2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 struct netem_sched_data
{
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root
;
75 /* optional qdisc for classful handling (NULL at netem init) */
78 struct qdisc_watchdog watchdog
;
80 psched_tdiff_t latency
;
81 psched_tdiff_t jitter
;
94 struct reciprocal_value cell_size_reciprocal
;
100 } delay_cor
, loss_cor
, dup_cor
, reorder_cor
, corrupt_cor
;
114 TX_IN_GAP_PERIOD
= 1,
117 LOST_IN_BURST_PERIOD
,
125 /* Correlated Loss Generation models */
127 /* state of the Markov chain */
130 /* 4-states and Gilbert-Elliot models */
131 u32 a1
; /* p13 for 4-states or p for GE */
132 u32 a2
; /* p31 for 4-states or r for GE */
133 u32 a3
; /* p32 for 4-states or h for GE */
134 u32 a4
; /* p14 for 4-states or 1-k for GE */
135 u32 a5
; /* p23 used only in 4-states */
140 /* Time stamp put into socket buffer control block
141 * Only valid when skbs are in our internal t(ime)fifo queue.
143 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144 * and skb->next & skb->prev are scratch space for a qdisc,
145 * we save skb->tstamp value in skb->cb[] before destroying it.
147 struct netem_skb_cb
{
148 psched_time_t time_to_send
;
153 static struct sk_buff
*netem_rb_to_skb(struct rb_node
*rb
)
155 return container_of(rb
, struct sk_buff
, rbnode
);
158 static inline struct netem_skb_cb
*netem_skb_cb(struct sk_buff
*skb
)
160 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 qdisc_cb_private_validate(skb
, sizeof(struct netem_skb_cb
));
162 return (struct netem_skb_cb
*)qdisc_skb_cb(skb
)->data
;
165 /* init_crandom - initialize correlated random number generator
166 * Use entropy source for initial seed.
168 static void init_crandom(struct crndstate
*state
, unsigned long rho
)
171 state
->last
= prandom_u32();
174 /* get_crandom - correlated random number generator
175 * Next number depends on last value.
176 * rho is scaled to avoid floating point.
178 static u32
get_crandom(struct crndstate
*state
)
181 unsigned long answer
;
183 if (state
->rho
== 0) /* no correlation */
184 return prandom_u32();
186 value
= prandom_u32();
187 rho
= (u64
)state
->rho
+ 1;
188 answer
= (value
* ((1ull<<32) - rho
) + state
->last
* rho
) >> 32;
189 state
->last
= answer
;
193 /* loss_4state - 4-state model loss generator
194 * Generates losses according to the 4-state Markov chain adopted in
195 * the GI (General and Intuitive) loss model.
197 static bool loss_4state(struct netem_sched_data
*q
)
199 struct clgstate
*clg
= &q
->clg
;
200 u32 rnd
= prandom_u32();
203 * Makes a comparison between rnd and the transition
204 * probabilities outgoing from the current state, then decides the
205 * next state and if the next packet has to be transmitted or lost.
