4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 enum wb_reason reason
; /* why was writeback initiated? */
58 struct list_head list
; /* pending work list */
59 struct wb_completion
*done
; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
87 static inline struct inode
*wb_inode(struct list_head
*head
)
89 return list_entry(head
, struct inode
, i_io_list
);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
102 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
104 if (wb_has_dirty_io(wb
)) {
107 set_bit(WB_has_dirty_io
, &wb
->state
);
108 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
109 atomic_long_add(wb
->avg_write_bandwidth
,
110 &wb
->bdi
->tot_write_bandwidth
);
115 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
117 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
118 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
119 clear_bit(WB_has_dirty_io
, &wb
->state
);
120 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
121 &wb
->bdi
->tot_write_bandwidth
) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode
*inode
,
136 struct bdi_writeback
*wb
,
137 struct list_head
*head
)
139 assert_spin_locked(&wb
->list_lock
);
141 list_move(&inode
->i_io_list
, head
);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head
!= &wb
->b_dirty_time
)
145 return wb_io_lists_populated(wb
);
147 wb_io_lists_depopulated(wb
);
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode
*inode
,
160 struct bdi_writeback
*wb
)
162 assert_spin_locked(&wb
->list_lock
);
164 list_del_init(&inode
->i_io_list
);
165 wb_io_lists_depopulated(wb
);
168 static void wb_wakeup(struct bdi_writeback
*wb
)
170 spin_lock_bh(&wb
->work_lock
);
171 if (test_bit(WB_registered
, &wb
->state
))
172 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
173 spin_unlock_bh(&wb
->work_lock
);
176 static void finish_writeback_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 struct wb_completion
*done
= work
->done
;
183 if (done
&& atomic_dec_and_test(&done
->cnt
))
184 wake_up_all(&wb
->bdi
->wb_waitq
);
187 static void wb_queue_work(struct bdi_writeback
*wb
,
188 struct wb_writeback_work
*work
)
190 trace_writeback_queue(wb
, work
);
193 atomic_inc(&work
->done
->cnt
);
195 spin_lock_bh(&wb
->work_lock
);
197 if (test_bit(WB_registered
, &wb
->state
)) {
198 list_add_tail(&work
->list
, &wb
->work_list
);
199 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
201 finish_writeback_work(wb
, work
);
203 spin_unlock_bh(&wb
->work_lock
);
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
217 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
218 struct wb_completion
*done
)
220 atomic_dec(&done
->cnt
); /* put down the initial count */
221 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
224 #ifdef CONFIG_CGROUP_WRITEBACK
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
240 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
241 static struct workqueue_struct
*isw_wq
;
243 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
245 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
246 struct bdi_writeback
*wb
= NULL
;
248 if (inode_cgwb_enabled(inode
)) {
249 struct cgroup_subsys_state
*memcg_css
;
252 memcg_css
= mem_cgroup_css_from_page(page
);
253 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css
= task_get_css(current
, memory_cgrp_id
);
257 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
269 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
281 static struct bdi_writeback
*
282 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
283 __releases(&inode
->i_lock
)
284 __acquires(&wb
->list_lock
)
287 struct bdi_writeback
*wb
= inode_to_wb(inode
);
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
296 spin_unlock(&inode
->i_lock
);
297 spin_lock(&wb
->list_lock
);
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb
== inode
->i_wb
)) {
301 wb_put(wb
); /* @inode already has ref */
305 spin_unlock(&wb
->list_lock
);
308 spin_lock(&inode
->i_lock
);
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
320 __acquires(&wb
->list_lock
)
322 spin_lock(&inode
->i_lock
);
323 return locked_inode_to_wb_and_lock_list(inode
);
326 struct inode_switch_wbs_context
{
328 struct bdi_writeback
*new_wb
;
330 struct rcu_head rcu_head
;
331 struct work_struct work
;
334 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
336 struct inode_switch_wbs_context
*isw
=
337 container_of(work
, struct inode_switch_wbs_context
, work
);
338 struct inode
*inode
= isw
->inode
;
339 struct address_space
*mapping
= inode
->i_mapping
;
340 struct bdi_writeback
*old_wb
= inode
->i_wb
;
341 struct bdi_writeback
*new_wb
= isw
->new_wb
;
342 struct radix_tree_iter iter
;
343 bool switched
= false;
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against mapping->tree_lock.
352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
356 if (old_wb
< new_wb
) {
357 spin_lock(&old_wb
->list_lock
);
358 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
360 spin_lock(&new_wb
->list_lock
);
361 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
363 spin_lock(&inode
->i_lock
);
364 spin_lock_irq(&mapping
->tree_lock
);
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
370 if (unlikely(inode
->i_state
& I_FREEING
))
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under underwriteback.
378 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
379 PAGECACHE_TAG_DIRTY
) {
380 struct page
*page
= radix_tree_deref_slot_protected(slot
,
381 &mapping
->tree_lock
);
382 if (likely(page
) && PageDirty(page
)) {
383 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
384 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
388 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
389 PAGECACHE_TAG_WRITEBACK
) {
390 struct page
*page
= radix_tree_deref_slot_protected(slot
,
391 &mapping
->tree_lock
);
393 WARN_ON_ONCE(!PageWriteback(page
));
394 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
395 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
402 * Transfer to @new_wb's IO list if necessary. The specific list
403 * @inode was on is ignored and the inode is put on ->b_dirty which
404 * is always correct including from ->b_dirty_time. The transfer
405 * preserves @inode->dirtied_when ordering.
407 if (!list_empty(&inode
->i_io_list
)) {
410 inode_io_list_del_locked(inode
, old_wb
);
411 inode
->i_wb
= new_wb
;
412 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
413 if (time_after_eq(inode
->dirtied_when
,
416 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
418 inode
->i_wb
= new_wb
;
421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 inode
->i_wb_frn_winner
= 0;
423 inode
->i_wb_frn_avg_time
= 0;
424 inode
->i_wb_frn_history
= 0;
428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 * ensures that the new wb is visible if they see !I_WB_SWITCH.
431 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
433 spin_unlock_irq(&mapping
->tree_lock
);
434 spin_unlock(&inode
->i_lock
);
435 spin_unlock(&new_wb
->list_lock
);
436 spin_unlock(&old_wb
->list_lock
);
447 atomic_dec(&isw_nr_in_flight
);
450 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
452 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
453 struct inode_switch_wbs_context
, rcu_head
);
455 /* needs to grab bh-unsafe locks, bounce to work item */
456 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
457 queue_work(isw_wq
, &isw
->work
);
461 * inode_switch_wbs - change the wb association of an inode
462 * @inode: target inode
463 * @new_wb_id: ID of the new wb
465 * Switch @inode's wb association to the wb identified by @new_wb_id. The
466 * switching is performed asynchronously and may fail silently.
468 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
470 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
471 struct cgroup_subsys_state
*memcg_css
;
472 struct inode_switch_wbs_context
*isw
;
474 /* noop if seems to be already in progress */
475 if (inode
->i_state
& I_WB_SWITCH
)
478 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
482 /* find and pin the new wb */
484 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
486 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
491 /* while holding I_WB_SWITCH, no one else can update the association */
492 spin_lock(&inode
->i_lock
);
493 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
) ||
494 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
495 inode_to_wb(inode
) == isw
->new_wb
) {
496 spin_unlock(&inode
->i_lock
);
499 inode
->i_state
|= I_WB_SWITCH
;
501 spin_unlock(&inode
->i_lock
);
505 atomic_inc(&isw_nr_in_flight
);
508 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 * the RCU protected stat update paths to grab the mapping's
510 * tree_lock so that stat transfer can synchronize against them.
