2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data
{
103 u32 limit
; /* Maximal length of backlog: bytes */
105 s64 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
107 struct psched_ratecfg rate
;
108 struct psched_ratecfg peak
;
111 s64 tokens
; /* Current number of B tokens */
112 s64 ptokens
; /* Current number of P tokens */
113 s64 t_c
; /* Time check-point */
114 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog
; /* Watchdog timer */
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
122 static u64
psched_ns_t2l(const struct psched_ratecfg
*r
,
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 u64 len
= time_in_ns
* r
->rate_bytes_ps
;
130 do_div(len
, NSEC_PER_SEC
);
132 if (unlikely(r
->linklayer
== TC_LINKLAYER_ATM
)) {
137 if (len
> r
->overhead
)
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
149 static unsigned int skb_gso_mac_seglen(const struct sk_buff
*skb
)
151 unsigned int hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
152 return hdr_len
+ skb_gso_transport_seglen(skb
);
155 /* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
158 static int tbf_segment(struct sk_buff
*skb
, struct Qdisc
*sch
)
160 struct tbf_sched_data
*q
= qdisc_priv(sch
);
161 struct sk_buff
*segs
, *nskb
;
162 netdev_features_t features
= netif_skb_features(skb
);
163 unsigned int len
= 0, prev_len
= qdisc_pkt_len(skb
);
166 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
168 if (IS_ERR_OR_NULL(segs
))
169 return qdisc_reshape_fail(skb
, sch
);
175 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
177 ret
= qdisc_enqueue(segs
, q
->qdisc
);
178 if (ret
!= NET_XMIT_SUCCESS
) {
179 if (net_xmit_drop_count(ret
))
180 qdisc_qstats_drop(sch
);
188 qdisc_tree_reduce_backlog(sch
, 1 - nb
, prev_len
- len
);
190 return nb
> 0 ? NET_XMIT_SUCCESS
: NET_XMIT_DROP
;
193 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
195 struct tbf_sched_data
*q
= qdisc_priv(sch
);
198 if (qdisc_pkt_len(skb
) > q
->max_size
) {
199 if (skb_is_gso(skb
) && skb_gso_mac_seglen(skb
) <= q
->max_size
)
200 return tbf_segment(skb
, sch
);
201 return qdisc_reshape_fail(skb
, sch
);
203 ret
= qdisc_enqueue(skb
, q
->qdisc
);
204 if (ret
!= NET_XMIT_SUCCESS
) {
205 if (net_xmit_drop_count(ret
))
206 qdisc_qstats_drop(sch
);
210 qdisc_qstats_backlog_inc(sch
, skb
);
212 return NET_XMIT_SUCCESS
;
215 static unsigned int tbf_drop(struct Qdisc
*sch
)
217 struct tbf_sched_data
*q
= qdisc_priv(sch
);
218 unsigned int len
= 0;
220 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
221 sch
->qstats
.backlog
-= len
;
223 qdisc_qstats_drop(sch
);
228 static bool tbf_peak_present(const struct tbf_sched_data
*q
)
230 return q
->peak
.rate_bytes_ps
;
233 static struct sk_buff
*tbf_dequeue(struct Qdisc
*sch
)
235 struct tbf_sched_data
*q
= qdisc_priv(sch
);
238 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
244 unsigned int len
= qdisc_pkt_len(skb
);
246 now
= ktime_get_ns();
247 toks
= min_t(s64
, now
- q
->t_c
, q
->buffer
);
249 if (tbf_peak_present(q
)) {
250 ptoks
= toks
+ q
->ptokens
;
253 ptoks
-= (s64
) psched_l2t_ns(&q
->peak
, len
);
256 if (toks
> q
->buffer
)
258 toks
-= (s64
) psched_l2t_ns(&q
->rate
, len
);
260 if ((toks
|ptoks
) >= 0) {
261 skb
= qdisc_dequeue_peeked(q
->qdisc
);
268 qdisc_qstats_backlog_dec(sch
, skb
);
270 qdisc_unthrottled(sch
);
271 qdisc_bstats_update(sch
, skb
);
275 qdisc_watchdog_schedule_ns(&q
->watchdog
,
276 now
+ max_t(long, -toks
, -ptoks
),
279 /* Maybe we have a shorter packet in the queue,
280 which can be sent now. It sounds cool,
281 but, however, this is wrong in principle.
282 We MUST NOT reorder packets under these circumstances.
284 Really, if we split the flow into independent
285 subflows, it would be a very good solution.
