Merge branch 'linus' into perf/core, to pick up fixes before merging new changes
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / frwr_ops.c
blobc0947544babeb976eea94ae4698ce955bd1a3c37
1 /*
2 * Copyright (c) 2015 Oracle. All rights reserved.
3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 */
6 /* Lightweight memory registration using Fast Registration Work
7 * Requests (FRWR). Also referred to sometimes as FRMR mode.
9 * FRWR features ordered asynchronous registration and deregistration
10 * of arbitrarily sized memory regions. This is the fastest and safest
11 * but most complex memory registration mode.
14 /* Normal operation
16 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
17 * Work Request (frmr_op_map). When the RDMA operation is finished, this
18 * Memory Region is invalidated using a LOCAL_INV Work Request
19 * (frmr_op_unmap).
21 * Typically these Work Requests are not signaled, and neither are RDMA
22 * SEND Work Requests (with the exception of signaling occasionally to
23 * prevent provider work queue overflows). This greatly reduces HCA
24 * interrupt workload.
26 * As an optimization, frwr_op_unmap marks MRs INVALID before the
27 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
28 * rb_mws immediately so that no work (like managing a linked list
29 * under a spinlock) is needed in the completion upcall.
31 * But this means that frwr_op_map() can occasionally encounter an MR
32 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
33 * ordering prevents a subsequent FAST_REG WR from executing against
34 * that MR while it is still being invalidated.
37 /* Transport recovery
39 * ->op_map and the transport connect worker cannot run at the same
40 * time, but ->op_unmap can fire while the transport connect worker
41 * is running. Thus MR recovery is handled in ->op_map, to guarantee
42 * that recovered MRs are owned by a sending RPC, and not one where
43 * ->op_unmap could fire at the same time transport reconnect is
44 * being done.
46 * When the underlying transport disconnects, MRs are left in one of
47 * three states:
49 * INVALID: The MR was not in use before the QP entered ERROR state.
50 * (Or, the LOCAL_INV WR has not completed or flushed yet).
52 * STALE: The MR was being registered or unregistered when the QP
53 * entered ERROR state, and the pending WR was flushed.
55 * VALID: The MR was registered before the QP entered ERROR state.
57 * When frwr_op_map encounters STALE and VALID MRs, they are recovered
58 * with ib_dereg_mr and then are re-initialized. Beause MR recovery
59 * allocates fresh resources, it is deferred to a workqueue, and the
60 * recovered MRs are placed back on the rb_mws list when recovery is
61 * complete. frwr_op_map allocates another MR for the current RPC while
62 * the broken MR is reset.
64 * To ensure that frwr_op_map doesn't encounter an MR that is marked
65 * INVALID but that is about to be flushed due to a previous transport
66 * disconnect, the transport connect worker attempts to drain all
67 * pending send queue WRs before the transport is reconnected.
70 #include "xprt_rdma.h"
72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
73 # define RPCDBG_FACILITY RPCDBG_TRANS
74 #endif
76 static struct workqueue_struct *frwr_recovery_wq;
78 #define FRWR_RECOVERY_WQ_FLAGS (WQ_UNBOUND | WQ_MEM_RECLAIM)
80 int
81 frwr_alloc_recovery_wq(void)
83 frwr_recovery_wq = alloc_workqueue("frwr_recovery",
84 FRWR_RECOVERY_WQ_FLAGS, 0);
85 return !frwr_recovery_wq ? -ENOMEM : 0;
88 void
89 frwr_destroy_recovery_wq(void)
91 struct workqueue_struct *wq;
93 if (!frwr_recovery_wq)
94 return;
96 wq = frwr_recovery_wq;
97 frwr_recovery_wq = NULL;
98 destroy_workqueue(wq);
101 static int
102 __frwr_reset_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r)
104 struct rpcrdma_frmr *f = &r->frmr;
105 int rc;
107 rc = ib_dereg_mr(f->fr_mr);
108 if (rc) {
109 pr_warn("rpcrdma: ib_dereg_mr status %d, frwr %p orphaned\n",
110 rc, r);
111 return rc;
114 f->fr_mr = ib_alloc_mr(ia->ri_pd, IB_MR_TYPE_MEM_REG,
115 ia->ri_max_frmr_depth);
116 if (IS_ERR(f->fr_mr)) {
117 pr_warn("rpcrdma: ib_alloc_mr status %ld, frwr %p orphaned\n",
118 PTR_ERR(f->fr_mr), r);
119 return PTR_ERR(f->fr_mr);
122 dprintk("RPC: %s: recovered FRMR %p\n", __func__, r);
123 f->fr_state = FRMR_IS_INVALID;
124 return 0;
127 static void
128 __frwr_reset_and_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
130 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
131 struct rpcrdma_frmr *f = &mw->frmr;
132 int rc;
134 rc = __frwr_reset_mr(ia, mw);
135 ib_dma_unmap_sg(ia->ri_device, f->fr_sg, f->fr_nents, f->fr_dir);
136 if (rc)
137 return;
139 rpcrdma_put_mw(r_xprt, mw);
142 /* Deferred reset of a single FRMR. Generate a fresh rkey by
143 * replacing the MR.
