xen: Prevent buffer overflow in privcmd ioctl
[linux/fpc-iii.git] / fs / eventpoll.c
bloba9c0bf8782f5337736df588ad736ae02efa185a0
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
47 * LOCKING:
48 * There are three level of locking required by epoll :
50 * 1) epmutex (mutex)
51 * 2) ep->mtx (mutex)
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
65 * and ep_free().
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
76 * going to.
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
85 * the lockdep subkey.
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
100 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 /* Maximum number of nesting allowed inside epoll sets */
103 #define EP_MAX_NESTS 4
105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 #define EP_UNACTIVE_PTR ((void *) -1L)
109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 struct epoll_filefd {
112 struct file *file;
113 int fd;
114 } __packed;
117 * Structure used to track possible nested calls, for too deep recursions
118 * and loop cycles.
120 struct nested_call_node {
121 struct list_head llink;
122 void *cookie;
123 void *ctx;
127 * This structure is used as collector for nested calls, to check for
128 * maximum recursion dept and loop cycles.
130 struct nested_calls {
131 struct list_head tasks_call_list;
132 spinlock_t lock;
136 * Each file descriptor added to the eventpoll interface will
137 * have an entry of this type linked to the "rbr" RB tree.
138 * Avoid increasing the size of this struct, there can be many thousands
139 * of these on a server and we do not want this to take another cache line.
141 struct epitem {
142 union {
143 /* RB tree node links this structure to the eventpoll RB tree */
144 struct rb_node rbn;
145 /* Used to free the struct epitem */
146 struct rcu_head rcu;
149 /* List header used to link this structure to the eventpoll ready list */
150 struct list_head rdllink;
153 * Works together "struct eventpoll"->ovflist in keeping the
154 * single linked chain of items.
156 struct epitem *next;
158 /* The file descriptor information this item refers to */
159 struct epoll_filefd ffd;
161 /* Number of active wait queue attached to poll operations */
162 int nwait;
164 /* List containing poll wait queues */
165 struct list_head pwqlist;
167 /* The "container" of this item */
168 struct eventpoll *ep;
170 /* List header used to link this item to the "struct file" items list */
171 struct list_head fllink;
173 /* wakeup_source used when EPOLLWAKEUP is set */
174 struct wakeup_source __rcu *ws;
176 /* The structure that describe the interested events and the source fd */
177 struct epoll_event event;
181 * This structure is stored inside the "private_data" member of the file
182 * structure and represents the main data structure for the eventpoll
183 * interface.
185 struct eventpoll {
186 /* Protect the access to this structure */
187 spinlock_t lock;
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
195 struct mutex mtx;
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait;
203 /* List of ready file descriptors */
204 struct list_head rdllist;
206 /* RB tree root used to store monitored fd structs */
207 struct rb_root rbr;
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
212 * holding ->lock.
214 struct epitem *ovflist;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source *ws;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct *user;
222 struct file *file;
224 /* used to optimize loop detection check */
225 int visited;
226 struct list_head visited_list_link;
229 /* Wait structure used by the poll hooks */
230 struct eppoll_entry {
231 /* List header used to link this structure to the "struct epitem" */
232 struct list_head llink;
234 /* The "base" pointer is set to the container "struct epitem" */
235 struct epitem *base;
238 * Wait queue item that will be linked to the target file wait
239 * queue head.
241 wait_queue_t wait;
243 /* The wait queue head that linked the "wait" wait queue item */
244 wait_queue_head_t *whead;
247 /* Wrapper struct used by poll queueing */
248 struct ep_pqueue {
249 poll_table pt;
250 struct epitem *epi;
253 /* Used by the ep_send_events() function as callback private data */
254 struct ep_send_events_data {
255 int maxevents;
256 struct epoll_event __user *events;
260 * Configuration options available inside /proc/sys/fs/epoll/
262 /* Maximum number of epoll watched descriptors, per user */
263 static long max_user_watches __read_mostly;
266 * This mutex is used to serialize ep_free() and eventpoll_release_file().
268 static DEFINE_MUTEX(epmutex);
270 /* Used to check for epoll file descriptor inclusion loops */
271 static struct nested_calls poll_loop_ncalls;
273 /* Used for safe wake up implementation */
274 static struct nested_calls poll_safewake_ncalls;
276 /* Used to call file's f_op->poll() under the nested calls boundaries */
277 static struct nested_calls poll_readywalk_ncalls;
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
289 * List of files with newly added links, where we may need to limit the number
290 * of emanating paths. Protected by the epmutex.
292 static LIST_HEAD(tfile_check_list);
294 #ifdef CONFIG_SYSCTL
296 #include <linux/sysctl.h>
298 static long zero;
299 static long long_max = LONG_MAX;
301 struct ctl_table epoll_table[] = {
303 .procname = "max_user_watches",
304 .data = &max_user_watches,
305 .maxlen = sizeof(max_user_watches),
306 .mode = 0644,
307 .proc_handler = proc_doulongvec_minmax,
308 .extra1 = &zero,
309 .extra2 = &long_max,
313 #endif /* CONFIG_SYSCTL */
315 static const struct file_operations eventpoll_fops;
317 static inline int is_file_epoll(struct file *f)
319 return f->f_op == &eventpoll_fops;
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 struct file *file, int fd)
326 ffd->file = file;
327 ffd->fd = fd;
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 struct epoll_filefd *p2)
334 return (p1->file > p2->file ? +1:
335 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
341 return !list_empty(p);
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
346 return container_of(p, struct eppoll_entry, wait);
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
352 return container_of(p, struct eppoll_entry, wait)->base;
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 return container_of(p, struct ep_pqueue, pt)->epi;
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
364 return op != EPOLL_CTL_DEL;
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 spin_lock_init(&ncalls->lock);
375 * ep_events_available - Checks if ready events might be available.
377 * @ep: Pointer to the eventpoll context.
379 * Returns: Returns a value different than zero if ready events are available,
380 * or zero otherwise.
382 static inline int ep_events_available(struct eventpoll *ep)
384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
388 * ep_call_nested - Perform a bound (possibly) nested call, by checking
389 * that the recursion limit is not exceeded, and that
390 * the same nested call (by the meaning of same cookie) is
391 * no re-entered.
393 * @ncalls: Pointer to the nested_calls structure to be used for this call.
394 * @max_nests: Maximum number of allowed nesting calls.
395 * @nproc: Nested call core function pointer.
396 * @priv: Opaque data to be passed to the @nproc callback.
397 * @cookie: Cookie to be used to identify this nested call.
398 * @ctx: This instance context.
400 * Returns: Returns the code returned by the @nproc callback, or -1 if
401 * the maximum recursion limit has been exceeded.
403 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
404 int (*nproc)(void *, void *, int), void *priv,
405 void *cookie, void *ctx)
407 int error, call_nests = 0;
408 unsigned long flags;
409 struct list_head *lsthead = &ncalls->tasks_call_list;
410 struct nested_call_node *tncur;
411 struct nested_call_node tnode;
413 spin_lock_irqsave(&ncalls->lock, flags);
416 * Try to see if the current task is already inside this wakeup call.
417 * We use a list here, since the population inside this set is always
418 * very much limited.