511 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
513 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524 * @wbc: writeback_control of interest
525 * @inode: target inode
527 * @inode is locked and about to be written back under the control of @wbc.
528 * Record @inode's writeback context into @wbc and unlock the i_lock. On
529 * writeback completion, wbc_detach_inode() should be called. This is used
530 * to track the cgroup writeback context.
532 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
535 if (!inode_cgwb_enabled(inode
)) {
536 spin_unlock(&inode
->i_lock
);
540 wbc
->wb
= inode_to_wb(inode
);
543 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
544 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
545 wbc
->wb_tcand_id
= 0;
547 wbc
->wb_lcand_bytes
= 0;
548 wbc
->wb_tcand_bytes
= 0;
551 spin_unlock(&inode
->i_lock
);
554 * A dying wb indicates that the memcg-blkcg mapping has changed
555 * and a new wb is already serving the memcg. Switch immediately.
557 if (unlikely(wb_dying(wbc
->wb
)))
558 inode_switch_wbs(inode
, wbc
->wb_id
);
562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563 * @wbc: writeback_control of the just finished writeback
565 * To be called after a writeback attempt of an inode finishes and undoes
566 * wbc_attach_and_unlock_inode(). Can be called under any context.
568 * As concurrent write sharing of an inode is expected to be very rare and
569 * memcg only tracks page ownership on first-use basis severely confining
570 * the usefulness of such sharing, cgroup writeback tracks ownership
571 * per-inode. While the support for concurrent write sharing of an inode
572 * is deemed unnecessary, an inode being written to by different cgroups at
573 * different points in time is a lot more common, and, more importantly,
574 * charging only by first-use can too readily lead to grossly incorrect
575 * behaviors (single foreign page can lead to gigabytes of writeback to be
576 * incorrectly attributed).
578 * To resolve this issue, cgroup writeback detects the majority dirtier of
579 * an inode and transfers the ownership to it. To avoid unnnecessary
580 * oscillation, the detection mechanism keeps track of history and gives
581 * out the switch verdict only if the foreign usage pattern is stable over
582 * a certain amount of time and/or writeback attempts.
584 * On each writeback attempt, @wbc tries to detect the majority writer
585 * using Boyer-Moore majority vote algorithm. In addition to the byte
586 * count from the majority voting, it also counts the bytes written for the
587 * current wb and the last round's winner wb (max of last round's current
588 * wb, the winner from two rounds ago, and the last round's majority
589 * candidate). Keeping track of the historical winner helps the algorithm
590 * to semi-reliably detect the most active writer even when it's not the
593 * Once the winner of the round is determined, whether the winner is
594 * foreign or not and how much IO time the round consumed is recorded in
595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
596 * over a certain threshold, the switch verdict is given.
598 void wbc_detach_inode(struct writeback_control
*wbc
)
600 struct bdi_writeback
*wb
= wbc
->wb
;
601 struct inode
*inode
= wbc
->inode
;
602 unsigned long avg_time
, max_bytes
, max_time
;
609 history
= inode
->i_wb_frn_history
;
610 avg_time
= inode
->i_wb_frn_avg_time
;
612 /* pick the winner of this round */
613 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
614 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
616 max_bytes
= wbc
->wb_bytes
;
617 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
618 max_id
= wbc
->wb_lcand_id
;
619 max_bytes
= wbc
->wb_lcand_bytes
;
621 max_id
= wbc
->wb_tcand_id
;
622 max_bytes
= wbc
->wb_tcand_bytes
;
626 * Calculate the amount of IO time the winner consumed and fold it
627 * into the running average kept per inode. If the consumed IO
628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 * deciding whether to switch or not. This is to prevent one-off
630 * small dirtiers from skewing the verdict.
632 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
633 wb
->avg_write_bandwidth
);
635 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
636 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
638 avg_time
= max_time
; /* immediate catch up on first run */
640 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
644 * The switch verdict is reached if foreign wb's consume
645 * more than a certain proportion of IO time in a
646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
647 * history mask where each bit represents one sixteenth of
648 * the period. Determine the number of slots to shift into
649 * history from @max_time.
651 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
652 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
654 if (wbc
->wb_id
!= max_id
)
655 history
|= (1U << slots
) - 1;
658 * Switch if the current wb isn't the consistent winner.
659 * If there are multiple closely competing dirtiers, the
660 * inode may switch across them repeatedly over time, which
661 * is okay. The main goal is avoiding keeping an inode on
662 * the wrong wb for an extended period of time.
664 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
665 inode_switch_wbs(inode
, max_id
);
669 * Multiple instances of this function may race to update the
670 * following fields but we don't mind occassional inaccuracies.
672 inode
->i_wb_frn_winner
= max_id
;
673 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
674 inode
->i_wb_frn_history
= history
;
681 * wbc_account_io - account IO issued during writeback
682 * @wbc: writeback_control of the writeback in progress
683 * @page: page being written out
684 * @bytes: number of bytes being written out
686 * @bytes from @page are about to written out during the writeback
687 * controlled by @wbc. Keep the book for foreign inode detection. See
688 * wbc_detach_inode().
690 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
696 * pageout() path doesn't attach @wbc to the inode being written
697 * out. This is intentional as we don't want the function to block
698 * behind a slow cgroup. Ultimately, we want pageout() to kick off
699 * regular writeback instead of writing things out itself.
704 id
= mem_cgroup_css_from_page(page
)->id
;
706 if (id
== wbc
->wb_id
) {
707 wbc
->wb_bytes
+= bytes
;
711 if (id
== wbc
->wb_lcand_id
)
712 wbc
->wb_lcand_bytes
+= bytes
;
714 /* Boyer-Moore majority vote algorithm */
715 if (!wbc
->wb_tcand_bytes
)
716 wbc
->wb_tcand_id
= id
;
717 if (id
== wbc
->wb_tcand_id
)
718 wbc
->wb_tcand_bytes
+= bytes
;
720 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
722 EXPORT_SYMBOL_GPL(wbc_account_io
);
725 * inode_congested - test whether an inode is congested
726 * @inode: inode to test for congestion (may be NULL)
727 * @cong_bits: mask of WB_[a]sync_congested bits to test
729 * Tests whether @inode is congested. @cong_bits is the mask of congestion
730 * bits to test and the return value is the mask of set bits.
732 * If cgroup writeback is enabled for @inode, the congestion state is
733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734 * associated with @inode is congested; otherwise, the root wb's congestion
737 * @inode is allowed to be NULL as this function is often called on
738 * mapping->host which is NULL for the swapper space.
740 int inode_congested(struct inode
*inode
, int cong_bits
)
743 * Once set, ->i_wb never becomes NULL while the inode is alive.
744 * Start transaction iff ->i_wb is visible.