145 * There's no recovery if this fails. The FRMR is abandoned, but
146 * remains in rb_all. It will be cleaned up when the transport is
147 * destroyed.
149 static void
150 __frwr_recovery_worker(struct work_struct *work)
152 struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw,
153 mw_work);
155 __frwr_reset_and_unmap(r->mw_xprt, r);
156 return;
159 /* A broken MR was discovered in a context that can't sleep.
160 * Defer recovery to the recovery worker.
162 static void
163 __frwr_queue_recovery(struct rpcrdma_mw *r)
165 INIT_WORK(&r->mw_work, __frwr_recovery_worker);
166 queue_work(frwr_recovery_wq, &r->mw_work);
169 static int
170 __frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device,
171 unsigned int depth)
173 struct rpcrdma_frmr *f = &r->frmr;
174 int rc;
176 f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
177 if (IS_ERR(f->fr_mr))
178 goto out_mr_err;
180 f->fr_sg = kcalloc(depth, sizeof(*f->fr_sg), GFP_KERNEL);
181 if (!f->fr_sg)
182 goto out_list_err;
184 sg_init_table(f->fr_sg, depth);
186 init_completion(&f->fr_linv_done);
188 return 0;
190 out_mr_err:
191 rc = PTR_ERR(f->fr_mr);
192 dprintk("RPC: %s: ib_alloc_mr status %i\n",
193 __func__, rc);
194 return rc;
196 out_list_err:
197 rc = -ENOMEM;
198 dprintk("RPC: %s: sg allocation failure\n",
199 __func__);
200 ib_dereg_mr(f->fr_mr);
201 return rc;
204 static void
205 __frwr_release(struct rpcrdma_mw *r)
207 int rc;
209 rc = ib_dereg_mr(r->frmr.fr_mr);
210 if (rc)
211 dprintk("RPC: %s: ib_dereg_mr status %i\n",
212 __func__, rc);
213 kfree(r->frmr.fr_sg);
216 static int
217 frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
218 struct rpcrdma_create_data_internal *cdata)
220 int depth, delta;
222 ia->ri_max_frmr_depth =
223 min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
224 ia->ri_device->attrs.max_fast_reg_page_list_len);
225 dprintk("RPC: %s: device's max FR page list len = %u\n",
226 __func__, ia->ri_max_frmr_depth);
228 /* Add room for frmr register and invalidate WRs.
229 * 1. FRMR reg WR for head
230 * 2. FRMR invalidate WR for head
231 * 3. N FRMR reg WRs for pagelist
232 * 4. N FRMR invalidate WRs for pagelist
233 * 5. FRMR reg WR for tail
234 * 6. FRMR invalidate WR for tail
235 * 7. The RDMA_SEND WR
237 depth = 7;
239 /* Calculate N if the device max FRMR depth is smaller than
240 * RPCRDMA_MAX_DATA_SEGS.
242 if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
243 delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth;
244 do {
245 depth += 2; /* FRMR reg + invalidate */
246 delta -= ia->ri_max_frmr_depth;
247 } while (delta > 0);
250 ep->rep_attr.cap.max_send_wr *= depth;
251 if (ep->rep_attr.cap.max_send_wr > ia->ri_device->attrs.max_qp_wr) {
252 cdata->max_requests = ia->ri_device->attrs.max_qp_wr / depth;
253 if (!cdata->max_requests)
254 return -EINVAL;
255 ep->rep_attr.cap.max_send_wr = cdata->max_requests *
256 depth;
259 rpcrdma_set_max_header_sizes(ia, cdata, max_t(unsigned int, 1,
260 RPCRDMA_MAX_DATA_SEGS /
261 ia->ri_max_frmr_depth));
262 return 0;
265 /* FRWR mode conveys a list of pages per chunk segment. The
266 * maximum length of that list is the FRWR page list depth.
