media: vicodec: add V4L2_CID_MIN_BUFFERS_FOR_OUTPUT
[linux/fpc-iii.git] / net / openvswitch / flow.c
blobf54cf17ef7a8bc3fa1449644fff07dd1cba523d2
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 #include <net/nsh.h>
51 #include "conntrack.h"
52 #include "datapath.h"
53 #include "flow.h"
54 #include "flow_netlink.h"
55 #include "vport.h"
57 u64 ovs_flow_used_time(unsigned long flow_jiffies)
59 struct timespec64 cur_ts;
60 u64 cur_ms, idle_ms;
62 ktime_get_ts64(&cur_ts);
63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
65 cur_ts.tv_nsec / NSEC_PER_MSEC;
67 return cur_ms - idle_ms;
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73 const struct sk_buff *skb)
75 struct flow_stats *stats;
76 unsigned int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
79 stats = rcu_dereference(flow->stats[cpu]);
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 numa_node_id());
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122 goto unlock;
125 flow->stats_last_writer = cpu;
129 stats->used = jiffies;
130 stats->packet_count++;
131 stats->byte_count += len;
132 stats->tcp_flags |= tcp_flags;
133 unlock:
134 spin_unlock(&stats->lock);
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow *flow,
139 struct ovs_flow_stats *ovs_stats,
140 unsigned long *used, __be16 *tcp_flags)
142 int cpu;
144 *used = 0;
145 *tcp_flags = 0;
146 memset(ovs_stats, 0, sizeof(*ovs_stats));
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
152 if (stats) {
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
156 spin_lock_bh(&stats->lock);
157 if (!*used || time_after(stats->used, *used))
158 *used = stats->used;
159 *tcp_flags |= stats->tcp_flags;
160 ovs_stats->n_packets += stats->packet_count;
161 ovs_stats->n_bytes += stats->byte_count;
162 spin_unlock_bh(&stats->lock);
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow *flow)
170 int cpu;
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
176 if (stats) {
177 spin_lock_bh(&stats->lock);
178 stats->used = 0;
179 stats->packet_count = 0;
180 stats->byte_count = 0;
181 stats->tcp_flags = 0;
182 spin_unlock_bh(&stats->lock);
187 static int check_header(struct sk_buff *skb, int len)
189 if (unlikely(skb->len < len))
190 return -EINVAL;
191 if (unlikely(!pskb_may_pull(skb, len)))
192 return -ENOMEM;
193 return 0;
196 static bool arphdr_ok(struct sk_buff *skb)
198 return pskb_may_pull(skb, skb_network_offset(skb) +
199 sizeof(struct arp_eth_header));
202 static int check_iphdr(struct sk_buff *skb)
204 unsigned int nh_ofs = skb_network_offset(skb);
205 unsigned int ip_len;
206 int err;
208 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209 if (unlikely(err))
210 return err;
212 ip_len = ip_hdrlen(skb);
213 if (unlikely(ip_len < sizeof(struct iphdr) ||
214 skb->len < nh_ofs + ip_len))
215 return -EINVAL;
217 skb_set_transport_header(skb, nh_ofs + ip_len);
218 return 0;
221 static bool tcphdr_ok(struct sk_buff *skb)
223 int th_ofs = skb_transport_offset(skb);
224 int tcp_len;
226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227 return false;
229 tcp_len = tcp_hdrlen(skb);
230 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231 skb->len < th_ofs + tcp_len))
232 return false;
234 return true;
237 static bool udphdr_ok(struct sk_buff *skb)
239 return pskb_may_pull(skb, skb_transport_offset(skb) +
240 sizeof(struct udphdr));
243 static bool sctphdr_ok(struct sk_buff *skb)
245 return pskb_may_pull(skb, skb_transport_offset(skb) +
246 sizeof(struct sctphdr));
249 static bool icmphdr_ok(struct sk_buff *skb)
251 return pskb_may_pull(skb, skb_transport_offset(skb) +
252 sizeof(struct icmphdr));
255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
257 unsigned short frag_off;
258 unsigned int payload_ofs = 0;
259 unsigned int nh_ofs = skb_network_offset(skb);
260 unsigned int nh_len;
261 struct ipv6hdr *nh;
262 int err, nexthdr, flags = 0;
264 err = check_header(skb, nh_ofs + sizeof(*nh));