746 if (inode
&& inode_to_wb_is_valid(inode
)) {
747 struct bdi_writeback
*wb
;
748 struct wb_lock_cookie lock_cookie
= {};
751 wb
= unlocked_inode_to_wb_begin(inode
, &lock_cookie
);
752 congested
= wb_congested(wb
, cong_bits
);
753 unlocked_inode_to_wb_end(inode
, &lock_cookie
);
757 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
759 EXPORT_SYMBOL_GPL(inode_congested
);
762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
763 * @wb: target bdi_writeback to split @nr_pages to
764 * @nr_pages: number of pages to write for the whole bdi
766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
767 * relation to the total write bandwidth of all wb's w/ dirty inodes on
770 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
772 unsigned long this_bw
= wb
->avg_write_bandwidth
;
773 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
775 if (nr_pages
== LONG_MAX
)
779 * This may be called on clean wb's and proportional distribution
780 * may not make sense, just use the original @nr_pages in those
781 * cases. In general, we wanna err on the side of writing more.
783 if (!tot_bw
|| this_bw
>= tot_bw
)
786 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
791 * @bdi: target backing_dev_info
792 * @base_work: wb_writeback_work to issue
793 * @skip_if_busy: skip wb's which already have writeback in progress
795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
796 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
797 * distributed to the busy wbs according to each wb's proportion in the
798 * total active write bandwidth of @bdi.
800 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
801 struct wb_writeback_work
*base_work
,
804 struct bdi_writeback
*last_wb
= NULL
;
805 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
806 struct bdi_writeback
, bdi_node
);
811 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
812 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
813 struct wb_writeback_work fallback_work
;
814 struct wb_writeback_work
*work
;
822 /* SYNC_ALL writes out I_DIRTY_TIME too */
823 if (!wb_has_dirty_io(wb
) &&
824 (base_work
->sync_mode
== WB_SYNC_NONE
||
825 list_empty(&wb
->b_dirty_time
)))
827 if (skip_if_busy
&& writeback_in_progress(wb
))
830 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
832 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
835 work
->nr_pages
= nr_pages
;
837 wb_queue_work(wb
, work
);
841 /* alloc failed, execute synchronously using on-stack fallback */
842 work
= &fallback_work
;
844 work
->nr_pages
= nr_pages
;
846 work
->done
= &fallback_work_done
;
848 wb_queue_work(wb
, work
);
851 * Pin @wb so that it stays on @bdi->wb_list. This allows
852 * continuing iteration from @wb after dropping and
853 * regrabbing rcu read lock.
859 wb_wait_for_completion(bdi
, &fallback_work_done
);
869 * cgroup_writeback_umount - flush inode wb switches for umount
871 * This function is called when a super_block is about to be destroyed and
872 * flushes in-flight inode wb switches. An inode wb switch goes through
873 * RCU and then workqueue, so the two need to be flushed in order to ensure
874 * that all previously scheduled switches are finished. As wb switches are
875 * rare occurrences and synchronize_rcu() can take a while, perform
876 * flushing iff wb switches are in flight.
878 void cgroup_writeback_umount(void)
880 if (atomic_read(&isw_nr_in_flight
)) {
882 flush_workqueue(isw_wq
);
886 static int __init
cgroup_writeback_init(void)
888 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
893 fs_initcall(cgroup_writeback_init
);
895 #else /* CONFIG_CGROUP_WRITEBACK */
897 static struct bdi_writeback
*
898 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
899 __releases(&inode
->i_lock
)
900 __acquires(&wb
->list_lock
)
902 struct bdi_writeback
*wb
= inode_to_wb(inode
);
904 spin_unlock(&inode
->i_lock
);
905 spin_lock(&wb
->list_lock
);
909 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
910 __acquires(&wb
->list_lock
)
912 struct bdi_writeback
*wb
= inode_to_wb(inode
);
914 spin_lock(&wb
->list_lock
);
918 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
923 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
924 struct wb_writeback_work
*base_work
,
929 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
930 base_work
->auto_free
= 0;
931 wb_queue_work(&bdi
->wb
, base_work
);
935 #endif /* CONFIG_CGROUP_WRITEBACK */
937 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
938 bool range_cyclic
, enum wb_reason reason
)
940 struct wb_writeback_work
*work
;
942 if (!wb_has_dirty_io(wb
))
946 * This is WB_SYNC_NONE writeback, so if allocation fails just
947 * wakeup the thread for old dirty data writeback
949 work
= kzalloc(sizeof(*work
),
950 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
952 trace_writeback_nowork(wb
);
957 work
->sync_mode
= WB_SYNC_NONE
;
958 work
->nr_pages
= nr_pages
;
959 work
->range_cyclic
= range_cyclic
;
960 work
->reason
= reason
;
963 wb_queue_work(wb
, work
);
967 * wb_start_background_writeback - start background writeback
968 * @wb: bdi_writback to write from
971 * This makes sure WB_SYNC_NONE background writeback happens. When
972 * this function returns, it is only guaranteed that for given wb
973 * some IO is happening if we are over background dirty threshold.
974 * Caller need not hold sb s_umount semaphore.
976 void wb_start_background_writeback(struct bdi_writeback
*wb
)
979 * We just wake up the flusher thread. It will perform background
980 * writeback as soon as there is no other work to do.
982 trace_writeback_wake_background(wb
);
987 * Remove the inode from the writeback list it is on.
989 void inode_io_list_del(struct inode
*inode
)
991 struct bdi_writeback
*wb
;
993 wb
= inode_to_wb_and_lock_list(inode
);
994 inode_io_list_del_locked(inode
, wb
);
995 spin_unlock(&wb
->list_lock
);
999 * mark an inode as under writeback on the sb
1001 void sb_mark_inode_writeback(struct inode
*inode
)
1003 struct super_block
*sb
= inode
->i_sb
;
1004 unsigned long flags
;
1006 if (list_empty(&inode
->i_wb_list
)) {
1007 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1008 if (list_empty(&inode
->i_wb_list
)) {
1009 list_add_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
1010 trace_sb_mark_inode_writeback(inode
);
1012 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1017 * clear an inode as under writeback on the sb
1019 void sb_clear_inode_writeback(struct inode
*inode
)
1021 struct super_block
*sb
= inode
->i_sb
;
1022 unsigned long flags
;
1024 if (!list_empty(&inode
->i_wb_list
)) {
1025 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1026 if (!list_empty(&inode
->i_wb_list
)) {
1027 list_del_init(&inode
->i_wb_list
);
1028 trace_sb_clear_inode_writeback(inode
);
1030 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1035 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1036 * furthest end of its superblock's dirty-inode list.
1038 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1039 * already the most-recently-dirtied inode on the b_dirty list. If that is
1040 * the case then the inode must have been redirtied while it was being written
1041 * out and we don't reset its dirtied_when.
1043 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1045 if (!list_empty(&wb
->b_dirty
)) {
1048 tail
= wb_inode(wb
->b_dirty
.next
);
1049 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1050 inode
->dirtied_when
= jiffies
;
1052 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1056 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1058 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1060 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1063 static void inode_sync_complete(struct inode
*inode
)
1065 inode
->i_state
&= ~I_SYNC
;
1066 /* If inode is clean an unused, put it into LRU now... */
1067 inode_add_lru(inode
);
1068 /* Waiters must see I_SYNC cleared before being woken up */
1070 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1073 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1075 bool ret
= time_after(inode
->dirtied_when
, t
);
1076 #ifndef CONFIG_64BIT
1078 * For inodes being constantly redirtied, dirtied_when can get stuck.
