2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
31 #include "inode-map.h"
33 /* magic values for the inode_only field in btrfs_log_inode:
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 #define LOG_OTHER_INODE 2
44 * directory trouble cases
46 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
47 * log, we must force a full commit before doing an fsync of the directory
48 * where the unlink was done.
49 * ---> record transid of last unlink/rename per directory
53 * rename foo/some_dir foo2/some_dir
55 * fsync foo/some_dir/some_file
57 * The fsync above will unlink the original some_dir without recording
58 * it in its new location (foo2). After a crash, some_dir will be gone
59 * unless the fsync of some_file forces a full commit
61 * 2) we must log any new names for any file or dir that is in the fsync
62 * log. ---> check inode while renaming/linking.
64 * 2a) we must log any new names for any file or dir during rename
65 * when the directory they are being removed from was logged.
66 * ---> check inode and old parent dir during rename
68 * 2a is actually the more important variant. With the extra logging
69 * a crash might unlink the old name without recreating the new one
71 * 3) after a crash, we must go through any directories with a link count
72 * of zero and redo the rm -rf
79 * The directory f1 was fully removed from the FS, but fsync was never
80 * called on f1, only its parent dir. After a crash the rm -rf must
81 * be replayed. This must be able to recurse down the entire
82 * directory tree. The inode link count fixup code takes care of the
87 * stages for the tree walking. The first
88 * stage (0) is to only pin down the blocks we find
89 * the second stage (1) is to make sure that all the inodes
90 * we find in the log are created in the subvolume.
92 * The last stage is to deal with directories and links and extents
93 * and all the other fun semantics
95 #define LOG_WALK_PIN_ONLY 0
96 #define LOG_WALK_REPLAY_INODES 1
97 #define LOG_WALK_REPLAY_DIR_INDEX 2
98 #define LOG_WALK_REPLAY_ALL 3
100 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
, struct inode
*inode
,
105 struct btrfs_log_ctx
*ctx
);
106 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
,
108 struct btrfs_path
*path
, u64 objectid
);
109 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
110 struct btrfs_root
*root
,
111 struct btrfs_root
*log
,
112 struct btrfs_path
*path
,
113 u64 dirid
, int del_all
);
116 * tree logging is a special write ahead log used to make sure that
117 * fsyncs and O_SYNCs can happen without doing full tree commits.
119 * Full tree commits are expensive because they require commonly
120 * modified blocks to be recowed, creating many dirty pages in the
121 * extent tree an 4x-6x higher write load than ext3.
123 * Instead of doing a tree commit on every fsync, we use the
124 * key ranges and transaction ids to find items for a given file or directory
125 * that have changed in this transaction. Those items are copied into
126 * a special tree (one per subvolume root), that tree is written to disk
127 * and then the fsync is considered complete.
129 * After a crash, items are copied out of the log-tree back into the
130 * subvolume tree. Any file data extents found are recorded in the extent
131 * allocation tree, and the log-tree freed.
133 * The log tree is read three times, once to pin down all the extents it is
134 * using in ram and once, once to create all the inodes logged in the tree
135 * and once to do all the other items.
139 * start a sub transaction and setup the log tree
140 * this increments the log tree writer count to make the people
141 * syncing the tree wait for us to finish
143 static int start_log_trans(struct btrfs_trans_handle
*trans
,
144 struct btrfs_root
*root
,
145 struct btrfs_log_ctx
*ctx
)
149 mutex_lock(&root
->log_mutex
);
151 if (root
->log_root
) {
152 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
157 if (!root
->log_start_pid
) {
158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
159 root
->log_start_pid
= current
->pid
;
160 } else if (root
->log_start_pid
!= current
->pid
) {
161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
164 mutex_lock(&root
->fs_info
->tree_log_mutex
);
165 if (!root
->fs_info
->log_root_tree
)
166 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
171 ret
= btrfs_add_log_tree(trans
, root
);
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
176 root
->log_start_pid
= current
->pid
;
179 atomic_inc(&root
->log_batch
);
180 atomic_inc(&root
->log_writers
);
182 int index
= root
->log_transid
% 2;
183 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
184 ctx
->log_transid
= root
->log_transid
;
188 mutex_unlock(&root
->log_mutex
);
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
197 static int join_running_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 if (root
->log_root
) {
208 atomic_inc(&root
->log_writers
);
210 mutex_unlock(&root
->log_mutex
);
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
219 int btrfs_pin_log_trans(struct btrfs_root
*root
)
223 mutex_lock(&root
->log_mutex
);
224 atomic_inc(&root
->log_writers
);
225 mutex_unlock(&root
->log_mutex
);
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
233 void btrfs_end_log_trans(struct btrfs_root
*root
)
235 if (atomic_dec_and_test(&root
->log_writers
)) {
237 * Implicit memory barrier after atomic_dec_and_test
239 if (waitqueue_active(&root
->log_writer_wait
))
240 wake_up(&root
->log_writer_wait
);
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
251 struct walk_control
{
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
267 /* pin only walk, we record which extents on disk belong to the
272 /* what stage of the replay code we're currently in */
275 /* the root we are currently replaying */
276 struct btrfs_root
*replay_dest
;
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle
*trans
;
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
286 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
287 struct walk_control
*wc
, u64 gen
);
291 * process_func used to pin down extents, write them or wait on them
293 static int process_one_buffer(struct btrfs_root
*log
,
294 struct extent_buffer
*eb
,
295 struct walk_control
*wc
, u64 gen
)
300 * If this fs is mixed then we need to be able to process the leaves to
301 * pin down any logged extents, so we have to read the block.
303 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
304 ret
= btrfs_read_buffer(eb
, gen
);
310 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
313 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
314 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
315 ret
= btrfs_exclude_logged_extents(log
, eb
);
317 btrfs_write_tree_block(eb
);
319 btrfs_wait_tree_block_writeback(eb
);
325 * Item overwrite used by replay and tree logging. eb, slot and key all refer
326 * to the src data we are copying out.
328 * root is the tree we are copying into, and path is a scratch
329 * path for use in this function (it should be released on entry and
330 * will be released on exit).
332 * If the key is already in the destination tree the existing item is
333 * overwritten. If the existing item isn't big enough, it is extended.
334 * If it is too large, it is truncated.
336 * If the key isn't in the destination yet, a new item is inserted.
338 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
339 struct btrfs_root
*root
,
340 struct btrfs_path
*path
,
341 struct extent_buffer
*eb
, int slot
,
342 struct btrfs_key
*key
)
346 u64 saved_i_size
= 0;
347 int save_old_i_size
= 0;
348 unsigned long src_ptr
;
349 unsigned long dst_ptr
;
350 int overwrite_root
= 0;
351 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
353 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
356 item_size
= btrfs_item_size_nr(eb
, slot
);
357 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
359 /* look for the key in the destination tree */
360 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
367 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
369 if (dst_size
!= item_size
)
372 if (item_size
== 0) {
373 btrfs_release_path(path
);
376 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
377 src_copy
= kmalloc(item_size
, GFP_NOFS
);
378 if (!dst_copy
|| !src_copy
) {
379 btrfs_release_path(path
);
385 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
387 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
388 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
390 ret
= memcmp(dst_copy
, src_copy
, item_size
);
395 * they have the same contents, just return, this saves
396 * us from cowing blocks in the destination tree and doing
397 * extra writes that may not have been done by a previous
401 btrfs_release_path(path
);
406 * We need to load the old nbytes into the inode so when we
407 * replay the extents we've logged we get the right nbytes.
410 struct btrfs_inode_item
*item
;
414 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
415 struct btrfs_inode_item
);
416 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
417 item
= btrfs_item_ptr(eb
, slot
,
418 struct btrfs_inode_item
);
419 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
422 * If this is a directory we need to reset the i_size to
423 * 0 so that we can set it up properly when replaying
424 * the rest of the items in this log.
426 mode
= btrfs_inode_mode(eb
, item
);
428 btrfs_set_inode_size(eb
, item
, 0);
430 } else if (inode_item
) {
431 struct btrfs_inode_item
*item
;
435 * New inode, set nbytes to 0 so that the nbytes comes out
436 * properly when we replay the extents.
438 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
439 btrfs_set_inode_nbytes(eb
, item
, 0);
442 * If this is a directory we need to reset the i_size to 0 so
443 * that we can set it up properly when replaying the rest of
444 * the items in this log.
446 mode
= btrfs_inode_mode(eb
, item
);
448 btrfs_set_inode_size(eb
, item
, 0);
451 btrfs_release_path(path
);
452 /* try to insert the key into the destination tree */
453 path
->skip_release_on_error
= 1;
454 ret
= btrfs_insert_empty_item(trans
, root
, path
,
456 path
->skip_release_on_error
= 0;
458 /* make sure any existing item is the correct size */
459 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
461 found_size
= btrfs_item_size_nr(path
->nodes
[0],
463 if (found_size
> item_size
)
464 btrfs_truncate_item(root
, path
, item_size
, 1);
465 else if (found_size
< item_size
)
466 btrfs_extend_item(root
, path
,
467 item_size
- found_size
);
471 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
474 /* don't overwrite an existing inode if the generation number
475 * was logged as zero. This is done when the tree logging code
476 * is just logging an inode to make sure it exists after recovery.
478 * Also, don't overwrite i_size on directories during replay.
479 * log replay inserts and removes directory items based on the
480 * state of the tree found in the subvolume, and i_size is modified
483 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
484 struct btrfs_inode_item
*src_item
;
485 struct btrfs_inode_item
*dst_item
;
487 src_item
= (struct btrfs_inode_item
*)src_ptr
;
488 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
490 if (btrfs_inode_generation(eb
, src_item
) == 0) {
491 struct extent_buffer
*dst_eb
= path
->nodes
[0];
492 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
495 * For regular files an ino_size == 0 is used only when
496 * logging that an inode exists, as part of a directory
497 * fsync, and the inode wasn't fsynced before. In this
498 * case don't set the size of the inode in the fs/subvol
499 * tree, otherwise we would be throwing valid data away.
501 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
502 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
504 struct btrfs_map_token token
;
506 btrfs_init_map_token(&token
);
507 btrfs_set_token_inode_size(dst_eb
, dst_item
,
513 if (overwrite_root
&&
514 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
515 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
517 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
522 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
525 if (save_old_i_size
) {
526 struct btrfs_inode_item
*dst_item
;
527 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
528 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
531 /* make sure the generation is filled in */
532 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
533 struct btrfs_inode_item
*dst_item
;
534 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
535 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
536 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
541 btrfs_mark_buffer_dirty(path
->nodes
[0]);
542 btrfs_release_path(path
);
547 * simple helper to read an inode off the disk from a given root
548 * This can only be called for subvolume roots and not for the log
550 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
553 struct btrfs_key key
;
556 key
.objectid
= objectid
;
557 key
.type
= BTRFS_INODE_ITEM_KEY
;
559 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
562 } else if (is_bad_inode(inode
)) {
569 /* replays a single extent in 'eb' at 'slot' with 'key' into the
570 * subvolume 'root'. path is released on entry and should be released
573 * extents in the log tree have not been allocated out of the extent
574 * tree yet. So, this completes the allocation, taking a reference
575 * as required if the extent already exists or creating a new extent
576 * if it isn't in the extent allocation tree yet.
578 * The extent is inserted into the file, dropping any existing extents
579 * from the file that overlap the new one.
581 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
582 struct btrfs_root
*root
,
583 struct btrfs_path
*path
,
584 struct extent_buffer
*eb
, int slot
,
585 struct btrfs_key
*key
)
589 u64 start
= key
->offset
;
591 struct btrfs_file_extent_item
*item
;
592 struct inode
*inode
= NULL
;
596 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
597 found_type
= btrfs_file_extent_type(eb
, item
);
599 if (found_type
== BTRFS_FILE_EXTENT_REG
||
600 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
601 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
602 extent_end
= start
+ nbytes
;
605 * We don't add to the inodes nbytes if we are prealloc or a
608 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
610 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
611 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
612 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
613 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
619 inode
= read_one_inode(root
, key
->objectid
);
626 * first check to see if we already have this extent in the
627 * file. This must be done before the btrfs_drop_extents run
628 * so we don't try to drop this extent.
630 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
634 (found_type
== BTRFS_FILE_EXTENT_REG
||
635 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
636 struct btrfs_file_extent_item cmp1
;
637 struct btrfs_file_extent_item cmp2
;
638 struct btrfs_file_extent_item
*existing
;
639 struct extent_buffer
*leaf
;
641 leaf
= path
->nodes
[0];
642 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
643 struct btrfs_file_extent_item
);
645 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
647 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
651 * we already have a pointer to this exact extent,
652 * we don't have to do anything
654 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
655 btrfs_release_path(path
);
659 btrfs_release_path(path
);
661 /* drop any overlapping extents */
662 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
666 if (found_type
== BTRFS_FILE_EXTENT_REG
||
667 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
669 unsigned long dest_offset
;
670 struct btrfs_key ins
;
672 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
676 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
678 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
679 (unsigned long)item
, sizeof(*item
));
681 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
682 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
683 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
684 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
687 * Manually record dirty extent, as here we did a shallow
688 * file extent item copy and skip normal backref update,
689 * but modifying extent tree all by ourselves.
690 * So need to manually record dirty extent for qgroup,
691 * as the owner of the file extent changed from log tree
692 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
694 ret
= btrfs_qgroup_insert_dirty_extent(trans
, root
->fs_info
,
695 btrfs_file_extent_disk_bytenr(eb
, item
),
696 btrfs_file_extent_disk_num_bytes(eb
, item
),
701 if (ins
.objectid
> 0) {
704 LIST_HEAD(ordered_sums
);
706 * is this extent already allocated in the extent
707 * allocation tree? If so, just add a reference
709 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
712 ret
= btrfs_inc_extent_ref(trans
, root
,
713 ins
.objectid
, ins
.offset
,
714 0, root
->root_key
.objectid
,
715 key
->objectid
, offset
);
720 * insert the extent pointer in the extent
723 ret
= btrfs_alloc_logged_file_extent(trans
,
724 root
, root
->root_key
.objectid
,
725 key
->objectid
, offset
, &ins
);
729 btrfs_release_path(path
);
731 if (btrfs_file_extent_compression(eb
, item
)) {
732 csum_start
= ins
.objectid
;
733 csum_end
= csum_start
+ ins
.offset
;
735 csum_start
= ins
.objectid
+
736 btrfs_file_extent_offset(eb
, item
);
737 csum_end
= csum_start
+
738 btrfs_file_extent_num_bytes(eb
, item
);
741 ret
= btrfs_lookup_csums_range(root
->log_root
,
742 csum_start
, csum_end
- 1,
747 * Now delete all existing cums in the csum root that
748 * cover our range. We do this because we can have an
749 * extent that is completely referenced by one file
750 * extent item and partially referenced by another
751 * file extent item (like after using the clone or
752 * extent_same ioctls). In this case if we end up doing
753 * the replay of the one that partially references the
754 * extent first, and we do not do the csum deletion
755 * below, we can get 2 csum items in the csum tree that
756 * overlap each other. For example, imagine our log has
757 * the two following file extent items:
759 * key (257 EXTENT_DATA 409600)
760 * extent data disk byte 12845056 nr 102400
761 * extent data offset 20480 nr 20480 ram 102400
763 * key (257 EXTENT_DATA 819200)
764 * extent data disk byte 12845056 nr 102400
765 * extent data offset 0 nr 102400 ram 102400
767 * Where the second one fully references the 100K extent
768 * that starts at disk byte 12845056, and the log tree
769 * has a single csum item that covers the entire range
772 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
774 * After the first file extent item is replayed, the
775 * csum tree gets the following csum item:
777 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
779 * Which covers the 20K sub-range starting at offset 20K
780 * of our extent. Now when we replay the second file
781 * extent item, if we do not delete existing csum items
782 * that cover any of its blocks, we end up getting two
783 * csum items in our csum tree that overlap each other:
785 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 * Which is a problem, because after this anyone trying
789 * to lookup up for the checksum of any block of our
790 * extent starting at an offset of 40K or higher, will
791 * end up looking at the second csum item only, which
792 * does not contain the checksum for any block starting
793 * at offset 40K or higher of our extent.