265 if (unlikely(err))
266 return err;
268 nh = ipv6_hdr(skb);
270 key->ip.proto = NEXTHDR_NONE;
271 key->ip.tos = ipv6_get_dsfield(nh);
272 key->ip.ttl = nh->hop_limit;
273 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
274 key->ipv6.addr.src = nh->saddr;
275 key->ipv6.addr.dst = nh->daddr;
277 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
278 if (flags & IP6_FH_F_FRAG) {
279 if (frag_off) {
280 key->ip.frag = OVS_FRAG_TYPE_LATER;
281 key->ip.proto = nexthdr;
282 return 0;
284 key->ip.frag = OVS_FRAG_TYPE_FIRST;
285 } else {
286 key->ip.frag = OVS_FRAG_TYPE_NONE;
289 /* Delayed handling of error in ipv6_find_hdr() as it
290 * always sets flags and frag_off to a valid value which may be
291 * used to set key->ip.frag above.
293 if (unlikely(nexthdr < 0))
294 return -EPROTO;
296 nh_len = payload_ofs - nh_ofs;
297 skb_set_transport_header(skb, nh_ofs + nh_len);
298 key->ip.proto = nexthdr;
299 return nh_len;
302 static bool icmp6hdr_ok(struct sk_buff *skb)
304 return pskb_may_pull(skb, skb_transport_offset(skb) +
305 sizeof(struct icmp6hdr));
309 * Parse vlan tag from vlan header.
310 * Returns ERROR on memory error.
311 * Returns 0 if it encounters a non-vlan or incomplete packet.
312 * Returns 1 after successfully parsing vlan tag.
314 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
315 bool untag_vlan)
317 struct vlan_head *vh = (struct vlan_head *)skb->data;
319 if (likely(!eth_type_vlan(vh->tpid)))
320 return 0;
322 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
323 return 0;
325 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
326 sizeof(__be16))))
327 return -ENOMEM;
329 vh = (struct vlan_head *)skb->data;
330 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
331 key_vh->tpid = vh->tpid;
333 if (unlikely(untag_vlan)) {
334 int offset = skb->data - skb_mac_header(skb);
335 u16 tci;
336 int err;
338 __skb_push(skb, offset);
339 err = __skb_vlan_pop(skb, &tci);
340 __skb_pull(skb, offset);
341 if (err)
342 return err;
343 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
344 } else {
345 __skb_pull(skb, sizeof(struct vlan_head));
347 return 1;
350 static void clear_vlan(struct sw_flow_key *key)
352 key->eth.vlan.tci = 0;
353 key->eth.vlan.tpid = 0;
354 key->eth.cvlan.tci = 0;
355 key->eth.cvlan.tpid = 0;
358 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
360 int res;
362 if (skb_vlan_tag_present(skb)) {
363 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
364 key->eth.vlan.tpid = skb->vlan_proto;
365 } else {
366 /* Parse outer vlan tag in the non-accelerated case. */
367 res = parse_vlan_tag(skb, &key->eth.vlan, true);
368 if (res <= 0)
369 return res;
372 /* Parse inner vlan tag. */
373 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
374 if (res <= 0)
375 return res;
377 return 0;
380 static __be16 parse_ethertype(struct sk_buff *skb)
382 struct llc_snap_hdr {
383 u8 dsap; /* Always 0xAA */
384 u8 ssap; /* Always 0xAA */
385 u8 ctrl;
386 u8 oui[3];
387 __be16 ethertype;
389 struct llc_snap_hdr *llc;
390 __be16 proto;
392 proto = *(__be16 *) skb->data;
393 __skb_pull(skb, sizeof(__be16));
395 if (eth_proto_is_802_3(proto))
396 return proto;
398 if (skb->len < sizeof(struct llc_snap_hdr))
399 return htons(ETH_P_802_2);
401 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
402 return htons(0);
404 llc = (struct llc_snap_hdr *) skb->data;
405 if (llc->dsap != LLC_SAP_SNAP ||
406 llc->ssap != LLC_SAP_SNAP ||
407 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
408 return htons(ETH_P_802_2);
410 __skb_pull(skb, sizeof(struct llc_snap_hdr));
412 if (eth_proto_is_802_3(llc->ethertype))
413 return llc->ethertype;
415 return htons(ETH_P_802_2);
418 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
419 int nh_len)
421 struct icmp6hdr *icmp = icmp6_hdr(skb);
423 /* The ICMPv6 type and code fields use the 16-bit transport port
424 * fields, so we need to store them in 16-bit network byte order.