420 list_for_each_entry(tncur, lsthead, llink) {
421 if (tncur->ctx == ctx &&
422 (tncur->cookie == cookie || ++call_nests > max_nests)) {
424 * Ops ... loop detected or maximum nest level reached.
425 * We abort this wake by breaking the cycle itself.
427 error = -1;
428 goto out_unlock;
432 /* Add the current task and cookie to the list */
433 tnode.ctx = ctx;
434 tnode.cookie = cookie;
435 list_add(&tnode.llink, lsthead);
437 spin_unlock_irqrestore(&ncalls->lock, flags);
439 /* Call the nested function */
440 error = (*nproc)(priv, cookie, call_nests);
442 /* Remove the current task from the list */
443 spin_lock_irqsave(&ncalls->lock, flags);
444 list_del(&tnode.llink);
445 out_unlock:
446 spin_unlock_irqrestore(&ncalls->lock, flags);
448 return error;
452 * As described in commit 0ccf831cb lockdep: annotate epoll
453 * the use of wait queues used by epoll is done in a very controlled
454 * manner. Wake ups can nest inside each other, but are never done
455 * with the same locking. For example:
457 * dfd = socket(...);
458 * efd1 = epoll_create();
459 * efd2 = epoll_create();
460 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
461 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
463 * When a packet arrives to the device underneath "dfd", the net code will
464 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
465 * callback wakeup entry on that queue, and the wake_up() performed by the
466 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
467 * (efd1) notices that it may have some event ready, so it needs to wake up
468 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
469 * that ends up in another wake_up(), after having checked about the
470 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
471 * avoid stack blasting.
473 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
474 * this special case of epoll.
476 #ifdef CONFIG_DEBUG_LOCK_ALLOC
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 unsigned long events, int subclass)
480 unsigned long flags;
482 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
483 wake_up_locked_poll(wqueue, events);
484 spin_unlock_irqrestore(&wqueue->lock, flags);
486 #else
487 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
488 unsigned long events, int subclass)
490 wake_up_poll(wqueue, events);
492 #endif
494 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
496 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
497 1 + call_nests);
498 return 0;
502 * Perform a safe wake up of the poll wait list. The problem is that
503 * with the new callback'd wake up system, it is possible that the
504 * poll callback is reentered from inside the call to wake_up() done
505 * on the poll wait queue head. The rule is that we cannot reenter the
506 * wake up code from the same task more than EP_MAX_NESTS times,
507 * and we cannot reenter the same wait queue head at all. This will
508 * enable to have a hierarchy of epoll file descriptor of no more than
509 * EP_MAX_NESTS deep.
511 static void ep_poll_safewake(wait_queue_head_t *wq)
513 int this_cpu = get_cpu();
515 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
516 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
518 put_cpu();
521 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
523 wait_queue_head_t *whead;
525 rcu_read_lock();
527 * If it is cleared by POLLFREE, it should be rcu-safe.
528 * If we read NULL we need a barrier paired with
529 * smp_store_release() in ep_poll_callback(), otherwise
530 * we rely on whead->lock.
532 whead = smp_load_acquire(&pwq->whead);
533 if (whead)
534 remove_wait_queue(whead, &pwq->wait);
535 rcu_read_unlock();
539 * This function unregisters poll callbacks from the associated file
540 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
541 * ep_free).
543 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
545 struct list_head *lsthead = &epi->pwqlist;
546 struct eppoll_entry *pwq;
548 while (!list_empty(lsthead)) {
549 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
551 list_del(&pwq->llink);
552 ep_remove_wait_queue(pwq);
553 kmem_cache_free(pwq_cache, pwq);
557 /* call only when ep->mtx is held */
558 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
560 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
563 /* call only when ep->mtx is held */
564 static inline void ep_pm_stay_awake(struct epitem *epi)
566 struct wakeup_source *ws = ep_wakeup_source(epi);
568 if (ws)
569 __pm_stay_awake(ws);
572 static inline bool ep_has_wakeup_source(struct epitem *epi)
574 return rcu_access_pointer(epi->ws) ? true : false;
577 /* call when ep->mtx cannot be held (ep_poll_callback) */
578 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
580 struct wakeup_source *ws;
582 rcu_read_lock();
583 ws = rcu_dereference(epi->ws);
584 if (ws)
585 __pm_stay_awake(ws);
586 rcu_read_unlock();
590 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
591 * the scan code, to call f_op->poll(). Also allows for
592 * O(NumReady) performance.
594 * @ep: Pointer to the epoll private data structure.
595 * @sproc: Pointer to the scan callback.
596 * @priv: Private opaque data passed to the @sproc callback.
597 * @depth: The current depth of recursive f_op->poll calls.
598 * @ep_locked: caller already holds ep->mtx
600 * Returns: The same integer error code returned by the @sproc callback.
602 static int ep_scan_ready_list(struct eventpoll *ep,
603 int (*sproc)(struct eventpoll *,
604 struct list_head *, void *),
605 void *priv, int depth, bool ep_locked)
607 int error, pwake = 0;
608 unsigned long flags;
609 struct epitem *epi, *nepi;
610 LIST_HEAD(txlist);
613 * We need to lock this because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
617 if (!ep_locked)
618 mutex_lock_nested(&ep->mtx, depth);
621 * Steal the ready list, and re-init the original one to the
622 * empty list. Also, set ep->ovflist to NULL so that events
623 * happening while looping w/out locks, are not lost. We cannot
624 * have the poll callback to queue directly on ep->rdllist,
625 * because we want the "sproc" callback to be able to do it
626 * in a lockless way.
628 spin_lock_irqsave(&ep->lock, flags);
629 list_splice_init(&ep->rdllist, &txlist);
630 ep->ovflist = NULL;
631 spin_unlock_irqrestore(&ep->lock, flags);
634 * Now call the callback function.
636 error = (*sproc)(ep, &txlist, priv);
638 spin_lock_irqsave(&ep->lock, flags);
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
644 for (nepi = ep->ovflist; (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
652 if (!ep_is_linked(&epi->rdllink)) {
653 list_add_tail(&epi->rdllink, &ep->rdllist);
654 ep_pm_stay_awake(epi);
658 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 * releasing the lock, events will be queued in the normal way inside
660 * ep->rdllist.
662 ep->ovflist = EP_UNACTIVE_PTR;
665 * Quickly re-inject items left on "txlist".
667 list_splice(&txlist, &ep->rdllist);
668 __pm_relax(ep->ws);
670 if (!list_empty(&ep->rdllist)) {
672 * Wake up (if active) both the eventpoll wait list and
673 * the ->poll() wait list (delayed after we release the lock).
675 if (waitqueue_active(&ep->wq))
676 wake_up_locked(&ep->wq);
677 if (waitqueue_active(&ep->poll_wait))
678 pwake++;
680 spin_unlock_irqrestore(&ep->lock, flags);
682 if (!ep_locked)
683 mutex_unlock(&ep->mtx);
685 /* We have to call this outside the lock */
686 if (pwake)
687 ep_poll_safewake(&ep->poll_wait);
689 return error;
692 static void epi_rcu_free(struct rcu_head *head)
694 struct epitem *epi = container_of(head, struct epitem, rcu);
695 kmem_cache_free(epi_cache, epi);
699 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
700 * all the associated resources. Must be called with "mtx" held.