795 while (!list_empty(&ordered_sums
)) {
796 struct btrfs_ordered_sum
*sums
;
797 sums
= list_entry(ordered_sums
.next
,
798 struct btrfs_ordered_sum
,
801 ret
= btrfs_del_csums(trans
,
802 root
->fs_info
->csum_root
,
806 ret
= btrfs_csum_file_blocks(trans
,
807 root
->fs_info
->csum_root
,
809 list_del(&sums
->list
);
815 btrfs_release_path(path
);
817 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
818 /* inline extents are easy, we just overwrite them */
819 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
824 inode_add_bytes(inode
, nbytes
);
825 ret
= btrfs_update_inode(trans
, root
, inode
);
833 * when cleaning up conflicts between the directory names in the
834 * subvolume, directory names in the log and directory names in the
835 * inode back references, we may have to unlink inodes from directories.
837 * This is a helper function to do the unlink of a specific directory
840 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
841 struct btrfs_root
*root
,
842 struct btrfs_path
*path
,
844 struct btrfs_dir_item
*di
)
849 struct extent_buffer
*leaf
;
850 struct btrfs_key location
;
853 leaf
= path
->nodes
[0];
855 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
856 name_len
= btrfs_dir_name_len(leaf
, di
);
857 name
= kmalloc(name_len
, GFP_NOFS
);
861 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
862 btrfs_release_path(path
);
864 inode
= read_one_inode(root
, location
.objectid
);
870 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
874 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
878 ret
= btrfs_run_delayed_items(trans
, root
);
886 * helper function to see if a given name and sequence number found
887 * in an inode back reference are already in a directory and correctly
888 * point to this inode
890 static noinline
int inode_in_dir(struct btrfs_root
*root
,
891 struct btrfs_path
*path
,
892 u64 dirid
, u64 objectid
, u64 index
,
893 const char *name
, int name_len
)
895 struct btrfs_dir_item
*di
;
896 struct btrfs_key location
;
899 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
900 index
, name
, name_len
, 0);
901 if (di
&& !IS_ERR(di
)) {
902 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
903 if (location
.objectid
!= objectid
)
907 btrfs_release_path(path
);
909 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
910 if (di
&& !IS_ERR(di
)) {
911 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
912 if (location
.objectid
!= objectid
)
918 btrfs_release_path(path
);
923 * helper function to check a log tree for a named back reference in
924 * an inode. This is used to decide if a back reference that is
925 * found in the subvolume conflicts with what we find in the log.
927 * inode backreferences may have multiple refs in a single item,
928 * during replay we process one reference at a time, and we don't
929 * want to delete valid links to a file from the subvolume if that
930 * link is also in the log.
932 static noinline
int backref_in_log(struct btrfs_root
*log
,
933 struct btrfs_key
*key
,
935 const char *name
, int namelen
)
937 struct btrfs_path
*path
;
938 struct btrfs_inode_ref
*ref
;
940 unsigned long ptr_end
;
941 unsigned long name_ptr
;
947 path
= btrfs_alloc_path();
951 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
955 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
957 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
958 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
959 name
, namelen
, NULL
))
965 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
966 ptr_end
= ptr
+ item_size
;
967 while (ptr
< ptr_end
) {
968 ref
= (struct btrfs_inode_ref
*)ptr
;
969 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
970 if (found_name_len
== namelen
) {
971 name_ptr
= (unsigned long)(ref
+ 1);
972 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
979 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
982 btrfs_free_path(path
);
986 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
987 struct btrfs_root
*root
,
988 struct btrfs_path
*path
,
989 struct btrfs_root
*log_root
,
990 struct inode
*dir
, struct inode
*inode
,
991 struct extent_buffer
*eb
,
992 u64 inode_objectid
, u64 parent_objectid
,
993 u64 ref_index
, char *name
, int namelen
,
999 struct extent_buffer
*leaf
;
1000 struct btrfs_dir_item
*di
;
1001 struct btrfs_key search_key
;
1002 struct btrfs_inode_extref
*extref
;
1005 /* Search old style refs */
1006 search_key
.objectid
= inode_objectid
;
1007 search_key
.type
= BTRFS_INODE_REF_KEY
;
1008 search_key
.offset
= parent_objectid
;
1009 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1011 struct btrfs_inode_ref
*victim_ref
;
1013 unsigned long ptr_end
;
1015 leaf
= path
->nodes
[0];
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1020 if (search_key
.objectid
== search_key
.offset
)
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1027 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1028 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1029 while (ptr
< ptr_end
) {
1030 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1031 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1033 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1037 read_extent_buffer(leaf
, victim_name
,
1038 (unsigned long)(victim_ref
+ 1),
1041 if (!backref_in_log(log_root
, &search_key
,
1046 btrfs_release_path(path
);
1048 ret
= btrfs_unlink_inode(trans
, root
, dir
,
1054 ret
= btrfs_run_delayed_items(trans
, root
);
1062 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1066 * NOTE: we have searched root tree and checked the
1067 * corresponding ref, it does not need to check again.
1071 btrfs_release_path(path
);
1073 /* Same search but for extended refs */
1074 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1075 inode_objectid
, parent_objectid
, 0,
1077 if (!IS_ERR_OR_NULL(extref
)) {
1081 struct inode
*victim_parent
;
1083 leaf
= path
->nodes
[0];
1085 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1086 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1088 while (cur_offset
< item_size
) {
1089 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1091 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1093 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1096 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1099 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1102 search_key
.objectid
= inode_objectid
;
1103 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1104 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1108 if (!backref_in_log(log_root
, &search_key
,
1109 parent_objectid
, victim_name
,
1112 victim_parent
= read_one_inode(root
,
1114 if (victim_parent
) {
1116 btrfs_release_path(path
);
1118 ret
= btrfs_unlink_inode(trans
, root
,
1124 ret
= btrfs_run_delayed_items(
1127 iput(victim_parent
);
1138 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1142 btrfs_release_path(path
);
1144 /* look for a conflicting sequence number */
1145 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1146 ref_index
, name
, namelen
, 0);
1147 if (di
&& !IS_ERR(di
)) {
1148 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1152 btrfs_release_path(path
);
1154 /* look for a conflicing name */
1155 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1157 if (di
&& !IS_ERR(di
)) {
1158 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1162 btrfs_release_path(path
);
1167 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1168 u32
*namelen
, char **name
, u64
*index
,
1169 u64
*parent_objectid
)
1171 struct btrfs_inode_extref
*extref
;
1173 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1175 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1176 *name
= kmalloc(*namelen
, GFP_NOFS
);
1180 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1183 *index
= btrfs_inode_extref_index(eb
, extref
);
1184 if (parent_objectid
)
1185 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1190 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1191 u32
*namelen
, char **name
, u64
*index
)
1193 struct btrfs_inode_ref
*ref
;
1195 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1197 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1198 *name
= kmalloc(*namelen
, GFP_NOFS
);
1202 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1204 *index
= btrfs_inode_ref_index(eb
, ref
);
1210 * replay one inode back reference item found in the log tree.
1211 * eb, slot and key refer to the buffer and key found in the log tree.
1212 * root is the destination we are replaying into, and path is for temp
1213 * use by this function. (it should be released on return).
1215 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1216 struct btrfs_root
*root
,
1217 struct btrfs_root
*log
,
1218 struct btrfs_path
*path
,
1219 struct extent_buffer
*eb
, int slot
,
1220 struct btrfs_key
*key
)
1222 struct inode
*dir
= NULL
;
1223 struct inode
*inode
= NULL
;
1224 unsigned long ref_ptr
;
1225 unsigned long ref_end
;
1229 int search_done
= 0;
1230 int log_ref_ver
= 0;
1231 u64 parent_objectid
;
1234 int ref_struct_size
;
1236 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1237 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1239 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1240 struct btrfs_inode_extref
*r
;
1242 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1244 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1245 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1247 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1248 parent_objectid
= key
->offset
;
1250 inode_objectid
= key
->objectid
;
1253 * it is possible that we didn't log all the parent directories
1254 * for a given inode. If we don't find the dir, just don't
1255 * copy the back ref in. The link count fixup code will take
1258 dir
= read_one_inode(root
, parent_objectid
);
1264 inode
= read_one_inode(root
, inode_objectid
);
1270 while (ref_ptr
< ref_end
) {
1272 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1273 &ref_index
, &parent_objectid
);
1275 * parent object can change from one array
1279 dir
= read_one_inode(root
, parent_objectid
);
1285 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1291 /* if we already have a perfect match, we're done */
1292 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1293 ref_index
, name
, namelen
)) {
1295 * look for a conflicting back reference in the
1296 * metadata. if we find one we have to unlink that name
1297 * of the file before we add our new link. Later on, we
1298 * overwrite any existing back reference, and we don't
1299 * want to create dangling pointers in the directory.
1303 ret
= __add_inode_ref(trans
, root
, path
, log
,
1307 ref_index
, name
, namelen
,
1316 /* insert our name */
1317 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1322 btrfs_update_inode(trans
, root
, inode
);
1325 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1334 /* finally write the back reference in the inode */
1335 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1337 btrfs_release_path(path
);
1344 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1345 struct btrfs_root
*root
, u64 ino
)
1349 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1356 static int count_inode_extrefs(struct btrfs_root
*root
,
1357 struct inode
*inode
, struct btrfs_path
*path
)
1361 unsigned int nlink
= 0;
1364 u64 inode_objectid
= btrfs_ino(inode
);
1367 struct btrfs_inode_extref
*extref
;
1368 struct extent_buffer
*leaf
;
1371 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1376 leaf
= path
->nodes
[0];
1377 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1378 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1381 while (cur_offset
< item_size
) {
1382 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1383 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1387 cur_offset
+= name_len
+ sizeof(*extref
);
1391 btrfs_release_path(path
);
1393 btrfs_release_path(path
);
1395 if (ret
< 0 && ret
!= -ENOENT
)
1400 static int count_inode_refs(struct btrfs_root
*root
,
1401 struct inode
*inode
, struct btrfs_path
*path
)
1404 struct btrfs_key key
;
1405 unsigned int nlink
= 0;
1407 unsigned long ptr_end
;
1409 u64 ino
= btrfs_ino(inode
);
1412 key
.type
= BTRFS_INODE_REF_KEY
;
1413 key
.offset
= (u64
)-1;
1416 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1420 if (path
->slots
[0] == 0)
1425 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1427 if (key
.objectid
!= ino
||
1428 key
.type
!= BTRFS_INODE_REF_KEY
)
1430 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1431 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1433 while (ptr
< ptr_end
) {
1434 struct btrfs_inode_ref
*ref
;
1436 ref
= (struct btrfs_inode_ref
*)ptr
;
1437 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1439 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1443 if (key
.offset
== 0)
1445 if (path
->slots
[0] > 0) {
1450 btrfs_release_path(path
);
1452 btrfs_release_path(path
);
1458 * There are a few corners where the link count of the file can't
1459 * be properly maintained during replay. So, instead of adding
1460 * lots of complexity to the log code, we just scan the backrefs
1461 * for any file that has been through replay.
1463 * The scan will update the link count on the inode to reflect the
1464 * number of back refs found. If it goes down to zero, the iput
1465 * will free the inode.
1467 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1468 struct btrfs_root
*root
,
1469 struct inode
*inode
)
1471 struct btrfs_path
*path
;
1474 u64 ino
= btrfs_ino(inode
);
1476 path
= btrfs_alloc_path();
1480 ret
= count_inode_refs(root
, inode
, path
);
1486 ret
= count_inode_extrefs(root
, inode
, path
);
1494 if (nlink
!= inode
->i_nlink
) {
1495 set_nlink(inode
, nlink
);
1496 btrfs_update_inode(trans
, root
, inode
);
1498 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1500 if (inode
->i_nlink
== 0) {
1501 if (S_ISDIR(inode
->i_mode
)) {
1502 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1507 ret
= insert_orphan_item(trans
, root
, ino
);
1511 btrfs_free_path(path
);
1515 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1516 struct btrfs_root
*root
,
1517 struct btrfs_path
*path
)
1520 struct btrfs_key key
;
1521 struct inode
*inode
;
1523 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1524 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1525 key
.offset
= (u64
)-1;
1527 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1532 if (path
->slots
[0] == 0)
1537 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1538 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1539 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1542 ret
= btrfs_del_item(trans
, root
, path
);
1546 btrfs_release_path(path
);
1547 inode
= read_one_inode(root
, key
.offset
);
1551 ret
= fixup_inode_link_count(trans
, root
, inode
);
1557 * fixup on a directory may create new entries,
1558 * make sure we always look for the highset possible
1561 key
.offset
= (u64
)-1;
1565 btrfs_release_path(path
);
1571 * record a given inode in the fixup dir so we can check its link
1572 * count when replay is done. The link count is incremented here
1573 * so the inode won't go away until we check it
1575 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1576 struct btrfs_root
*root
,
1577 struct btrfs_path
*path
,
1580 struct btrfs_key key
;
1582 struct inode
*inode
;
1584 inode
= read_one_inode(root
, objectid
);
1588 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1589 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1590 key
.offset
= objectid
;
1592 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1594 btrfs_release_path(path
);
1596 if (!inode
->i_nlink
)
1597 set_nlink(inode
, 1);
1600 ret
= btrfs_update_inode(trans
, root
, inode
);
1601 } else if (ret
== -EEXIST
) {
1604 BUG(); /* Logic Error */
1612 * when replaying the log for a directory, we only insert names
1613 * for inodes that actually exist. This means an fsync on a directory
1614 * does not implicitly fsync all the new files in it
1616 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1617 struct btrfs_root
*root
,
1618 u64 dirid
, u64 index
,
1619 char *name
, int name_len
,
1620 struct btrfs_key
*location
)
1622 struct inode
*inode
;
1626 inode
= read_one_inode(root
, location
->objectid
);
1630 dir
= read_one_inode(root
, dirid
);
1636 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1638 /* FIXME, put inode into FIXUP list */
1646 * Return true if an inode reference exists in the log for the given name,
1647 * inode and parent inode.