206 * The four states correspond to:
207 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 * LOST_IN_GAP_PERIOD => lost packets within a burst period
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
212 switch (clg
->state
) {
213 case TX_IN_GAP_PERIOD
:
215 clg
->state
= LOST_IN_BURST_PERIOD
;
217 } else if (clg
->a4
< rnd
&& rnd
< clg
->a1
+ clg
->a4
) {
218 clg
->state
= LOST_IN_GAP_PERIOD
;
220 } else if (clg
->a1
+ clg
->a4
< rnd
) {
221 clg
->state
= TX_IN_GAP_PERIOD
;
225 case TX_IN_BURST_PERIOD
:
227 clg
->state
= LOST_IN_GAP_PERIOD
;
230 clg
->state
= TX_IN_BURST_PERIOD
;
234 case LOST_IN_GAP_PERIOD
:
236 clg
->state
= TX_IN_BURST_PERIOD
;
237 else if (clg
->a3
< rnd
&& rnd
< clg
->a2
+ clg
->a3
) {
238 clg
->state
= TX_IN_GAP_PERIOD
;
239 } else if (clg
->a2
+ clg
->a3
< rnd
) {
240 clg
->state
= LOST_IN_GAP_PERIOD
;
244 case LOST_IN_BURST_PERIOD
:
245 clg
->state
= TX_IN_GAP_PERIOD
;
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
262 static bool loss_gilb_ell(struct netem_sched_data
*q
)
264 struct clgstate
*clg
= &q
->clg
;
266 switch (clg
->state
) {
268 if (prandom_u32() < clg
->a1
)
269 clg
->state
= BAD_STATE
;
270 if (prandom_u32() < clg
->a4
)
274 if (prandom_u32() < clg
->a2
)
275 clg
->state
= GOOD_STATE
;
276 if (prandom_u32() > clg
->a3
)
283 static bool loss_event(struct netem_sched_data
*q
)
285 switch (q
->loss_model
) {
287 /* Random packet drop 0 => none, ~0 => all */
288 return q
->loss
&& q
->loss
>= get_crandom(&q
->loss_cor
);
291 /* 4state loss model algorithm (used also for GI model)
292 * Extracts a value from the markov 4 state loss generator,
293 * if it is 1 drops a packet and if needed writes the event in
296 return loss_4state(q
);
299 /* Gilbert-Elliot loss model algorithm
300 * Extracts a value from the Gilbert-Elliot loss generator,
301 * if it is 1 drops a packet and if needed writes the event in
304 return loss_gilb_ell(q
);
307 return false; /* not reached */
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312 * std deviation sigma. Uses table lookup to approximate the desired
313 * distribution, and a uniformly-distributed pseudo-random source.
315 static psched_tdiff_t
tabledist(psched_tdiff_t mu
, psched_tdiff_t sigma
,
316 struct crndstate
*state
,
317 const struct disttable
*dist
)
326 rnd
= get_crandom(state
);
328 /* default uniform distribution */
330 return (rnd
% (2*sigma
)) - sigma
+ mu
;
332 t
= dist
->table
[rnd
% dist
->size
];
333 x
= (sigma
% NETEM_DIST_SCALE
) * t
;
335 x
+= NETEM_DIST_SCALE
/2;
337 x
-= NETEM_DIST_SCALE
/2;
339 return x
/ NETEM_DIST_SCALE
+ (sigma
/ NETEM_DIST_SCALE
) * t
+ mu
;
342 static psched_time_t
packet_len_2_sched_time(unsigned int len
, struct netem_sched_data
*q
)
346 len
+= q
->packet_overhead
;
349 u32 cells
= reciprocal_divide(len
, q
->cell_size_reciprocal
);
351 if (len
> cells
* q
->cell_size
) /* extra cell needed for remainder */
353 len
= cells
* (q
->cell_size
+ q
->cell_overhead
);
356 ticks
= (u64
)len
* NSEC_PER_SEC
;
358 do_div(ticks
, q
->rate
);
359 return PSCHED_NS2TICKS(ticks
);
362 static void tfifo_reset(struct Qdisc
*sch
)
364 struct netem_sched_data
*q
= qdisc_priv(sch
);
367 while ((p
= rb_first(&q
->t_root
))) {
368 struct sk_buff
*skb
= netem_rb_to_skb(p
);
370 rb_erase(p
, &q
->t_root
);
377 static void tfifo_enqueue(struct sk_buff
*nskb
, struct Qdisc
*sch
)
379 struct netem_sched_data
*q
= qdisc_priv(sch
);
380 psched_time_t tnext
= netem_skb_cb(nskb
)->time_to_send
;
381 struct rb_node
**p
= &q
->t_root
.rb_node
, *parent
= NULL
;
387 skb
= netem_rb_to_skb(parent
);
388 if (tnext
>= netem_skb_cb(skb
)->time_to_send
)
389 p
= &parent
->rb_right
;
391 p
= &parent
->rb_left
;
393 rb_link_node(&nskb
->rbnode
, parent
, p
);
394 rb_insert_color(&nskb
->rbnode
, &q
->t_root
);
398 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
399 * when we statistically choose to corrupt one, we instead segment it, returning
400 * the first packet to be corrupted, and re-enqueue the remaining frames
402 static struct sk_buff
*netem_segment(struct sk_buff
*skb
, struct Qdisc
*sch
)
404 struct sk_buff
*segs
;
405 netdev_features_t features
= netif_skb_features(skb
);
407 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
409 if (IS_ERR_OR_NULL(segs
)) {
410 qdisc_reshape_fail(skb
, sch
);
418 * Insert one skb into qdisc.