702 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
704 unsigned long flags;
705 struct file *file = epi->ffd.file;
708 * Removes poll wait queue hooks. We _have_ to do this without holding
709 * the "ep->lock" otherwise a deadlock might occur. This because of the
710 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
711 * queue head lock when unregistering the wait queue. The wakeup callback
712 * will run by holding the wait queue head lock and will call our callback
713 * that will try to get "ep->lock".
715 ep_unregister_pollwait(ep, epi);
717 /* Remove the current item from the list of epoll hooks */
718 spin_lock(&file->f_lock);
719 list_del_rcu(&epi->fllink);
720 spin_unlock(&file->f_lock);
722 rb_erase(&epi->rbn, &ep->rbr);
724 spin_lock_irqsave(&ep->lock, flags);
725 if (ep_is_linked(&epi->rdllink))
726 list_del_init(&epi->rdllink);
727 spin_unlock_irqrestore(&ep->lock, flags);
729 wakeup_source_unregister(ep_wakeup_source(epi));
731 * At this point it is safe to free the eventpoll item. Use the union
732 * field epi->rcu, since we are trying to minimize the size of
733 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
734 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
735 * use of the rbn field.
737 call_rcu(&epi->rcu, epi_rcu_free);
739 atomic_long_dec(&ep->user->epoll_watches);
741 return 0;
744 static void ep_free(struct eventpoll *ep)
746 struct rb_node *rbp;
747 struct epitem *epi;
749 /* We need to release all tasks waiting for these file */
750 if (waitqueue_active(&ep->poll_wait))
751 ep_poll_safewake(&ep->poll_wait);
754 * We need to lock this because we could be hit by
755 * eventpoll_release_file() while we're freeing the "struct eventpoll".
756 * We do not need to hold "ep->mtx" here because the epoll file
757 * is on the way to be removed and no one has references to it
758 * anymore. The only hit might come from eventpoll_release_file() but
759 * holding "epmutex" is sufficient here.
761 mutex_lock(&epmutex);
764 * Walks through the whole tree by unregistering poll callbacks.
766 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
767 epi = rb_entry(rbp, struct epitem, rbn);
769 ep_unregister_pollwait(ep, epi);
770 cond_resched();
774 * Walks through the whole tree by freeing each "struct epitem". At this
775 * point we are sure no poll callbacks will be lingering around, and also by
776 * holding "epmutex" we can be sure that no file cleanup code will hit
777 * us during this operation. So we can avoid the lock on "ep->lock".
778 * We do not need to lock ep->mtx, either, we only do it to prevent
779 * a lockdep warning.
781 mutex_lock(&ep->mtx);
782 while ((rbp = rb_first(&ep->rbr)) != NULL) {
783 epi = rb_entry(rbp, struct epitem, rbn);
784 ep_remove(ep, epi);
785 cond_resched();
787 mutex_unlock(&ep->mtx);
789 mutex_unlock(&epmutex);
790 mutex_destroy(&ep->mtx);
791 free_uid(ep->user);
792 wakeup_source_unregister(ep->ws);
793 kfree(ep);
796 static int ep_eventpoll_release(struct inode *inode, struct file *file)
798 struct eventpoll *ep = file->private_data;
800 if (ep)
801 ep_free(ep);
803 return 0;
806 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
808 pt->_key = epi->event.events;
810 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
813 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
814 void *priv)
816 struct epitem *epi, *tmp;
817 poll_table pt;
819 init_poll_funcptr(&pt, NULL);
821 list_for_each_entry_safe(epi, tmp, head, rdllink) {
822 if (ep_item_poll(epi, &pt))
823 return POLLIN | POLLRDNORM;
824 else {
826 * Item has been dropped into the ready list by the poll
827 * callback, but it's not actually ready, as far as
828 * caller requested events goes. We can remove it here.
830 __pm_relax(ep_wakeup_source(epi));
831 list_del_init(&epi->rdllink);
835 return 0;
838 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
839 poll_table *pt);
841 struct readyevents_arg {
842 struct eventpoll *ep;
843 bool locked;
846 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
848 struct readyevents_arg *arg = priv;
850 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
851 call_nests + 1, arg->locked);
854 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
856 int pollflags;
857 struct eventpoll *ep = file->private_data;
858 struct readyevents_arg arg;
861 * During ep_insert() we already hold the ep->mtx for the tfile.
862 * Prevent re-aquisition.
864 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
865 arg.ep = ep;
867 /* Insert inside our poll wait queue */
868 poll_wait(file, &ep->poll_wait, wait);
871 * Proceed to find out if wanted events are really available inside
872 * the ready list. This need to be done under ep_call_nested()
873 * supervision, since the call to f_op->poll() done on listed files
874 * could re-enter here.
876 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
877 ep_poll_readyevents_proc, &arg, ep, current);
879 return pollflags != -1 ? pollflags : 0;
882 #ifdef CONFIG_PROC_FS
883 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
885 struct eventpoll *ep = f->private_data;
886 struct rb_node *rbp;
888 mutex_lock(&ep->mtx);
889 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
890 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
892 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
893 epi->ffd.fd, epi->event.events,
894 (long long)epi->event.data);
895 if (seq_has_overflowed(m))
896 break;
898 mutex_unlock(&ep->mtx);
900 #endif
902 /* File callbacks that implement the eventpoll file behaviour */
903 static const struct file_operations eventpoll_fops = {
904 #ifdef CONFIG_PROC_FS
905 .show_fdinfo = ep_show_fdinfo,
906 #endif
907 .release = ep_eventpoll_release,
908 .poll = ep_eventpoll_poll,
909 .llseek = noop_llseek,
913 * This is called from eventpoll_release() to unlink files from the eventpoll
914 * interface. We need to have this facility to cleanup correctly files that are
915 * closed without being removed from the eventpoll interface.
917 void eventpoll_release_file(struct file *file)
919 struct eventpoll *ep;
920 struct epitem *epi, *next;
923 * We don't want to get "file->f_lock" because it is not
924 * necessary. It is not necessary because we're in the "struct file"
925 * cleanup path, and this means that no one is using this file anymore.
926 * So, for example, epoll_ctl() cannot hit here since if we reach this
927 * point, the file counter already went to zero and fget() would fail.
928 * The only hit might come from ep_free() but by holding the mutex
929 * will correctly serialize the operation. We do need to acquire
930 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
931 * from anywhere but ep_free().
933 * Besides, ep_remove() acquires the lock, so we can't hold it here.
