIT))
264 rc = security_xperm_test(xpd->dontaudit->p, perm);
265 return rc;
268 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
269 u8 driver, u8 perm)
271 struct extended_perms_decision *xpd;
272 security_xperm_set(xp_node->xp.drivers.p, driver);
273 xpd = avc_xperms_decision_lookup(driver, xp_node);
274 if (xpd && xpd->allowed)
275 security_xperm_set(xpd->allowed->p, perm);
278 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
280 struct extended_perms_decision *xpd;
282 xpd = &xpd_node->xpd;
283 if (xpd->allowed)
284 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
285 if (xpd->auditallow)
286 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
287 if (xpd->dontaudit)
288 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
289 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
292 static void avc_xperms_free(struct avc_xperms_node *xp_node)
294 struct avc_xperms_decision_node *xpd_node, *tmp;
296 if (!xp_node)
297 return;
299 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
300 list_del(&xpd_node->xpd_list);
301 avc_xperms_decision_free(xpd_node);
303 kmem_cache_free(avc_xperms_cachep, xp_node);
306 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
307 struct extended_perms_decision *src)
309 dest->driver = src->driver;
310 dest->used = src->used;
311 if (dest->used & XPERMS_ALLOWED)
312 memcpy(dest->allowed->p, src->allowed->p,
313 sizeof(src->allowed->p));
314 if (dest->used & XPERMS_AUDITALLOW)
315 memcpy(dest->auditallow->p, src->auditallow->p,
316 sizeof(src->auditallow->p));
317 if (dest->used & XPERMS_DONTAUDIT)
318 memcpy(dest->dontaudit->p, src->dontaudit->p,
319 sizeof(src->dontaudit->p));
323 * similar to avc_copy_xperms_decision, but only copy decision
324 * information relevant to this perm
326 static inline void avc_quick_copy_xperms_decision(u8 perm,
327 struct extended_perms_decision *dest,
328 struct extended_perms_decision *src)
331 * compute index of the u32 of the 256 bits (8 u32s) that contain this
332 * command permission
334 u8 i = perm >> 5;
336 dest->used = src->used;
337 if (dest->used & XPERMS_ALLOWED)
338 dest->allowed->p[i] = src->allowed->p[i];
339 if (dest->used & XPERMS_AUDITALLOW)
340 dest->auditallow->p[i] = src->auditallow->p[i];
341 if (dest->used & XPERMS_DONTAUDIT)
342 dest->dontaudit->p[i] = src->dontaudit->p[i];
345 static struct avc_xperms_decision_node
346 *avc_xperms_decision_alloc(u8 which)
348 struct avc_xperms_decision_node *xpd_node;
349 struct extended_perms_decision *xpd;
351 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
352 if (!xpd_node)
353 return NULL;
355 xpd = &xpd_node->xpd;
356 if (which & XPERMS_ALLOWED) {
357 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
358 GFP_NOWAIT);
359 if (!xpd->allowed)
360 goto error;
362 if (which & XPERMS_AUDITALLOW) {
363 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
364 GFP_NOWAIT);
365 if (!xpd->auditallow)
366 goto error;
368 if (which & XPERMS_DONTAUDIT) {
369 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
370 GFP_NOWAIT);
371 if (!xpd->dontaudit)
372 goto error;
374 return xpd_node;
375 error:
376 avc_xperms_decision_free(xpd_node);
377 return NULL;
380 static int avc_add_xperms_decision(struct avc_node *node,
381 struct extended_perms_decision *src)
383 struct avc_xperms_decision_node *dest_xpd;
385 node->ae.xp_node->xp.len++;
386 dest_xpd = avc_xperms_decision_alloc(src->used);
387 if (!dest_xpd)
388 return -ENOMEM;
389 avc_copy_xperms_decision(&dest_xpd->xpd, src);
390 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
391 return 0;
394 static struct avc_xperms_node *avc_xperms_alloc(void)
396 struct avc_xperms_node *xp_node;
398 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
399 if (!xp_node)
400 return xp_node;
401 INIT_LIST_HEAD(&xp_node->xpd_head);
402 return xp_node;
405 static int avc_xperms_populate(struct avc_node *node,
406 struct avc_xperms_node *src)
408 struct avc_xperms_node *dest;
409 struct avc_xperms_decision_node *dest_xpd;
410 struct avc_xperms_decision_node *src_xpd;
412 if (src->xp.len == 0)
413 return 0;
414 dest = avc_xperms_alloc();
415 if (!dest)
416 return -ENOMEM;
418 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