419 * Note: parent depends on return value to account for queue length.
420 * NET_XMIT_DROP: queue length didn't change.
421 * NET_XMIT_SUCCESS: one skb was queued.
423 static int netem_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
425 struct netem_sched_data
*q
= qdisc_priv(sch
);
426 /* We don't fill cb now as skb_unshare() may invalidate it */
427 struct netem_skb_cb
*cb
;
428 struct sk_buff
*skb2
;
429 struct sk_buff
*segs
= NULL
;
430 unsigned int len
= 0, last_len
, prev_len
= qdisc_pkt_len(skb
);
433 int rc
= NET_XMIT_SUCCESS
;
435 /* Random duplication */
436 if (q
->duplicate
&& q
->duplicate
>= get_crandom(&q
->dup_cor
))
441 if (q
->ecn
&& INET_ECN_set_ce(skb
))
442 qdisc_qstats_drop(sch
); /* mark packet */
447 qdisc_qstats_drop(sch
);
449 return NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
452 /* If a delay is expected, orphan the skb. (orphaning usually takes
453 * place at TX completion time, so _before_ the link transit delay)
455 if (q
->latency
|| q
->jitter
)
456 skb_orphan_partial(skb
);
459 * If we need to duplicate packet, then re-insert at top of the
460 * qdisc tree, since parent queuer expects that only one
461 * skb will be queued.
463 if (count
> 1 && (skb2
= skb_clone(skb
, GFP_ATOMIC
)) != NULL
) {
464 struct Qdisc
*rootq
= qdisc_root(sch
);
465 u32 dupsave
= q
->duplicate
; /* prevent duplicating a dup... */
468 rootq
->enqueue(skb2
, rootq
);
469 q
->duplicate
= dupsave
;
473 * Randomized packet corruption.
474 * Make copy if needed since we are modifying
475 * If packet is going to be hardware checksummed, then
476 * do it now in software before we mangle it.
478 if (q
->corrupt
&& q
->corrupt
>= get_crandom(&q
->corrupt_cor
)) {
479 if (skb_is_gso(skb
)) {
480 segs
= netem_segment(skb
, sch
);
482 return NET_XMIT_DROP
;
490 if (!(skb
= skb_unshare(skb
, GFP_ATOMIC
)) ||
491 (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
492 skb_checksum_help(skb
))) {
493 rc
= qdisc_drop(skb
, sch
);
497 skb
->data
[prandom_u32() % skb_headlen(skb
)] ^=
498 1<<(prandom_u32() % 8);
501 if (unlikely(skb_queue_len(&sch
->q
) >= sch
->limit
))
502 return qdisc_reshape_fail(skb
, sch
);
504 qdisc_qstats_backlog_inc(sch
, skb
);
506 cb
= netem_skb_cb(skb
);
507 if (q
->gap
== 0 || /* not doing reordering */
508 q
->counter
< q
->gap
- 1 || /* inside last reordering gap */
509 q
->reorder
< get_crandom(&q
->reorder_cor
)) {
511 psched_tdiff_t delay
;
513 delay
= tabledist(q
->latency
, q
->jitter
,
514 &q
->delay_cor
, q
->delay_dist
);
516 now
= psched_get_time();
519 struct sk_buff
*last
;
521 if (!skb_queue_empty(&sch
->q
))
522 last
= skb_peek_tail(&sch
->q
);
524 last
= netem_rb_to_skb(rb_last(&q
->t_root
));
527 * Last packet in queue is reference point (now),
528 * calculate this time bonus and subtract
531 delay