935 mutex_lock(&epmutex);
936 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
937 ep = epi->ep;
938 mutex_lock_nested(&ep->mtx, 0);
939 ep_remove(ep, epi);
940 mutex_unlock(&ep->mtx);
942 mutex_unlock(&epmutex);
945 static int ep_alloc(struct eventpoll **pep)
947 int error;
948 struct user_struct *user;
949 struct eventpoll *ep;
951 user = get_current_user();
952 error = -ENOMEM;
953 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
954 if (unlikely(!ep))
955 goto free_uid;
957 spin_lock_init(&ep->lock);
958 mutex_init(&ep->mtx);
959 init_waitqueue_head(&ep->wq);
960 init_waitqueue_head(&ep->poll_wait);
961 INIT_LIST_HEAD(&ep->rdllist);
962 ep->rbr = RB_ROOT;
963 ep->ovflist = EP_UNACTIVE_PTR;
964 ep->user = user;
966 *pep = ep;
968 return 0;
970 free_uid:
971 free_uid(user);
972 return error;
976 * Search the file inside the eventpoll tree. The RB tree operations
977 * are protected by the "mtx" mutex, and ep_find() must be called with
978 * "mtx" held.
980 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
982 int kcmp;
983 struct rb_node *rbp;
984 struct epitem *epi, *epir = NULL;
985 struct epoll_filefd ffd;
987 ep_set_ffd(&ffd, file, fd);
988 for (rbp = ep->rbr.rb_node; rbp; ) {
989 epi = rb_entry(rbp, struct epitem, rbn);
990 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
991 if (kcmp > 0)
992 rbp = rbp->rb_right;
993 else if (kcmp < 0)
994 rbp = rbp->rb_left;
995 else {
996 epir = epi;
997 break;
1001 return epir;
1005 * This is the callback that is passed to the wait queue wakeup
1006 * mechanism. It is called by the stored file descriptors when they
1007 * have events to report.
1009 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1011 int pwake = 0;
1012 unsigned long flags;
1013 struct epitem *epi = ep_item_from_wait(wait);
1014 struct eventpoll *ep = epi->ep;
1015 int ewake = 0;
1017 spin_lock_irqsave(&ep->lock, flags);
1020 * If the event mask does not contain any poll(2) event, we consider the
1021 * descriptor to be disabled. This condition is likely the effect of the
1022 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1023 * until the next EPOLL_CTL_MOD will be issued.
1025 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1026 goto out_unlock;
1029 * Check the events coming with the callback. At this stage, not
1030 * every device reports the events in the "key" parameter of the
1031 * callback. We need to be able to handle both cases here, hence the
1032 * test for "key" != NULL before the event match test.
1034 if (key && !((unsigned long) key & epi->event.events))
1035 goto out_unlock;
1038 * If we are transferring events to userspace, we can hold no locks
1039 * (because we're accessing user memory, and because of linux f_op->poll()
1040 * semantics). All the events that happen during that period of time are
1041 * chained in ep->ovflist and requeued later on.
1043 if (ep->ovflist != EP_UNACTIVE_PTR) {
1044 if (epi->next == EP_UNACTIVE_PTR) {
1045 epi->next = ep->ovflist;
1046 ep->ovflist = epi;
1047 if (epi->ws) {
1049 * Activate ep->ws since epi->ws may get
1050 * deactivated at any time.
1052 __pm_stay_awake(ep->ws);
1056 goto out_unlock;
1059 /* If this file is already in the ready list we exit soon */
1060 if (!ep_is_linked(&epi->rdllink)) {
1061 list_add_tail(&epi->rdllink, &ep->rdllist);
1062 ep_pm_stay_awake_rcu(epi);
1066 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1067 * wait list.
1069 if (waitqueue_active(&ep->wq)) {
1070 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1071 !((unsigned long)key & POLLFREE)) {
1072 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1073 case POLLIN:
1074 if (epi->event.events & POLLIN)
1075 ewake = 1;
1076 break;
1077 case POLLOUT:
1078 if (epi->event.events & POLLOUT)
1079 ewake = 1;
1080 break;
1081 case 0:
1082 ewake = 1;
1083 break;
1086 wake_up_locked(&ep->wq);
1088 if (waitqueue_active(&ep->poll_wait))
1089 pwake++;
1091 out_unlock:
1092 spin_unlock_irqrestore(&ep->lock, flags);
1094 /* We have to call this outside the lock */
1095 if (pwake)
1096 ep_poll_safewake(&ep->poll_wait);
1098 if (!(epi->event.events & EPOLLEXCLUSIVE))
1099 ewake = 1;
1101 if ((unsigned long)key & POLLFREE) {
1103 * If we race with ep_remove_wait_queue() it can miss
1104 * ->whead = NULL and do another remove_wait_queue() after
1105 * us, so we can't use __remove_wait_queue().
1107 list_del_init(&wait->task_list);
1109 * ->whead != NULL protects us from the race with ep_free()
1110 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1111 * held by the caller. Once we nullify it, nothing protects
1112 * ep/epi or even wait.
1114 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1117 return ewake;
1121 * This is the callback that is used to add our wait queue to the
1122 * target file wakeup lists.
1124 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1125 poll_table *pt)
1127 struct epitem *epi = ep_item_from_epqueue(pt);
1128 struct eppoll_entry *pwq;
1130 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1131 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1132 pwq->whead = whead;
1133 pwq->base = epi;
1134 if (epi->event.events & EPOLLEXCLUSIVE)
1135 add_wait_queue_exclusive(whead, &pwq->wait);
1136 else
1137 add_wait_queue(whead, &pwq->wait);
1138 list_add_tail(&pwq->llink, &epi->pwqlist);
1139 epi->nwait++;
1140 } else {
1141 /* We have to signal that an error occurred */
1142 epi->nwait = -1;
1146 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1148 int kcmp;
1149 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1150 struct epitem *epic;
1152 while (*p) {
1153 parent = *p;
1154 epic = rb_entry(parent, struct epitem, rbn);
1155 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1156 if (kcmp > 0)
1157 p = &parent->rb_right;
1158 else
1159 p = &parent->rb_left;
1161 rb_link_node(&epi->rbn, parent, p);
1162 rb_insert_color(&epi->rbn, &ep->rbr);
1167 #define PATH_ARR_SIZE 5
1169 * These are the number paths of length 1 to 5, that we are allowing to emanate
1170 * from a single file of interest. For example, we allow 1000 paths of length
1171 * 1, to emanate from each file of interest. This essentially represents the
1172 * potential wakeup paths, which need to be limited in order to avoid massive
1173 * uncontrolled wakeup storms. The common use case should be a single ep which
1174 * is connected to n file sources. In this case each file source has 1 path
1175 * of length 1. Thus, the numbers below should be more than sufficient. These
1176 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1177 * and delete can't add additional paths. Protected by the epmutex.