426 key->tp.src = htons(icmp->icmp6_type);
427 key->tp.dst = htons(icmp->icmp6_code);
428 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
430 if (icmp->icmp6_code == 0 &&
431 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
432 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
433 int icmp_len = skb->len - skb_transport_offset(skb);
434 struct nd_msg *nd;
435 int offset;
437 /* In order to process neighbor discovery options, we need the
438 * entire packet.
440 if (unlikely(icmp_len < sizeof(*nd)))
441 return 0;
443 if (unlikely(skb_linearize(skb)))
444 return -ENOMEM;
446 nd = (struct nd_msg *)skb_transport_header(skb);
447 key->ipv6.nd.target = nd->target;
449 icmp_len -= sizeof(*nd);
450 offset = 0;
451 while (icmp_len >= 8) {
452 struct nd_opt_hdr *nd_opt =
453 (struct nd_opt_hdr *)(nd->opt + offset);
454 int opt_len = nd_opt->nd_opt_len * 8;
456 if (unlikely(!opt_len || opt_len > icmp_len))
457 return 0;
459 /* Store the link layer address if the appropriate
460 * option is provided. It is considered an error if
461 * the same link layer option is specified twice.
463 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
464 && opt_len == 8) {
465 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
466 goto invalid;
467 ether_addr_copy(key->ipv6.nd.sll,
468 &nd->opt[offset+sizeof(*nd_opt)]);
469 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
470 && opt_len == 8) {
471 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
472 goto invalid;
473 ether_addr_copy(key->ipv6.nd.tll,
474 &nd->opt[offset+sizeof(*nd_opt)]);
477 icmp_len -= opt_len;
478 offset += opt_len;
482 return 0;
484 invalid:
485 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
486 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
487 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
489 return 0;
492 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
494 struct nshhdr *nh;
495 unsigned int nh_ofs = skb_network_offset(skb);
496 u8 version, length;
497 int err;
499 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
500 if (unlikely(err))
501 return err;
503 nh = nsh_hdr(skb);
504 version = nsh_get_ver(nh);
505 length = nsh_hdr_len(nh);
507 if (version != 0)
508 return -EINVAL;
510 err = check_header(skb, nh_ofs + length);
511 if (unlikely(err))
512 return err;
514 nh = nsh_hdr(skb);
515 key->nsh.base.flags = nsh_get_flags(nh);
516 key->nsh.base.ttl = nsh_get_ttl(nh);
517 key->nsh.base.mdtype = nh->mdtype;
518 key->nsh.base.np = nh->np;
519 key->nsh.base.path_hdr = nh->path_hdr;
520 switch (key->nsh.base.mdtype) {
521 case NSH_M_TYPE1:
522 if (length != NSH_M_TYPE1_LEN)
523 return -EINVAL;
524 memcpy(key->nsh.context, nh->md1.context,
525 sizeof(nh->md1));
526 break;
527 case NSH_M_TYPE2:
528 memset(key->nsh.context, 0,
529 sizeof(nh->md1));
530 break;
531 default:
532 return -EINVAL;
535 return 0;
539 * key_extract - extracts a flow key from an Ethernet frame.
