Merge branch 'linus' into perf/core, to pick up fixes before merging new changes
[linux/fpc-iii.git] / net / sched / sch_pie.c
blob71ae3b9629f94f8520e557f21962fc9ab34366fb
1 /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version 2
6 * of the License.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * Author: Vijay Subramanian <vijaynsu@cisco.com>
14 * Author: Mythili Prabhu <mysuryan@cisco.com>
16 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
17 * University of Oslo, Norway.
19 * References:
20 * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
21 * IEEE Conference on High Performance Switching and Routing 2013 :
22 * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/kernel.h>
29 #include <linux/errno.h>
30 #include <linux/skbuff.h>
31 #include <net/pkt_sched.h>
32 #include <net/inet_ecn.h>
34 #define QUEUE_THRESHOLD 10000
35 #define DQCOUNT_INVALID -1
36 #define MAX_PROB 0xffffffff
37 #define PIE_SCALE 8
39 /* parameters used */
40 struct pie_params {
41 psched_time_t target; /* user specified target delay in pschedtime */
42 u32 tupdate; /* timer frequency (in jiffies) */
43 u32 limit; /* number of packets that can be enqueued */
44 u32 alpha; /* alpha and beta are between 0 and 32 */
45 u32 beta; /* and are used for shift relative to 1 */
46 bool ecn; /* true if ecn is enabled */
47 bool bytemode; /* to scale drop early prob based on pkt size */
50 /* variables used */
51 struct pie_vars {
52 u32 prob; /* probability but scaled by u32 limit. */
53 psched_time_t burst_time;
54 psched_time_t qdelay;
55 psched_time_t qdelay_old;
56 u64 dq_count; /* measured in bytes */
57 psched_time_t dq_tstamp; /* drain rate */
58 u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */
59 u32 qlen_old; /* in bytes */
62 /* statistics gathering */
63 struct pie_stats {
64 u32 packets_in; /* total number of packets enqueued */
65 u32 dropped; /* packets dropped due to pie_action */
66 u32 overlimit; /* dropped due to lack of space in queue */
67 u32 maxq; /* maximum queue size */
68 u32 ecn_mark; /* packets marked with ECN */
71 /* private data for the Qdisc */
72 struct pie_sched_data {
73 struct pie_params params;
74 struct pie_vars vars;
75 struct pie_stats stats;
76 struct timer_list adapt_timer;
79 static void pie_params_init(struct pie_params *params)
81 params->alpha = 2;
82 params->beta = 20;
83 params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
84 params->limit = 1000; /* default of 1000 packets */
85 params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */
86 params->ecn = false;
87 params->bytemode = false;
90 static void pie_vars_init(struct pie_vars *vars)
92 vars->dq_count = DQCOUNT_INVALID;
93 vars->avg_dq_rate = 0;
94 /* default of 100 ms in pschedtime */
95 vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
98 static bool drop_early(struct Qdisc *sch, u32 packet_size)
100 struct pie_sched_data *q = qdisc_priv(sch);
101 u32 rnd;
102 u32 local_prob = q->vars.prob;
103 u32 mtu = psched_mtu(qdisc_dev(sch));
105 /* If there is still burst allowance left skip random early drop */
106 if (q->vars.burst_time > 0)
107 return false;
109 /* If current delay is less than half of target, and
110 * if drop prob is low already, disable early_drop
112 if ((q->vars.qdelay < q->params.target / 2)
113 && (q->vars.prob < MAX_PROB / 5))
114 return false;
116 /* If we have fewer than 2 mtu-sized packets, disable drop_early,
117 * similar to min_th in RED
119 if (sch->qstats.backlog < 2 * mtu)
120 return false;
122 /* If bytemode is turned on, use packet size to compute new
123 * probablity. Smaller packets will have lower drop prob in this case
125 if (q->params.bytemode && packet_size <= mtu)
126 local_prob = (local_prob / mtu) * packet_size;
127 else
128 local_prob = q->vars.prob;
130 rnd = prandom_u32();
131 if (rnd < local_prob)
132 return true;
134 return false;
137 static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
139 struct pie_sched_data *q = qdisc_priv(sch);
140 bool enqueue = false;
142 if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
143 q->stats.overlimit++;
144 goto out;
147 if (!drop_early(sch, skb->len)) {
148 enqueue = true;
149 } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
150 INET_ECN_set_ce(skb)) {
151 /* If packet is ecn capable, mark it if drop probability
152 * is lower than 10%, else drop it.