1179 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1180 static int path_count[PATH_ARR_SIZE];
1182 static int path_count_inc(int nests)
1184 /* Allow an arbitrary number of depth 1 paths */
1185 if (nests == 0)
1186 return 0;
1188 if (++path_count[nests] > path_limits[nests])
1189 return -1;
1190 return 0;
1193 static void path_count_init(void)
1195 int i;
1197 for (i = 0; i < PATH_ARR_SIZE; i++)
1198 path_count[i] = 0;
1201 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1203 int error = 0;
1204 struct file *file = priv;
1205 struct file *child_file;
1206 struct epitem *epi;
1208 /* CTL_DEL can remove links here, but that can't increase our count */
1209 rcu_read_lock();
1210 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1211 child_file = epi->ep->file;
1212 if (is_file_epoll(child_file)) {
1213 if (list_empty(&child_file->f_ep_links)) {
1214 if (path_count_inc(call_nests)) {
1215 error = -1;
1216 break;
1218 } else {
1219 error = ep_call_nested(&poll_loop_ncalls,
1220 EP_MAX_NESTS,
1221 reverse_path_check_proc,
1222 child_file, child_file,
1223 current);
1225 if (error != 0)
1226 break;
1227 } else {
1228 printk(KERN_ERR "reverse_path_check_proc: "
1229 "file is not an ep!\n");
1232 rcu_read_unlock();
1233 return error;
1237 * reverse_path_check - The tfile_check_list is list of file *, which have
1238 * links that are proposed to be newly added. We need to
1239 * make sure that those added links don't add too many
1240 * paths such that we will spend all our time waking up
1241 * eventpoll objects.
1243 * Returns: Returns zero if the proposed links don't create too many paths,
1244 * -1 otherwise.
1246 static int reverse_path_check(void)
1248 int error = 0;
1249 struct file *current_file;
1251 /* let's call this for all tfiles */
1252 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1253 path_count_init();
1254 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1255 reverse_path_check_proc, current_file,
1256 current_file, current);
1257 if (error)
1258 break;
1260 return error;
1263 static int ep_create_wakeup_source(struct epitem *epi)
1265 const char *name;
1266 struct wakeup_source *ws;
1268 if (!epi->ep->ws) {
1269 epi->ep->ws = wakeup_source_register("eventpoll");
1270 if (!epi->ep->ws)
1271 return -ENOMEM;
1274 name = epi->ffd.file->f_path.dentry->d_name.name;
1275 ws = wakeup_source_register(name);
1277 if (!ws)
1278 return -ENOMEM;
1279 rcu_assign_pointer(epi->ws, ws);
1281 return 0;
1284 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1285 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1287 struct wakeup_source *ws = ep_wakeup_source(epi);
1289 RCU_INIT_POINTER(epi->ws, NULL);
1292 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1293 * used internally by wakeup_source_remove, too (called by
1294 * wakeup_source_unregister), so we cannot use call_rcu
1296 synchronize_rcu();
1297 wakeup_source_unregister(ws);
1301 * Must be called with "mtx" held.
1303 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1304 struct file *tfile, int fd, int full_check)
1306 int error, revents, pwake = 0;
1307 unsigned long flags;
1308 long user_watches;
1309 struct epitem *epi;
1310 struct ep_pqueue epq;
1312 user_watches = atomic_long_read(&ep->user->epoll_watches);
1313 if (unlikely(user_watches >= max_user_watches))
1314 return -ENOSPC;
1315 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1316 return -ENOMEM;
1318 /* Item initialization follow here ... */
1319 INIT_LIST_HEAD(&epi->rdllink);
1320 INIT_LIST_HEAD(&epi->fllink);
1321 INIT_LIST_HEAD(&epi->pwqlist);
1322 epi->ep = ep;
1323 ep_set_ffd(&epi->ffd, tfile, fd);
1324 epi->event = *event;
1325 epi->nwait = 0;
1326 epi->next = EP_UNACTIVE_PTR;
1327 if (epi->event.events & EPOLLWAKEUP) {
1328 error = ep_create_wakeup_source(epi);
1329 if (error)
1330 goto error_create_wakeup_source;
1331 } else {
1332 RCU_INIT_POINTER(epi->ws, NULL);
1335 /* Initialize the poll table using the queue callback */
1336 epq.epi = epi;
1337 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1340 * Attach the item to the poll hooks and get current event bits.
1341 * We can safely use the file* here because its usage count has
1342 * been increased by the caller of this function. Note that after
1343 * this operation completes, the poll callback can start hitting
1344 * the new item.
1346 revents = ep_item_poll(epi, &epq.pt);
1349 * We have to check if something went wrong during the poll wait queue
1350 * install process. Namely an allocation for a wait queue failed due
1351 * high memory pressure.
1353 error = -ENOMEM;
1354 if (epi->nwait < 0)
1355 goto error_unregister;
1357 /* Add the current item to the list of active epoll hook for this file */
1358 spin_lock(&tfile->f_lock);
1359 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1360 spin_unlock(&tfile->f_lock);
1363 * Add the current item to the RB tree. All RB tree operations are
1364 * protected by "mtx", and ep_insert() is called with "mtx" held.
1366 ep_rbtree_insert(ep, epi);
1368 /* now check if we've created too many backpaths */
1369 error = -EINVAL;
1370 if (full_check && reverse_path_check())
1371 goto error_remove_epi;
1373 /* We have to drop the new item inside our item list to keep track of it */
1374 spin_lock_irqsave(&ep->lock, flags);
1376 /* If the file is already "ready" we drop it inside the ready list */
1377 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1378 list_add_tail(&epi->rdllink, &ep->rdllist);
1379 ep_pm_stay_awake(epi);
1381 /* Notify waiting tasks that events are available */
1382 if (waitqueue_active(&ep->wq))
1383 wake_up_locked(&ep->wq);
1384 if (waitqueue_active(&ep->poll_wait))
1385 pwake++;
1388 spin_unlock_irqrestore(&ep->lock, flags);
1390 atomic_long_inc(&ep->user->epoll_watches);
1392 /* We have to call this outside the lock */
1393 if (pwake)
1394 ep_poll_safewake(&ep->poll_wait);
1396 return 0;
1398 error_remove_epi:
1399 spin_lock(&tfile->f_lock);
1400 list_del_rcu(&epi->fllink);
1401 spin_unlock(&tfile->f_lock);
1403 rb_erase(&epi->rbn, &ep->rbr);
1405 error_unregister:
1406 ep_unregister_pollwait(ep, epi);
1409 * We need to do this because an event could have been arrived on some
1410 * allocated wait queue. Note that we don't care about the ep->ovflist
1411 * list, since that is used/cleaned only inside a section bound by "mtx".
1412 * And ep_insert() is called with "mtx" held.
1414 spin_lock_irqsave(&ep->lock, flags);
1415 if (ep_is_linked(&epi->rdllink))
1416 list_del_init(&epi->rdllink);
1417 spin_unlock_irqrestore(&ep->lock, flags);
1419 wakeup_source_unregister(ep_wakeup_source(epi));
1421 error_create_wakeup_source:
1422 kmem_cache_free(epi_cache, epi);
1424 return error;
1428 * Modify the interest event mask by dropping an event if the new mask
1429 * has a match in the current file status. Must be called with "mtx" held.
1431 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1433 int pwake = 0;
1434 unsigned int revents;
1435 poll_table pt;
1437 init_poll_funcptr(&pt, NULL);
1440 * Set the new event interest mask before calling f_op->poll();
1441 * otherwise we might miss an event that happens between the
1442 * f_op->poll() call and the new event set registering.
1444 epi->event.events = event->events; /* need barrier below */
1445 epi->event.data = event->data; /* protected by mtx */
1446 if (epi->event.events & EPOLLWAKEUP) {
1447 if (!ep_has_wakeup_source(epi))
1448 ep_create_wakeup_source(epi);
1449 } else if (ep_has_wakeup_source(epi)) {
1450 ep_destroy_wakeup_source(epi);
1454 * The following barrier has two effects:
1456 * 1) Flush epi changes above to other CPUs. This ensures
1457 * we do not miss events from ep_poll_callback if an
1458 * event occurs immediately after we call f_op->poll().