-= netem_skb_cb(last
)->time_to_send
- now
;
532 delay
= max_t(psched_tdiff_t
, 0, delay
);
533 now
= netem_skb_cb(last
)->time_to_send
;
536 delay
+= packet_len_2_sched_time(qdisc_pkt_len(skb
), q
);
539 cb
->time_to_send
= now
+ delay
;
540 cb
->tstamp_save
= skb
->tstamp
;
542 tfifo_enqueue(skb
, sch
);
545 * Do re-ordering by putting one out of N packets at the front
548 cb
->time_to_send
= psched_get_time();
551 __skb_queue_head(&sch
->q
, skb
);
552 sch
->qstats
.requeues
++;
560 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
561 last_len
= segs
->len
;
562 rc
= qdisc_enqueue(segs
, sch
);
563 if (rc
!= NET_XMIT_SUCCESS
) {
564 if (net_xmit_drop_count(rc
))
565 qdisc_qstats_drop(sch
);
574 qdisc_tree_reduce_backlog(sch
, 1 - nb
, prev_len
- len
);
576 return NET_XMIT_SUCCESS
;
579 static unsigned int netem_drop(struct Qdisc
*sch
)
581 struct netem_sched_data
*q
= qdisc_priv(sch
);
584 len
= qdisc_queue_drop(sch
);
587 struct rb_node
*p
= rb_first(&q
->t_root
);
590 struct sk_buff
*skb
= netem_rb_to_skb(p
);
592 rb_erase(p
, &q
->t_root
);
596 qdisc_qstats_backlog_dec(sch
, skb
);
600 if (!len
&& q
->qdisc
&& q
->qdisc
->ops
->drop
)
601 len
= q
->qdisc
->ops
->drop(q
->qdisc
);
603 qdisc_qstats_drop(sch
);
608 static struct sk_buff
*netem_dequeue(struct Qdisc
*sch
)
610 struct netem_sched_data
*q
= qdisc_priv(sch
);
614 if (qdisc_is_throttled(sch
))
618 skb
= __skb_dequeue(&sch
->q
);
620 qdisc_qstats_backlog_dec(sch
, skb
);
622 qdisc_unthrottled(sch
);
623 qdisc_bstats_update(sch
, skb
);
626 p
= rb_first(&q
->t_root
);
628 psched_time_t time_to_send
;
630 skb
= netem_rb_to_skb(p
);
632 /* if more time remaining? */
633 time_to_send
= netem_skb_cb(skb
)->time_to_send
;
634 if (time_to_send
<= psched_get_time()) {
635 rb_erase(p
, &q
->t_root
);
638 qdisc_qstats_backlog_dec(sch
, skb
);
641 skb
->tstamp
= netem_skb_cb(skb
)->tstamp_save
;
643 #ifdef CONFIG_NET_CLS_ACT
645 * If it's at ingress let's pretend the delay is
646 * from the network (tstamp will be updated).
648 if (G_TC_FROM(skb
->tc_verd
) & AT_INGRESS
)
649 skb
->tstamp
.tv64
= 0;
653 int err
= qdisc_enqueue(skb
, q
->qdisc
);
655 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
656 if (net_xmit_drop_count(err
)) {
657 qdisc_qstats_drop(sch
);
658 qdisc_tree_reduce_backlog(sch
, 1,
668 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
672 qdisc_watchdog_schedule(&q
->watchdog
, time_to_send
);
676 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
683 static void netem_reset(struct Qdisc
*sch
)
685 struct netem_sched_data
*q
= qdisc_priv(sch
);
687 qdisc_reset_queue(sch
);
690 qdisc_reset(q
->qdisc
);
691 qdisc_watchdog_cancel(&q
->watchdog
);
694 static void dist_free(struct disttable
*d
)
700 * Distribution data is a variable size payload containing
701 * signed 16 bit values.