1079 * It _appears_ to be in the future, but is actually in distant past.
1080 * This test is necessary to prevent such wrapped-around relative times
1081 * from permanently stopping the whole bdi writeback.
1083 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1088 #define EXPIRE_DIRTY_ATIME 0x0001
1091 * Move expired (dirtied before work->older_than_this) dirty inodes from
1092 * @delaying_queue to @dispatch_queue.
1094 static int move_expired_inodes(struct list_head
*delaying_queue
,
1095 struct list_head
*dispatch_queue
,
1097 struct wb_writeback_work
*work
)
1099 unsigned long *older_than_this
= NULL
;
1100 unsigned long expire_time
;
1102 struct list_head
*pos
, *node
;
1103 struct super_block
*sb
= NULL
;
1104 struct inode
*inode
;
1108 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1109 older_than_this
= work
->older_than_this
;
1110 else if (!work
->for_sync
) {
1111 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1112 older_than_this
= &expire_time
;
1114 while (!list_empty(delaying_queue
)) {
1115 inode
= wb_inode(delaying_queue
->prev
);
1116 if (older_than_this
&&
1117 inode_dirtied_after(inode
, *older_than_this
))
1119 list_move(&inode
->i_io_list
, &tmp
);
1121 if (flags
& EXPIRE_DIRTY_ATIME
)
1122 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1123 if (sb_is_blkdev_sb(inode
->i_sb
))
1125 if (sb
&& sb
!= inode
->i_sb
)
1130 /* just one sb in list, splice to dispatch_queue and we're done */
1132 list_splice(&tmp
, dispatch_queue
);
1136 /* Move inodes from one superblock together */
1137 while (!list_empty(&tmp
)) {
1138 sb
= wb_inode(tmp
.prev
)->i_sb
;
1139 list_for_each_prev_safe(pos
, node
, &tmp
) {
1140 inode
= wb_inode(pos
);
1141 if (inode
->i_sb
== sb
)
1142 list_move(&inode
->i_io_list
, dispatch_queue
);
1150 * Queue all expired dirty inodes for io, eldest first.
1152 * newly dirtied b_dirty b_io b_more_io
1153 * =============> gf edc BA
1155 * newly dirtied b_dirty b_io b_more_io
1156 * =============> g fBAedc
1158 * +--> dequeue for IO
1160 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1164 assert_spin_locked(&wb
->list_lock
);
1165 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1166 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1167 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1168 EXPIRE_DIRTY_ATIME
, work
);
1170 wb_io_lists_populated(wb
);
1171 trace_writeback_queue_io(wb
, work
, moved
);
1174 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1178 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1179 trace_writeback_write_inode_start(inode
, wbc
);
1180 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1181 trace_writeback_write_inode(inode
, wbc
);
1188 * Wait for writeback on an inode to complete. Called with i_lock held.
1189 * Caller must make sure inode cannot go away when we drop i_lock.
1191 static void __inode_wait_for_writeback(struct inode
*inode
)
1192 __releases(inode
->i_lock
)
1193 __acquires(inode
->i_lock
)
1195 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1196 wait_queue_head_t
*wqh
;
1198 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1199 while (inode
->i_state
& I_SYNC
) {
1200 spin_unlock(&inode
->i_lock
);
1201 __wait_on_bit(wqh
, &wq
, bit_wait
,
1202 TASK_UNINTERRUPTIBLE
);
1203 spin_lock(&inode
->i_lock
);
1208 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1210 void inode_wait_for_writeback(struct inode
*inode
)
1212 spin_lock(&inode
->i_lock
);
1213 __inode_wait_for_writeback(inode
);
1214 spin_unlock(&inode
->i_lock
);
1218 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1219 * held and drops it. It is aimed for callers not holding any inode reference
1220 * so once i_lock is dropped, inode can go away.
1222 static void inode_sleep_on_writeback(struct inode
*inode
)
1223 __releases(inode
->i_lock
)
1226 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1229 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1230 sleep
= inode
->i_state
& I_SYNC
;
1231 spin_unlock(&inode
->i_lock
);
1234 finish_wait(wqh
, &wait
);
1238 * Find proper writeback list for the inode depending on its current state and
1239 * possibly also change of its state while we were doing writeback. Here we
1240 * handle things such as livelock prevention or fairness of writeback among
1241 * inodes. This function can be called only by flusher thread - noone else
1242 * processes all inodes in writeback lists and requeueing inodes behind flusher
1243 * thread's back can have unexpected consequences.
1245 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1246 struct writeback_control
*wbc
)
1248 if (inode
->i_state
& I_FREEING
)
1252 * Sync livelock prevention. Each inode is tagged and synced in one
1253 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1254 * the dirty time to prevent enqueue and sync it again.
1256 if ((inode
->i_state
& I_DIRTY
) &&
1257 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1258 inode
->dirtied_when
= jiffies
;
1260 if (wbc
->pages_skipped
) {
1262 * writeback is not making progress due to locked
1263 * buffers. Skip this inode for now.
1265 redirty_tail(inode
, wb
);
1269 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1271 * We didn't write back all the pages. nfs_writepages()
1272 * sometimes bales out without doing anything.
1274 if (wbc
->nr_to_write
<= 0) {
1275 /* Slice used up. Queue for next turn. */
1276 requeue_io(inode
, wb
);
1279 * Writeback blocked by something other than
1280 * congestion. Delay the inode for some time to
1281 * avoid spinning on the CPU (100% iowait)
1282 * retrying writeback of the dirty page/inode
1283 * that cannot be performed immediately.
1285 redirty_tail(inode
, wb
);
1287 } else if (inode
->i_state
& I_DIRTY
) {
1289 * Filesystems can dirty the inode during writeback operations,
1290 * such as delayed allocation during submission or metadata
1291 * updates after data IO completion.
1293 redirty_tail(inode
, wb
);
1294 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1295 inode
->dirtied_when
= jiffies
;
1296 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1298 /* The inode is clean. Remove from writeback lists. */
1299 inode_io_list_del_locked(inode
, wb
);
1304 * Write out an inode and its dirty pages. Do not update the writeback list
1305 * linkage. That is left to the caller. The caller is also responsible for
1306 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1309 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1311 struct address_space
*mapping
= inode
->i_mapping
;
1312 long nr_to_write
= wbc
->nr_to_write
;
1316 WARN_ON(!(inode
->i_state
& I_SYNC
));
1318 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1320 ret
= do_writepages(mapping
, wbc
);
1323 * Make sure to wait on the data before writing out the metadata.
1324 * This is important for filesystems that modify metadata on data
1325 * I/O completion. We don't do it for sync(2) writeback because it has a
1326 * separate, external IO completion path and ->sync_fs for guaranteeing
1327 * inode metadata is written back correctly.