1459 * We need this because we did not take ep->lock while
1460 * changing epi above (but ep_poll_callback does take
1461 * ep->lock).
1463 * 2) We also need to ensure we do not miss _past_ events
1464 * when calling f_op->poll(). This barrier also
1465 * pairs with the barrier in wq_has_sleeper (see
1466 * comments for wq_has_sleeper).
1468 * This barrier will now guarantee ep_poll_callback or f_op->poll
1469 * (or both) will notice the readiness of an item.
1471 smp_mb();
1474 * Get current event bits. We can safely use the file* here because
1475 * its usage count has been increased by the caller of this function.
1477 revents = ep_item_poll(epi, &pt);
1480 * If the item is "hot" and it is not registered inside the ready
1481 * list, push it inside.
1483 if (revents & event->events) {
1484 spin_lock_irq(&ep->lock);
1485 if (!ep_is_linked(&epi->rdllink)) {
1486 list_add_tail(&epi->rdllink, &ep->rdllist);
1487 ep_pm_stay_awake(epi);
1489 /* Notify waiting tasks that events are available */
1490 if (waitqueue_active(&ep->wq))
1491 wake_up_locked(&ep->wq);
1492 if (waitqueue_active(&ep->poll_wait))
1493 pwake++;
1495 spin_unlock_irq(&ep->lock);
1498 /* We have to call this outside the lock */
1499 if (pwake)
1500 ep_poll_safewake(&ep->poll_wait);
1502 return 0;
1505 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1506 void *priv)
1508 struct ep_send_events_data *esed = priv;
1509 int eventcnt;
1510 unsigned int revents;
1511 struct epitem *epi;
1512 struct epoll_event __user *uevent;
1513 struct wakeup_source *ws;
1514 poll_table pt;
1516 init_poll_funcptr(&pt, NULL);
1519 * We can loop without lock because we are passed a task private list.
1520 * Items cannot vanish during the loop because ep_scan_ready_list() is
1521 * holding "mtx" during this call.
1523 for (eventcnt = 0, uevent = esed->events;
1524 !list_empty(head) && eventcnt < esed->maxevents;) {
1525 epi = list_first_entry(head, struct epitem, rdllink);
1528 * Activate ep->ws before deactivating epi->ws to prevent
1529 * triggering auto-suspend here (in case we reactive epi->ws
1530 * below).
1532 * This could be rearranged to delay the deactivation of epi->ws
1533 * instead, but then epi->ws would temporarily be out of sync
1534 * with ep_is_linked().
1536 ws = ep_wakeup_source(epi);
1537 if (ws) {
1538 if (ws->active)
1539 __pm_stay_awake(ep->ws);
1540 __pm_relax(ws);
1543 list_del_init(&epi->rdllink);
1545 revents = ep_item_poll(epi, &pt);
1548 * If the event mask intersect the caller-requested one,
1549 * deliver the event to userspace. Again, ep_scan_ready_list()
1550 * is holding "mtx", so no operations coming from userspace
1551 * can change the item.
1553 if (revents) {
1554 if (__put_user(revents, &uevent->events) ||
1555 __put_user(epi->event.data, &uevent->data)) {
1556 list_add(&epi->rdllink, head);
1557 ep_pm_stay_awake(epi);
1558 return eventcnt ? eventcnt : -EFAULT;
1560 eventcnt++;
1561 uevent++;
1562 if (epi->event.events & EPOLLONESHOT)
1563 epi->event.events &= EP_PRIVATE_BITS;
1564 else if (!(epi->event.events & EPOLLET)) {
1566 * If this file has been added with Level
1567 * Trigger mode, we need to insert back inside
1568 * the ready list, so that the next call to
1569 * epoll_wait() will check again the events
1570 * availability. At this point, no one can insert
1571 * into ep->rdllist besides us. The epoll_ctl()
1572 * callers are locked out by
1573 * ep_scan_ready_list() holding "mtx" and the
1574 * poll callback will queue them in ep->ovflist.
1576 list_add_tail(&epi->rdllink, &ep->rdllist);
1577 ep_pm_stay_awake(epi);
1582 return eventcnt;
1585 static int ep_send_events(struct eventpoll *ep,
1586 struct epoll_event __user *events, int maxevents)
1588 struct ep_send_events_data esed;
1590 esed.maxevents = maxevents;
1591 esed.events = events;
1593 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1596 static inline struct timespec64 ep_set_mstimeout(long ms)
1598 struct timespec64 now, ts = {
1599 .tv_sec = ms / MSEC_PER_SEC,
1600 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1603 ktime_get_ts64(&now);
1604 return timespec64_add_safe(now, ts);
1608 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1609 * event buffer.
1611 * @ep: Pointer to the eventpoll context.
1612 * @events: Pointer to the userspace buffer where the ready events should be
1613 * stored.
1614 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1615 * @timeout: Maximum timeout for the ready events fetch operation, in
1616 * milliseconds. If the @timeout is zero, the function will not block,
1617 * while if the @timeout is less than zero, the function will block
1618 * until at least one event has been retrieved (or an error
1619 * occurred).
1621 * Returns: Returns the number of ready events which have been fetched, or an
1622 * error code, in case of error.
1624 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1625 int maxevents, long timeout)
1627 int res = 0, eavail, timed_out = 0;
1628 unsigned long flags;
1629 u64 slack = 0;
1630 wait_queue_t wait;
1631 ktime_t expires, *to = NULL;
1633 if (timeout > 0) {
1634 struct timespec64 end_time = ep_set_mstimeout(timeout);
1636 slack = select_estimate_accuracy(&end_time);
1637 to = &expires;
1638 *to = timespec64_to_ktime(end_time);
1639 } else if (timeout == 0) {
1641 * Avoid the unnecessary trip to the wait queue loop, if the
1642 * caller specified a non blocking operation.
1644 timed_out = 1;
1645 spin_lock_irqsave(&ep->lock, flags);
1646 goto check_events;
1649 fetch_events:
1650 spin_lock_irqsave(&ep->lock, flags);
1652 if (!ep_events_available(ep)) {
1654 * We don't have any available event to return to the caller.
1655 * We need to sleep here, and we will be wake up by
1656 * ep_poll_callback() when events will become available.
1658 init_waitqueue_entry(&wait, current);
1659 __add_wait_queue_exclusive(&ep->wq, &wait);
1661 for (;;) {
1663 * We don't want to sleep if the ep_poll_callback() sends us
1664 * a wakeup in between. That's why we set the task state
1665 * to TASK_INTERRUPTIBLE before doing the checks.