1649 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1650 const char *name
, const int name_len
,
1651 const u64 dirid
, const u64 ino
)
1653 struct btrfs_key search_key
;
1655 search_key
.objectid
= ino
;
1656 search_key
.type
= BTRFS_INODE_REF_KEY
;
1657 search_key
.offset
= dirid
;
1658 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1661 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1662 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1663 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1670 * take a single entry in a log directory item and replay it into
1673 * if a conflicting item exists in the subdirectory already,
1674 * the inode it points to is unlinked and put into the link count
1677 * If a name from the log points to a file or directory that does
1678 * not exist in the FS, it is skipped. fsyncs on directories
1679 * do not force down inodes inside that directory, just changes to the
1680 * names or unlinks in a directory.
1682 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1683 * non-existing inode) and 1 if the name was replayed.
1685 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1686 struct btrfs_root
*root
,
1687 struct btrfs_path
*path
,
1688 struct extent_buffer
*eb
,
1689 struct btrfs_dir_item
*di
,
1690 struct btrfs_key
*key
)
1694 struct btrfs_dir_item
*dst_di
;
1695 struct btrfs_key found_key
;
1696 struct btrfs_key log_key
;
1701 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1702 bool name_added
= false;
1704 dir
= read_one_inode(root
, key
->objectid
);
1708 name_len
= btrfs_dir_name_len(eb
, di
);
1709 name
= kmalloc(name_len
, GFP_NOFS
);
1715 log_type
= btrfs_dir_type(eb
, di
);
1716 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1719 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1720 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1725 btrfs_release_path(path
);
1727 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1728 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1730 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1731 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1740 if (IS_ERR_OR_NULL(dst_di
)) {
1741 /* we need a sequence number to insert, so we only
1742 * do inserts for the BTRFS_DIR_INDEX_KEY types
1744 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1749 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1750 /* the existing item matches the logged item */
1751 if (found_key
.objectid
== log_key
.objectid
&&
1752 found_key
.type
== log_key
.type
&&
1753 found_key
.offset
== log_key
.offset
&&
1754 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1755 update_size
= false;
1760 * don't drop the conflicting directory entry if the inode
1761 * for the new entry doesn't exist
1766 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1770 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1773 btrfs_release_path(path
);
1774 if (!ret
&& update_size
) {
1775 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1776 ret
= btrfs_update_inode(trans
, root
, dir
);
1780 if (!ret
&& name_added
)
1785 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1786 key
->objectid
, log_key
.objectid
)) {
1787 /* The dentry will be added later. */
1789 update_size
= false;
1792 btrfs_release_path(path
);
1793 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1794 name
, name_len
, &log_key
);
1795 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1799 update_size
= false;
1805 * find all the names in a directory item and reconcile them into
1806 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1807 * one name in a directory item, but the same code gets used for
1808 * both directory index types
1810 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1811 struct btrfs_root
*root
,
1812 struct btrfs_path
*path
,
1813 struct extent_buffer
*eb
, int slot
,
1814 struct btrfs_key
*key
)
1817 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1818 struct btrfs_dir_item
*di
;
1821 unsigned long ptr_end
;
1822 struct btrfs_path
*fixup_path
= NULL
;
1824 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1825 ptr_end
= ptr
+ item_size
;
1826 while (ptr
< ptr_end
) {
1827 di
= (struct btrfs_dir_item
*)ptr
;
1828 if (verify_dir_item(root
, eb
, di
))
1830 name_len
= btrfs_dir_name_len(eb
, di
);
1831 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1834 ptr
= (unsigned long)(di
+ 1);
1838 * If this entry refers to a non-directory (directories can not
1839 * have a link count > 1) and it was added in the transaction
1840 * that was not committed, make sure we fixup the link count of
1841 * the inode it the entry points to. Otherwise something like
1842 * the following would result in a directory pointing to an
1843 * inode with a wrong link that does not account for this dir
1851 * ln testdir/bar testdir/bar_link
1852 * ln testdir/foo testdir/foo_link
1853 * xfs_io -c "fsync" testdir/bar
1857 * mount fs, log replay happens
1859 * File foo would remain with a link count of 1 when it has two
1860 * entries pointing to it in the directory testdir. This would
1861 * make it impossible to ever delete the parent directory has
1862 * it would result in stale dentries that can never be deleted.
1864 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1865 struct btrfs_key di_key
;
1868 fixup_path
= btrfs_alloc_path();
1875 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1876 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1883 btrfs_free_path(fixup_path
);
1888 * directory replay has two parts. There are the standard directory
1889 * items in the log copied from the subvolume, and range items
1890 * created in the log while the subvolume was logged.
1892 * The range items tell us which parts of the key space the log
1893 * is authoritative for. During replay, if a key in the subvolume
1894 * directory is in a logged range item, but not actually in the log
1895 * that means it was deleted from the directory before the fsync
1896 * and should be removed.
1898 static noinline
int find_dir_range(struct btrfs_root
*root
,
1899 struct btrfs_path
*path
,
1900 u64 dirid
, int key_type
,
1901 u64
*start_ret
, u64
*end_ret
)
1903 struct btrfs_key key
;
1905 struct btrfs_dir_log_item
*item
;
1909 if (*start_ret
== (u64
)-1)
1912 key
.objectid
= dirid
;
1913 key
.type
= key_type
;
1914 key
.offset
= *start_ret
;
1916 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1920 if (path
->slots
[0] == 0)
1925 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1927 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1931 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1932 struct btrfs_dir_log_item
);
1933 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1935 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1937 *start_ret
= key
.offset
;
1938 *end_ret
= found_end
;
1943 /* check the next slot in the tree to see if it is a valid item */
1944 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1946 if (path
->slots
[0] >= nritems
) {
1947 ret
= btrfs_next_leaf(root
, path
);
1952 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1954 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1958 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1959 struct btrfs_dir_log_item
);
1960 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1961 *start_ret
= key
.offset
;
1962 *end_ret
= found_end
;
1965 btrfs_release_path(path
);
1970 * this looks for a given directory item in the log. If the directory
1971 * item is not in the log, the item is removed and the inode it points
1974 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1975 struct btrfs_root
*root
,
1976 struct btrfs_root
*log
,
1977 struct btrfs_path
*path
,
1978 struct btrfs_path
*log_path
,
1980 struct btrfs_key
*dir_key
)
1983 struct extent_buffer
*eb
;
1986 struct btrfs_dir_item
*di
;
1987 struct btrfs_dir_item
*log_di
;
1990 unsigned long ptr_end
;
1992 struct inode
*inode
;
1993 struct btrfs_key location
;
1996 eb
= path
->nodes
[0];
1997 slot
= path
->slots
[0];
1998 item_size
= btrfs_item_size_nr(eb
, slot
);
1999 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2000 ptr_end
= ptr
+ item_size
;
2001 while (ptr
< ptr_end
) {
2002 di
= (struct btrfs_dir_item
*)ptr
;
2003 if (verify_dir_item(root
, eb
, di
)) {
2008 name_len
= btrfs_dir_name_len(eb
, di
);
2009 name
= kmalloc(name_len
, GFP_NOFS
);
2014 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2017 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2018 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2021 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2022 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2028 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2029 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2030 btrfs_release_path(path
);
2031 btrfs_release_path(log_path
);
2032 inode
= read_one_inode(root
, location
.objectid
);
2038 ret
= link_to_fixup_dir(trans
, root
,
2039 path
, location
.objectid
);
2047 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
2050 ret
= btrfs_run_delayed_items(trans
, root
);
2056 /* there might still be more names under this key
2057 * check and repeat if required
2059 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2065 } else if (IS_ERR(log_di
)) {
2067 return PTR_ERR(log_di
);
2069 btrfs_release_path(log_path
);
2072 ptr
= (unsigned long)(di
+ 1);
2077 btrfs_release_path(path
);
2078 btrfs_release_path(log_path
);
2082 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2083 struct btrfs_root
*root
,
2084 struct btrfs_root
*log
,
2085 struct btrfs_path
*path
,
2088 struct btrfs_key search_key
;
2089 struct btrfs_path
*log_path
;
2094 log_path
= btrfs_alloc_path();
2098 search_key
.objectid
= ino
;
2099 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2100 search_key
.offset
= 0;
2102 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2106 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2107 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2108 struct btrfs_key key
;
2109 struct btrfs_dir_item
*di
;
2110 struct btrfs_dir_item
*log_di
;
2114 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2115 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2120 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2121 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2123 while (cur
< total_size
) {
2124 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2125 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2126 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2129 name
= kmalloc(name_len
, GFP_NOFS
);
2134 read_extent_buffer(path
->nodes
[0], name
,
2135 (unsigned long)(di
+ 1), name_len
);
2137 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2139 btrfs_release_path(log_path
);
2141 /* Doesn't exist in log tree, so delete it. */
2142 btrfs_release_path(path
);
2143 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2144 name
, name_len
, -1);
2151 ret
= btrfs_delete_one_dir_name(trans
, root
,
2155 btrfs_release_path(path
);
2160 if (IS_ERR(log_di
)) {
2161 ret
= PTR_ERR(log_di
);
2165 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2168 ret
= btrfs_next_leaf(root
, path
);
2174 btrfs_free_path(log_path
);
2175 btrfs_release_path(path
);
2181 * deletion replay happens before we copy any new directory items
2182 * out of the log or out of backreferences from inodes. It
2183 * scans the log to find ranges of keys that log is authoritative for,
2184 * and then scans the directory to find items in those ranges that are
2185 * not present in the log.
2187 * Anything we don't find in the log is unlinked and removed from the
2190 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2191 struct btrfs_root
*root
,
2192 struct btrfs_root
*log
,
2193 struct btrfs_path
*path
,
2194 u64 dirid
, int del_all
)
2198 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2200 struct btrfs_key dir_key
;
2201 struct btrfs_key found_key
;
2202 struct btrfs_path
*log_path
;
2205 dir_key
.objectid
= dirid
;
2206 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2207 log_path
= btrfs_alloc_path();
2211 dir
= read_one_inode(root
, dirid
);
2212 /* it isn't an error if the inode isn't there, that can happen
2213 * because we replay the deletes before we copy in the inode item
2217 btrfs_free_path(log_path
);
2225 range_end
= (u64
)-1;
2227 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2228 &range_start
, &range_end
);
2233 dir_key
.offset
= range_start
;
2236 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2241 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2242 if (path
->slots
[0] >= nritems
) {
2243 ret
= btrfs_next_leaf(root
, path
);
2249 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2251 if (found_key
.objectid
!= dirid
||
2252 found_key
.type
!= dir_key
.type
)
2255 if (found_key
.offset
> range_end
)
2258 ret
= check_item_in_log(trans
, root
, log
, path
,
2263 if (found_key
.offset
== (u64
)-1)
2265 dir_key
.offset
= found_key
.offset
+ 1;
2267 btrfs_release_path(path
);
2268 if (range_end
== (u64
)-1)
2270 range_start
= range_end
+ 1;
2275 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2276 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2277 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2278 btrfs_release_path(path
);
2282 btrfs_release_path(path
);
2283 btrfs_free_path(log_path
);
2289 * the process_func used to replay items from the log tree. This
2290 * gets called in two different stages. The first stage just looks
2291 * for inodes and makes sure they are all copied into the subvolume.
2293 * The second stage copies all the other item types from the log into
2294 * the subvolume. The two stage approach is slower, but gets rid of
2295 * lots of complexity around inodes referencing other inodes that exist
2296 * only in the log (references come from either directory items or inode
2299 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2300 struct walk_control
*wc
, u64 gen
)
2303 struct btrfs_path
*path
;
2304 struct btrfs_root
*root
= wc
->replay_dest
;
2305 struct btrfs_key key
;
2310 ret
= btrfs_read_buffer(eb
, gen
);
2314 level
= btrfs_header_level(eb
);
2319 path
= btrfs_alloc_path();
2323 nritems
= btrfs_header_nritems(eb
);
2324 for (i
= 0; i
< nritems
; i
++) {
2325 btrfs_item_key_to_cpu(eb
, &key
, i
);
2327 /* inode keys are done during the first stage */
2328 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2329 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2330 struct btrfs_inode_item
*inode_item
;
2333 inode_item
= btrfs_item_ptr(eb
, i
,
2334 struct btrfs_inode_item
);
2335 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2336 path
, key
.objectid
);
2339 mode
= btrfs_inode_mode(eb
, inode_item
);
2340 if (S_ISDIR(mode
)) {
2341 ret
= replay_dir_deletes(wc
->trans
,
2342 root
, log
, path
, key
.objectid
, 0);
2346 ret
= overwrite_item(wc
->trans
, root
, path
,
2351 /* for regular files, make sure corresponding
2352 * orphan item exist. extents past the new EOF
2353 * will be truncated later by orphan cleanup.