419 dest->xp.len = src->xp.len;
421 /* for each source xpd allocate a destination xpd and copy */
422 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
423 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
424 if (!dest_xpd)
425 goto error;
426 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
427 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
429 node->ae.xp_node = dest;
430 return 0;
431 error:
432 avc_xperms_free(dest);
433 return -ENOMEM;
437 static inline u32 avc_xperms_audit_required(u32 requested,
438 struct av_decision *avd,
439 struct extended_perms_decision *xpd,
440 u8 perm,
441 int result,
442 u32 *deniedp)
444 u32 denied, audited;
446 denied = requested & ~avd->allowed;
447 if (unlikely(denied)) {
448 audited = denied & avd->auditdeny;
449 if (audited && xpd) {
450 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
451 audited &= ~requested;
453 } else if (result) {
454 audited = denied = requested;
455 } else {
456 audited = requested & avd->auditallow;
457 if (audited && xpd) {
458 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
459 audited &= ~requested;
463 *deniedp = denied;
464 return audited;
467 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
468 u32 requested, struct av_decision *avd,
469 struct extended_perms_decision *xpd,
470 u8 perm, int result,
471 struct common_audit_data *ad)
473 u32 audited, denied;
475 audited = avc_xperms_audit_required(
476 requested, avd, xpd, perm, result, &denied);
477 if (likely(!audited))
478 return 0;
479 return slow_avc_audit(ssid, tsid, tclass, requested,
480 audited, denied, result, ad, 0);
483 static void avc_node_free(struct rcu_head *rhead)
485 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
486 avc_xperms_free(node->ae.xp_node);
487 kmem_cache_free(avc_node_cachep, node);
488 avc_cache_stats_incr(frees);
491 static void avc_node_delete(struct avc_node *node)
493 hlist_del_rcu(&node->list);
494 call_rcu(&node->rhead, avc_node_free);
495 atomic_dec(&avc_cache.active_nodes);
498 static void avc_node_kill(struct avc_node *node)
500 avc_xperms_free(node->ae.xp_node);
501 kmem_cache_free(avc_node_cachep, node);
502 avc_cache_stats_incr(frees);
503 atomic_dec(&avc_cache.active_nodes);
506 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
508 hlist_replace_rcu(&old->list, &new->list);
509 call_rcu(&old->rhead, avc_node_free);
510 atomic_dec(&avc_cache.active_nodes);
513 static inline int avc_reclaim_node(void)
515 struct avc_node *node;
516 int hvalue, try, ecx;
517 unsigned long flags;
518 struct hlist_head *head;
519 spinlock_t *lock;
521 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
522 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
523 head = &avc_cache.slots[hvalue];
524 lock = &avc_cache.slots_lock[hvalue];
526 if (!spin_trylock_irqsave(lock, flags))
527 continue;
529 rcu_read_lock();
530 hlist_for_each_entry(node, head, list) {
531 avc_node_delete(node);
532 avc_cache_stats_incr(reclaims);
533 ecx++;
534 if (ecx >= AVC_CACHE_RECLAIM) {
535 rcu_read_unlock();
536 spin_unlock_irqrestore(lock, flags);
537 goto out;
540 rcu_read_unlock();
541 spin_unlock_irqrestore(lock, flags);
543 out:
544 return ecx;
547 static struct avc_node *avc_alloc_node(void)
549 struct avc_node *node;
551 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
552 if (!node)
553 goto out;
555 INIT_HLIST_NODE(&node->list);
556 avc_cache_stats_incr(allocations);
558 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
559 avc_reclaim_node();
561 out:
562 return node;
565 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
567 node->ae.ssid = ssid;
568 node->ae.tsid = tsid;
569 node->ae.tclass = tclass;
570 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
573 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
575 struct avc_node *node, *ret = NULL;
576 int hvalue;
577 struct hlist_head *head;
579 hvalue = avc_hash(ssid, tsid, tclass);
580 head = &avc_cache.slots[hvalue];
581 hlist_for_each_entry_rcu(node, head, list) {
582 if (ssid == node->ae.ssid &&
583 tclass == node->ae.tclass &&
584 tsid == node->ae.tsid) {
585 ret = node;
586 break;
590 return ret;
594 * avc_lookup - Look up an AVC entry.