154 q->stats.ecn_mark++;
155 enqueue = true;
158 /* we can enqueue the packet */
159 if (enqueue) {
160 q->stats.packets_in++;
161 if (qdisc_qlen(sch) > q->stats.maxq)
162 q->stats.maxq = qdisc_qlen(sch);
164 return qdisc_enqueue_tail(skb, sch);
167 out:
168 q->stats.dropped++;
169 return qdisc_drop(skb, sch);
172 static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
173 [TCA_PIE_TARGET] = {.type = NLA_U32},
174 [TCA_PIE_LIMIT] = {.type = NLA_U32},
175 [TCA_PIE_TUPDATE] = {.type = NLA_U32},
176 [TCA_PIE_ALPHA] = {.type = NLA_U32},
177 [TCA_PIE_BETA] = {.type = NLA_U32},
178 [TCA_PIE_ECN] = {.type = NLA_U32},
179 [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
182 static int pie_change(struct Qdisc *sch, struct nlattr *opt)
184 struct pie_sched_data *q = qdisc_priv(sch);
185 struct nlattr *tb[TCA_PIE_MAX + 1];
186 unsigned int qlen, dropped = 0;
187 int err;
189 if (!opt)
190 return -EINVAL;
192 err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy);
193 if (err < 0)
194 return err;
196 sch_tree_lock(sch);
198 /* convert from microseconds to pschedtime */
199 if (tb[TCA_PIE_TARGET]) {
200 /* target is in us */
201 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
203 /* convert to pschedtime */
204 q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
207 /* tupdate is in jiffies */
208 if (tb[TCA_PIE_TUPDATE])
209 q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
211 if (tb[TCA_PIE_LIMIT]) {
212 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
214 q->params.limit = limit;
215 sch->limit = limit;
218 if (tb[TCA_PIE_ALPHA])
219 q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
221 if (tb[TCA_PIE_BETA])
222 q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
224 if (tb[TCA_PIE_ECN])
225 q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
227 if (tb[TCA_PIE_BYTEMODE])
228 q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
230 /* Drop excess packets if new limit is lower */
231 qlen = sch->q.qlen;
232 while (sch->q.qlen > sch->limit) {
233 struct sk_buff *skb = __skb_dequeue(&sch->q);
235 dropped += qdisc_pkt_len(skb);
236 qdisc_qstats_backlog_dec(sch, skb);
237 qdisc_drop(skb, sch);
239 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
241 sch_tree_unlock(sch);
242 return 0;
245 static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
248 struct pie_sched_data *q = qdisc_priv(sch);
249 int qlen = sch->qstats.backlog; /* current queue size in bytes */
251 /* If current queue is about 10 packets or more and dq_count is unset
252 * we have enough packets to calculate the drain rate. Save
253 * current time as dq_tstamp and start measurement cycle.
255 if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
256 q->vars.dq_tstamp = psched_get_time();
257 q->vars.dq_count = 0;
260 /* Calculate the average drain rate from this value. If queue length
261 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
262 * the dq_count to -1 as we don't have enough packets to calculate the
263 * drain rate anymore The following if block is entered only when we
264 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
265 * and we calculate the drain rate for the threshold here. dq_count is
266 * in bytes, time difference in psched_time, hence rate is in
267 * bytes/psched_time.