286 This is the main idea of all FQ algorithms
287 (cf. CSZ, HPFQ, HFSC)
290 qdisc_qstats_overlimit(sch
);
295 static void tbf_reset(struct Qdisc
*sch
)
297 struct tbf_sched_data
*q
= qdisc_priv(sch
);
299 qdisc_reset(q
->qdisc
);
300 sch
->qstats
.backlog
= 0;
302 q
->t_c
= ktime_get_ns();
303 q
->tokens
= q
->buffer
;
305 qdisc_watchdog_cancel(&q
->watchdog
);
308 static const struct nla_policy tbf_policy
[TCA_TBF_MAX
+ 1] = {
309 [TCA_TBF_PARMS
] = { .len
= sizeof(struct tc_tbf_qopt
) },
310 [TCA_TBF_RTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
311 [TCA_TBF_PTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
312 [TCA_TBF_RATE64
] = { .type
= NLA_U64
},
313 [TCA_TBF_PRATE64
] = { .type
= NLA_U64
},
314 [TCA_TBF_BURST
] = { .type
= NLA_U32
},
315 [TCA_TBF_PBURST
] = { .type
= NLA_U32
},
318 static int tbf_change(struct Qdisc
*sch
, struct nlattr
*opt
)
321 struct tbf_sched_data
*q
= qdisc_priv(sch
);
322 struct nlattr
*tb
[TCA_TBF_MAX
+ 1];
323 struct tc_tbf_qopt
*qopt
;
324 struct Qdisc
*child
= NULL
;
325 struct psched_ratecfg rate
;
326 struct psched_ratecfg peak
;
329 u64 rate64
= 0, prate64
= 0;
331 err
= nla_parse_nested(tb
, TCA_TBF_MAX
, opt
, tbf_policy
);
336 if (tb
[TCA_TBF_PARMS
] == NULL
)
339 qopt
= nla_data(tb
[TCA_TBF_PARMS
]);
340 if (qopt
->rate
.linklayer
== TC_LINKLAYER_UNAWARE
)
341 qdisc_put_rtab(qdisc_get_rtab(&qopt
->rate
,
344 if (qopt
->peakrate
.linklayer
== TC_LINKLAYER_UNAWARE
)
345 qdisc_put_rtab(qdisc_get_rtab(&qopt
->peakrate
,
348 buffer
= min_t(u64
, PSCHED_TICKS2NS(qopt
->buffer
), ~0U);
349 mtu
= min_t(u64
, PSCHED_TICKS2NS(qopt
->mtu
), ~0U);
351 if (tb
[TCA_TBF_RATE64
])
352 rate64
= nla_get_u64(tb
[TCA_TBF_RATE64
]);
353 psched_ratecfg_precompute(&rate
, &qopt
->rate
, rate64
);
355 if (tb
[TCA_TBF_BURST
]) {
356 max_size
= nla_get_u32(tb
[TCA_TBF_BURST
]);
357 buffer
= psched_l2t_ns(&rate
, max_size
);
359 max_size
= min_t(u64
, psched_ns_t2l(&rate
, buffer
), ~0U);
362 if (qopt
->peakrate
.rate
) {
363 if (tb
[TCA_TBF_PRATE64
])
364 prate64
= nla_get_u64(tb
[TCA_TBF_PRATE64
]);
365 psched_ratecfg_precompute(&peak
, &qopt
->peakrate
, prate64
);
366 if (peak
.rate_bytes_ps
<= rate
.rate_bytes_ps
) {
367 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
368 peak
.rate_bytes_ps
, rate
.rate_bytes_ps
);
373 if (tb
[TCA_TBF_PBURST
]) {
374 u32 pburst
= nla_get_u32(tb
[TCA_TBF_PBURST
]);
375 max_size
= min_t(u32
, max_size
, pburst
);
376 mtu
= psched_l2t_ns(&peak
, pburst
);
378 max_size
= min_t(u64
, max_size
, psched_ns_t2l(&peak
, mtu
));
381 memset(&peak
, 0, sizeof(peak
));
384 if (max_size
< psched_mtu(qdisc_dev(sch
)))
385 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
386 max_size
, qdisc_dev(sch
)->name
,
387 psched_mtu(qdisc_dev(sch
)));
394 if (q
->qdisc
!= &noop_qdisc
) {
395 err
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
398 } else if (qopt
->limit
> 0) {
399 child
= fifo_create_dflt(sch
, &bfifo_qdisc_ops
, qopt
->limit
);
401 err
= PTR_ERR(child
);
408 qdisc_tree_reduce_backlog(q
->qdisc
, q
->qdisc
->q
.qlen
,
409 q
->qdisc
->qstats
.backlog
);
410 qdisc_destroy(q
->qdisc
);
413 q
->limit
= qopt
->limit
;
414 if (tb
[TCA_TBF_PBURST
])
417 q
->mtu
= PSCHED_TICKS2NS(qopt
->mtu
);
418 q