595 * @ssid: source security identifier
596 * @tsid: target security identifier
597 * @tclass: target security class
599 * Look up an AVC entry that is valid for the
600 * (@ssid, @tsid), interpreting the permissions
601 * based on @tclass. If a valid AVC entry exists,
602 * then this function returns the avc_node.
603 * Otherwise, this function returns NULL.
605 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
607 struct avc_node *node;
609 avc_cache_stats_incr(lookups);
610 node = avc_search_node(ssid, tsid, tclass);
612 if (node)
613 return node;
615 avc_cache_stats_incr(misses);
616 return NULL;
619 static int avc_latest_notif_update(int seqno, int is_insert)
621 int ret = 0;
622 static DEFINE_SPINLOCK(notif_lock);
623 unsigned long flag;
625 spin_lock_irqsave(&notif_lock, flag);
626 if (is_insert) {
627 if (seqno < avc_cache.latest_notif) {
628 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
629 seqno, avc_cache.latest_notif);
630 ret = -EAGAIN;
632 } else {
633 if (seqno > avc_cache.latest_notif)
634 avc_cache.latest_notif = seqno;
636 spin_unlock_irqrestore(&notif_lock, flag);
638 return ret;
642 * avc_insert - Insert an AVC entry.
643 * @ssid: source security identifier
644 * @tsid: target security identifier
645 * @tclass: target security class
646 * @avd: resulting av decision
647 * @xp_node: resulting extended permissions
649 * Insert an AVC entry for the SID pair
650 * (@ssid, @tsid) and class @tclass.
651 * The access vectors and the sequence number are
652 * normally provided by the security server in
653 * response to a security_compute_av() call. If the
654 * sequence number @avd->seqno is not less than the latest
655 * revocation notification, then the function copies
656 * the access vectors into a cache entry, returns
657 * avc_node inserted. Otherwise, this function returns NULL.
659 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
660 struct av_decision *avd,
661 struct avc_xperms_node *xp_node)
663 struct avc_node *pos, *node = NULL;
664 int hvalue;
665 unsigned long flag;
667 if (avc_latest_notif_update(avd->seqno, 1))
668 goto out;
670 node = avc_alloc_node();
671 if (node) {
672 struct hlist_head *head;
673 spinlock_t *lock;
674 int rc = 0;
676 hvalue = avc_hash(ssid, tsid, tclass);
677 avc_node_populate(node, ssid, tsid, tclass, avd);
678 rc = avc_xperms_populate(node, xp_node);
679 if (rc) {
680 kmem_cache_free(avc_node_cachep, node);
681 return NULL;
683 head = &avc_cache.slots[hvalue];
684 lock = &avc_cache.slots_lock[hvalue];
686 spin_lock_irqsave(lock, flag);
687 hlist_for_each_entry(pos, head, list) {
688 if (pos->ae.ssid == ssid &&
689 pos->ae.tsid == tsid &&
690 pos->ae.tclass == tclass) {
691 avc_node_replace(node, pos);
692 goto found;
695 hlist_add_head_rcu(&node->list, head);
696 found:
697 spin_unlock_irqrestore(lock, flag);
699 out:
700 return node;
704 * avc_audit_pre_callback - SELinux specific information
705 * will be called by generic audit code
706 * @ab: the audit buffer
707 * @a: audit_data
709 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
711 struct common_audit_data *ad = a;
712 audit_log_format(ab, "avc: %s ",
713 ad->selinux_audit_data->denied ? "denied" : "granted");
714 avc_dump_av(ab, ad->selinux_audit_data->tclass,
715 ad->selinux_audit_data->audited);
716 audit_log_format(ab, " for ");
720 * avc_audit_post_callback - SELinux specific information
721 * will be called by generic audit code
722 * @ab: the audit buffer
723 * @a: audit_data
725 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
727 struct common_audit_data *ad = a;
728 audit_log_format(ab, " ");
729 avc_dump_query(ab, ad->selinux_audit_data->ssid,
730 ad->selinux_audit_data->tsid,
731 ad->selinux_audit_data->tclass);
732 if (ad->selinux_audit_data->denied) {
733 audit_log_format(ab, " permissive=%u",
734 ad->selinux_audit_data->result ? 0 : 1);
738 /* This is the slow part of avc audit with big stack footprint */
739 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
740 u32 requested, u32 audited, u32 denied, int result,
741 struct common_audit_data *a,
742 unsigned flags)
744 struct common_audit_data stack_data;
745 struct selinux_audit_data sad;
747 if (!a) {
748 a = &stack_data;
749 a->type = LSM_AUDIT_DATA_NONE;
753 * When in a RCU walk do the audit on the RCU retry. This is because
754 * the collection of the dname in an inode audit message is not RCU
755 * safe. Note this may drop some audits when the situation changes
756 * during retry. However this is logically just as if the operation
757 * happened a little later.