269 if (q->vars.dq_count != DQCOUNT_INVALID) {
270 q->vars.dq_count += skb->len;
272 if (q->vars.dq_count >= QUEUE_THRESHOLD) {
273 psched_time_t now = psched_get_time();
274 u32 dtime = now - q->vars.dq_tstamp;
275 u32 count = q->vars.dq_count << PIE_SCALE;
277 if (dtime == 0)
278 return;
280 count = count / dtime;
282 if (q->vars.avg_dq_rate == 0)
283 q->vars.avg_dq_rate = count;
284 else
285 q->vars.avg_dq_rate =
286 (q->vars.avg_dq_rate -
287 (q->vars.avg_dq_rate >> 3)) + (count >> 3);
289 /* If the queue has receded below the threshold, we hold
290 * on to the last drain rate calculated, else we reset
291 * dq_count to 0 to re-enter the if block when the next
292 * packet is dequeued
294 if (qlen < QUEUE_THRESHOLD)
295 q->vars.dq_count = DQCOUNT_INVALID;
296 else {
297 q->vars.dq_count = 0;
298 q->vars.dq_tstamp = psched_get_time();
301 if (q->vars.burst_time > 0) {
302 if (q->vars.burst_time > dtime)
303 q->vars.burst_time -= dtime;
304 else
305 q->vars.burst_time = 0;
311 static void calculate_probability(struct Qdisc *sch)
313 struct pie_sched_data *q = qdisc_priv(sch);
314 u32 qlen = sch->qstats.backlog; /* queue size in bytes */
315 psched_time_t qdelay = 0; /* in pschedtime */
316 psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */
317 s32 delta = 0; /* determines the change in probability */
318 u32 oldprob;
319 u32 alpha, beta;
320 bool update_prob = true;
322 q->vars.qdelay_old = q->vars.qdelay;
324 if (q->vars.avg_dq_rate > 0)
325 qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
326 else
327 qdelay = 0;
329 /* If qdelay is zero and qlen is not, it means qlen is very small, less
330 * than dequeue_rate, so we do not update probabilty in this round
332 if (qdelay == 0 && qlen != 0)
333 update_prob = false;
335 /* In the algorithm, alpha and beta are between 0 and 2 with typical
336 * value for alpha as 0.125. In this implementation, we use values 0-32
337 * passed from user space to represent this. Also, alpha and beta have
338 * unit of HZ and need to be scaled before they can used to update
339 * probability. alpha/beta are updated locally below by 1) scaling them
340 * appropriately 2) scaling down by 16 to come to 0-2 range.
341 * Please see paper for details.
343 * We scale alpha and beta differently depending on whether we are in
344 * light, medium or high dropping mode.
346 if (q->vars.prob < MAX_PROB / 100) {
347 alpha =
348 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
349 beta =
350 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
351 } else if (q->vars.prob < MAX_PROB / 10) {
352 alpha =
353 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
354 beta =
355 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
356 } else {
357 alpha =
358 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
359 beta =
360 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
363 /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
364 delta += alpha * ((qdelay - q->params.target));
365 delta += beta * ((qdelay - qdelay_old));
367 oldprob = q->vars.prob;
369 /* to ensure we increase probability in steps of no more than 2% */
370 if (delta > (s32) (MAX_PROB / (100 / 2)) &&
371 q->vars.prob >= MAX_PROB / 10)
372 delta = (MAX_PROB / 100) * 2;
374 /* Non-linear drop:
375 * Tune drop probability to increase quickly for high delays(>= 250ms)
376 * 250ms is derived through experiments and provides error protection
379 if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
380 delta += MAX_PROB / (100 / 2);
382 q->vars.prob += delta;
384 if (delta > 0) {
385 /* prevent overflow */
386 if (q->vars.prob < oldprob) {
387 q->vars.prob = MAX_PROB;
388 /* Prevent normalization error. If probability is at
389 * maximum value already, we normalize it here, and
390 * skip the check to do a non-linear drop in the next
391 * section.
393 update_prob = false;
395 } else {
396 /* prevent underflow */
397 if (q->vars.prob > oldprob)
398 q->vars.prob = 0;
401 /* Non-linear drop in probability: Reduce drop probability quickly if
402 * delay is 0 for 2 consecutive Tupdate periods.