268 static size_t
269 frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
271 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
273 return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
274 RPCRDMA_MAX_HDR_SEGS * ia->ri_max_frmr_depth);
277 static void
278 __frwr_sendcompletion_flush(struct ib_wc *wc, struct rpcrdma_frmr *frmr,
279 const char *wr)
281 frmr->fr_state = FRMR_IS_STALE;
282 if (wc->status != IB_WC_WR_FLUSH_ERR)
283 pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
284 wr, ib_wc_status_msg(wc->status),
285 wc->status, wc->vendor_err);
289 * frwr_wc_fastreg - Invoked by RDMA provider for each polled FastReg WC
290 * @cq: completion queue (ignored)
291 * @wc: completed WR
294 static void
295 frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
297 struct rpcrdma_frmr *frmr;
298 struct ib_cqe *cqe;
300 /* WARNING: Only wr_cqe and status are reliable at this point */
301 if (wc->status != IB_WC_SUCCESS) {
302 cqe = wc->wr_cqe;
303 frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
304 __frwr_sendcompletion_flush(wc, frmr, "fastreg");
309 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
310 * @cq: completion queue (ignored)
311 * @wc: completed WR
314 static void
315 frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
317 struct rpcrdma_frmr *frmr;
318 struct ib_cqe *cqe;
320 /* WARNING: Only wr_cqe and status are reliable at this point */
321 if (wc->status != IB_WC_SUCCESS) {
322 cqe = wc->wr_cqe;
323 frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
324 __frwr_sendcompletion_flush(wc, frmr, "localinv");
329 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
330 * @cq: completion queue (ignored)
331 * @wc: completed WR
333 * Awaken anyone waiting for an MR to finish being fenced.
335 static void
336 frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
338 struct rpcrdma_frmr *frmr;
339 struct ib_cqe *cqe;
341 /* WARNING: Only wr_cqe and status are reliable at this point */
342 cqe = wc->wr_cqe;
343 frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
344 if (wc->status != IB_WC_SUCCESS)
345 __frwr_sendcompletion_flush(wc, frmr, "localinv");
346 complete_all(&frmr->fr_linv_done);
349 static int
350 frwr_op_init(struct rpcrdma_xprt *r_xprt)
352 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
353 struct ib_device *device = r_xprt->rx_ia.ri_device;
354 unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
355 struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
356 int i;
358 spin_lock_init(&buf->rb_mwlock);
359 INIT_LIST_HEAD(&buf->rb_mws);
360 INIT_LIST_HEAD(&buf->rb_all);
362 i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1);
363 i += 2; /* head + tail */
364 i *= buf->rb_max_requests; /* one set for each RPC slot */
365 dprintk("RPC: %s: initalizing %d FRMRs\n", __func__, i);
367 while (i--) {
368 struct rpcrdma_mw *r;
369 int rc;
371 r = kzalloc(sizeof(*r), GFP_KERNEL);
372 if (!r)
373 return -ENOMEM;
375 rc = __frwr_init(r, pd, device, depth);
376 if (rc) {
377 kfree(r);
378 return rc;
381 r->mw_xprt = r_xprt;
382 list_add(&r->mw_list, &buf->rb_mws);
383 list_add(&r->mw_all, &buf->rb_all);
386 return 0;
389 /* Post a FAST_REG Work Request to register a memory region
390 * for remote access via RDMA READ or RDMA WRITE.