1329 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1330 int err
= filemap_fdatawait(mapping
);
1336 * Some filesystems may redirty the inode during the writeback
1337 * due to delalloc, clear dirty metadata flags right before
1340 spin_lock(&inode
->i_lock
);
1342 dirty
= inode
->i_state
& I_DIRTY
;
1343 if (inode
->i_state
& I_DIRTY_TIME
) {
1344 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1345 wbc
->sync_mode
== WB_SYNC_ALL
||
1346 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1347 unlikely(time_after(jiffies
,
1348 (inode
->dirtied_time_when
+
1349 dirtytime_expire_interval
* HZ
)))) {
1350 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1351 trace_writeback_lazytime(inode
);
1354 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1355 inode
->i_state
&= ~dirty
;
1358 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1359 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1360 * either they see the I_DIRTY bits cleared or we see the dirtied
1363 * I_DIRTY_PAGES is always cleared together above even if @mapping
1364 * still has dirty pages. The flag is reinstated after smp_mb() if
1365 * necessary. This guarantees that either __mark_inode_dirty()
1366 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1370 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1371 inode
->i_state
|= I_DIRTY_PAGES
;
1373 spin_unlock(&inode
->i_lock
);
1375 if (dirty
& I_DIRTY_TIME
)
1376 mark_inode_dirty_sync(inode
);
1377 /* Don't write the inode if only I_DIRTY_PAGES was set */
1378 if (dirty
& ~I_DIRTY_PAGES
) {
1379 int err
= write_inode(inode
, wbc
);
1383 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1388 * Write out an inode's dirty pages. Either the caller has an active reference
1389 * on the inode or the inode has I_WILL_FREE set.
1391 * This function is designed to be called for writing back one inode which
1392 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1393 * and does more profound writeback list handling in writeback_sb_inodes().
1395 static int writeback_single_inode(struct inode
*inode
,
1396 struct writeback_control
*wbc
)
1398 struct bdi_writeback
*wb
;
1401 spin_lock(&inode
->i_lock
);
1402 if (!atomic_read(&inode
->i_count
))
1403 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1405 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1407 if (inode
->i_state
& I_SYNC
) {
1408 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1411 * It's a data-integrity sync. We must wait. Since callers hold
1412 * inode reference or inode has I_WILL_FREE set, it cannot go
1415 __inode_wait_for_writeback(inode
);
1417 WARN_ON(inode
->i_state
& I_SYNC
);
1419 * Skip inode if it is clean and we have no outstanding writeback in
1420 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1421 * function since flusher thread may be doing for example sync in
1422 * parallel and if we move the inode, it could get skipped. So here we
1423 * make sure inode is on some writeback list and leave it there unless
1424 * we have completely cleaned the inode.
1426 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1427 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1428 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1430 inode
->i_state
|= I_SYNC
;
1431 wbc_attach_and_unlock_inode(wbc
, inode
);
1433 ret
= __writeback_single_inode(inode
, wbc
);
1435 wbc_detach_inode(wbc
);
1437 wb
= inode_to_wb_and_lock_list(inode
);
1438 spin_lock(&inode
->i_lock
);
1440 * If inode is clean, remove it from writeback lists. Otherwise don't
1441 * touch it. See comment above for explanation.
1443 if (!(inode
->i_state
& I_DIRTY_ALL
))
1444 inode_io_list_del_locked(inode
, wb
);
1445 spin_unlock(&wb
->list_lock
);
1446 inode_sync_complete(inode
);
1448 spin_unlock(&inode
->i_lock
);
1452 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1453 struct wb_writeback_work
*work
)
1458 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1459 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1460 * here avoids calling into writeback_inodes_wb() more than once.
1462 * The intended call sequence for WB_SYNC_ALL writeback is:
1465 * writeback_sb_inodes() <== called only once
1466 * write_cache_pages() <== called once for each inode
1467 * (quickly) tag currently dirty pages
1468 * (maybe slowly) sync all tagged pages
1470 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1473 pages
= min(wb
->avg_write_bandwidth
/ 2,
1474 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1475 pages
= min(pages
, work
->nr_pages
);
1476 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1477 MIN_WRITEBACK_PAGES
);
1484 * Write a portion of b_io inodes which belong to @sb.
1486 * Return the number of pages and/or inodes written.
1488 * NOTE! This is called with wb->list_lock held, and will
1489 * unlock and relock that for each inode it ends up doing
1492 static long writeback_sb_inodes(struct super_block
*sb
,
1493 struct bdi_writeback
*wb
,
1494 struct wb_writeback_work
*work
)
1496 struct writeback_control wbc
= {
1497 .sync_mode
= work
->sync_mode
,
1498 .tagged_writepages
= work
->tagged_writepages
,
1499 .for_kupdate
= work
->for_kupdate
,
1500 .for_background
= work
->for_background
,
1501 .for_sync
= work
->for_sync
,
1502 .range_cyclic
= work
->range_cyclic
,
1504 .range_end
= LLONG_MAX
,
1506 unsigned long start_time
= jiffies
;
1508 long wrote
= 0; /* count both pages and inodes */
1510 while (!list_empty(&wb
->b_io
)) {
1511 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1512 struct bdi_writeback
*tmp_wb
;
1514 if (inode
->i_sb
!= sb
) {
1517 * We only want to write back data for this
1518 * superblock, move all inodes not belonging
1519 * to it back onto the dirty list.
1521 redirty_tail(inode
, wb
);
1526 * The inode belongs to a different superblock.
1527 * Bounce back to the caller to unpin this and
1528 * pin the next superblock.
1534 * Don't bother with new inodes or inodes being freed, first
1535 * kind does not need periodic writeout yet, and for the latter
1536 * kind writeout is handled by the freer.
1538 spin_lock(&inode
->i_lock
);
1539 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1540 spin_unlock(&inode
->i_lock
);
1541 redirty_tail(inode
, wb
);
1544 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1546 * If this inode is locked for writeback and we are not
1547 * doing writeback-for-data-integrity, move it to
1548 * b_more_io so that writeback can proceed with the
1549 * other inodes on s_io.
1551 * We'll have another go at writing back this inode
1552 * when we completed a full scan of b_io.
1554 spin_unlock(&inode
->i_lock
);
1555 requeue_io(inode
, wb
);
1556 trace_writeback_sb_inodes_requeue(inode
);
1559 spin_unlock(&wb
->list_lock
);
1562 * We already requeued the inode if it had I_SYNC set and we
1563 * are doing WB_SYNC_NONE writeback. So this catches only the
1566 if (inode
->i_state
& I_SYNC
) {
1567 /* Wait for I_SYNC. This function drops i_lock... */
1568 inode_sleep_on_writeback(inode
);
1569 /* Inode may be gone, start again */
1570 spin_lock(&wb
->list_lock
);
1573 inode
->i_state
|= I_SYNC
;
1574 wbc_attach_and_unlock_inode(&wbc
, inode
);
1576 write_chunk
= writeback_chunk_size(wb
, work
);
1577 wbc
.nr_to_write
= write_chunk
;
1578 wbc
.pages_skipped
= 0;
1581 * We use I_SYNC to pin the inode in memory. While it is set
1582 * evict_inode() will wait so the inode cannot be freed.
1584 __writeback_single_inode(inode
, &wbc
);
1586 wbc_detach_inode(&wbc
);
1587 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1588 wrote
+= write_chunk
- wbc
.nr_to_write
;
1590 if (need_resched()) {
1592 * We're trying to balance between building up a nice
1593 * long list of IOs to improve our merge rate, and
1594 * getting those IOs out quickly for anyone throttling
1595 * in balance_dirty_pages(). cond_resched() doesn't
1596 * unplug, so get our IOs out the door before we
1599 blk_flush_plug(current
);
1604 * Requeue @inode if still dirty. Be careful as @inode may
1605 * have been switched to another wb in the meantime.