759 if ((a->type == LSM_AUDIT_DATA_INODE) &&
760 (flags & MAY_NOT_BLOCK))
761 return -ECHILD;
763 sad.tclass = tclass;
764 sad.requested = requested;
765 sad.ssid = ssid;
766 sad.tsid = tsid;
767 sad.audited = audited;
768 sad.denied = denied;
769 sad.result = result;
771 a->selinux_audit_data = &sad;
773 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
774 return 0;
778 * avc_add_callback - Register a callback for security events.
779 * @callback: callback function
780 * @events: security events
782 * Register a callback function for events in the set @events.
783 * Returns %0 on success or -%ENOMEM if insufficient memory
784 * exists to add the callback.
786 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
788 struct avc_callback_node *c;
789 int rc = 0;
791 c = kmalloc(sizeof(*c), GFP_KERNEL);
792 if (!c) {
793 rc = -ENOMEM;
794 goto out;
797 c->callback = callback;
798 c->events = events;
799 c->next = avc_callbacks;
800 avc_callbacks = c;
801 out:
802 return rc;
806 * avc_update_node Update an AVC entry
807 * @event : Updating event
808 * @perms : Permission mask bits
809 * @ssid,@tsid,@tclass : identifier of an AVC entry
810 * @seqno : sequence number when decision was made
811 * @xpd: extended_perms_decision to be added to the node
813 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
814 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
815 * otherwise, this function updates the AVC entry. The original AVC-entry object
816 * will release later by RCU.
818 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
819 u32 tsid, u16 tclass, u32 seqno,
820 struct extended_perms_decision *xpd,
821 u32 flags)
823 int hvalue, rc = 0;
824 unsigned long flag;
825 struct avc_node *pos, *node, *orig = NULL;
826 struct hlist_head *head;
827 spinlock_t *lock;
829 node = avc_alloc_node();
830 if (!node) {
831 rc = -ENOMEM;
832 goto out;
835 /* Lock the target slot */
836 hvalue = avc_hash(ssid, tsid, tclass);
838 head = &avc_cache.slots[hvalue];
839 lock = &avc_cache.slots_lock[hvalue];
841 spin_lock_irqsave(lock, flag);
843 hlist_for_each_entry(pos, head, list) {
844 if (ssid == pos->ae.ssid &&
845 tsid == pos->ae.tsid &&
846 tclass == pos->ae.tclass &&
847 seqno == pos->ae.avd.seqno){
848 orig = pos;
849 break;
853 if (!orig) {
854 rc = -ENOENT;
855 avc_node_kill(node);
856 goto out_unlock;
860 * Copy and replace original node.
863 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
865 if (orig->ae.xp_node) {
866 rc = avc_xperms_populate(node, orig->ae.xp_node);
867 if (rc) {
868 kmem_cache_free(avc_node_cachep, node);
869 goto out_unlock;
873 switch (event) {
874 case AVC_CALLBACK_GRANT:
875 node->ae.avd.allowed |= perms;
876 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
877 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
878 break;
879 case AVC_CALLBACK_TRY_REVOKE:
880 case AVC_CALLBACK_REVOKE:
881 node->ae.avd.allowed &= ~perms;
882 break;
883 case AVC_CALLBACK_AUDITALLOW_ENABLE:
884 node->ae.avd.auditallow |= perms;
885 break;
886 case AVC_CALLBACK_AUDITALLOW_DISABLE:
887 node->ae.avd.auditallow &= ~perms;
888 break;
889 case AVC_CALLBACK_AUDITDENY_ENABLE:
890 node->ae.avd.auditdeny |= perms;
891 break;
892 case AVC_CALLBACK_AUDITDENY_DISABLE:
893 node->ae.avd.auditdeny &= ~perms;
894 break;
895 case AVC_CALLBACK_ADD_XPERMS:
896 avc_add_xperms_decision(node, xpd);
897 break;
899 avc_node_replace(node, orig);
900 out_unlock:
901 spin_unlock_irqrestore(lock, flag);
902 out:
903 return rc;
907 * avc_flush - Flush the cache
909 static void avc_flush(void)
911 struct hlist_head *head;
912 struct avc_node *node;
913 spinlock_t *lock;
914 unsigned long flag;
915 int i;
917 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
918 head = &avc_cache.slots[i];
919 lock = &avc_cache.slots_lock[i];
921 spin_lock_irqsave(lock, flag);
923 * With preemptable RCU, the outer spinlock does not
924 * prevent RCU grace periods from ending.