2355 if (S_ISREG(mode
)) {
2356 ret
= insert_orphan_item(wc
->trans
, root
,
2362 ret
= link_to_fixup_dir(wc
->trans
, root
,
2363 path
, key
.objectid
);
2368 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2369 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2370 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2376 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2379 /* these keys are simply copied */
2380 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2381 ret
= overwrite_item(wc
->trans
, root
, path
,
2385 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2386 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2387 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2389 if (ret
&& ret
!= -ENOENT
)
2392 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2393 ret
= replay_one_extent(wc
->trans
, root
, path
,
2397 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2398 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2404 btrfs_free_path(path
);
2408 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2409 struct btrfs_root
*root
,
2410 struct btrfs_path
*path
, int *level
,
2411 struct walk_control
*wc
)
2416 struct extent_buffer
*next
;
2417 struct extent_buffer
*cur
;
2418 struct extent_buffer
*parent
;
2422 WARN_ON(*level
< 0);
2423 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2425 while (*level
> 0) {
2426 WARN_ON(*level
< 0);
2427 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2428 cur
= path
->nodes
[*level
];
2430 WARN_ON(btrfs_header_level(cur
) != *level
);
2432 if (path
->slots
[*level
] >=
2433 btrfs_header_nritems(cur
))
2436 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2437 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2438 blocksize
= root
->nodesize
;
2440 parent
= path
->nodes
[*level
];
2441 root_owner
= btrfs_header_owner(parent
);
2443 next
= btrfs_find_create_tree_block(root
, bytenr
);
2445 return PTR_ERR(next
);
2448 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2450 free_extent_buffer(next
);
2454 path
->slots
[*level
]++;
2456 ret
= btrfs_read_buffer(next
, ptr_gen
);
2458 free_extent_buffer(next
);
2463 btrfs_tree_lock(next
);
2464 btrfs_set_lock_blocking(next
);
2465 clean_tree_block(trans
, root
->fs_info
,
2467 btrfs_wait_tree_block_writeback(next
);
2468 btrfs_tree_unlock(next
);
2470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2471 clear_extent_buffer_dirty(next
);
2474 WARN_ON(root_owner
!=
2475 BTRFS_TREE_LOG_OBJECTID
);
2476 ret
= btrfs_free_and_pin_reserved_extent(root
,
2479 free_extent_buffer(next
);
2483 free_extent_buffer(next
);
2486 ret
= btrfs_read_buffer(next
, ptr_gen
);
2488 free_extent_buffer(next
);
2492 WARN_ON(*level
<= 0);
2493 if (path
->nodes
[*level
-1])
2494 free_extent_buffer(path
->nodes
[*level
-1]);
2495 path
->nodes
[*level
-1] = next
;
2496 *level
= btrfs_header_level(next
);
2497 path
->slots
[*level
] = 0;
2500 WARN_ON(*level
< 0);
2501 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2503 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2509 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2510 struct btrfs_root
*root
,
2511 struct btrfs_path
*path
, int *level
,
2512 struct walk_control
*wc
)
2519 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2520 slot
= path
->slots
[i
];
2521 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2524 WARN_ON(*level
== 0);
2527 struct extent_buffer
*parent
;
2528 if (path
->nodes
[*level
] == root
->node
)
2529 parent
= path
->nodes
[*level
];
2531 parent
= path
->nodes
[*level
+ 1];
2533 root_owner
= btrfs_header_owner(parent
);
2534 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2535 btrfs_header_generation(path
->nodes
[*level
]));
2540 struct extent_buffer
*next
;
2542 next
= path
->nodes
[*level
];
2545 btrfs_tree_lock(next
);
2546 btrfs_set_lock_blocking(next
);
2547 clean_tree_block(trans
, root
->fs_info
,
2549 btrfs_wait_tree_block_writeback(next
);
2550 btrfs_tree_unlock(next
);
2552 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2553 clear_extent_buffer_dirty(next
);
2556 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2557 ret
= btrfs_free_and_pin_reserved_extent(root
,
2558 path
->nodes
[*level
]->start
,
2559 path
->nodes
[*level
]->len
);
2563 free_extent_buffer(path
->nodes
[*level
]);
2564 path
->nodes
[*level
] = NULL
;
2572 * drop the reference count on the tree rooted at 'snap'. This traverses
2573 * the tree freeing any blocks that have a ref count of zero after being
2576 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2577 struct btrfs_root
*log
, struct walk_control
*wc
)
2582 struct btrfs_path
*path
;
2585 path
= btrfs_alloc_path();
2589 level
= btrfs_header_level(log
->node
);
2591 path
->nodes
[level
] = log
->node
;
2592 extent_buffer_get(log
->node
);
2593 path
->slots
[level
] = 0;
2596 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2604 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2613 /* was the root node processed? if not, catch it here */
2614 if (path
->nodes
[orig_level
]) {
2615 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2616 btrfs_header_generation(path
->nodes
[orig_level
]));
2620 struct extent_buffer
*next
;
2622 next
= path
->nodes
[orig_level
];
2625 btrfs_tree_lock(next
);
2626 btrfs_set_lock_blocking(next
);
2627 clean_tree_block(trans
, log
->fs_info
, next
);
2628 btrfs_wait_tree_block_writeback(next
);
2629 btrfs_tree_unlock(next
);
2631 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2632 clear_extent_buffer_dirty(next
);
2635 WARN_ON(log
->root_key
.objectid
!=
2636 BTRFS_TREE_LOG_OBJECTID
);
2637 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2645 btrfs_free_path(path
);
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2653 static int update_log_root(struct btrfs_trans_handle
*trans
,
2654 struct btrfs_root
*log
)
2658 if (log
->log_transid
== 1) {
2659 /* insert root item on the first sync */
2660 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2661 &log
->root_key
, &log
->root_item
);
2663 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2664 &log
->root_key
, &log
->root_item
);
2669 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2672 int index
= transid
% 2;
2675 * we only allow two pending log transactions at a time,
2676 * so we know that if ours is more than 2 older than the
2677 * current transaction, we're done
2680 prepare_to_wait(&root
->log_commit_wait
[index
],
2681 &wait
, TASK_UNINTERRUPTIBLE
);
2682 mutex_unlock(&root
->log_mutex
);
2684 if (root
->log_transid_committed
< transid
&&
2685 atomic_read(&root
->log_commit
[index
]))
2688 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2689 mutex_lock(&root
->log_mutex
);
2690 } while (root
->log_transid_committed
< transid
&&
2691 atomic_read(&root
->log_commit
[index
]));
2694 static void wait_for_writer(struct btrfs_root
*root
)
2698 while (atomic_read(&root
->log_writers
)) {
2699 prepare_to_wait(&root
->log_writer_wait
,
2700 &wait
, TASK_UNINTERRUPTIBLE
);
2701 mutex_unlock(&root
->log_mutex
);
2702 if (atomic_read(&root
->log_writers
))
2704 finish_wait(&root
->log_writer_wait
, &wait
);
2705 mutex_lock(&root
->log_mutex
);
2709 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2710 struct btrfs_log_ctx
*ctx
)
2715 mutex_lock(&root
->log_mutex
);
2716 list_del_init(&ctx
->list
);
2717 mutex_unlock(&root
->log_mutex
);
2721 * Invoked in log mutex context, or be sure there is no other task which
2722 * can access the list.
2724 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2725 int index
, int error
)
2727 struct btrfs_log_ctx
*ctx
;
2728 struct btrfs_log_ctx
*safe
;
2730 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2731 list_del_init(&ctx
->list
);
2732 ctx
->log_ret
= error
;
2735 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2739 * btrfs_sync_log does sends a given tree log down to the disk and
2740 * updates the super blocks to record it. When this call is done,
2741 * you know that any inodes previously logged are safely on disk only
2744 * Any other return value means you need to call btrfs_commit_transaction.
2745 * Some of the edge cases for fsyncing directories that have had unlinks
2746 * or renames done in the past mean that sometimes the only safe
2747 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2748 * that has happened.
2750 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2751 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2757 struct btrfs_root
*log
= root
->log_root
;
2758 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2759 int log_transid
= 0;
2760 struct btrfs_log_ctx root_log_ctx
;
2761 struct blk_plug plug
;
2763 mutex_lock(&root
->log_mutex
);
2764 log_transid
= ctx
->log_transid
;
2765 if (root
->log_transid_committed
>= log_transid
) {
2766 mutex_unlock(&root
->log_mutex
);
2767 return ctx
->log_ret
;
2770 index1
= log_transid
% 2;
2771 if (atomic_read(&root
->log_commit
[index1
])) {
2772 wait_log_commit(root
, log_transid
);
2773 mutex_unlock(&root
->log_mutex
);
2774 return ctx
->log_ret
;
2776 ASSERT(log_transid
== root
->log_transid
);
2777 atomic_set(&root
->log_commit
[index1
], 1);
2779 /* wait for previous tree log sync to complete */
2780 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2781 wait_log_commit(root
, log_transid
- 1);
2784 int batch
= atomic_read(&root
->log_batch
);
2785 /* when we're on an ssd, just kick the log commit out */
2786 if (!btrfs_test_opt(root
->fs_info
, SSD
) &&
2787 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2788 mutex_unlock(&root
->log_mutex
);
2789 schedule_timeout_uninterruptible(1);
2790 mutex_lock(&root
->log_mutex
);
2792 wait_for_writer(root
);
2793 if (batch
== atomic_read(&root
->log_batch
))
2797 /* bail out if we need to do a full commit */
2798 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2800 btrfs_free_logged_extents(log
, log_transid
);
2801 mutex_unlock(&root
->log_mutex
);
2805 if (log_transid
% 2 == 0)
2806 mark
= EXTENT_DIRTY
;
2810 /* we start IO on all the marked extents here, but we don't actually
2811 * wait for them until later.
2813 blk_start_plug(&plug
);
2814 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2816 blk_finish_plug(&plug
);
2817 btrfs_abort_transaction(trans
, ret
);
2818 btrfs_free_logged_extents(log
, log_transid
);
2819 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2820 mutex_unlock(&root
->log_mutex
);
2824 btrfs_set_root_node(&log
->root_item
, log
->node
);
2826 root
->log_transid
++;
2827 log
->log_transid
= root
->log_transid
;
2828 root
->log_start_pid
= 0;
2830 * IO has been started, blocks of the log tree have WRITTEN flag set
2831 * in their headers. new modifications of the log will be written to
2832 * new positions. so it's safe to allow log writers to go in.
2834 mutex_unlock(&root
->log_mutex
);
2836 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2838 mutex_lock(&log_root_tree
->log_mutex
);
2839 atomic_inc(&log_root_tree
->log_batch
);
2840 atomic_inc(&log_root_tree
->log_writers
);
2842 index2
= log_root_tree
->log_transid
% 2;
2843 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2844 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2846 mutex_unlock(&log_root_tree
->log_mutex
);
2848 ret
= update_log_root(trans
, log
);
2850 mutex_lock(&log_root_tree
->log_mutex
);
2851 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2853 * Implicit memory barrier after atomic_dec_and_test
2855 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2856 wake_up(&log_root_tree
->log_writer_wait
);
2860 if (!list_empty(&root_log_ctx
.list
))
2861 list_del_init(&root_log_ctx
.list
);
2863 blk_finish_plug(&plug
);
2864 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2866 if (ret
!= -ENOSPC
) {
2867 btrfs_abort_transaction(trans
, ret
);
2868 mutex_unlock(&log_root_tree
->log_mutex
);
2871 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2872 btrfs_free_logged_extents(log
, log_transid
);
2873 mutex_unlock(&log_root_tree
->log_mutex
);
2878 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2879 blk_finish_plug(&plug
);
2880 list_del_init(&root_log_ctx
.list
);
2881 mutex_unlock(&log_root_tree
->log_mutex
);
2882 ret
= root_log_ctx
.log_ret
;
2886 index2
= root_log_ctx
.log_transid
% 2;
2887 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2888 blk_finish_plug(&plug
);
2889 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2891 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2892 wait_log_commit(log_root_tree
,
2893 root_log_ctx
.log_transid
);
2894 mutex_unlock(&log_root_tree
->log_mutex
);
2896 ret
= root_log_ctx
.log_ret
;
2899 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2900 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2902 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2903 wait_log_commit(log_root_tree
,
2904 root_log_ctx
.log_transid
- 1);
2907 wait_for_writer(log_root_tree
);
2910 * now that we've moved on to the tree of log tree roots,
2911 * check the full commit flag again
2913 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2914 blk_finish_plug(&plug
);
2915 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2916 btrfs_free_logged_extents(log
, log_transid
);
2917 mutex_unlock(&log_root_tree
->log_mutex
);
2919 goto out_wake_log_root
;
2922 ret
= btrfs_write_marked_extents(log_root_tree
,
2923 &log_root_tree
->dirty_log_pages
,
2924 EXTENT_DIRTY
| EXTENT_NEW
);
2925 blk_finish_plug(&plug
);
2927 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2928 btrfs_abort_transaction(trans
, ret
);
2929 btrfs_free_logged_extents(log
, log_transid
);
2930 mutex_unlock(&log_root_tree
->log_mutex
);
2931 goto out_wake_log_root
;
2933 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2935 ret
= btrfs_wait_marked_extents(log_root_tree
,
2936 &log_root_tree
->dirty_log_pages
,
2937 EXTENT_NEW
| EXTENT_DIRTY
);
2939 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2940 btrfs_free_logged_extents(log
, log_transid
);
2941 mutex_unlock(&log_root_tree
->log_mutex
);
2942 goto out_wake_log_root
;
2944 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2946 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2947 log_root_tree
->node
->start
);
2948 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2949 btrfs_header_level(log_root_tree
->node
));
2951 log_root_tree
->log_transid
++;
2952 mutex_unlock(&log_root_tree
->log_mutex
);
2955 * nobody else is going to jump in and write the the ctree
2956 * super here because the log_commit atomic below is protecting
2957 * us. We must be called with a transaction handle pinning
2958 * the running transaction open, so a full commit can't hop
2959 * in and cause problems either.
2961 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2963 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2964 btrfs_abort_transaction(trans
, ret
);
2965 goto out_wake_log_root
;
2968 mutex_lock(&root
->log_mutex
);
2969 if (root
->last_log_commit
< log_transid
)
2970 root
->last_log_commit
= log_transid
;
2971 mutex_unlock(&root
->log_mutex
);
2974 mutex_lock(&log_root_tree
->log_mutex
);
2975 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2977 log_root_tree
->log_transid_committed
++;
2978 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2979 mutex_unlock(&log_root_tree
->log_mutex
);
2982 * The barrier before waitqueue_active is needed so all the updates
2983 * above are seen by the woken threads. It might not be necessary, but
2984 * proving that seems to be hard.
2987 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2988 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2990 mutex_lock(&root
->log_mutex
);
2991 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2992 root
->log_transid_committed
++;
2993 atomic_set(&root
->log_commit
[index1
], 0);
2994 mutex_unlock(&root
->log_mutex
);
2997 * The barrier before waitqueue_active is needed so all the updates
2998 * above are seen by the woken threads. It might not be necessary, but
2999 * proving that seems to be hard.
3002 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
3003 wake_up(&root
->log_commit_wait
[index1
]);
3007 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3008 struct btrfs_root
*log
)
3013 struct walk_control wc
= {
3015 .process_func
= process_one_buffer
3018 ret
= walk_log_tree(trans
, log
, &wc
);
3021 btrfs_abort_transaction(trans
, ret
);
3023 btrfs_handle_fs_error(log
->fs_info
, ret
, NULL
);
3027 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3029 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
,
3034 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3035 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3039 * We may have short-circuited the log tree with the full commit logic
3040 * and left ordered extents on our list, so clear these out to keep us
3041 * from leaking inodes and memory.
3043 btrfs_free_logged_extents(log
, 0);
3044 btrfs_free_logged_extents(log
, 1);
3046 free_extent_buffer(log
->node
);
3051 * free all the extents used by the tree log. This should be called
3052 * at commit time of the full transaction
3054 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3056 if (root
->log_root
) {
3057 free_log_tree(trans
, root
->log_root
);
3058 root
->log_root
= NULL
;
3063 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3064 struct btrfs_fs_info
*fs_info
)
3066 if (fs_info
->log_root_tree
) {
3067 free_log_tree(trans
, fs_info
->log_root_tree
);
3068 fs_info
->log_root_tree
= NULL
;
3074 * If both a file and directory are logged, and unlinks or renames are
3075 * mixed in, we have a few interesting corners:
3077 * create file X in dir Y
3078 * link file X to X.link in dir Y
3080 * unlink file X but leave X.link
3083 * After a crash we would expect only X.link to exist. But file X
3084 * didn't get fsync'd again so the log has back refs for X and X.link.