1607 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1608 spin_lock(&inode
->i_lock
);
1609 if (!(inode
->i_state
& I_DIRTY_ALL
))
1611 requeue_inode(inode
, tmp_wb
, &wbc
);
1612 inode_sync_complete(inode
);
1613 spin_unlock(&inode
->i_lock
);
1615 if (unlikely(tmp_wb
!= wb
)) {
1616 spin_unlock(&tmp_wb
->list_lock
);
1617 spin_lock(&wb
->list_lock
);
1621 * bail out to wb_writeback() often enough to check
1622 * background threshold and other termination conditions.
1625 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1627 if (work
->nr_pages
<= 0)
1634 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1635 struct wb_writeback_work
*work
)
1637 unsigned long start_time
= jiffies
;
1640 while (!list_empty(&wb
->b_io
)) {
1641 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1642 struct super_block
*sb
= inode
->i_sb
;
1644 if (!trylock_super(sb
)) {
1646 * trylock_super() may fail consistently due to
1647 * s_umount being grabbed by someone else. Don't use
1648 * requeue_io() to avoid busy retrying the inode/sb.
1650 redirty_tail(inode
, wb
);
1653 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1654 up_read(&sb
->s_umount
);
1656 /* refer to the same tests at the end of writeback_sb_inodes */
1658 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1660 if (work
->nr_pages
<= 0)
1664 /* Leave any unwritten inodes on b_io */
1668 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1669 enum wb_reason reason
)
1671 struct wb_writeback_work work
= {
1672 .nr_pages
= nr_pages
,
1673 .sync_mode
= WB_SYNC_NONE
,
1677 struct blk_plug plug
;
1679 blk_start_plug(&plug
);
1680 spin_lock(&wb
->list_lock
);
1681 if (list_empty(&wb
->b_io
))
1682 queue_io(wb
, &work
);
1683 __writeback_inodes_wb(wb
, &work
);
1684 spin_unlock(&wb
->list_lock
);
1685 blk_finish_plug(&plug
);
1687 return nr_pages
- work
.nr_pages
;
1691 * Explicit flushing or periodic writeback of "old" data.
1693 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1694 * dirtying-time in the inode's address_space. So this periodic writeback code
1695 * just walks the superblock inode list, writing back any inodes which are
1696 * older than a specific point in time.
1698 * Try to run once per dirty_writeback_interval. But if a writeback event
1699 * takes longer than a dirty_writeback_interval interval, then leave a
1702 * older_than_this takes precedence over nr_to_write. So we'll only write back
1703 * all dirty pages if they are all attached to "old" mappings.
1705 static long wb_writeback(struct bdi_writeback
*wb
,
1706 struct wb_writeback_work
*work
)
1708 unsigned long wb_start
= jiffies
;
1709 long nr_pages
= work
->nr_pages
;
1710 unsigned long oldest_jif
;
1711 struct inode
*inode
;
1713 struct blk_plug plug
;
1715 oldest_jif
= jiffies
;
1716 work
->older_than_this
= &oldest_jif
;
1718 blk_start_plug(&plug
);
1719 spin_lock(&wb
->list_lock
);
1722 * Stop writeback when nr_pages has been consumed
1724 if (work
->nr_pages
<= 0)
1728 * Background writeout and kupdate-style writeback may
1729 * run forever. Stop them if there is other work to do
1730 * so that e.g. sync can proceed. They'll be restarted
1731 * after the other works are all done.
1733 if ((work
->for_background
|| work
->for_kupdate
) &&
1734 !list_empty(&wb
->work_list
))
1738 * For background writeout, stop when we are below the
1739 * background dirty threshold
1741 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1745 * Kupdate and background works are special and we want to
1746 * include all inodes that need writing. Livelock avoidance is
1747 * handled by these works yielding to any other work so we are
1750 if (work
->for_kupdate
) {
1751 oldest_jif
= jiffies
-
1752 msecs_to_jiffies(dirty_expire_interval
* 10);
1753 } else if (work
->for_background
)
1754 oldest_jif
= jiffies
;
1756 trace_writeback_start(wb
, work
);
1757 if (list_empty(&wb
->b_io
))
1760 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1762 progress
= __writeback_inodes_wb(wb
, work
);
1763 trace_writeback_written(wb
, work
);
1765 wb_update_bandwidth(wb
, wb_start
);
1768 * Did we write something? Try for more
1770 * Dirty inodes are moved to b_io for writeback in batches.
1771 * The completion of the current batch does not necessarily
1772 * mean the overall work is done. So we keep looping as long
1773 * as made some progress on cleaning pages or inodes.
1778 * No more inodes for IO, bail
1780 if (list_empty(&wb
->b_more_io
))
1783 * Nothing written. Wait for some inode to
1784 * become available for writeback. Otherwise
1785 * we'll just busyloop.
1787 if (!list_empty(&wb
->b_more_io
)) {
1788 trace_writeback_wait(wb
, work
);
1789 inode
= wb_inode(wb
->b_more_io
.prev
);
1790 spin_lock(&inode
->i_lock
);
1791 spin_unlock(&wb
->list_lock
);
1792 /* This function drops i_lock... */
1793 inode_sleep_on_writeback(inode
);
1794 spin_lock(&wb
->list_lock
);
1797 spin_unlock(&wb
->list_lock
);
1798 blk_finish_plug(&plug
);
1800 return nr_pages
- work
->nr_pages
;
1804 * Return the next wb_writeback_work struct that hasn't been processed yet.
1806 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1808 struct wb_writeback_work
*work
= NULL
;
1810 spin_lock_bh(&wb
->work_lock
);
1811 if (!list_empty(&wb
->work_list
)) {
1812 work
= list_entry(wb
->work_list
.next
,
1813 struct wb_writeback_work
, list
);
1814 list_del_init(&work
->list
);
1816 spin_unlock_bh(&wb
->work_lock
);
1821 * Add in the number of potentially dirty inodes, because each inode
1822 * write can dirty pagecache in the underlying blockdev.
1824 static unsigned long get_nr_dirty_pages(void)
1826 return global_node_page_state(NR_FILE_DIRTY
) +
1827 global_node_page_state(NR_UNSTABLE_NFS
) +
1828 get_nr_dirty_inodes();
1831 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1833 if (wb_over_bg_thresh(wb
)) {
1835 struct wb_writeback_work work
= {
1836 .nr_pages
= LONG_MAX
,
1837 .sync_mode
= WB_SYNC_NONE
,
1838 .for_background
= 1,
1840 .reason
= WB_REASON_BACKGROUND
,
1843 return wb_writeback(wb
, &work
);
1849 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1851 unsigned long expired
;
1855 * When set to zero, disable periodic writeback
1857 if (!dirty_writeback_interval
)
1860 expired
= wb
->last_old_flush
+
1861 msecs_to_jiffies(dirty_writeback_interval
* 10);
1862 if (time_before(jiffies
, expired
))
1865 wb
->last_old_flush
= jiffies
;
1866 nr_pages
= get_nr_dirty_pages();
1869 struct wb_writeback_work work
= {
1870 .nr_pages
= nr_pages
,
1871 .sync_mode
= WB_SYNC_NONE
,
1874 .reason
= WB_REASON_PERIODIC
,
1877 return wb_writeback(wb
, &work
);
1884 * Retrieve work items and do the writeback they describe
1886 static long wb_do_writeback(struct bdi_writeback
*wb
)
1888 struct wb_writeback_work
*work
;
1891 set_bit(WB_writeback_running
, &wb
->state
);
1892 while ((work
= get_next_work_item(wb
)) != NULL
) {
1893 trace_writeback_exec(wb
, work
);
1894 wrote
+= wb_writeback(wb
, work
);
1895 finish_writeback_work(wb
, work
);
1899 * Check for periodic writeback, kupdated() style
1901 wrote
+= wb_check_old_data_flush(wb
);
1902 wrote
+= wb_check_background_flush(wb
);
1903 clear_bit(WB_writeback_running
, &wb
->state
);
1909 * Handle writeback of dirty data for the device backed by this bdi. Also
1910 * reschedules periodically and does kupdated style flushing.