->max_size
= max_size
;
419 if (tb
[TCA_TBF_BURST
])
422 q
->buffer
= PSCHED_TICKS2NS(qopt
->buffer
);
423 q
->tokens
= q
->buffer
;
426 memcpy(&q
->rate
, &rate
, sizeof(struct psched_ratecfg
));
427 memcpy(&q
->peak
, &peak
, sizeof(struct psched_ratecfg
));
429 sch_tree_unlock(sch
);
435 static int tbf_init(struct Qdisc
*sch
, struct nlattr
*opt
)
437 struct tbf_sched_data
*q
= qdisc_priv(sch
);
442 q
->t_c
= ktime_get_ns();
443 qdisc_watchdog_init(&q
->watchdog
, sch
);
444 q
->qdisc
= &noop_qdisc
;
446 return tbf_change(sch
, opt
);
449 static void tbf_destroy(struct Qdisc
*sch
)
451 struct tbf_sched_data
*q
= qdisc_priv(sch
);
453 qdisc_watchdog_cancel(&q
->watchdog
);
454 qdisc_destroy(q
->qdisc
);
457 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
459 struct tbf_sched_data
*q
= qdisc_priv(sch
);
461 struct tc_tbf_qopt opt
;
463 sch
->qstats
.backlog
= q
->qdisc
->qstats
.backlog
;
464 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
466 goto nla_put_failure
;
468 opt
.limit
= q
->limit
;
469 psched_ratecfg_getrate(&opt
.rate
, &q
->rate
);
470 if (tbf_peak_present(q
))
471 psched_ratecfg_getrate(&opt
.peakrate
, &q
->peak
);
473 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
474 opt
.mtu
= PSCHED_NS2TICKS(q
->mtu
);
475 opt
.buffer
= PSCHED_NS2TICKS(q
->buffer
);
476 if (nla_put(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
))
477 goto nla_put_failure
;
478 if (q
->rate
.rate_bytes_ps
>= (1ULL << 32) &&
479 nla_put_u64_64bit(skb
, TCA_TBF_RATE64
, q
->rate
.rate_bytes_ps
,
481 goto nla_put_failure
;
482 if (tbf_peak_present(q
) &&
483 q
->peak
.rate_bytes_ps
>= (1ULL << 32) &&
484 nla_put_u64_64bit(skb
, TCA_TBF_PRATE64
, q
->peak
.rate_bytes_ps
,
486 goto nla_put_failure
;
488 return nla_nest_end(skb
, nest
);
491 nla_nest_cancel(skb
, nest
);
495 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
496 struct sk_buff
*skb
, struct tcmsg
*tcm
)
498 struct tbf_sched_data
*q
= qdisc_priv(sch
);
500 tcm
->tcm_handle
|= TC_H_MIN(1);
501 tcm
->tcm_info
= q
->qdisc
->handle
;
506 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
509 struct tbf_sched_data
*q
= qdisc_priv(sch
);
514 *old
= qdisc_replace(sch
, new, &q
->qdisc
);
518 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
520 struct tbf_sched_data
*q
= qdisc_priv(sch
);
524 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
529 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
533 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
536 if (walker
->count
>= walker
->skip
)
537 if (walker
->fn(sch
, 1, walker
) < 0) {
545 static const struct Qdisc_class_ops tbf_class_ops
= {
551 .dump
= tbf_dump_class
,
554 static struct Qdisc_ops tbf_qdisc_ops __read_mostly
= {
556 .cl_ops
= &tbf_class_ops
,
558 .priv_size
= sizeof(struct tbf_sched_data
),
559 .enqueue
= tbf_enqueue
,
560 .dequeue
= tbf_dequeue
,
561 .peek
= qdisc_peek_dequeued
,
565 .destroy
= tbf_destroy
,
566 .change
= tbf_change
,
568 .owner
= THIS_MODULE
,
571 static int __init
tbf_module_init(void)
573 return register_qdisc(&tbf_qdisc_ops
);
576 static void __exit
tbf_module_exit(void)
578 unregister_qdisc(&tbf_qdisc_ops
);
580 module_init(tbf_module_init
)
581 module_exit(tbf_module_exit
)
582 MODULE_LICENSE("GPL");