3086 * We solve this by removing directory entries and inode backrefs from the
3087 * log when a file that was logged in the current transaction is
3088 * unlinked. Any later fsync will include the updated log entries, and
3089 * we'll be able to reconstruct the proper directory items from backrefs.
3091 * This optimizations allows us to avoid relogging the entire inode
3092 * or the entire directory.
3094 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3095 struct btrfs_root
*root
,
3096 const char *name
, int name_len
,
3097 struct inode
*dir
, u64 index
)
3099 struct btrfs_root
*log
;
3100 struct btrfs_dir_item
*di
;
3101 struct btrfs_path
*path
;
3105 u64 dir_ino
= btrfs_ino(dir
);
3107 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
3110 ret
= join_running_log_trans(root
);
3114 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
3116 log
= root
->log_root
;
3117 path
= btrfs_alloc_path();
3123 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3124 name
, name_len
, -1);
3130 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3131 bytes_del
+= name_len
;
3137 btrfs_release_path(path
);
3138 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3139 index
, name
, name_len
, -1);
3145 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3146 bytes_del
+= name_len
;
3153 /* update the directory size in the log to reflect the names
3157 struct btrfs_key key
;
3159 key
.objectid
= dir_ino
;
3161 key
.type
= BTRFS_INODE_ITEM_KEY
;
3162 btrfs_release_path(path
);
3164 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3170 struct btrfs_inode_item
*item
;
3173 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3174 struct btrfs_inode_item
);
3175 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3176 if (i_size
> bytes_del
)
3177 i_size
-= bytes_del
;
3180 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3181 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3184 btrfs_release_path(path
);
3187 btrfs_free_path(path
);
3189 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3190 if (ret
== -ENOSPC
) {
3191 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3194 btrfs_abort_transaction(trans
, ret
);
3196 btrfs_end_log_trans(root
);
3201 /* see comments for btrfs_del_dir_entries_in_log */
3202 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3203 struct btrfs_root
*root
,
3204 const char *name
, int name_len
,
3205 struct inode
*inode
, u64 dirid
)
3207 struct btrfs_root
*log
;
3211 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3214 ret
= join_running_log_trans(root
);
3217 log
= root
->log_root
;
3218 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3220 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3222 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3223 if (ret
== -ENOSPC
) {
3224 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3226 } else if (ret
< 0 && ret
!= -ENOENT
)
3227 btrfs_abort_transaction(trans
, ret
);
3228 btrfs_end_log_trans(root
);
3234 * creates a range item in the log for 'dirid'. first_offset and
3235 * last_offset tell us which parts of the key space the log should
3236 * be considered authoritative for.
3238 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3239 struct btrfs_root
*log
,
3240 struct btrfs_path
*path
,
3241 int key_type
, u64 dirid
,
3242 u64 first_offset
, u64 last_offset
)
3245 struct btrfs_key key
;
3246 struct btrfs_dir_log_item
*item
;
3248 key
.objectid
= dirid
;
3249 key
.offset
= first_offset
;
3250 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3251 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3253 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3254 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3258 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3259 struct btrfs_dir_log_item
);
3260 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3261 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3262 btrfs_release_path(path
);
3267 * log all the items included in the current transaction for a given
3268 * directory. This also creates the range items in the log tree required
3269 * to replay anything deleted before the fsync
3271 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3272 struct btrfs_root
*root
, struct inode
*inode
,
3273 struct btrfs_path
*path
,
3274 struct btrfs_path
*dst_path
, int key_type
,
3275 struct btrfs_log_ctx
*ctx
,
3276 u64 min_offset
, u64
*last_offset_ret
)
3278 struct btrfs_key min_key
;
3279 struct btrfs_root
*log
= root
->log_root
;
3280 struct extent_buffer
*src
;
3285 u64 first_offset
= min_offset
;
3286 u64 last_offset
= (u64
)-1;
3287 u64 ino
= btrfs_ino(inode
);
3289 log
= root
->log_root
;
3291 min_key
.objectid
= ino
;
3292 min_key
.type
= key_type
;
3293 min_key
.offset
= min_offset
;
3295 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3298 * we didn't find anything from this transaction, see if there
3299 * is anything at all
3301 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3302 min_key
.objectid
= ino
;
3303 min_key
.type
= key_type
;
3304 min_key
.offset
= (u64
)-1;
3305 btrfs_release_path(path
);
3306 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3308 btrfs_release_path(path
);
3311 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3313 /* if ret == 0 there are items for this type,
3314 * create a range to tell us the last key of this type.
3315 * otherwise, there are no items in this directory after
3316 * *min_offset, and we create a range to indicate that.
3319 struct btrfs_key tmp
;
3320 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3322 if (key_type
== tmp
.type
)
3323 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3328 /* go backward to find any previous key */
3329 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3331 struct btrfs_key tmp
;
3332 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3333 if (key_type
== tmp
.type
) {
3334 first_offset
= tmp
.offset
;
3335 ret
= overwrite_item(trans
, log
, dst_path
,
3336 path
->nodes
[0], path
->slots
[0],
3344 btrfs_release_path(path
);
3347 * Find the first key from this transaction again. See the note for
3348 * log_new_dir_dentries, if we're logging a directory recursively we
3349 * won't be holding its i_mutex, which means we can modify the directory
3350 * while we're logging it. If we remove an entry between our first
3351 * search and this search we'll not find the key again and can just
3354 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3359 * we have a block from this transaction, log every item in it
3360 * from our directory
3363 struct btrfs_key tmp
;
3364 src
= path
->nodes
[0];
3365 nritems
= btrfs_header_nritems(src
);
3366 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3367 struct btrfs_dir_item
*di
;
3369 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3371 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3373 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3381 * We must make sure that when we log a directory entry,
3382 * the corresponding inode, after log replay, has a
3383 * matching link count. For example:
3389 * xfs_io -c "fsync" mydir
3391 * <mount fs and log replay>
3393 * Would result in a fsync log that when replayed, our
3394 * file inode would have a link count of 1, but we get
3395 * two directory entries pointing to the same inode.
3396 * After removing one of the names, it would not be
3397 * possible to remove the other name, which resulted
3398 * always in stale file handle errors, and would not
3399 * be possible to rmdir the parent directory, since
3400 * its i_size could never decrement to the value
3401 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3403 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3404 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3406 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3407 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3408 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3409 ctx
->log_new_dentries
= true;
3411 path
->slots
[0] = nritems
;
3414 * look ahead to the next item and see if it is also
3415 * from this directory and from this transaction
3417 ret
= btrfs_next_leaf(root
, path
);
3420 last_offset
= (u64
)-1;
3425 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3426 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3427 last_offset
= (u64
)-1;
3430 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3431 ret
= overwrite_item(trans
, log
, dst_path
,
3432 path
->nodes
[0], path
->slots
[0],
3437 last_offset
= tmp
.offset
;
3442 btrfs_release_path(path
);
3443 btrfs_release_path(dst_path
);
3446 *last_offset_ret
= last_offset
;
3448 * insert the log range keys to indicate where the log
3451 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3452 ino
, first_offset
, last_offset
);
3460 * logging directories is very similar to logging inodes, We find all the items
3461 * from the current transaction and write them to the log.
3463 * The recovery code scans the directory in the subvolume, and if it finds a
3464 * key in the range logged that is not present in the log tree, then it means
3465 * that dir entry was unlinked during the transaction.
3467 * In order for that scan to work, we must include one key smaller than
3468 * the smallest logged by this transaction and one key larger than the largest
3469 * key logged by this transaction.
3471 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3472 struct btrfs_root
*root
, struct inode
*inode
,
3473 struct btrfs_path
*path
,
3474 struct btrfs_path
*dst_path
,
3475 struct btrfs_log_ctx
*ctx
)
3480 int key_type
= BTRFS_DIR_ITEM_KEY
;
3486 ret
= log_dir_items(trans
, root
, inode
, path
,
3487 dst_path
, key_type
, ctx
, min_key
,
3491 if (max_key
== (u64
)-1)
3493 min_key
= max_key
+ 1;
3496 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3497 key_type
= BTRFS_DIR_INDEX_KEY
;
3504 * a helper function to drop items from the log before we relog an
3505 * inode. max_key_type indicates the highest item type to remove.
3506 * This cannot be run for file data extents because it does not
3507 * free the extents they point to.
3509 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3510 struct btrfs_root
*log
,
3511 struct btrfs_path
*path
,
3512 u64 objectid
, int max_key_type
)
3515 struct btrfs_key key
;
3516 struct btrfs_key found_key
;
3519 key
.objectid
= objectid
;
3520 key
.type
= max_key_type
;
3521 key
.offset
= (u64
)-1;
3524 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3525 BUG_ON(ret
== 0); /* Logic error */
3529 if (path
->slots
[0] == 0)
3533 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3536 if (found_key
.objectid
!= objectid
)
3539 found_key
.offset
= 0;
3541 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3544 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3545 path
->slots
[0] - start_slot
+ 1);
3547 * If start slot isn't 0 then we don't need to re-search, we've
3548 * found the last guy with the objectid in this tree.
3550 if (ret
|| start_slot
!= 0)
3552 btrfs_release_path(path
);
3554 btrfs_release_path(path
);
3560 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3561 struct extent_buffer
*leaf
,
3562 struct btrfs_inode_item
*item
,
3563 struct inode
*inode
, int log_inode_only
,
3566 struct btrfs_map_token token
;
3568 btrfs_init_map_token(&token
);
3570 if (log_inode_only
) {
3571 /* set the generation to zero so the recover code
3572 * can tell the difference between an logging
3573 * just to say 'this inode exists' and a logging
3574 * to say 'update this inode with these values'
3576 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3577 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3579 btrfs_set_token_inode_generation(leaf
, item
,
3580 BTRFS_I(inode
)->generation
,
3582 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3585 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3586 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3587 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3588 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3590 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3591 inode
->i_atime
.tv_sec
, &token
);
3592 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3593 inode
->i_atime
.tv_nsec
, &token
);
3595 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3596 inode
->i_mtime
.tv_sec
, &token
);
3597 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3598 inode
->i_mtime
.tv_nsec
, &token
);
3600 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3601 inode
->i_ctime
.tv_sec
, &token
);
3602 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3603 inode
->i_ctime
.tv_nsec
, &token
);
3605 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3608 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3609 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3610 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3611 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3612 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3615 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3616 struct btrfs_root
*log
, struct btrfs_path
*path
,
3617 struct inode
*inode
)
3619 struct btrfs_inode_item
*inode_item
;
3622 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3623 &BTRFS_I(inode
)->location
,
3624 sizeof(*inode_item
));
3625 if (ret
&& ret
!= -EEXIST
)
3627 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3628 struct btrfs_inode_item
);
3629 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3630 btrfs_release_path(path
);
3634 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3635 struct inode
*inode
,
3636 struct btrfs_path
*dst_path
,
3637 struct btrfs_path
*src_path
, u64
*last_extent
,
3638 int start_slot
, int nr
, int inode_only
,
3641 unsigned long src_offset
;
3642 unsigned long dst_offset
;
3643 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3644 struct btrfs_file_extent_item
*extent
;
3645 struct btrfs_inode_item
*inode_item
;
3646 struct extent_buffer
*src
= src_path
->nodes
[0];
3647 struct btrfs_key first_key
, last_key
, key
;
3649 struct btrfs_key
*ins_keys
;
3653 struct list_head ordered_sums
;
3654 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3655 bool has_extents
= false;
3656 bool need_find_last_extent
= true;
3659 INIT_LIST_HEAD(&ordered_sums
);
3661 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3662 nr
* sizeof(u32
), GFP_NOFS
);
3666 first_key
.objectid
= (u64
)-1;
3668 ins_sizes
= (u32
*)ins_data
;
3669 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3671 for (i
= 0; i
< nr
; i
++) {
3672 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3673 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3675 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3676 ins_keys
, ins_sizes
, nr
);
3682 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3683 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3684 dst_path
->slots
[0]);
3686 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3689 last_key
= ins_keys
[i
];
3691 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3692 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3694 struct btrfs_inode_item
);
3695 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3696 inode
, inode_only
== LOG_INODE_EXISTS
,
3699 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3700 src_offset
, ins_sizes
[i
]);
3704 * We set need_find_last_extent here in case we know we were
3705 * processing other items and then walk into the first extent in
3706 * the inode. If we don't hit an extent then nothing changes,
3707 * we'll do the last search the next time around.
3709 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3711 if (first_key
.objectid
== (u64
)-1)
3712 first_key
= ins_keys
[i
];
3714 need_find_last_extent
= false;
3717 /* take a reference on file data extents so that truncates
3718 * or deletes of this inode don't have to relog the inode
3721 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3724 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3725 struct btrfs_file_extent_item
);
3727 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3730 found_type
= btrfs_file_extent_type(src
, extent
);
3731 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3733 ds
= btrfs_file_extent_disk_bytenr(src
,
3735 /* ds == 0 is a hole */
3739 dl
= btrfs_file_extent_disk_num_bytes(src
,
3741 cs
= btrfs_file_extent_offset(src
, extent
);
3742 cl
= btrfs_file_extent_num_bytes(src
,
3744 if (btrfs_file_extent_compression(src
,
3750 ret
= btrfs_lookup_csums_range(
3751 log
->fs_info
->csum_root
,
3752 ds
+ cs
, ds
+ cs
+ cl
- 1,
3755 btrfs_release_path(dst_path
);
3763 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3764 btrfs_release_path(dst_path
);
3768 * we have to do this after the loop above to avoid changing the
3769 * log tree while trying to change the log tree.
3772 while (!list_empty(&ordered_sums
)) {
3773 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3774 struct btrfs_ordered_sum
,
3777 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3778 list_del(&sums
->list
);
3785 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3787 * We don't have any leafs between our current one and the one
3788 * we processed before that can have file extent items for our
3789 * inode (and have a generation number smaller than our current
3792 need_find_last_extent
= false;
3796 * Because we use btrfs_search_forward we could skip leaves that were
3797 * not modified and then assume *last_extent is valid when it really
3798 * isn't. So back up to the previous leaf and read the end of the last
3799 * extent before we go and fill in holes.
3801 if (need_find_last_extent
) {
3804 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3809 if (src_path
->slots
[0])
3810 src_path
->slots
[0]--;
3811 src
= src_path
->nodes
[0];
3812 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3813 if (key
.objectid
!= btrfs_ino(inode
) ||
3814 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3816 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3817 struct btrfs_file_extent_item
);
3818 if (btrfs_file_extent_type(src
, extent
) ==
3819 BTRFS_FILE_EXTENT_INLINE
) {
3820 len
= btrfs_file_extent_inline_len(src
,
3823 *last_extent
= ALIGN(key
.offset
+ len
,
3826 len
= btrfs_file_extent_num_bytes(src
, extent
);
3827 *last_extent
= key
.offset
+ len
;
3831 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3832 * things could have happened
3834 * 1) A merge could have happened, so we could currently be on a leaf
3835 * that holds what we were copying in the first place.