392 static int
393 frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
394 int nsegs, bool writing)
396 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
397 struct ib_device *device = ia->ri_device;
398 enum dma_data_direction direction = rpcrdma_data_dir(writing);
399 struct rpcrdma_mr_seg *seg1 = seg;
400 struct rpcrdma_mw *mw;
401 struct rpcrdma_frmr *frmr;
402 struct ib_mr *mr;
403 struct ib_reg_wr *reg_wr;
404 struct ib_send_wr *bad_wr;
405 int rc, i, n, dma_nents;
406 u8 key;
408 mw = seg1->rl_mw;
409 seg1->rl_mw = NULL;
410 do {
411 if (mw)
412 __frwr_queue_recovery(mw);
413 mw = rpcrdma_get_mw(r_xprt);
414 if (!mw)
415 return -ENOMEM;
416 } while (mw->frmr.fr_state != FRMR_IS_INVALID);
417 frmr = &mw->frmr;
418 frmr->fr_state = FRMR_IS_VALID;
419 mr = frmr->fr_mr;
420 reg_wr = &frmr->fr_regwr;
422 if (nsegs > ia->ri_max_frmr_depth)
423 nsegs = ia->ri_max_frmr_depth;
425 for (i = 0; i < nsegs;) {
426 if (seg->mr_page)
427 sg_set_page(&frmr->fr_sg[i],
428 seg->mr_page,
429 seg->mr_len,
430 offset_in_page(seg->mr_offset));
431 else
432 sg_set_buf(&frmr->fr_sg[i], seg->mr_offset,
433 seg->mr_len);
435 ++seg;
436 ++i;
438 /* Check for holes */
439 if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
440 offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
441 break;
443 frmr->fr_nents = i;
444 frmr->fr_dir = direction;
446 dma_nents = ib_dma_map_sg(device, frmr->fr_sg, frmr->fr_nents, direction);
447 if (!dma_nents) {
448 pr_err("RPC: %s: failed to dma map sg %p sg_nents %u\n",
449 __func__, frmr->fr_sg, frmr->fr_nents);
450 return -ENOMEM;
453 n = ib_map_mr_sg(mr, frmr->fr_sg, frmr->fr_nents, NULL, PAGE_SIZE);
454 if (unlikely(n != frmr->fr_nents)) {
455 pr_err("RPC: %s: failed to map mr %p (%u/%u)\n",
456 __func__, frmr->fr_mr, n, frmr->fr_nents);
457 rc = n < 0 ? n : -EINVAL;
458 goto out_senderr;
461 dprintk("RPC: %s: Using frmr %p to map %u segments (%u bytes)\n",
462 __func__, mw, frmr->fr_nents, mr->length);
464 key = (u8)(mr->rkey & 0x000000FF);
465 ib_update_fast_reg_key(mr, ++key);
467 reg_wr->wr.next = NULL;
468 reg_wr->wr.opcode = IB_WR_REG_MR;
469 frmr->fr_cqe.done = frwr_wc_fastreg;
470 reg_wr->wr.wr_cqe = &frmr->fr_cqe;
471 reg_wr->wr.num_sge = 0;
472 reg_wr->wr.send_flags = 0;
473 reg_wr->mr = mr;
474 reg_wr->key = mr->rkey;
475 reg_wr->access = writing ?
476 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
477 IB_ACCESS_REMOTE_READ;
479 DECR_CQCOUNT(&r_xprt->rx_ep);
480 rc = ib_post_send(ia->ri_id->qp, &reg_wr->wr, &bad_wr);
481 if (rc)
482 goto out_senderr;
484 seg1->rl_mw = mw;
485 seg1->mr_rkey = mr->rkey;
486 seg1->mr_base = mr->iova;
487 seg1->mr_nsegs = frmr->fr_nents;
488 seg1->mr_len = mr->length;
490 return frmr->fr_nents;
492 out_senderr:
493 dprintk("RPC: %s: ib_post_send status %i\n", __func__, rc);
494 __frwr_queue_recovery(mw);
495 return rc;
498 static struct ib_send_wr *
499 __frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg)
501 struct rpcrdma_mw *mw = seg->rl_mw;
502 struct rpcrdma_frmr *f = &mw->frmr;
503 struct ib_send_wr *invalidate_wr;
505 f->fr_state = FRMR_IS_INVALID;
506 invalidate_wr = &f->fr_invwr;
508 memset(invalidate_wr, 0, sizeof(*invalidate_wr));
509 f->fr_cqe.done = frwr_wc_localinv;
510 invalidate_wr->wr_cqe = &f->fr_cqe;
511 invalidate_wr->opcode = IB_WR_LOCAL_INV;
512 invalidate_wr->ex.invalidate_rkey = f->fr_mr->rkey;
514 return invalidate_wr;
517 /* Invalidate all memory regions that were registered for "req".
519 * Sleeps until it is safe for the host CPU to access the
520 * previously mapped memory regions.