926 rcu_read_lock();
927 hlist_for_each_entry(node, head, list)
928 avc_node_delete(node);
929 rcu_read_unlock();
930 spin_unlock_irqrestore(lock, flag);
935 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
936 * @seqno: policy sequence number
938 int avc_ss_reset(u32 seqno)
940 struct avc_callback_node *c;
941 int rc = 0, tmprc;
943 avc_flush();
945 for (c = avc_callbacks; c; c = c->next) {
946 if (c->events & AVC_CALLBACK_RESET) {
947 tmprc = c->callback(AVC_CALLBACK_RESET);
948 /* save the first error encountered for the return
949 value and continue processing the callbacks */
950 if (!rc)
951 rc = tmprc;
955 avc_latest_notif_update(seqno, 0);
956 return rc;
960 * Slow-path helper function for avc_has_perm_noaudit,
961 * when the avc_node lookup fails. We get called with
962 * the RCU read lock held, and need to return with it
963 * still held, but drop if for the security compute.
965 * Don't inline this, since it's the slow-path and just
966 * results in a bigger stack frame.
968 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
969 u16 tclass, struct av_decision *avd,
970 struct avc_xperms_node *xp_node)
972 rcu_read_unlock();
973 INIT_LIST_HEAD(&xp_node->xpd_head);
974 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
975 rcu_read_lock();
976 return avc_insert(ssid, tsid, tclass, avd, xp_node);
979 static noinline int avc_denied(u32 ssid, u32 tsid,
980 u16 tclass, u32 requested,
981 u8 driver, u8 xperm, unsigned flags,
982 struct av_decision *avd)
984 if (flags & AVC_STRICT)
985 return -EACCES;
987 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
988 return -EACCES;
990 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
991 tsid, tclass, avd->seqno, NULL, flags);
992 return 0;
996 * The avc extended permissions logic adds an additional 256 bits of
997 * permissions to an avc node when extended permissions for that node are
998 * specified in the avtab. If the additional 256 permissions is not adequate,
999 * as-is the case with ioctls, then multiple may be chained together and the
1000 * driver field is used to specify which set contains the permission.
1002 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1003 u8 driver, u8 xperm, struct common_audit_data *ad)
1005 struct avc_node *node;
1006 struct av_decision avd;
1007 u32 denied;
1008 struct extended_perms_decision local_xpd;
1009 struct extended_perms_decision *xpd = NULL;
1010 struct extended_perms_data allowed;
1011 struct extended_perms_data auditallow;
1012 struct extended_perms_data dontaudit;
1013 struct avc_xperms_node local_xp_node;
1014 struct avc_xperms_node *xp_node;
1015 int rc = 0, rc2;
1017 xp_node = &local_xp_node;
1018 BUG_ON(!requested);
1020 rcu_read_lock();
1022 node = avc_lookup(ssid, tsid, tclass);
1023 if (unlikely(!node)) {
1024 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1025 } else {
1026 memcpy(&avd, &node->ae.avd, sizeof(avd));
1027 xp_node = node->ae.xp_node;
1029 /* if extended permissions are not defined, only consider av_decision */
1030 if (!xp_node || !xp_node->xp.len)
1031 goto decision;
1033 local_xpd.allowed = &allowed;
1034 local_xpd.auditallow = &auditallow;
1035 local_xpd.dontaudit = &dontaudit;
1037 xpd = avc_xperms_decision_lookup(driver, xp_node);
1038 if (unlikely(!xpd)) {
1040 * Compute the extended_perms_decision only if the driver
1041 * is flagged
1043 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1044 avd.allowed &= ~requested;
1045 goto decision;
1047 rcu_read_unlock();
1048 security_compute_xperms_decision(ssid, tsid, tclass, driver,
1049 &local_xpd);
1050 rcu_read_lock();
1051 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1052 ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1053 } else {
1054 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1056 xpd = &local_xpd;
1058 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1059 avd.allowed &= ~requested;
1061 decision:
1062 denied = requested & ~(avd.allowed);
1063 if (unlikely(denied))
1064 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1065 AVC_EXTENDED_PERMS, &avd);
1067 rcu_read_unlock();