3836 * 2) A split could have happened, and now not all of the items we want
3837 * are on the same leaf.
3839 * So we need to adjust how we search for holes, we need to drop the
3840 * path and re-search for the first extent key we found, and then walk
3841 * forward until we hit the last one we copied.
3843 if (need_find_last_extent
) {
3844 /* btrfs_prev_leaf could return 1 without releasing the path */
3845 btrfs_release_path(src_path
);
3846 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3851 src
= src_path
->nodes
[0];
3852 i
= src_path
->slots
[0];
3858 * Ok so here we need to go through and fill in any holes we may have
3859 * to make sure that holes are punched for those areas in case they had
3860 * extents previously.
3866 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3867 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3871 src
= src_path
->nodes
[0];
3873 need_find_last_extent
= true;
3876 btrfs_item_key_to_cpu(src
, &key
, i
);
3877 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3879 if (key
.objectid
!= btrfs_ino(inode
) ||
3880 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3884 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3885 if (btrfs_file_extent_type(src
, extent
) ==
3886 BTRFS_FILE_EXTENT_INLINE
) {
3887 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3888 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3890 len
= btrfs_file_extent_num_bytes(src
, extent
);
3891 extent_end
= key
.offset
+ len
;
3895 if (*last_extent
== key
.offset
) {
3896 *last_extent
= extent_end
;
3899 offset
= *last_extent
;
3900 len
= key
.offset
- *last_extent
;
3901 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3902 offset
, 0, 0, len
, 0, len
, 0,
3906 *last_extent
= extent_end
;
3909 * Need to let the callers know we dropped the path so they should
3912 if (!ret
&& need_find_last_extent
)
3917 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3919 struct extent_map
*em1
, *em2
;
3921 em1
= list_entry(a
, struct extent_map
, list
);
3922 em2
= list_entry(b
, struct extent_map
, list
);
3924 if (em1
->start
< em2
->start
)
3926 else if (em1
->start
> em2
->start
)
3931 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3932 struct inode
*inode
,
3933 struct btrfs_root
*root
,
3934 const struct extent_map
*em
,
3935 const struct list_head
*logged_list
,
3936 bool *ordered_io_error
)
3938 struct btrfs_ordered_extent
*ordered
;
3939 struct btrfs_root
*log
= root
->log_root
;
3940 u64 mod_start
= em
->mod_start
;
3941 u64 mod_len
= em
->mod_len
;
3942 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3945 LIST_HEAD(ordered_sums
);
3948 *ordered_io_error
= false;
3950 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3951 em
->block_start
== EXTENT_MAP_HOLE
)
3955 * Wait far any ordered extent that covers our extent map. If it
3956 * finishes without an error, first check and see if our csums are on
3957 * our outstanding ordered extents.
3959 list_for_each_entry(ordered
, logged_list
, log_list
) {
3960 struct btrfs_ordered_sum
*sum
;
3965 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3966 mod_start
+ mod_len
<= ordered
->file_offset
)
3969 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3970 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3971 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3972 const u64 start
= ordered
->file_offset
;
3973 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3975 WARN_ON(ordered
->inode
!= inode
);
3976 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3979 wait_event(ordered
->wait
,
3980 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3981 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3983 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3985 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3986 * i_mapping flags, so that the next fsync won't get
3987 * an outdated io error too.
3989 filemap_check_errors(inode
->i_mapping
);
3990 *ordered_io_error
= true;
3994 * We are going to copy all the csums on this ordered extent, so
3995 * go ahead and adjust mod_start and mod_len in case this
3996 * ordered extent has already been logged.
3998 if (ordered
->file_offset
> mod_start
) {
3999 if (ordered
->file_offset
+ ordered
->len
>=
4000 mod_start
+ mod_len
)
4001 mod_len
= ordered
->file_offset
- mod_start
;
4003 * If we have this case
4005 * |--------- logged extent ---------|
4006 * |----- ordered extent ----|
4008 * Just don't mess with mod_start and mod_len, we'll
4009 * just end up logging more csums than we need and it
4013 if (ordered
->file_offset
+ ordered
->len
<
4014 mod_start
+ mod_len
) {
4015 mod_len
= (mod_start
+ mod_len
) -
4016 (ordered
->file_offset
+ ordered
->len
);
4017 mod_start
= ordered
->file_offset
+
4028 * To keep us from looping for the above case of an ordered
4029 * extent that falls inside of the logged extent.
4031 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4035 list_for_each_entry(sum
, &ordered
->list
, list
) {
4036 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4042 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4045 if (em
->compress_type
) {
4047 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4049 csum_offset
= mod_start
- em
->start
;
4053 /* block start is already adjusted for the file extent offset. */
4054 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
4055 em
->block_start
+ csum_offset
,
4056 em
->block_start
+ csum_offset
+
4057 csum_len
- 1, &ordered_sums
, 0);
4061 while (!list_empty(&ordered_sums
)) {
4062 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4063 struct btrfs_ordered_sum
,
4066 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4067 list_del(&sums
->list
);
4074 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4075 struct inode
*inode
, struct btrfs_root
*root
,
4076 const struct extent_map
*em
,
4077 struct btrfs_path
*path
,
4078 const struct list_head
*logged_list
,
4079 struct btrfs_log_ctx
*ctx
)
4081 struct btrfs_root
*log
= root
->log_root
;
4082 struct btrfs_file_extent_item
*fi
;
4083 struct extent_buffer
*leaf
;
4084 struct btrfs_map_token token
;
4085 struct btrfs_key key
;
4086 u64 extent_offset
= em
->start
- em
->orig_start
;
4089 int extent_inserted
= 0;
4090 bool ordered_io_err
= false;
4092 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
4097 if (ordered_io_err
) {
4102 btrfs_init_map_token(&token
);
4104 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
4105 em
->start
+ em
->len
, NULL
, 0, 1,
4106 sizeof(*fi
), &extent_inserted
);
4110 if (!extent_inserted
) {
4111 key
.objectid
= btrfs_ino(inode
);
4112 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4113 key
.offset
= em
->start
;
4115 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4120 leaf
= path
->nodes
[0];
4121 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4122 struct btrfs_file_extent_item
);
4124 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4126 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4127 btrfs_set_token_file_extent_type(leaf
, fi
,
4128 BTRFS_FILE_EXTENT_PREALLOC
,
4131 btrfs_set_token_file_extent_type(leaf
, fi
,
4132 BTRFS_FILE_EXTENT_REG
,
4135 block_len
= max(em
->block_len
, em
->orig_block_len
);
4136 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4137 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4140 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4142 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4143 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4145 extent_offset
, &token
);
4146 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4149 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4150 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4154 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4155 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4156 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4157 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4159 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4160 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4161 btrfs_mark_buffer_dirty(leaf
);
4163 btrfs_release_path(path
);
4168 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4169 struct btrfs_root
*root
,
4170 struct inode
*inode
,
4171 struct btrfs_path
*path
,
4172 struct list_head
*logged_list
,
4173 struct btrfs_log_ctx
*ctx
,
4177 struct extent_map
*em
, *n
;
4178 struct list_head extents
;
4179 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4184 INIT_LIST_HEAD(&extents
);
4186 down_write(&BTRFS_I(inode
)->dio_sem
);
4187 write_lock(&tree
->lock
);
4188 test_gen
= root
->fs_info
->last_trans_committed
;
4190 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4191 list_del_init(&em
->list
);
4194 * Just an arbitrary number, this can be really CPU intensive
4195 * once we start getting a lot of extents, and really once we
4196 * have a bunch of extents we just want to commit since it will
4199 if (++num
> 32768) {
4200 list_del_init(&tree
->modified_extents
);
4205 if (em
->generation
<= test_gen
)
4207 /* Need a ref to keep it from getting evicted from cache */
4208 atomic_inc(&em
->refs
);
4209 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4210 list_add_tail(&em
->list
, &extents
);
4214 list_sort(NULL
, &extents
, extent_cmp
);
4215 btrfs_get_logged_extents(inode
, logged_list
, start
, end
);
4217 * Some ordered extents started by fsync might have completed
4218 * before we could collect them into the list logged_list, which
4219 * means they're gone, not in our logged_list nor in the inode's
4220 * ordered tree. We want the application/user space to know an
4221 * error happened while attempting to persist file data so that
4222 * it can take proper action. If such error happened, we leave
4223 * without writing to the log tree and the fsync must report the
4224 * file data write error and not commit the current transaction.
4226 ret
= filemap_check_errors(inode
->i_mapping
);
4230 while (!list_empty(&extents
)) {
4231 em
= list_entry(extents
.next
, struct extent_map
, list
);
4233 list_del_init(&em
->list
);
4236 * If we had an error we just need to delete everybody from our
4240 clear_em_logging(tree
, em
);
4241 free_extent_map(em
);
4245 write_unlock(&tree
->lock
);
4247 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4249 write_lock(&tree
->lock
);
4250 clear_em_logging(tree
, em
);
4251 free_extent_map(em
);
4253 WARN_ON(!list_empty(&extents
));
4254 write_unlock(&tree
->lock
);
4255 up_write(&BTRFS_I(inode
)->dio_sem
);
4257 btrfs_release_path(path
);
4261 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4262 struct btrfs_path
*path
, u64
*size_ret
)
4264 struct btrfs_key key
;
4267 key
.objectid
= btrfs_ino(inode
);
4268 key
.type
= BTRFS_INODE_ITEM_KEY
;
4271 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4274 } else if (ret
> 0) {
4277 struct btrfs_inode_item
*item
;
4279 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4280 struct btrfs_inode_item
);
4281 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4284 btrfs_release_path(path
);
4289 * At the moment we always log all xattrs. This is to figure out at log replay
4290 * time which xattrs must have their deletion replayed. If a xattr is missing
4291 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4292 * because if a xattr is deleted, the inode is fsynced and a power failure
4293 * happens, causing the log to be replayed the next time the fs is mounted,
4294 * we want the xattr to not exist anymore (same behaviour as other filesystems
4295 * with a journal, ext3/4, xfs, f2fs, etc).
4297 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4298 struct btrfs_root
*root
,
4299 struct inode
*inode
,
4300 struct btrfs_path
*path
,
4301 struct btrfs_path
*dst_path
)
4304 struct btrfs_key key
;
4305 const u64 ino
= btrfs_ino(inode
);
4310 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4313 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4318 int slot
= path
->slots
[0];
4319 struct extent_buffer
*leaf
= path
->nodes
[0];
4320 int nritems
= btrfs_header_nritems(leaf
);
4322 if (slot
>= nritems
) {
4324 u64 last_extent
= 0;
4326 ret
= copy_items(trans
, inode
, dst_path
, path
,
4327 &last_extent
, start_slot
,
4329 /* can't be 1, extent items aren't processed */
4335 ret
= btrfs_next_leaf(root
, path
);
4343 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4344 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4354 u64 last_extent
= 0;
4356 ret
= copy_items(trans
, inode
, dst_path
, path
,
4357 &last_extent
, start_slot
,
4359 /* can't be 1, extent items aren't processed */
4369 * If the no holes feature is enabled we need to make sure any hole between the
4370 * last extent and the i_size of our inode is explicitly marked in the log. This
4371 * is to make sure that doing something like:
4373 * 1) create file with 128Kb of data
4374 * 2) truncate file to 64Kb
4375 * 3) truncate file to 256Kb
4377 * 5) <crash/power failure>
4378 * 6) mount fs and trigger log replay
4380 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4381 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4382 * file correspond to a hole. The presence of explicit holes in a log tree is
4383 * what guarantees that log replay will remove/adjust file extent items in the
4386 * Here we do not need to care about holes between extents, that is already done
4387 * by copy_items(). We also only need to do this in the full sync path, where we
4388 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4389 * lookup the list of modified extent maps and if any represents a hole, we
4390 * insert a corresponding extent representing a hole in the log tree.
4392 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4393 struct btrfs_root
*root
,
4394 struct inode
*inode
,
4395 struct btrfs_path
*path
)
4398 struct btrfs_key key
;
4401 struct extent_buffer
*leaf
;
4402 struct btrfs_root
*log
= root
->log_root
;
4403 const u64 ino
= btrfs_ino(inode
);
4404 const u64 i_size
= i_size_read(inode
);
4406 if (!btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
4410 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4411 key
.offset
= (u64
)-1;
4413 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4418 ASSERT(path
->slots
[0] > 0);
4420 leaf
= path
->nodes
[0];
4421 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4423 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4424 /* inode does not have any extents */
4428 struct btrfs_file_extent_item
*extent
;
4432 * If there's an extent beyond i_size, an explicit hole was
4433 * already inserted by copy_items().
4435 if (key
.offset
>= i_size
)
4438 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4439 struct btrfs_file_extent_item
);
4441 if (btrfs_file_extent_type(leaf
, extent
) ==
4442 BTRFS_FILE_EXTENT_INLINE
) {
4443 len
= btrfs_file_extent_inline_len(leaf
,
4446 ASSERT(len
== i_size
);
4450 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4451 /* Last extent goes beyond i_size, no need to log a hole. */
4452 if (key
.offset
+ len
> i_size
)
4454 hole_start
= key
.offset
+ len
;
4455 hole_size
= i_size
- hole_start
;
4457 btrfs_release_path(path
);
4459 /* Last extent ends at i_size. */
4463 hole_size
= ALIGN(hole_size
, root
->sectorsize
);
4464 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4465 hole_size
, 0, hole_size
, 0, 0, 0);
4470 * When we are logging a new inode X, check if it doesn't have a reference that
4471 * matches the reference from some other inode Y created in a past transaction
4472 * and that was renamed in the current transaction. If we don't do this, then at
4473 * log replay time we can lose inode Y (and all its files if it's a directory):
4476 * echo "hello world" > /mnt/x/foobar
4479 * mkdir /mnt/x # or touch /mnt/x
4480 * xfs_io -c fsync /mnt/x
4482 * mount fs, trigger log replay
4484 * After the log replay procedure, we would lose the first directory and all its
4485 * files (file foobar).
4486 * For the case where inode Y is not a directory we simply end up losing it:
4488 * echo "123" > /mnt/foo
4490 * mv /mnt/foo /mnt/bar
4491 * echo "abc" > /mnt/foo
4492 * xfs_io -c fsync /mnt/foo
4495 * We also need this for cases where a snapshot entry is replaced by some other
4496 * entry (file or directory) otherwise we end up with an unreplayable log due to
4497 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4498 * if it were a regular entry:
4501 * btrfs subvolume snapshot /mnt /mnt/x/snap
4502 * btrfs subvolume delete /mnt/x/snap
4505 * fsync /mnt/x or fsync some new file inside it
4508 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4509 * the same transaction.