703 static int get_dist_table(struct Qdisc
*sch
, const struct nlattr
*attr
)
705 struct netem_sched_data
*q
= qdisc_priv(sch
);
706 size_t n
= nla_len(attr
)/sizeof(__s16
);
707 const __s16
*data
= nla_data(attr
);
708 spinlock_t
*root_lock
;
713 if (n
> NETEM_DIST_MAX
)
716 s
= sizeof(struct disttable
) + n
* sizeof(s16
);
717 d
= kmalloc(s
, GFP_KERNEL
| __GFP_NOWARN
);
724 for (i
= 0; i
< n
; i
++)
725 d
->table
[i
] = data
[i
];
727 root_lock
= qdisc_root_sleeping_lock(sch
);
729 spin_lock_bh(root_lock
);
730 swap(q
->delay_dist
, d
);
731 spin_unlock_bh(root_lock
);
737 static void get_correlation(struct netem_sched_data
*q
, const struct nlattr
*attr
)
739 const struct tc_netem_corr
*c
= nla_data(attr
);
741 init_crandom(&q
->delay_cor
, c
->delay_corr
);
742 init_crandom(&q
->loss_cor
, c
->loss_corr
);
743 init_crandom(&q
->dup_cor
, c
->dup_corr
);
746 static void get_reorder(struct netem_sched_data
*q
, const struct nlattr
*attr
)
748 const struct tc_netem_reorder
*r
= nla_data(attr
);
750 q
->reorder
= r
->probability
;
751 init_crandom(&q
->reorder_cor
, r
->correlation
);
754 static void get_corrupt(struct netem_sched_data
*q
, const struct nlattr
*attr
)
756 const struct tc_netem_corrupt
*r
= nla_data(attr
);
758 q
->corrupt
= r
->probability
;
759 init_crandom(&q
->corrupt_cor
, r
->correlation
);
762 static void get_rate(struct netem_sched_data
*q
, const struct nlattr
*attr
)
764 const struct tc_netem_rate
*r
= nla_data(attr
);
767 q
->packet_overhead
= r
->packet_overhead
;
768 q
->cell_size
= r
->cell_size
;
769 q
->cell_overhead
= r
->cell_overhead
;
771 q
->cell_size_reciprocal
= reciprocal_value(q
->cell_size
);
773 q
->cell_size_reciprocal
= (struct reciprocal_value
) { 0 };
776 static int get_loss_clg(struct netem_sched_data
*q
, const struct nlattr
*attr
)
778 const struct nlattr
*la
;
781 nla_for_each_nested(la
, attr
, rem
) {
782 u16 type
= nla_type(la
);
785 case NETEM_LOSS_GI
: {
786 const struct tc_netem_gimodel
*gi
= nla_data(la
);
788 if (nla_len(la
) < sizeof(struct tc_netem_gimodel
)) {
789 pr_info("netem: incorrect gi model size\n");
793 q
->loss_model
= CLG_4_STATES
;
795 q
->clg
.state
= TX_IN_GAP_PERIOD
;
804 case NETEM_LOSS_GE
: {
805 const struct tc_netem_gemodel
*ge
= nla_data(la
);
807 if (nla_len(la
) < sizeof(struct tc_netem_gemodel
)) {
808 pr_info("netem: incorrect ge model size\n");
812 q
->loss_model
= CLG_GILB_ELL
;
813 q
->clg
.state
= GOOD_STATE
;
822 pr_info("netem: unknown loss type %u\n", type
);
830 static const struct nla_policy netem_policy
[TCA_NETEM_MAX
+ 1] = {
831 [TCA_NETEM_CORR
] = { .len
= sizeof(struct tc_netem_corr
) },
832 [TCA_NETEM_REORDER
] = { .len
= sizeof(struct tc_netem_reorder
) },
833 [TCA_NETEM_CORRUPT
] = { .len
= sizeof(struct tc_netem_corrupt
) },
834 [TCA_NETEM_RATE
] = { .len
= sizeof(struct tc_netem_rate
) },
835 [TCA_NETEM_LOSS
] = { .type
= NLA_NESTED
},
836 [TCA_NETEM_ECN
] = { .type
= NLA_U32
},
837 [TCA_NETEM_RATE64
] = { .type
= NLA_U64
},
840 static int parse_attr(struct nlattr
*tb
[], int maxtype
, struct nlattr
*nla
,
841 const struct nla_policy
*policy
, int len
)
843 int nested_len
= nla_len(nla
) - NLA_ALIGN(len
);
845 if (nested_len
< 0) {
846 pr_info("netem: invalid attributes len %d\n", nested_len
);
850 if (nested_len
>= nla_attr_size(0))
851 return nla_parse(tb
, maxtype
, nla_data(nla
) + NLA_ALIGN(len
),
854 memset(tb
, 0, sizeof(struct nlattr
*) * (maxtype
+ 1));
858 /* Parse netlink message to set options */
859 static int netem_change(struct Qdisc
*sch
, struct nlattr
*opt
)
861 struct netem_sched_data
*q
= qdisc_priv(sch
);
862 struct nlattr
*tb
[TCA_NETEM_MAX
+ 1];
863 struct tc_netem_qopt
*qopt
;
864 struct clgstate old_clg
;
865 int old_loss_model
= CLG_RANDOM
;
871 qopt
= nla_data(opt
);
872 ret
= parse_attr(tb
, TCA_NETEM_MAX
, opt
, netem_policy
, sizeof(*qopt
));
876 /* backup q->clg and q->loss_model */
878 old_loss_model
= q
->loss_model
;
880 if (tb
[TCA_NETEM_LOSS
]) {
881 ret
= get_loss_clg(q
, tb
[TCA_NETEM_LOSS
]);
883 q
->loss_model
= old_loss_model
;
887 q
->loss_model
= CLG_RANDOM
;
890 if (tb
[TCA_NETEM_DELAY_DIST
]) {
891 ret
= get_dist_table(sch
, tb
[TCA_NETEM_DELAY_DIST
]);
893 /* recover clg and loss_model, in case of
894 * q->clg and q->loss_model were modified
898 q
->loss_model
= old_loss_model
;
903 sch
->limit
= qopt
->limit
;
905 q
->latency
= qopt
->latency
;
906 q
->jitter
= qopt
->jitter
;
907 q
->limit
= qopt
->limit
;
910 q
->loss
= qopt
->loss
;
911 q
->duplicate
= qopt
->duplicate
;
913 /* for compatibility with earlier versions.