540 * @skb: sk_buff that contains the frame, with skb->data pointing to the
541 * Ethernet header
542 * @key: output flow key
544 * The caller must ensure that skb->len >= ETH_HLEN.
546 * Returns 0 if successful, otherwise a negative errno value.
548 * Initializes @skb header fields as follows:
550 * - skb->mac_header: the L2 header.
552 * - skb->network_header: just past the L2 header, or just past the
553 * VLAN header, to the first byte of the L2 payload.
555 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
556 * on output, then just past the IP header, if one is present and
557 * of a correct length, otherwise the same as skb->network_header.
558 * For other key->eth.type values it is left untouched.
560 * - skb->protocol: the type of the data starting at skb->network_header.
561 * Equals to key->eth.type.
563 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
565 int error;
566 struct ethhdr *eth;
568 /* Flags are always used as part of stats */
569 key->tp.flags = 0;
571 skb_reset_mac_header(skb);
573 /* Link layer. */
574 clear_vlan(key);
575 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
576 if (unlikely(eth_type_vlan(skb->protocol)))
577 return -EINVAL;
579 skb_reset_network_header(skb);
580 key->eth.type = skb->protocol;
581 } else {
582 eth = eth_hdr(skb);
583 ether_addr_copy(key->eth.src, eth->h_source);
584 ether_addr_copy(key->eth.dst, eth->h_dest);
586 __skb_pull(skb, 2 * ETH_ALEN);
587 /* We are going to push all headers that we pull, so no need to
588 * update skb->csum here.
591 if (unlikely(parse_vlan(skb, key)))
592 return -ENOMEM;
594 key->eth.type = parse_ethertype(skb);
595 if (unlikely(key->eth.type == htons(0)))
596 return -ENOMEM;
598 /* Multiple tagged packets need to retain TPID to satisfy
599 * skb_vlan_pop(), which will later shift the ethertype into
600 * skb->protocol.
602 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
603 skb->protocol = key->eth.cvlan.tpid;
604 else
605 skb->protocol = key->eth.type;
607 skb_reset_network_header(skb);
608 __skb_push(skb, skb->data - skb_mac_header(skb));
610 skb_reset_mac_len(skb);
612 /* Network layer. */
613 if (key->eth.type == htons(ETH_P_IP)) {
614 struct iphdr *nh;
615 __be16 offset;
617 error = check_iphdr(skb);
618 if (unlikely(error)) {
619 memset(&key->ip, 0, sizeof(key->ip));
620 memset(&key->ipv4, 0, sizeof(key->ipv4));
621 if (error == -EINVAL) {
622 skb->transport_header = skb->network_header;
623 error = 0;
625 return error;
628 nh = ip_hdr(skb);
629 key->ipv4.addr.src = nh->saddr;
630 key->ipv4.addr.dst = nh->daddr;
632 key->ip.proto = nh->protocol;
633 key->ip.tos = nh->tos;
634 key->ip.ttl = nh->ttl;
636 offset = nh->frag_off & htons(IP_OFFSET);
637 if (offset) {
638 key->ip.frag = OVS_FRAG_TYPE_LATER;
639 return 0;
641 if (nh->frag_off & htons(IP_MF) ||
642 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
643 key->ip.frag = OVS_FRAG_TYPE_FIRST;
644 else
645 key->ip.frag = OVS_FRAG_TYPE_NONE;
647 /* Transport layer. */
648 if (key->ip.proto == IPPROTO_TCP) {
649 if (tcphdr_ok(skb)) {
650 struct tcphdr *tcp = tcp_hdr(skb);
651 key->tp.src = tcp->source;
652 key->tp.dst = tcp->dest;
653 key->tp.flags = TCP_FLAGS_BE16(tcp);
654 } else {
655 memset(&key->tp, 0, sizeof(key->tp));
658 } else if (key->ip.proto == IPPROTO_UDP) {
659 if (udphdr_ok(skb)) {
660 struct udphdr *udp = udp_hdr(skb);
661 key->tp.src = udp->source;
662 key->tp.dst = udp->dest;