405 if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
406 q->vars.prob = (q->vars.prob * 98) / 100;
408 q->vars.qdelay = qdelay;
409 q->vars.qlen_old = qlen;
411 /* We restart the measurement cycle if the following conditions are met
412 * 1. If the delay has been low for 2 consecutive Tupdate periods
413 * 2. Calculated drop probability is zero
414 * 3. We have atleast one estimate for the avg_dq_rate ie.,
415 * is a non-zero value
417 if ((q->vars.qdelay < q->params.target / 2) &&
418 (q->vars.qdelay_old < q->params.target / 2) &&
419 (q->vars.prob == 0) &&
420 (q->vars.avg_dq_rate > 0))
421 pie_vars_init(&q->vars);
424 static void pie_timer(unsigned long arg)
426 struct Qdisc *sch = (struct Qdisc *)arg;
427 struct pie_sched_data *q = qdisc_priv(sch);
428 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
430 spin_lock(root_lock);
431 calculate_probability(sch);
433 /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
434 if (q->params.tupdate)
435 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
436 spin_unlock(root_lock);
440 static int pie_init(struct Qdisc *sch, struct nlattr *opt)
442 struct pie_sched_data *q = qdisc_priv(sch);
444 pie_params_init(&q->params);
445 pie_vars_init(&q->vars);
446 sch->limit = q->params.limit;
448 setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
450 if (opt) {
451 int err = pie_change(sch, opt);
453 if (err)
454 return err;
457 mod_timer(&q->adapt_timer, jiffies + HZ / 2);
458 return 0;
461 static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
463 struct pie_sched_data *q = qdisc_priv(sch);
464 struct nlattr *opts;
466 opts = nla_nest_start(skb, TCA_OPTIONS);
467 if (opts == NULL)
468 goto nla_put_failure;
470 /* convert target from pschedtime to us */
471 if (nla_put_u32(skb, TCA_PIE_TARGET,
472 ((u32) PSCHED_TICKS2NS(q->params.target)) /
473 NSEC_PER_USEC) ||
474 nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
475 nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
476 nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
477 nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
478 nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
479 nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
480 goto nla_put_failure;
482 return nla_nest_end(skb, opts);
484 nla_put_failure:
485 nla_nest_cancel(skb, opts);
486 return -1;
490 static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
492 struct pie_sched_data *q = qdisc_priv(sch);
493 struct tc_pie_xstats st = {
494 .prob = q->vars.prob,
495 .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
496 NSEC_PER_USEC,
497 /* unscale and return dq_rate in bytes per sec */
498 .avg_dq_rate = q->vars.avg_dq_rate *
499 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
500 .packets_in = q->stats.packets_in,
501 .overlimit = q->stats.overlimit,
502 .maxq = q->stats.maxq,
503 .dropped = q->stats.dropped,
504 .ecn_mark = q->stats.ecn_mark,
507 return gnet_stats_copy_app(d, &st, sizeof(st));
510 static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
512 struct sk_buff *skb;
513 skb = __qdisc_dequeue_head(sch, &sch->q);
515 if (!skb)
516 return NULL;
518 pie_process_dequeue(sch, skb);
519 return skb;
522 static void pie_reset(struct Qdisc *sch)
524 struct pie_sched_data *q = qdisc_priv(sch);
525 qdisc_reset_queue(sch);
526 pie_vars_init(&q->vars);
529 static void pie_destroy(struct Qdisc *sch)
531 struct pie_sched_data *q = qdisc_priv(sch);
532 q->params.tupdate = 0;
533 del_timer_sync(&q->adapt_timer);
536 static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
537 .id = "pie",
538 .priv_size = sizeof(struct pie_sched_data),
539 .enqueue = pie_qdisc_enqueue,
540 .dequeue = pie_qdisc_dequeue,
541 .peek = qdisc_peek_dequeued,
542 .init = pie_init,
543 .destroy = pie_destroy,
544 .reset = pie_reset,
545 .change = pie_change,
546 .dump = pie_dump,
547 .dump_stats = pie_dump_stats,
548 .owner = THIS_MODULE,
551 static int __init pie_module_init(void)
553 return register_qdisc(&pie_qdisc_ops);
556 static void __exit pie_module_exit(void)
558 unregister_qdisc(&pie_qdisc_ops);
561 module_init(pie_module_init);
562 module_exit(pie_module_exit);
564 MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
565 MODULE_AUTHOR("Vijay Subramanian");
566 MODULE_AUTHOR("Mythili Prabhu");
567 MODULE_LICENSE("GPL");