1667 set_current_state(TASK_INTERRUPTIBLE);
1668 if (ep_events_available(ep) || timed_out)
1669 break;
1670 if (signal_pending(current)) {
1671 res = -EINTR;
1672 break;
1675 spin_unlock_irqrestore(&ep->lock, flags);
1676 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1677 timed_out = 1;
1679 spin_lock_irqsave(&ep->lock, flags);
1682 __remove_wait_queue(&ep->wq, &wait);
1683 __set_current_state(TASK_RUNNING);
1685 check_events:
1686 /* Is it worth to try to dig for events ? */
1687 eavail = ep_events_available(ep);
1689 spin_unlock_irqrestore(&ep->lock, flags);
1692 * Try to transfer events to user space. In case we get 0 events and
1693 * there's still timeout left over, we go trying again in search of
1694 * more luck.
1696 if (!res && eavail &&
1697 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1698 goto fetch_events;
1700 return res;
1704 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1705 * API, to verify that adding an epoll file inside another
1706 * epoll structure, does not violate the constraints, in
1707 * terms of closed loops, or too deep chains (which can
1708 * result in excessive stack usage).
1710 * @priv: Pointer to the epoll file to be currently checked.
1711 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1712 * data structure pointer.
1713 * @call_nests: Current dept of the @ep_call_nested() call stack.
1715 * Returns: Returns zero if adding the epoll @file inside current epoll
1716 * structure @ep does not violate the constraints, or -1 otherwise.
1718 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1720 int error = 0;
1721 struct file *file = priv;
1722 struct eventpoll *ep = file->private_data;
1723 struct eventpoll *ep_tovisit;
1724 struct rb_node *rbp;
1725 struct epitem *epi;
1727 mutex_lock_nested(&ep->mtx, call_nests + 1);
1728 ep->visited = 1;
1729 list_add(&ep->visited_list_link, &visited_list);
1730 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1731 epi = rb_entry(rbp, struct epitem, rbn);
1732 if (unlikely(is_file_epoll(epi->ffd.file))) {
1733 ep_tovisit = epi->ffd.file->private_data;
1734 if (ep_tovisit->visited)
1735 continue;
1736 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1737 ep_loop_check_proc, epi->ffd.file,
1738 ep_tovisit, current);
1739 if (error != 0)
1740 break;
1741 } else {
1743 * If we've reached a file that is not associated with
1744 * an ep, then we need to check if the newly added
1745 * links are going to add too many wakeup paths. We do
1746 * this by adding it to the tfile_check_list, if it's
1747 * not already there, and calling reverse_path_check()
1748 * during ep_insert().
1750 if (list_empty(&epi->ffd.file->f_tfile_llink))
1751 list_add(&epi->ffd.file->f_tfile_llink,
1752 &tfile_check_list);
1755 mutex_unlock(&ep->mtx);
1757 return error;
1761 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1762 * another epoll file (represented by @ep) does not create
1763 * closed loops or too deep chains.
1765 * @ep: Pointer to the epoll private data structure.
1766 * @file: Pointer to the epoll file to be checked.
1768 * Returns: Returns zero if adding the epoll @file inside current epoll
1769 * structure @ep does not violate the constraints, or -1 otherwise.
1771 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1773 int ret;
1774 struct eventpoll *ep_cur, *ep_next;
1776 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1777 ep_loop_check_proc, file, ep, current);
1778 /* clear visited list */
1779 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1780 visited_list_link) {
1781 ep_cur->visited = 0;
1782 list_del(&ep_cur->visited_list_link);
1784 return ret;
1787 static void clear_tfile_check_list(void)
1789 struct file *file;
1791 /* first clear the tfile_check_list */
1792 while (!list_empty(&tfile_check_list)) {
1793 file = list_first_entry(&tfile_check_list, struct file,
1794 f_tfile_llink);
1795 list_del_init(&file->f_tfile_llink);
1797 INIT_LIST_HEAD(&tfile_check_list);
1801 * Open an eventpoll file descriptor.
1803 SYSCALL_DEFINE1(epoll_create1, int, flags)
1805 int error, fd;
1806 struct eventpoll *ep = NULL;
1807 struct file *file;
1809 /* Check the EPOLL_* constant for consistency. */
1810 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1812 if (flags & ~EPOLL_CLOEXEC)
1813 return -EINVAL;
1815 * Create the internal data structure ("struct eventpoll").
1817 error = ep_alloc(&ep);
1818 if (error < 0)
1819 return error;
1821 * Creates all the items needed to setup an eventpoll file. That is,
1822 * a file structure and a free file descriptor.
1824 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1825 if (fd < 0) {
1826 error = fd;
1827 goto out_free_ep;
1829 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1830 O_RDWR | (flags & O_CLOEXEC));
1831 if (IS_ERR(file)) {
1832 error = PTR_ERR(file);
1833 goto out_free_fd;
1835 ep->file = file;
1836 fd_install(fd, file);
1837 return fd;
1839 out_free_fd:
1840 put_unused_fd(fd);
1841 out_free_ep:
1842 ep_free(ep);
1843 return error;
1846 SYSCALL_DEFINE1(epoll_create, int, size)
1848 if (size <= 0)
1849 return -EINVAL;
1851 return sys_epoll_create1(0);
1855 * The following function implements the controller interface for
1856 * the eventpoll file that enables the insertion/removal/change of
1857 * file descriptors inside the interest set.
1859 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1860 struct epoll_event __user *, event)
1862 int error;
1863 int full_check = 0;
1864 struct fd f, tf;
1865 struct eventpoll *ep;
1866 struct epitem *epi;
1867 struct epoll_event epds;
1868 struct eventpoll *tep = NULL;
1870 error = -EFAULT;
1871 if (ep_op_has_event(op) &&
1872 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1873 goto error_return;
1875 error = -EBADF;
1876 f = fdget(epfd);
1877 if (!f.file)
1878 goto error_return;
1880 /* Get the "struct file *" for the target file */
1881 tf = fdget(fd);
1882 if (!tf.file)
1883 goto error_fput;
1885 /* The target file descriptor must support poll */
1886 error = -EPERM;
1887 if (!tf.file->f_op->poll)
1888 goto error_tgt_fput;
1890 /* Check if EPOLLWAKEUP is allowed */
1891 if (ep_op_has_event(op))
1892 ep_take_care_of_epollwakeup(&epds);
1895 * We have to check that the file structure underneath the file descriptor
1896 * the user passed to us _is_ an eventpoll file. And also we do not permit
1897 * adding an epoll file descriptor inside itself.
1899 error = -EINVAL;
1900 if (f.file == tf.file || !is_file_epoll(f.file))
1901 goto error_tgt_fput;
1904 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1905 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1906 * Also, we do not currently supported nested exclusive wakeups.
1908 if (epds.events & EPOLLEXCLUSIVE) {
1909 if (op == EPOLL_CTL_MOD)
1910 goto error_tgt_fput;
1911 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
1912 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
1913 goto error_tgt_fput;
1917 * At this point it is safe to assume that the "private_data" contains
1918 * our own data structure.
1920 ep = f.file->private_data;
1923 * When we insert an epoll file descriptor, inside another epoll file
1924 * descriptor, there is the change of creating closed loops, which are
1925 * better be handled here, than in more critical paths. While we are
1926 * checking for loops we also determine the list of files reachable
1927 * and hang them on the tfile_check_list, so we can check that we
1928 * haven't created too many possible wakeup paths.