4511 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4513 const struct btrfs_key
*key
,
4514 struct inode
*inode
,
4518 struct btrfs_path
*search_path
;
4521 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4523 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4525 search_path
= btrfs_alloc_path();
4528 search_path
->search_commit_root
= 1;
4529 search_path
->skip_locking
= 1;
4531 while (cur_offset
< item_size
) {
4535 unsigned long name_ptr
;
4536 struct btrfs_dir_item
*di
;
4538 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4539 struct btrfs_inode_ref
*iref
;
4541 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4542 parent
= key
->offset
;
4543 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4544 name_ptr
= (unsigned long)(iref
+ 1);
4545 this_len
= sizeof(*iref
) + this_name_len
;
4547 struct btrfs_inode_extref
*extref
;
4549 extref
= (struct btrfs_inode_extref
*)(ptr
+
4551 parent
= btrfs_inode_extref_parent(eb
, extref
);
4552 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4553 name_ptr
= (unsigned long)&extref
->name
;
4554 this_len
= sizeof(*extref
) + this_name_len
;
4557 if (this_name_len
> name_len
) {
4560 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4565 name_len
= this_name_len
;
4569 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4570 di
= btrfs_lookup_dir_item(NULL
, BTRFS_I(inode
)->root
,
4571 search_path
, parent
,
4572 name
, this_name_len
, 0);
4573 if (di
&& !IS_ERR(di
)) {
4574 struct btrfs_key di_key
;
4576 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4578 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4580 *other_ino
= di_key
.objectid
;
4585 } else if (IS_ERR(di
)) {
4589 btrfs_release_path(search_path
);
4591 cur_offset
+= this_len
;
4595 btrfs_free_path(search_path
);
4600 /* log a single inode in the tree log.
4601 * At least one parent directory for this inode must exist in the tree
4602 * or be logged already.
4604 * Any items from this inode changed by the current transaction are copied
4605 * to the log tree. An extra reference is taken on any extents in this
4606 * file, allowing us to avoid a whole pile of corner cases around logging
4607 * blocks that have been removed from the tree.
4609 * See LOG_INODE_ALL and related defines for a description of what inode_only
4612 * This handles both files and directories.
4614 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4615 struct btrfs_root
*root
, struct inode
*inode
,
4619 struct btrfs_log_ctx
*ctx
)
4621 struct btrfs_path
*path
;
4622 struct btrfs_path
*dst_path
;
4623 struct btrfs_key min_key
;
4624 struct btrfs_key max_key
;
4625 struct btrfs_root
*log
= root
->log_root
;
4626 struct extent_buffer
*src
= NULL
;
4627 LIST_HEAD(logged_list
);
4628 u64 last_extent
= 0;
4632 int ins_start_slot
= 0;
4634 bool fast_search
= false;
4635 u64 ino
= btrfs_ino(inode
);
4636 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4637 u64 logged_isize
= 0;
4638 bool need_log_inode_item
= true;
4639 bool xattrs_logged
= false;
4641 path
= btrfs_alloc_path();
4644 dst_path
= btrfs_alloc_path();
4646 btrfs_free_path(path
);
4650 min_key
.objectid
= ino
;
4651 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4654 max_key
.objectid
= ino
;
4657 /* today the code can only do partial logging of directories */
4658 if (S_ISDIR(inode
->i_mode
) ||
4659 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4660 &BTRFS_I(inode
)->runtime_flags
) &&
4661 inode_only
>= LOG_INODE_EXISTS
))
4662 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4664 max_key
.type
= (u8
)-1;
4665 max_key
.offset
= (u64
)-1;
4668 * Only run delayed items if we are a dir or a new file.
4669 * Otherwise commit the delayed inode only, which is needed in
4670 * order for the log replay code to mark inodes for link count
4671 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4673 if (S_ISDIR(inode
->i_mode
) ||
4674 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4675 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4677 ret
= btrfs_commit_inode_delayed_inode(inode
);
4680 btrfs_free_path(path
);
4681 btrfs_free_path(dst_path
);
4685 if (inode_only
== LOG_OTHER_INODE
) {
4686 inode_only
= LOG_INODE_EXISTS
;
4687 mutex_lock_nested(&BTRFS_I(inode
)->log_mutex
,
4688 SINGLE_DEPTH_NESTING
);
4690 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4694 * a brute force approach to making sure we get the most uptodate
4695 * copies of everything.
4697 if (S_ISDIR(inode
->i_mode
)) {
4698 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4700 if (inode_only
== LOG_INODE_EXISTS
)
4701 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4702 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4704 if (inode_only
== LOG_INODE_EXISTS
) {
4706 * Make sure the new inode item we write to the log has
4707 * the same isize as the current one (if it exists).
4708 * This is necessary to prevent data loss after log
4709 * replay, and also to prevent doing a wrong expanding
4710 * truncate - for e.g. create file, write 4K into offset
4711 * 0, fsync, write 4K into offset 4096, add hard link,
4712 * fsync some other file (to sync log), power fail - if
4713 * we use the inode's current i_size, after log replay
4714 * we get a 8Kb file, with the last 4Kb extent as a hole
4715 * (zeroes), as if an expanding truncate happened,
4716 * instead of getting a file of 4Kb only.
4718 err
= logged_inode_size(log
, inode
, path
,
4723 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4724 &BTRFS_I(inode
)->runtime_flags
)) {
4725 if (inode_only
== LOG_INODE_EXISTS
) {
4726 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4727 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4730 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4731 &BTRFS_I(inode
)->runtime_flags
);
4732 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4733 &BTRFS_I(inode
)->runtime_flags
);
4735 ret
= btrfs_truncate_inode_items(trans
,
4741 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4742 &BTRFS_I(inode
)->runtime_flags
) ||
4743 inode_only
== LOG_INODE_EXISTS
) {
4744 if (inode_only
== LOG_INODE_ALL
)
4746 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4747 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4750 if (inode_only
== LOG_INODE_ALL
)
4763 ret
= btrfs_search_forward(root
, &min_key
,
4764 path
, trans
->transid
);
4772 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4773 if (min_key
.objectid
!= ino
)
4775 if (min_key
.type
> max_key
.type
)
4778 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4779 need_log_inode_item
= false;
4781 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4782 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4783 BTRFS_I(inode
)->generation
== trans
->transid
) {
4786 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4793 } else if (ret
> 0 && ctx
&&
4794 other_ino
!= btrfs_ino(ctx
->inode
)) {
4795 struct btrfs_key inode_key
;
4796 struct inode
*other_inode
;
4802 ins_start_slot
= path
->slots
[0];
4804 ret
= copy_items(trans
, inode
, dst_path
, path
,
4805 &last_extent
, ins_start_slot
,
4813 btrfs_release_path(path
);
4814 inode_key
.objectid
= other_ino
;
4815 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4816 inode_key
.offset
= 0;
4817 other_inode
= btrfs_iget(root
->fs_info
->sb
,
4821 * If the other inode that had a conflicting dir
4822 * entry was deleted in the current transaction,
4823 * we don't need to do more work nor fallback to
4824 * a transaction commit.
4826 if (IS_ERR(other_inode
) &&
4827 PTR_ERR(other_inode
) == -ENOENT
) {
4829 } else if (IS_ERR(other_inode
)) {
4830 err
= PTR_ERR(other_inode
);
4834 * We are safe logging the other inode without
4835 * acquiring its i_mutex as long as we log with
4836 * the LOG_INODE_EXISTS mode. We're safe against
4837 * concurrent renames of the other inode as well
4838 * because during a rename we pin the log and
4839 * update the log with the new name before we
4842 err
= btrfs_log_inode(trans
, root
, other_inode
,
4853 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4854 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4857 ret
= copy_items(trans
, inode
, dst_path
, path
,
4858 &last_extent
, ins_start_slot
,
4859 ins_nr
, inode_only
, logged_isize
);
4866 btrfs_release_path(path
);
4872 src
= path
->nodes
[0];
4873 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4876 } else if (!ins_nr
) {
4877 ins_start_slot
= path
->slots
[0];
4882 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4883 ins_start_slot
, ins_nr
, inode_only
,
4891 btrfs_release_path(path
);
4895 ins_start_slot
= path
->slots
[0];
4898 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4900 if (path
->slots
[0] < nritems
) {
4901 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4906 ret
= copy_items(trans
, inode
, dst_path
, path
,
4907 &last_extent
, ins_start_slot
,
4908 ins_nr
, inode_only
, logged_isize
);
4916 btrfs_release_path(path
);
4918 if (min_key
.offset
< (u64
)-1) {
4920 } else if (min_key
.type
< max_key
.type
) {
4928 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4929 ins_start_slot
, ins_nr
, inode_only
,
4939 btrfs_release_path(path
);
4940 btrfs_release_path(dst_path
);
4941 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4944 xattrs_logged
= true;
4945 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4946 btrfs_release_path(path
);
4947 btrfs_release_path(dst_path
);
4948 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4953 btrfs_release_path(path
);
4954 btrfs_release_path(dst_path
);
4955 if (need_log_inode_item
) {
4956 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4957 if (!err
&& !xattrs_logged
) {
4958 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
4960 btrfs_release_path(path
);
4966 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4967 &logged_list
, ctx
, start
, end
);
4972 } else if (inode_only
== LOG_INODE_ALL
) {
4973 struct extent_map
*em
, *n
;
4975 write_lock(&em_tree
->lock
);
4977 * We can't just remove every em if we're called for a ranged
4978 * fsync - that is, one that doesn't cover the whole possible
4979 * file range (0 to LLONG_MAX). This is because we can have
4980 * em's that fall outside the range we're logging and therefore
4981 * their ordered operations haven't completed yet
4982 * (btrfs_finish_ordered_io() not invoked yet). This means we
4983 * didn't get their respective file extent item in the fs/subvol
4984 * tree yet, and need to let the next fast fsync (one which
4985 * consults the list of modified extent maps) find the em so
4986 * that it logs a matching file extent item and waits for the
4987 * respective ordered operation to complete (if it's still
4990 * Removing every em outside the range we're logging would make
4991 * the next fast fsync not log their matching file extent items,
4992 * therefore making us lose data after a log replay.
4994 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4996 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4998 if (em
->mod_start
>= start
&& mod_end
<= end
)
4999 list_del_init(&em
->list
);
5001 write_unlock(&em_tree
->lock
);
5004 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
5005 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5013 spin_lock(&BTRFS_I(inode
)->lock
);
5014 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
5015 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
5016 spin_unlock(&BTRFS_I(inode
)->lock
);
5019 btrfs_put_logged_extents(&logged_list
);
5021 btrfs_submit_logged_extents(&logged_list
, log
);
5022 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5024 btrfs_free_path(path
);
5025 btrfs_free_path(dst_path
);
5030 * Check if we must fallback to a transaction commit when logging an inode.
5031 * This must be called after logging the inode and is used only in the context
5032 * when fsyncing an inode requires the need to log some other inode - in which
5033 * case we can't lock the i_mutex of each other inode we need to log as that
5034 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5035 * log inodes up or down in the hierarchy) or rename operations for example. So
5036 * we take the log_mutex of the inode after we have logged it and then check for
5037 * its last_unlink_trans value - this is safe because any task setting
5038 * last_unlink_trans must take the log_mutex and it must do this before it does
5039 * the actual unlink operation, so if we do this check before a concurrent task
5040 * sets last_unlink_trans it means we've logged a consistent version/state of
5041 * all the inode items, otherwise we are not sure and must do a transaction
5042 * commit (the concurrent task might have only updated last_unlink_trans before
5043 * we logged the inode or it might have also done the unlink).
5045 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5046 struct inode
*inode
)
5048 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
5051 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5052 if (BTRFS_I(inode
)->last_unlink_trans
> fs_info
->last_trans_committed
) {
5054 * Make sure any commits to the log are forced to be full
5057 btrfs_set_log_full_commit(fs_info
, trans
);
5060 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5066 * follow the dentry parent pointers up the chain and see if any
5067 * of the directories in it require a full commit before they can
5068 * be logged. Returns zero if nothing special needs to be done or 1 if
5069 * a full commit is required.
5071 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5072 struct inode
*inode
,
5073 struct dentry
*parent
,
5074 struct super_block
*sb
,
5078 struct dentry
*old_parent
= NULL
;
5079 struct inode
*orig_inode
= inode
;
5082 * for regular files, if its inode is already on disk, we don't
5083 * have to worry about the parents at all. This is because
5084 * we can use the last_unlink_trans field to record renames
5085 * and other fun in this file.
5087 if (S_ISREG(inode
->i_mode
) &&
5088 BTRFS_I(inode
)->generation
<= last_committed
&&
5089 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
5092 if (!S_ISDIR(inode
->i_mode
)) {
5093 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5095 inode
= d_inode(parent
);
5100 * If we are logging a directory then we start with our inode,
5101 * not our parent's inode, so we need to skip setting the
5102 * logged_trans so that further down in the log code we don't
5103 * think this inode has already been logged.
5105 if (inode
!= orig_inode
)
5106 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
5109 if (btrfs_must_commit_transaction(trans
, inode
)) {
5114 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5117 if (IS_ROOT(parent
)) {
5118 inode
= d_inode(parent
);
5119 if (btrfs_must_commit_transaction(trans
, inode
))
5124 parent
= dget_parent(parent
);
5126 old_parent
= parent
;
5127 inode
= d_inode(parent
);
5135 struct btrfs_dir_list
{
5137 struct list_head list
;
5141 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5142 * details about the why it is needed.
5143 * This is a recursive operation - if an existing dentry corresponds to a
5144 * directory, that directory's new entries are logged too (same behaviour as
5145 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5146 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5147 * complains about the following circular lock dependency / possible deadlock:
5151 * lock(&type->i_mutex_dir_key#3/2);
5152 * lock(sb_internal#2);
5153 * lock(&type->i_mutex_dir_key#3/2);
5154 * lock(&sb->s_type->i_mutex_key#14);
5156 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5157 * sb_start_intwrite() in btrfs_start_transaction().
5158 * Not locking i_mutex of the inodes is still safe because:
5160 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5161 * that while logging the inode new references (names) are added or removed
5162 * from the inode, leaving the logged inode item with a link count that does
5163 * not match the number of logged inode reference items. This is fine because
5164 * at log replay time we compute the real number of links and correct the
5165 * link count in the inode item (see replay_one_buffer() and
5166 * link_to_fixup_dir());
5168 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5169 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5170 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5171 * has a size that doesn't match the sum of the lengths of all the logged
5172 * names. This does not result in a problem because if a dir_item key is
5173 * logged but its matching dir_index key is not logged, at log replay time we
5174 * don't use it to replay the respective name (see replay_one_name()). On the
5175 * other hand if only the dir_index key ends up being logged, the respective
5176 * name is added to the fs/subvol tree with both the dir_item and dir_index
5177 * keys created (see replay_one_name()).