914 * if gap is set, need to assume 100% probability
919 if (tb
[TCA_NETEM_CORR
])
920 get_correlation(q
, tb
[TCA_NETEM_CORR
]);
922 if (tb
[TCA_NETEM_REORDER
])
923 get_reorder(q
, tb
[TCA_NETEM_REORDER
]);
925 if (tb
[TCA_NETEM_CORRUPT
])
926 get_corrupt(q
, tb
[TCA_NETEM_CORRUPT
]);
928 if (tb
[TCA_NETEM_RATE
])
929 get_rate(q
, tb
[TCA_NETEM_RATE
]);
931 if (tb
[TCA_NETEM_RATE64
])
932 q
->rate
= max_t(u64
, q
->rate
,
933 nla_get_u64(tb
[TCA_NETEM_RATE64
]));
935 if (tb
[TCA_NETEM_ECN
])
936 q
->ecn
= nla_get_u32(tb
[TCA_NETEM_ECN
]);
941 static int netem_init(struct Qdisc
*sch
, struct nlattr
*opt
)
943 struct netem_sched_data
*q
= qdisc_priv(sch
);
949 qdisc_watchdog_init(&q
->watchdog
, sch
);
951 q
->loss_model
= CLG_RANDOM
;
952 ret
= netem_change(sch
, opt
);
954 pr_info("netem: change failed\n");
958 static void netem_destroy(struct Qdisc
*sch
)
960 struct netem_sched_data
*q
= qdisc_priv(sch
);
962 qdisc_watchdog_cancel(&q
->watchdog
);
964 qdisc_destroy(q
->qdisc
);
965 dist_free(q
->delay_dist
);
968 static int dump_loss_model(const struct netem_sched_data
*q
,
973 nest
= nla_nest_start(skb
, TCA_NETEM_LOSS
);
975 goto nla_put_failure
;
977 switch (q
->loss_model
) {
979 /* legacy loss model */
980 nla_nest_cancel(skb
, nest
);
981 return 0; /* no data */
984 struct tc_netem_gimodel gi
= {
992 if (nla_put(skb
, NETEM_LOSS_GI
, sizeof(gi
), &gi
))
993 goto nla_put_failure
;
997 struct tc_netem_gemodel ge
= {
1004 if (nla_put(skb
, NETEM_LOSS_GE
, sizeof(ge
), &ge
))
1005 goto nla_put_failure
;
1010 nla_nest_end(skb
, nest
);
1014 nla_nest_cancel(skb
, nest
);
1018 static int netem_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
1020 const struct netem_sched_data
*q
= qdisc_priv(sch
);
1021 struct nlattr
*nla
= (struct nlattr
*) skb_tail_pointer(skb
);
1022 struct tc_netem_qopt qopt
;
1023 struct tc_netem_corr cor
;
1024 struct tc_netem_reorder reorder
;
1025 struct tc_netem_corrupt corrupt
;
1026 struct tc_netem_rate rate
;
1028 qopt
.latency
= q
->latency
;
1029 qopt
.jitter
= q
->jitter
;
1030 qopt
.limit
= q
->limit
;
1031 qopt
.loss
= q
->loss
;
1033 qopt
.duplicate
= q
->duplicate
;
1034 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1035 goto nla_put_failure
;
1037 cor
.delay_corr
= q
->delay_cor
.rho
;
1038 cor
.loss_corr
= q
->loss_cor
.rho
;
1039 cor
.dup_corr
= q
->dup_cor
.rho
;
1040 if (nla_put(skb
, TCA_NETEM_CORR
, sizeof(cor
), &cor
))
1041 goto nla_put_failure
;
1043 reorder
.probability
= q
->reorder
;
1044 reorder
.correlation
= q
->reorder_cor
.rho
;
1045 if (nla_put(skb
, TCA_NETEM_REORDER
, sizeof(reorder
), &reorder