1912 void wb_workfn(struct work_struct
*work
)
1914 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1915 struct bdi_writeback
, dwork
);
1918 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1919 current
->flags
|= PF_SWAPWRITE
;
1921 if (likely(!current_is_workqueue_rescuer() ||
1922 !test_bit(WB_registered
, &wb
->state
))) {
1924 * The normal path. Keep writing back @wb until its
1925 * work_list is empty. Note that this path is also taken
1926 * if @wb is shutting down even when we're running off the
1927 * rescuer as work_list needs to be drained.
1930 pages_written
= wb_do_writeback(wb
);
1931 trace_writeback_pages_written(pages_written
);
1932 } while (!list_empty(&wb
->work_list
));
1935 * bdi_wq can't get enough workers and we're running off
1936 * the emergency worker. Don't hog it. Hopefully, 1024 is
1937 * enough for efficient IO.
1939 pages_written
= writeback_inodes_wb(wb
, 1024,
1940 WB_REASON_FORKER_THREAD
);
1941 trace_writeback_pages_written(pages_written
);
1944 if (!list_empty(&wb
->work_list
))
1946 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1947 wb_wakeup_delayed(wb
);
1949 current
->flags
&= ~PF_SWAPWRITE
;
1953 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1956 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1958 struct backing_dev_info
*bdi
;
1961 * If we are expecting writeback progress we must submit plugged IO.
1963 if (blk_needs_flush_plug(current
))
1964 blk_schedule_flush_plug(current
);
1967 nr_pages
= get_nr_dirty_pages();
1970 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1971 struct bdi_writeback
*wb
;
1973 if (!bdi_has_dirty_io(bdi
))
1976 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1977 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1984 * Wake up bdi's periodically to make sure dirtytime inodes gets
1985 * written back periodically. We deliberately do *not* check the
1986 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1987 * kernel to be constantly waking up once there are any dirtytime
1988 * inodes on the system. So instead we define a separate delayed work
1989 * function which gets called much more rarely. (By default, only
1990 * once every 12 hours.)
1992 * If there is any other write activity going on in the file system,
1993 * this function won't be necessary. But if the only thing that has
1994 * happened on the file system is a dirtytime inode caused by an atime
1995 * update, we need this infrastructure below to make sure that inode
1996 * eventually gets pushed out to disk.
1998 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
1999 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
2001 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
2003 struct backing_dev_info
*bdi
;
2006 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
2007 struct bdi_writeback
*wb
;
2009 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2010 if (!list_empty(&wb
->b_dirty_time
))
2014 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2017 static int __init
start_dirtytime_writeback(void)
2019 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2022 __initcall(start_dirtytime_writeback
);
2024 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2025 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2029 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2030 if (ret
== 0 && write
)
2031 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2035 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2037 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2038 struct dentry
*dentry
;
2039 const char *name
= "?";
2041 dentry
= d_find_alias(inode
);
2043 spin_lock(&dentry
->d_lock
);
2044 name
= (const char *) dentry
->d_name
.name
;
2047 "%s(%d): dirtied inode %lu (%s) on %s\n",
2048 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2049 name
, inode
->i_sb
->s_id
);
2051 spin_unlock(&dentry
->d_lock
);
2058 * __mark_inode_dirty - internal function
2059 * @inode: inode to mark
2060 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2061 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2062 * mark_inode_dirty_sync.
2064 * Put the inode on the super block's dirty list.
2066 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2067 * dirty list only if it is hashed or if it refers to a blockdev.
2068 * If it was not hashed, it will never be added to the dirty list
2069 * even if it is later hashed, as it will have been marked dirty already.
2071 * In short, make sure you hash any inodes _before_ you start marking
2074 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2075 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2076 * the kernel-internal blockdev inode represents the dirtying time of the
2077 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2078 * page->mapping->host, so the page-dirtying time is recorded in the internal
2081 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2083 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2084 struct super_block
*sb
= inode
->i_sb
;
2087 trace_writeback_mark_inode_dirty(inode
, flags
);
2090 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2091 * dirty the inode itself
2093 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
2094 trace_writeback_dirty_inode_start(inode
, flags
);
2096 if (sb
->s_op
->dirty_inode
)
2097 sb
->s_op
->dirty_inode(inode
, flags
);
2099 trace_writeback_dirty_inode(inode
, flags
);
2101 if (flags
& I_DIRTY_INODE
)
2102 flags
&= ~I_DIRTY_TIME
;
2103 dirtytime
= flags
& I_DIRTY_TIME
;
2106 * Paired with smp_mb() in __writeback_single_inode() for the
2107 * following lockless i_state test. See there for details.
2111 if (((inode
->i_state
& flags
) == flags
) ||
2112 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2115 if (unlikely(block_dump
))
2116 block_dump___mark_inode_dirty(inode
);
2118 spin_lock(&inode
->i_lock
);
2119 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2120 goto out_unlock_inode
;
2121 if ((inode
->i_state
& flags
) != flags
) {
2122 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2124 inode_attach_wb(inode
, NULL
);
2126 if (flags
& I_DIRTY_INODE
)
2127 inode
->i_state
&= ~I_DIRTY_TIME
;
2128 inode
->i_state
|= flags
;
2131 * If the inode is being synced, just update its dirty state.
2132 * The unlocker will place the inode on the appropriate
2133 * superblock list, based upon its state.
2135 if (inode
->i_state
& I_SYNC
)
2136 goto out_unlock_inode
;
2139 * Only add valid (hashed) inodes to the superblock's
2140 * dirty list. Add blockdev inodes as well.
2142 if (!S_ISBLK(inode
->i_mode
)) {
2143 if (inode_unhashed(inode
))
2144 goto out_unlock_inode
;
2146 if (inode
->i_state
& I_FREEING
)
2147 goto out_unlock_inode
;
2150 * If the inode was already on b_dirty/b_io/b_more_io, don't
2151 * reposition it (that would break b_dirty time-ordering).