5178 * The directory's inode item with a wrong i_size is not a problem as well,
5179 * since we don't use it at log replay time to set the i_size in the inode
5180 * item of the fs/subvol tree (see overwrite_item()).
5182 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5183 struct btrfs_root
*root
,
5184 struct inode
*start_inode
,
5185 struct btrfs_log_ctx
*ctx
)
5187 struct btrfs_root
*log
= root
->log_root
;
5188 struct btrfs_path
*path
;
5189 LIST_HEAD(dir_list
);
5190 struct btrfs_dir_list
*dir_elem
;
5193 path
= btrfs_alloc_path();
5197 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5199 btrfs_free_path(path
);
5202 dir_elem
->ino
= btrfs_ino(start_inode
);
5203 list_add_tail(&dir_elem
->list
, &dir_list
);
5205 while (!list_empty(&dir_list
)) {
5206 struct extent_buffer
*leaf
;
5207 struct btrfs_key min_key
;
5211 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5214 goto next_dir_inode
;
5216 min_key
.objectid
= dir_elem
->ino
;
5217 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5220 btrfs_release_path(path
);
5221 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5223 goto next_dir_inode
;
5224 } else if (ret
> 0) {
5226 goto next_dir_inode
;
5230 leaf
= path
->nodes
[0];
5231 nritems
= btrfs_header_nritems(leaf
);
5232 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5233 struct btrfs_dir_item
*di
;
5234 struct btrfs_key di_key
;
5235 struct inode
*di_inode
;
5236 struct btrfs_dir_list
*new_dir_elem
;
5237 int log_mode
= LOG_INODE_EXISTS
;
5240 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5241 if (min_key
.objectid
!= dir_elem
->ino
||
5242 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5243 goto next_dir_inode
;
5245 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5246 type
= btrfs_dir_type(leaf
, di
);
5247 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5248 type
!= BTRFS_FT_DIR
)
5250 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5251 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5254 btrfs_release_path(path
);
5255 di_inode
= btrfs_iget(root
->fs_info
->sb
, &di_key
,
5257 if (IS_ERR(di_inode
)) {
5258 ret
= PTR_ERR(di_inode
);
5259 goto next_dir_inode
;
5262 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
5267 ctx
->log_new_dentries
= false;
5268 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5269 log_mode
= LOG_INODE_ALL
;
5270 ret
= btrfs_log_inode(trans
, root
, di_inode
,
5271 log_mode
, 0, LLONG_MAX
, ctx
);
5273 btrfs_must_commit_transaction(trans
, di_inode
))
5277 goto next_dir_inode
;
5278 if (ctx
->log_new_dentries
) {
5279 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5281 if (!new_dir_elem
) {
5283 goto next_dir_inode
;
5285 new_dir_elem
->ino
= di_key
.objectid
;
5286 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5291 ret
= btrfs_next_leaf(log
, path
);
5293 goto next_dir_inode
;
5294 } else if (ret
> 0) {
5296 goto next_dir_inode
;
5300 if (min_key
.offset
< (u64
)-1) {
5305 list_del(&dir_elem
->list
);
5309 btrfs_free_path(path
);
5313 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5314 struct inode
*inode
,
5315 struct btrfs_log_ctx
*ctx
)
5318 struct btrfs_path
*path
;
5319 struct btrfs_key key
;
5320 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5321 const u64 ino
= btrfs_ino(inode
);
5323 path
= btrfs_alloc_path();
5326 path
->skip_locking
= 1;
5327 path
->search_commit_root
= 1;
5330 key
.type
= BTRFS_INODE_REF_KEY
;
5332 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5337 struct extent_buffer
*leaf
= path
->nodes
[0];
5338 int slot
= path
->slots
[0];
5343 if (slot
>= btrfs_header_nritems(leaf
)) {
5344 ret
= btrfs_next_leaf(root
, path
);
5352 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5353 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5354 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5357 item_size
= btrfs_item_size_nr(leaf
, slot
);
5358 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5359 while (cur_offset
< item_size
) {
5360 struct btrfs_key inode_key
;
5361 struct inode
*dir_inode
;
5363 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5364 inode_key
.offset
= 0;
5366 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5367 struct btrfs_inode_extref
*extref
;
5369 extref
= (struct btrfs_inode_extref
*)
5371 inode_key
.objectid
= btrfs_inode_extref_parent(
5373 cur_offset
+= sizeof(*extref
);
5374 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5377 inode_key
.objectid
= key
.offset
;
5378 cur_offset
= item_size
;
5381 dir_inode
= btrfs_iget(root
->fs_info
->sb
, &inode_key
,
5384 * If the parent inode was deleted, return an error to
5385 * fallback to a transaction commit. This is to prevent
5386 * getting an inode that was moved from one parent A to
5387 * a parent B, got its former parent A deleted and then
5388 * it got fsync'ed, from existing at both parents after
5389 * a log replay (and the old parent still existing).
5396 * mv /mnt/B/bar /mnt/A/bar
5397 * mv -T /mnt/A /mnt/B
5401 * If we ignore the old parent B which got deleted,
5402 * after a log replay we would have file bar linked
5403 * at both parents and the old parent B would still
5406 if (IS_ERR(dir_inode
)) {
5407 ret
= PTR_ERR(dir_inode
);
5412 ctx
->log_new_dentries
= false;
5413 ret
= btrfs_log_inode(trans
, root
, dir_inode
,
5414 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5416 btrfs_must_commit_transaction(trans
, dir_inode
))
5418 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5419 ret
= log_new_dir_dentries(trans
, root
,
5429 btrfs_free_path(path
);
5434 * helper function around btrfs_log_inode to make sure newly created
5435 * parent directories also end up in the log. A minimal inode and backref
5436 * only logging is done of any parent directories that are older than
5437 * the last committed transaction
5439 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5440 struct btrfs_root
*root
, struct inode
*inode
,
5441 struct dentry
*parent
,
5445 struct btrfs_log_ctx
*ctx
)
5447 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
5448 struct super_block
*sb
;
5449 struct dentry
*old_parent
= NULL
;
5451 u64 last_committed
= root
->fs_info
->last_trans_committed
;
5452 bool log_dentries
= false;
5453 struct inode
*orig_inode
= inode
;
5457 if (btrfs_test_opt(root
->fs_info
, NOTREELOG
)) {
5463 * The prev transaction commit doesn't complete, we need do
5464 * full commit by ourselves.
5466 if (root
->fs_info
->last_trans_log_full_commit
>
5467 root
->fs_info
->last_trans_committed
) {
5472 if (root
!= BTRFS_I(inode
)->root
||
5473 btrfs_root_refs(&root
->root_item
) == 0) {
5478 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
5479 sb
, last_committed
);
5483 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5484 ret
= BTRFS_NO_LOG_SYNC
;
5488 ret
= start_log_trans(trans
, root
, ctx
);
5492 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5497 * for regular files, if its inode is already on disk, we don't
5498 * have to worry about the parents at all. This is because
5499 * we can use the last_unlink_trans field to record renames
5500 * and other fun in this file.
5502 if (S_ISREG(inode
->i_mode
) &&
5503 BTRFS_I(inode
)->generation
<= last_committed
&&
5504 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
5509 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
5510 log_dentries
= true;
5513 * On unlink we must make sure all our current and old parent directory
5514 * inodes are fully logged. This is to prevent leaving dangling
5515 * directory index entries in directories that were our parents but are
5516 * not anymore. Not doing this results in old parent directory being
5517 * impossible to delete after log replay (rmdir will always fail with
5518 * error -ENOTEMPTY).
5524 * ln testdir/foo testdir/bar
5526 * unlink testdir/bar
5527 * xfs_io -c fsync testdir/foo
5529 * mount fs, triggers log replay
5531 * If we don't log the parent directory (testdir), after log replay the
5532 * directory still has an entry pointing to the file inode using the bar
5533 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5534 * the file inode has a link count of 1.
5540 * ln foo testdir/foo2
5541 * ln foo testdir/foo3
5543 * unlink testdir/foo3
5544 * xfs_io -c fsync foo
5546 * mount fs, triggers log replay
5548 * Similar as the first example, after log replay the parent directory
5549 * testdir still has an entry pointing to the inode file with name foo3
5550 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5551 * and has a link count of 2.
5553 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
5554 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5560 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5563 inode
= d_inode(parent
);
5564 if (root
!= BTRFS_I(inode
)->root
)
5567 if (BTRFS_I(inode
)->generation
> last_committed
) {
5568 ret
= btrfs_log_inode(trans
, root
, inode
,
5574 if (IS_ROOT(parent
))
5577 parent
= dget_parent(parent
);
5579 old_parent
= parent
;
5582 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5588 btrfs_set_log_full_commit(root
->fs_info
, trans
);
5593 btrfs_remove_log_ctx(root
, ctx
);
5594 btrfs_end_log_trans(root
);
5600 * it is not safe to log dentry if the chunk root has added new
5601 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5602 * If this returns 1, you must commit the transaction to safely get your
5605 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5606 struct btrfs_root
*root
, struct dentry
*dentry
,
5609 struct btrfs_log_ctx
*ctx
)
5611 struct dentry
*parent
= dget_parent(dentry
);
5614 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
5615 start
, end
, 0, ctx
);
5622 * should be called during mount to recover any replay any log trees
5625 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5628 struct btrfs_path
*path
;
5629 struct btrfs_trans_handle
*trans
;
5630 struct btrfs_key key
;
5631 struct btrfs_key found_key
;
5632 struct btrfs_key tmp_key
;
5633 struct btrfs_root
*log
;
5634 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5635 struct walk_control wc
= {
5636 .process_func
= process_one_buffer
,
5640 path
= btrfs_alloc_path();
5644 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5646 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5647 if (IS_ERR(trans
)) {
5648 ret
= PTR_ERR(trans
);
5655 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5657 btrfs_handle_fs_error(fs_info
, ret
,
5658 "Failed to pin buffers while recovering log root tree.");
5663 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5664 key
.offset
= (u64
)-1;
5665 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5668 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5671 btrfs_handle_fs_error(fs_info
, ret
,
5672 "Couldn't find tree log root.");
5676 if (path
->slots
[0] == 0)
5680 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5682 btrfs_release_path(path
);
5683 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5686 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5689 btrfs_handle_fs_error(fs_info
, ret
,
5690 "Couldn't read tree log root.");
5694 tmp_key
.objectid
= found_key
.offset
;
5695 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5696 tmp_key
.offset
= (u64
)-1;
5698 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5699 if (IS_ERR(wc
.replay_dest
)) {
5700 ret
= PTR_ERR(wc
.replay_dest
);
5701 free_extent_buffer(log
->node
);
5702 free_extent_buffer(log
->commit_root
);
5704 btrfs_handle_fs_error(fs_info
, ret
,
5705 "Couldn't read target root for tree log recovery.");
5709 wc
.replay_dest
->log_root
= log
;
5710 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5711 ret
= walk_log_tree(trans
, log
, &wc
);
5713 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5714 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5718 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5719 struct btrfs_root
*root
= wc
.replay_dest
;
5721 btrfs_release_path(path
);
5724 * We have just replayed everything, and the highest
5725 * objectid of fs roots probably has changed in case
5726 * some inode_item's got replayed.
5728 * root->objectid_mutex is not acquired as log replay
5729 * could only happen during mount.
5731 ret
= btrfs_find_highest_objectid(root
,
5732 &root
->highest_objectid
);
5735 key
.offset
= found_key
.offset
- 1;
5736 wc
.replay_dest
->log_root
= NULL
;
5737 free_extent_buffer(log
->node
);
5738 free_extent_buffer(log
->commit_root
);
5744 if (found_key
.offset
== 0)
5747 btrfs_release_path(path
);
5749 /* step one is to pin it all, step two is to replay just inodes */
5752 wc
.process_func
= replay_one_buffer
;
5753 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5756 /* step three is to replay everything */
5757 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5762 btrfs_free_path(path
);
5764 /* step 4: commit the transaction, which also unpins the blocks */
5765 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
5769 free_extent_buffer(log_root_tree
->node
);
5770 log_root_tree
->log_root
= NULL
;
5771 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5772 kfree(log_root_tree
);
5777 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
5778 btrfs_free_path(path
);
5783 * there are some corner cases where we want to force a full
5784 * commit instead of allowing a directory to be logged.
5786 * They revolve around files there were unlinked from the directory, and
5787 * this function updates the parent directory so that a full commit is
5788 * properly done if it is fsync'd later after the unlinks are done.
5790 * Must be called before the unlink operations (updates to the subvolume tree,
5791 * inodes, etc) are done.
5793 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5794 struct inode
*dir
, struct inode
*inode
,
5798 * when we're logging a file, if it hasn't been renamed
5799 * or unlinked, and its inode is fully committed on disk,
5800 * we don't have to worry about walking up the directory chain
5801 * to log its parents.
5803 * So, we use the last_unlink_trans field to put this transid
5804 * into the file. When the file is logged we check it and
5805 * don't log the parents if the file is fully on disk.
5807 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5808 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5809 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5812 * if this directory was already logged any new
5813 * names for this file/dir will get recorded
5816 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5820 * if the inode we're about to unlink was logged,
5821 * the log will be properly updated for any new names
5823 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5827 * when renaming files across directories, if the directory
5828 * there we're unlinking from gets fsync'd later on, there's
5829 * no way to find the destination directory later and fsync it
5830 * properly. So, we have to be conservative and force commits
5831 * so the new name gets discovered.
5836 /* we can safely do the unlink without any special recording */
5840 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5841 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5842 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5846 * Make sure that if someone attempts to fsync the parent directory of a deleted
5847 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5848 * that after replaying the log tree of the parent directory's root we will not
5849 * see the snapshot anymore and at log replay time we will not see any log tree
5850 * corresponding to the deleted snapshot's root, which could lead to replaying
5851 * it after replaying the log tree of the parent directory (which would replay
5852 * the snapshot delete operation).
5854 * Must be called before the actual snapshot destroy operation (updates to the
5855 * parent root and tree of tree roots trees, etc) are done.
5857 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5860 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5861 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5862 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5866 * Call this after adding a new name for a file and it will properly
5867 * update the log to reflect the new name.
5869 * It will return zero if all goes well, and it will return 1 if a
5870 * full transaction commit is required.
5872 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5873 struct inode
*inode
, struct inode
*old_dir
,
5874 struct dentry
*parent
)
5876 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5879 * this will force the logging code to walk the dentry chain
5882 if (S_ISREG(inode
->i_mode
))
5883 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5886 * if this inode hasn't been logged and directory we're renaming it
5887 * from hasn't been logged, we don't need to log it
5889 if (BTRFS_I(inode
)->logged_trans
<=
5890 root
->fs_info
->last_trans_committed
&&
5891 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5892 root
->fs_info
->last_trans_committed
))
5895 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5896 LLONG_MAX
, 1, NULL
);