))
1046 goto nla_put_failure
;
1048 corrupt
.probability
= q
->corrupt
;
1049 corrupt
.correlation
= q
->corrupt_cor
.rho
;
1050 if (nla_put(skb
, TCA_NETEM_CORRUPT
, sizeof(corrupt
), &corrupt
))
1051 goto nla_put_failure
;
1053 if (q
->rate
>= (1ULL << 32)) {
1054 if (nla_put_u64_64bit(skb
, TCA_NETEM_RATE64
, q
->rate
,
1056 goto nla_put_failure
;
1059 rate
.rate
= q
->rate
;
1061 rate
.packet_overhead
= q
->packet_overhead
;
1062 rate
.cell_size
= q
->cell_size
;
1063 rate
.cell_overhead
= q
->cell_overhead
;
1064 if (nla_put(skb
, TCA_NETEM_RATE
, sizeof(rate
), &rate
))
1065 goto nla_put_failure
;
1067 if (q
->ecn
&& nla_put_u32(skb
, TCA_NETEM_ECN
, q
->ecn
))
1068 goto nla_put_failure
;
1070 if (dump_loss_model(q
, skb
) != 0)
1071 goto nla_put_failure
;
1073 return nla_nest_end(skb
, nla
);
1076 nlmsg_trim(skb
, nla
);
1080 static int netem_dump_class(struct Qdisc
*sch
, unsigned long cl
,
1081 struct sk_buff
*skb
, struct tcmsg
*tcm
)
1083 struct netem_sched_data
*q
= qdisc_priv(sch
);
1085 if (cl
!= 1 || !q
->qdisc
) /* only one class */
1088 tcm
->tcm_handle
|= TC_H_MIN(1);
1089 tcm
->tcm_info
= q
->qdisc
->handle
;
1094 static int netem_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1097 struct netem_sched_data
*q
= qdisc_priv(sch
);
1099 *old
= qdisc_replace(sch
, new, &q
->qdisc
);
1103 static struct Qdisc
*netem_leaf(struct Qdisc
*sch
, unsigned long arg
)
1105 struct netem_sched_data
*q
= qdisc_priv(sch
);
1109 static unsigned long netem_get(struct Qdisc
*sch
, u32 classid
)
1114 static void netem_put(struct Qdisc
*sch
, unsigned long arg
)
1118 static void netem_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
1120 if (!walker
->stop
) {
1121 if (walker
->count
>= walker
->skip
)
1122 if (walker
->fn(sch
, 1, walker
) < 0) {
1130 static const struct Qdisc_class_ops netem_class_ops
= {
1131 .graft
= netem_graft
,
1136 .dump
= netem_dump_class
,
1139 static struct Qdisc_ops netem_qdisc_ops __read_mostly
= {
1141 .cl_ops
= &netem_class_ops
,
1142 .priv_size
= sizeof(struct netem_sched_data
),
1143 .enqueue
= netem_enqueue
,
1144 .dequeue
= netem_dequeue
,
1145 .peek
= qdisc_peek_dequeued
,
1148 .reset
= netem_reset
,
1149 .destroy
= netem_destroy
,
1150 .change
= netem_change
,
1152 .owner
= THIS_MODULE
,
1156 static int __init
netem_module_init(void)
1158 pr_info("netem: version " VERSION
"\n");
1159 return register_qdisc(&netem_qdisc_ops
);
1161 static void __exit
netem_module_exit(void)
1163 unregister_qdisc(&netem_qdisc_ops
);
1165 module_init(netem_module_init
)
1166 module_exit(netem_module_exit
)
1167 MODULE_LICENSE("GPL");