663 } else {
664 memset(&key->tp, 0, sizeof(key->tp));
666 } else if (key->ip.proto == IPPROTO_SCTP) {
667 if (sctphdr_ok(skb)) {
668 struct sctphdr *sctp = sctp_hdr(skb);
669 key->tp.src = sctp->source;
670 key->tp.dst = sctp->dest;
671 } else {
672 memset(&key->tp, 0, sizeof(key->tp));
674 } else if (key->ip.proto == IPPROTO_ICMP) {
675 if (icmphdr_ok(skb)) {
676 struct icmphdr *icmp = icmp_hdr(skb);
677 /* The ICMP type and code fields use the 16-bit
678 * transport port fields, so we need to store
679 * them in 16-bit network byte order. */
680 key->tp.src = htons(icmp->type);
681 key->tp.dst = htons(icmp->code);
682 } else {
683 memset(&key->tp, 0, sizeof(key->tp));
687 } else if (key->eth.type == htons(ETH_P_ARP) ||
688 key->eth.type == htons(ETH_P_RARP)) {
689 struct arp_eth_header *arp;
690 bool arp_available = arphdr_ok(skb);
692 arp = (struct arp_eth_header *)skb_network_header(skb);
694 if (arp_available &&
695 arp->ar_hrd == htons(ARPHRD_ETHER) &&
696 arp->ar_pro == htons(ETH_P_IP) &&
697 arp->ar_hln == ETH_ALEN &&
698 arp->ar_pln == 4) {
700 /* We only match on the lower 8 bits of the opcode. */
701 if (ntohs(arp->ar_op) <= 0xff)
702 key->ip.proto = ntohs(arp->ar_op);
703 else
704 key->ip.proto = 0;
706 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
707 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
708 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
709 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
710 } else {
711 memset(&key->ip, 0, sizeof(key->ip));
712 memset(&key->ipv4, 0, sizeof(key->ipv4));
714 } else if (eth_p_mpls(key->eth.type)) {
715 size_t stack_len = MPLS_HLEN;
717 skb_set_inner_network_header(skb, skb->mac_len);
718 while (1) {
719 __be32 lse;
721 error = check_header(skb, skb->mac_len + stack_len);
722 if (unlikely(error))
723 return 0;
725 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
727 if (stack_len == MPLS_HLEN)
728 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
730 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
731 if (lse & htonl(MPLS_LS_S_MASK))
732 break;
734 stack_len += MPLS_HLEN;
736 } else if (key->eth.type == htons(ETH_P_IPV6)) {
737 int nh_len; /* IPv6 Header + Extensions */
739 nh_len = parse_ipv6hdr(skb, key);
740 if (unlikely(nh_len < 0)) {
741 switch (nh_len) {
742 case -EINVAL:
743 memset(&key->ip, 0, sizeof(key->ip));
744 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
745 /* fall-through */
746 case -EPROTO:
747 skb->transport_header = skb->network_header;
748 error = 0;
749 break;
750 default:
751 error = nh_len;
753 return error;
756 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
757 return 0;
758 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
759 key->ip.frag = OVS_FRAG_TYPE_FIRST;
761 /* Transport layer. */
762 if (key->ip.proto == NEXTHDR_TCP) {
763 if (tcphdr_ok(skb)) {
764 struct tcphdr *tcp = tcp_hdr(skb);
765 key->tp.src = tcp->source;
766 key->tp.dst = tcp->dest;
767 key->tp.flags = TCP_FLAGS_BE16(tcp);
768 } else {
769 memset(&key->tp, 0, sizeof(key->tp));
771 } else if (key->ip.proto == NEXTHDR_UDP) {
772 if (udphdr_ok(skb)) {
773 struct udphdr *udp = udp_hdr(skb);
774 key->tp.src = udp->source;
775 key->tp.dst = udp->dest;
776 } else {
777 memset(&key->tp, 0, sizeof(key->tp));
779 } else if (key->ip.proto == NEXTHDR_SCTP) {
780 if (sctphdr_ok(skb)) {
781 struct sctphdr *sctp = sctp_hdr(skb);
782 key->tp.src = sctp->source;