2154 struct bdi_writeback
*wb
;
2155 struct list_head
*dirty_list
;
2156 bool wakeup_bdi
= false;
2158 wb
= locked_inode_to_wb_and_lock_list(inode
);
2160 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2161 !test_bit(WB_registered
, &wb
->state
),
2162 "bdi-%s not registered\n", wb
->bdi
->name
);
2164 inode
->dirtied_when
= jiffies
;
2166 inode
->dirtied_time_when
= jiffies
;
2168 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2169 dirty_list
= &wb
->b_dirty
;
2171 dirty_list
= &wb
->b_dirty_time
;
2173 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2176 spin_unlock(&wb
->list_lock
);
2177 trace_writeback_dirty_inode_enqueue(inode
);
2180 * If this is the first dirty inode for this bdi,
2181 * we have to wake-up the corresponding bdi thread
2182 * to make sure background write-back happens
2185 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2186 wb_wakeup_delayed(wb
);
2191 spin_unlock(&inode
->i_lock
);
2193 #undef I_DIRTY_INODE
2195 EXPORT_SYMBOL(__mark_inode_dirty
);
2198 * The @s_sync_lock is used to serialise concurrent sync operations
2199 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2200 * Concurrent callers will block on the s_sync_lock rather than doing contending
2201 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2202 * has been issued up to the time this function is enter is guaranteed to be
2203 * completed by the time we have gained the lock and waited for all IO that is
2204 * in progress regardless of the order callers are granted the lock.
2206 static void wait_sb_inodes(struct super_block
*sb
)
2208 LIST_HEAD(sync_list
);
2211 * We need to be protected against the filesystem going from
2212 * r/o to r/w or vice versa.
2214 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2216 mutex_lock(&sb
->s_sync_lock
);
2219 * Splice the writeback list onto a temporary list to avoid waiting on
2220 * inodes that have started writeback after this point.
2222 * Use rcu_read_lock() to keep the inodes around until we have a
2223 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2224 * the local list because inodes can be dropped from either by writeback
2228 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2229 list_splice_init(&sb
->s_inodes_wb
, &sync_list
);
2232 * Data integrity sync. Must wait for all pages under writeback, because
2233 * there may have been pages dirtied before our sync call, but which had
2234 * writeout started before we write it out. In which case, the inode
2235 * may not be on the dirty list, but we still have to wait for that
2238 while (!list_empty(&sync_list
)) {
2239 struct inode
*inode
= list_first_entry(&sync_list
, struct inode
,
2241 struct address_space
*mapping
= inode
->i_mapping
;
2244 * Move each inode back to the wb list before we drop the lock
2245 * to preserve consistency between i_wb_list and the mapping
2246 * writeback tag. Writeback completion is responsible to remove
2247 * the inode from either list once the writeback tag is cleared.
2249 list_move_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
2252 * The mapping can appear untagged while still on-list since we
2253 * do not have the mapping lock. Skip it here, wb completion
2256 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
2259 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2261 spin_lock(&inode
->i_lock
);
2262 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) {
2263 spin_unlock(&inode
->i_lock
);
2265 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2269 spin_unlock(&inode
->i_lock
);
2273 * We keep the error status of individual mapping so that
2274 * applications can catch the writeback error using fsync(2).
2275 * See filemap_fdatawait_keep_errors() for details.
2277 filemap_fdatawait_keep_errors(mapping
);
2284 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2286 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2288 mutex_unlock(&sb
->s_sync_lock
);
2291 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2292 enum wb_reason reason
, bool skip_if_busy
)
2294 DEFINE_WB_COMPLETION_ONSTACK(done
);
2295 struct wb_writeback_work work
= {
2297 .sync_mode
= WB_SYNC_NONE
,
2298 .tagged_writepages
= 1,
2303 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2305 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2307 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2309 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2310 wb_wait_for_completion(bdi
, &done
);
2314 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2315 * @sb: the superblock
2316 * @nr: the number of pages to write
2317 * @reason: reason why some writeback work initiated
2319 * Start writeback on some inodes on this super_block. No guarantees are made
2320 * on how many (if any) will be written, and this function does not wait
2321 * for IO completion of submitted IO.
2323 void writeback_inodes_sb_nr(struct super_block
*sb
,
2325 enum wb_reason reason
)
2327 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2329 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2332 * writeback_inodes_sb - writeback dirty inodes from given super_block
2333 * @sb: the superblock
2334 * @reason: reason why some writeback work was initiated
2336 * Start writeback on some inodes on this super_block. No guarantees are made
2337 * on how many (if any) will be written, and this function does not wait
2338 * for IO completion of submitted IO.
2340 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2342 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2344 EXPORT_SYMBOL(writeback_inodes_sb
);
2347 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2348 * @sb: the superblock
2349 * @nr: the number of pages to write
2350 * @reason: the reason of writeback
2352 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2353 * Returns 1 if writeback was started, 0 if not.
2355 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2356 enum wb_reason reason
)
2358 if (!down_read_trylock(&sb
->s_umount
))
2361 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2362 up_read(&sb
->s_umount
);
2365 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2368 * try_to_writeback_inodes_sb - try to start writeback if none underway
2369 * @sb: the superblock
2370 * @reason: reason why some writeback work was initiated
2372 * Implement by try_to_writeback_inodes_sb_nr()
2373 * Returns 1 if writeback was started, 0 if not.
2375 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2377 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2379 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2382 * sync_inodes_sb - sync sb inode pages
2383 * @sb: the superblock
2385 * This function writes and waits on any dirty inode belonging to this
2388 void sync_inodes_sb(struct super_block
*sb
)
2390 DEFINE_WB_COMPLETION_ONSTACK(done
);
2391 struct wb_writeback_work work
= {
2393 .sync_mode
= WB_SYNC_ALL
,
2394 .nr_pages
= LONG_MAX
,
2397 .reason
= WB_REASON_SYNC
,
2400 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2403 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2404 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2405 * bdi_has_dirty() need to be written out too.
2407 if (bdi
== &noop_backing_dev_info
)
2409 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2411 bdi_split_work_to_wbs(bdi
, &work
, false);
2412 wb_wait_for_completion(bdi
, &done
);
2416 EXPORT_SYMBOL(sync_inodes_sb
);
2419 * write_inode_now - write an inode to disk
2420 * @inode: inode to write to disk
2421 * @sync: whether the write should be synchronous or not
2423 * This function commits an inode to disk immediately if it is dirty. This is
2424 * primarily needed by knfsd.
2426 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2428 int write_inode_now(struct inode
*inode
, int sync
)
2430 struct writeback_control wbc
= {
2431 .nr_to_write
= LONG_MAX
,
2432 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2434 .range_end
= LLONG_MAX
,
2437 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2438 wbc
.nr_to_write
= 0;
2441 return writeback_single_inode(inode
, &wbc
);
2443 EXPORT_SYMBOL(write_inode_now
);
2446 * sync_inode - write an inode and its pages to disk.
2447 * @inode: the inode to sync
2448 * @wbc: controls the writeback mode
2450 * sync_inode() will write an inode and its pages to disk. It will also
2451 * correctly update the inode on its superblock's dirty inode lists and will
2452 * update inode->i_state.
2454 * The caller must have a ref on the inode.
2456 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2458 return writeback_single_inode(inode
, wbc
);
2460 EXPORT_SYMBOL(sync_inode
);
2463 * sync_inode_metadata - write an inode to disk
2464 * @inode: the inode to sync
2465 * @wait: wait for I/O to complete.
2467 * Write an inode to disk and adjust its dirty state after completion.
2469 * Note: only writes the actual inode, no associated data or other metadata.
2471 int sync_inode_metadata(struct inode
*inode
, int wait
)
2473 struct writeback_control wbc
= {
2474 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2475 .nr_to_write
= 0, /* metadata-only */
2478 return sync_inode(inode
, &wbc
);
2480 EXPORT_SYMBOL(sync_inode_metadata
);