522 static void
523 frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
525 struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr;
526 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
527 struct rpcrdma_mr_seg *seg;
528 unsigned int i, nchunks;
529 struct rpcrdma_frmr *f;
530 struct rpcrdma_mw *mw;
531 int rc;
533 dprintk("RPC: %s: req %p\n", __func__, req);
535 /* ORDER: Invalidate all of the req's MRs first
537 * Chain the LOCAL_INV Work Requests and post them with
538 * a single ib_post_send() call.
540 invalidate_wrs = pos = prev = NULL;
541 seg = NULL;
542 for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
543 seg = &req->rl_segments[i];
545 pos = __frwr_prepare_linv_wr(seg);
547 if (!invalidate_wrs)
548 invalidate_wrs = pos;
549 else
550 prev->next = pos;
551 prev = pos;
553 i += seg->mr_nsegs;
555 f = &seg->rl_mw->frmr;
557 /* Strong send queue ordering guarantees that when the
558 * last WR in the chain completes, all WRs in the chain
559 * are complete.
561 f->fr_invwr.send_flags = IB_SEND_SIGNALED;
562 f->fr_cqe.done = frwr_wc_localinv_wake;
563 reinit_completion(&f->fr_linv_done);
564 INIT_CQCOUNT(&r_xprt->rx_ep);
566 /* Transport disconnect drains the receive CQ before it
567 * replaces the QP. The RPC reply handler won't call us
568 * unless ri_id->qp is a valid pointer.
570 rc = ib_post_send(ia->ri_id->qp, invalidate_wrs, &bad_wr);
571 if (rc)
572 goto reset_mrs;
574 wait_for_completion(&f->fr_linv_done);
576 /* ORDER: Now DMA unmap all of the req's MRs, and return
577 * them to the free MW list.
579 unmap:
580 for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
581 seg = &req->rl_segments[i];
582 mw = seg->rl_mw;
583 seg->rl_mw = NULL;
585 ib_dma_unmap_sg(ia->ri_device, f->fr_sg, f->fr_nents,
586 f->fr_dir);
587 rpcrdma_put_mw(r_xprt, mw);
589 i += seg->mr_nsegs;
590 seg->mr_nsegs = 0;
593 req->rl_nchunks = 0;
594 return;
596 reset_mrs:
597 pr_warn("%s: ib_post_send failed %i\n", __func__, rc);
599 /* Find and reset the MRs in the LOCAL_INV WRs that did not
600 * get posted. This is synchronous, and slow.
602 for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
603 seg = &req->rl_segments[i];
604 mw = seg->rl_mw;
605 f = &mw->frmr;
607 if (mw->frmr.fr_mr->rkey == bad_wr->ex.invalidate_rkey) {
608 __frwr_reset_mr(ia, mw);
609 bad_wr = bad_wr->next;
612 i += seg->mr_nsegs;
614 goto unmap;
617 /* Use a slow, safe mechanism to invalidate all memory regions
618 * that were registered for "req".
620 static void
621 frwr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
622 bool sync)
624 struct rpcrdma_mr_seg *seg;
625 struct rpcrdma_mw *mw;
626 unsigned int i;
628 for (i = 0; req->rl_nchunks; req->rl_nchunks--) {
629 seg = &req->rl_segments[i];
630 mw = seg->rl_mw;
632 if (sync)
633 __frwr_reset_and_unmap(r_xprt, mw);
634 else
635 __frwr_queue_recovery(mw);
637 i += seg->mr_nsegs;
638 seg->mr_nsegs = 0;
639 seg->rl_mw = NULL;
643 static void
644 frwr_op_destroy(struct rpcrdma_buffer *buf)
646 struct rpcrdma_mw *r;
648 /* Ensure stale MWs for "buf" are no longer in flight */
649 flush_workqueue(frwr_recovery_wq);
651 while (!list_empty(&buf->rb_all)) {
652 r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
653 list_del(&r->mw_all);
654 __frwr_release(r);
655 kfree(r);
659 const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
660 .ro_map = frwr_op_map,
661 .ro_unmap_sync = frwr_op_unmap_sync,
662 .ro_unmap_safe = frwr_op_unmap_safe,
663 .ro_open = frwr_op_open,
664 .ro_maxpages = frwr_op_maxpages,
665 .ro_init = frwr_op_init,
666 .ro_destroy = frwr_op_destroy,
667 .ro_displayname = "frwr",