1930 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1931 * the epoll file descriptor is attaching directly to a wakeup source,
1932 * unless the epoll file descriptor is nested. The purpose of taking the
1933 * 'epmutex' on add is to prevent complex toplogies such as loops and
1934 * deep wakeup paths from forming in parallel through multiple
1935 * EPOLL_CTL_ADD operations.
1937 mutex_lock_nested(&ep->mtx, 0);
1938 if (op == EPOLL_CTL_ADD) {
1939 if (!list_empty(&f.file->f_ep_links) ||
1940 is_file_epoll(tf.file)) {
1941 full_check = 1;
1942 mutex_unlock(&ep->mtx);
1943 mutex_lock(&epmutex);
1944 if (is_file_epoll(tf.file)) {
1945 error = -ELOOP;
1946 if (ep_loop_check(ep, tf.file) != 0) {
1947 clear_tfile_check_list();
1948 goto error_tgt_fput;
1950 } else
1951 list_add(&tf.file->f_tfile_llink,
1952 &tfile_check_list);
1953 mutex_lock_nested(&ep->mtx, 0);
1954 if (is_file_epoll(tf.file)) {
1955 tep = tf.file->private_data;
1956 mutex_lock_nested(&tep->mtx, 1);
1962 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1963 * above, we can be sure to be able to use the item looked up by
1964 * ep_find() till we release the mutex.
1966 epi = ep_find(ep, tf.file, fd);
1968 error = -EINVAL;
1969 switch (op) {
1970 case EPOLL_CTL_ADD:
1971 if (!epi) {
1972 epds.events |= POLLERR | POLLHUP;
1973 error = ep_insert(ep, &epds, tf.file, fd, full_check);
1974 } else
1975 error = -EEXIST;
1976 if (full_check)
1977 clear_tfile_check_list();
1978 break;
1979 case EPOLL_CTL_DEL:
1980 if (epi)
1981 error = ep_remove(ep, epi);
1982 else
1983 error = -ENOENT;
1984 break;
1985 case EPOLL_CTL_MOD:
1986 if (epi) {
1987 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
1988 epds.events |= POLLERR | POLLHUP;
1989 error = ep_modify(ep, epi, &epds);
1991 } else
1992 error = -ENOENT;
1993 break;
1995 if (tep != NULL)
1996 mutex_unlock(&tep->mtx);
1997 mutex_unlock(&ep->mtx);
1999 error_tgt_fput:
2000 if (full_check)
2001 mutex_unlock(&epmutex);
2003 fdput(tf);
2004 error_fput:
2005 fdput(f);
2006 error_return:
2008 return error;
2012 * Implement the event wait interface for the eventpoll file. It is the kernel
2013 * part of the user space epoll_wait(2).
2015 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2016 int, maxevents, int, timeout)
2018 int error;
2019 struct fd f;
2020 struct eventpoll *ep;
2022 /* The maximum number of event must be greater than zero */
2023 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2024 return -EINVAL;
2026 /* Verify that the area passed by the user is writeable */
2027 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2028 return -EFAULT;
2030 /* Get the "struct file *" for the eventpoll file */
2031 f = fdget(epfd);
2032 if (!f.file)
2033 return -EBADF;
2036 * We have to check that the file structure underneath the fd
2037 * the user passed to us _is_ an eventpoll file.
2039 error = -EINVAL;
2040 if (!is_file_epoll(f.file))
2041 goto error_fput;
2044 * At this point it is safe to assume that the "private_data" contains
2045 * our own data structure.
2047 ep = f.file->private_data;
2049 /* Time to fish for events ... */
2050 error = ep_poll(ep, events, maxevents, timeout);
2052 error_fput:
2053 fdput(f);
2054 return error;
2058 * Implement the event wait interface for the eventpoll file. It is the kernel
2059 * part of the user space epoll_pwait(2).
2061 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2062 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2063 size_t, sigsetsize)
2065 int error;
2066 sigset_t ksigmask, sigsaved;
2069 * If the caller wants a certain signal mask to be set during the wait,
2070 * we apply it here.
2072 if (sigmask) {
2073 if (sigsetsize != sizeof(sigset_t))
2074 return -EINVAL;
2075 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2076 return -EFAULT;
2077 sigsaved = current->blocked;
2078 set_current_blocked(&ksigmask);
2081 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2084 * If we changed the signal mask, we need to restore the original one.
2085 * In case we've got a signal while waiting, we do not restore the
2086 * signal mask yet, and we allow do_signal() to deliver the signal on
2087 * the way back to userspace, before the signal mask is restored.
2089 if (sigmask) {
2090 if (error == -EINTR) {
2091 memcpy(&current->saved_sigmask, &sigsaved,
2092 sizeof(sigsaved));
2093 set_restore_sigmask();
2094 } else
2095 set_current_blocked(&sigsaved);
2098 return error;
2101 #ifdef CONFIG_COMPAT
2102 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2103 struct epoll_event __user *, events,
2104 int, maxevents, int, timeout,
2105 const compat_sigset_t __user *, sigmask,
2106 compat_size_t, sigsetsize)
2108 long err;
2109 compat_sigset_t csigmask;
2110 sigset_t ksigmask, sigsaved;
2113 * If the caller wants a certain signal mask to be set during the wait,
2114 * we apply it here.
2116 if (sigmask) {
2117 if (sigsetsize != sizeof(compat_sigset_t))
2118 return -EINVAL;
2119 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2120 return -EFAULT;
2121 sigset_from_compat(&ksigmask, &csigmask);
2122 sigsaved = current->blocked;
2123 set_current_blocked(&ksigmask);
2126 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2129 * If we changed the signal mask, we need to restore the original one.
2130 * In case we've got a signal while waiting, we do not restore the
2131 * signal mask yet, and we allow do_signal() to deliver the signal on
2132 * the way back to userspace, before the signal mask is restored.
2134 if (sigmask) {
2135 if (err == -EINTR) {
2136 memcpy(&current->saved_sigmask, &sigsaved,
2137 sizeof(sigsaved));
2138 set_restore_sigmask();
2139 } else
2140 set_current_blocked(&sigsaved);
2143 return err;
2145 #endif
2147 static int __init eventpoll_init(void)
2149 struct sysinfo si;
2151 si_meminfo(&si);
2153 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2155 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2156 EP_ITEM_COST;
2157 BUG_ON(max_user_watches < 0);
2160 * Initialize the structure used to perform epoll file descriptor
2161 * inclusion loops checks.
2163 ep_nested_calls_init(&poll_loop_ncalls);
2165 /* Initialize the structure used to perform safe poll wait head wake ups */
2166 ep_nested_calls_init(&poll_safewake_ncalls);
2168 /* Initialize the structure used to perform file's f_op->poll() calls */
2169 ep_nested_calls_init(&poll_readywalk_ncalls);
2172 * We can have many thousands of epitems, so prevent this from
2173 * using an extra cache line on 64-bit (and smaller) CPUs
2175 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2177 /* Allocates slab cache used to allocate "struct epitem" items */
2178 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2179 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2181 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2182 pwq_cache = kmem_cache_create("eventpoll_pwq",
2183 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2185 return 0;
2187 fs_initcall(eventpoll_init);