1069 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1070 &avd, xpd, xperm, rc, ad);
1071 if (rc2)
1072 return rc2;
1073 return rc;
1077 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1078 * @ssid: source security identifier
1079 * @tsid: target security identifier
1080 * @tclass: target security class
1081 * @requested: requested permissions, interpreted based on @tclass
1082 * @flags: AVC_STRICT or 0
1083 * @avd: access vector decisions
1085 * Check the AVC to determine whether the @requested permissions are granted
1086 * for the SID pair (@ssid, @tsid), interpreting the permissions
1087 * based on @tclass, and call the security server on a cache miss to obtain
1088 * a new decision and add it to the cache. Return a copy of the decisions
1089 * in @avd. Return %0 if all @requested permissions are granted,
1090 * -%EACCES if any permissions are denied, or another -errno upon
1091 * other errors. This function is typically called by avc_has_perm(),
1092 * but may also be called directly to separate permission checking from
1093 * auditing, e.g. in cases where a lock must be held for the check but
1094 * should be released for the auditing.
1096 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1097 u16 tclass, u32 requested,
1098 unsigned flags,
1099 struct av_decision *avd)
1101 struct avc_node *node;
1102 struct avc_xperms_node xp_node;
1103 int rc = 0;
1104 u32 denied;
1106 BUG_ON(!requested);
1108 rcu_read_lock();
1110 node = avc_lookup(ssid, tsid, tclass);
1111 if (unlikely(!node))
1112 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1113 else
1114 memcpy(avd, &node->ae.avd, sizeof(*avd));
1116 denied = requested & ~(avd->allowed);
1117 if (unlikely(denied))
1118 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1120 rcu_read_unlock();
1121 return rc;
1125 * avc_has_perm - Check permissions and perform any appropriate auditing.
1126 * @ssid: source security identifier
1127 * @tsid: target security identifier
1128 * @tclass: target security class
1129 * @requested: requested permissions, interpreted based on @tclass
1130 * @auditdata: auxiliary audit data
1132 * Check the AVC to determine whether the @requested permissions are granted
1133 * for the SID pair (@ssid, @tsid), interpreting the permissions
1134 * based on @tclass, and call the security server on a cache miss to obtain
1135 * a new decision and add it to the cache. Audit the granting or denial of
1136 * permissions in accordance with the policy. Return %0 if all @requested
1137 * permissions are granted, -%EACCES if any permissions are denied, or
1138 * another -errno upon other errors.
1140 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1141 u32 requested, struct common_audit_data *auditdata)
1143 struct av_decision avd;
1144 int rc, rc2;
1146 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1148 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1149 if (rc2)
1150 return rc2;
1151 return rc;
1154 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1155 u32 requested, struct common_audit_data *auditdata,
1156 int flags)
1158 struct av_decision avd;
1159 int rc, rc2;
1161 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1163 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1164 auditdata, flags);
1165 if (rc2)
1166 return rc2;
1167 return rc;
1170 u32 avc_policy_seqno(void)
1172 return avc_cache.latest_notif;
1175 void avc_disable(void)
1178 * If you are looking at this because you have realized that we are
1179 * not destroying the avc_node_cachep it might be easy to fix, but
1180 * I don't know the memory barrier semantics well enough to know. It's
1181 * possible that some other task dereferenced security_ops when
1182 * it still pointed to selinux operations. If that is the case it's
1183 * possible that it is about to use the avc and is about to need the
1184 * avc_node_cachep. I know I could wrap the security.c security_ops call
1185 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1186 * the cache and get that memory back.
1188 if (avc_node_cachep) {
1189 avc_flush();
1190 /* kmem_cache_destroy(avc_node_cachep); */