783 key->tp.dst = sctp->dest;
784 } else {
785 memset(&key->tp, 0, sizeof(key->tp));
787 } else if (key->ip.proto == NEXTHDR_ICMP) {
788 if (icmp6hdr_ok(skb)) {
789 error = parse_icmpv6(skb, key, nh_len);
790 if (error)
791 return error;
792 } else {
793 memset(&key->tp, 0, sizeof(key->tp));
796 } else if (key->eth.type == htons(ETH_P_NSH)) {
797 error = parse_nsh(skb, key);
798 if (error)
799 return error;
801 return 0;
804 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
806 int res;
808 res = key_extract(skb, key);
809 if (!res)
810 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
812 return res;
815 static int key_extract_mac_proto(struct sk_buff *skb)
817 switch (skb->dev->type) {
818 case ARPHRD_ETHER:
819 return MAC_PROTO_ETHERNET;
820 case ARPHRD_NONE:
821 if (skb->protocol == htons(ETH_P_TEB))
822 return MAC_PROTO_ETHERNET;
823 return MAC_PROTO_NONE;
825 WARN_ON_ONCE(1);
826 return -EINVAL;
829 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
830 struct sk_buff *skb, struct sw_flow_key *key)
832 int res, err;
834 /* Extract metadata from packet. */
835 if (tun_info) {
836 key->tun_proto = ip_tunnel_info_af(tun_info);
837 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
839 if (tun_info->options_len) {
840 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
841 8)) - 1
842 > sizeof(key->tun_opts));
844 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
845 tun_info);
846 key->tun_opts_len = tun_info->options_len;
847 } else {
848 key->tun_opts_len = 0;
850 } else {
851 key->tun_proto = 0;
852 key->tun_opts_len = 0;
853 memset(&key->tun_key, 0, sizeof(key->tun_key));
856 key->phy.priority = skb->priority;
857 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
858 key->phy.skb_mark = skb->mark;
859 key->ovs_flow_hash = 0;
860 res = key_extract_mac_proto(skb);
861 if (res < 0)
862 return res;
863 key->mac_proto = res;
864 key->recirc_id = 0;
866 err = key_extract(skb, key);
867 if (!err)
868 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
869 return err;
872 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
873 struct sk_buff *skb,
874 struct sw_flow_key *key, bool log)
876 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
877 u64 attrs = 0;
878 int err;
880 err = parse_flow_nlattrs(attr, a, &attrs, log);
881 if (err)
882 return -EINVAL;
884 /* Extract metadata from netlink attributes. */
885 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
886 if (err)
887 return err;
889 /* key_extract assumes that skb->protocol is set-up for
890 * layer 3 packets which is the case for other callers,
891 * in particular packets received from the network stack.
892 * Here the correct value can be set from the metadata
893 * extracted above.
894 * For L2 packet key eth type would be zero. skb protocol
895 * would be set to correct value later during key-extact.
898 skb->protocol = key->eth.type;
899 err = key_extract(skb, key);
900 if (err)
901 return err;
903 /* Check that we have conntrack original direction tuple metadata only
904 * for packets for which it makes sense. Otherwise the key may be
905 * corrupted due to overlapping key fields.
907 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
908 key->eth.type != htons(ETH_P_IP))
909 return -EINVAL;
910 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
911 (key->eth.type != htons(ETH_P_IPV6) ||
912 sw_flow_key_is_nd(key)))
913 return -EINVAL;
915 return 0;