2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 #include <linux/indirect_call_wrapper.h>
95 #include <linux/uaccess.h>
96 #include <asm/unistd.h>
98 #include <net/compat.h>
100 #include <net/cls_cgroup.h>
102 #include <net/sock.h>
103 #include <linux/netfilter.h>
105 #include <linux/if_tun.h>
106 #include <linux/ipv6_route.h>
107 #include <linux/route.h>
108 #include <linux/sockios.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
112 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */
113 #if IS_ENABLED(CONFIG_INET)
114 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__)
116 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__)
119 #ifdef CONFIG_NET_RX_BUSY_POLL
120 unsigned int sysctl_net_busy_read __read_mostly
;
121 unsigned int sysctl_net_busy_poll __read_mostly
;
124 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
125 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
126 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
128 static int sock_close(struct inode
*inode
, struct file
*file
);
129 static __poll_t
sock_poll(struct file
*file
,
130 struct poll_table_struct
*wait
);
131 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
133 static long compat_sock_ioctl(struct file
*file
,
134 unsigned int cmd
, unsigned long arg
);
136 static int sock_fasync(int fd
, struct file
*filp
, int on
);
137 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
138 int offset
, size_t size
, loff_t
*ppos
, int more
);
139 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
140 struct pipe_inode_info
*pipe
, size_t len
,
144 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
145 * in the operation structures but are done directly via the socketcall() multiplexor.
148 static const struct file_operations socket_file_ops
= {
149 .owner
= THIS_MODULE
,
151 .read_iter
= sock_read_iter
,
152 .write_iter
= sock_write_iter
,
154 .unlocked_ioctl
= sock_ioctl
,
156 .compat_ioctl
= compat_sock_ioctl
,
159 .release
= sock_close
,
160 .fasync
= sock_fasync
,
161 .sendpage
= sock_sendpage
,
162 .splice_write
= generic_splice_sendpage
,
163 .splice_read
= sock_splice_read
,
167 * The protocol list. Each protocol is registered in here.
170 static DEFINE_SPINLOCK(net_family_lock
);
171 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
192 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
196 if (copy_from_user(kaddr
, uaddr
, ulen
))
198 return audit_sockaddr(ulen
, kaddr
);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
219 void __user
*uaddr
, int __user
*ulen
)
224 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
225 err
= get_user(len
, ulen
);
233 if (audit_sockaddr(klen
, kaddr
))
235 if (copy_to_user(uaddr
, kaddr
, len
))
239 * "fromlen shall refer to the value before truncation.."
242 return __put_user(klen
, ulen
);
245 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
247 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
249 struct socket_alloc
*ei
;
250 struct socket_wq
*wq
;
252 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
255 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
257 kmem_cache_free(sock_inode_cachep
, ei
);
260 init_waitqueue_head(&wq
->wait
);
261 wq
->fasync_list
= NULL
;
265 ei
->socket
.state
= SS_UNCONNECTED
;
266 ei
->socket
.flags
= 0;
267 ei
->socket
.ops
= NULL
;
268 ei
->socket
.sk
= NULL
;
269 ei
->socket
.file
= NULL
;
271 return &ei
->vfs_inode
;
274 static void sock_destroy_inode(struct inode
*inode
)
276 struct socket_alloc
*ei
;
278 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
279 kfree_rcu(ei
->socket
.wq
, rcu
);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static void init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 BUG_ON(sock_inode_cachep
== NULL
);
302 static const struct super_operations sockfs_ops
= {
303 .alloc_inode
= sock_alloc_inode
,
304 .destroy_inode
= sock_destroy_inode
,
305 .statfs
= simple_statfs
,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
313 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
314 d_inode(dentry
)->i_ino
);
317 static const struct dentry_operations sockfs_dentry_operations
= {
318 .d_dname
= sockfs_dname
,
321 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
322 struct dentry
*dentry
, struct inode
*inode
,
323 const char *suffix
, void *value
, size_t size
)
326 if (dentry
->d_name
.len
+ 1 > size
)
328 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
330 return dentry
->d_name
.len
+ 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler
= {
338 .name
= XATTR_NAME_SOCKPROTONAME
,
339 .get
= sockfs_xattr_get
,
342 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
343 struct dentry
*dentry
, struct inode
*inode
,
344 const char *suffix
, const void *value
,
345 size_t size
, int flags
)
347 /* Handled by LSM. */
351 static const struct xattr_handler sockfs_security_xattr_handler
= {
352 .prefix
= XATTR_SECURITY_PREFIX
,
353 .set
= sockfs_security_xattr_set
,
356 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
357 &sockfs_xattr_handler
,
358 &sockfs_security_xattr_handler
,
362 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
363 int flags
, const char *dev_name
, void *data
)
365 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
366 sockfs_xattr_handlers
,
367 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
370 static struct vfsmount
*sock_mnt __read_mostly
;
372 static struct file_system_type sock_fs_type
= {
374 .mount
= sockfs_mount
,
375 .kill_sb
= kill_anon_super
,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
396 * sock_alloc_file - Bind a &socket to a &file
398 * @flags: file status flags
399 * @dname: protocol name
401 * Returns the &file bound with @sock, implicitly storing it
402 * in sock->file. If dname is %NULL, sets to "".
403 * On failure the return is a ERR pointer (see linux/err.h).
404 * This function uses GFP_KERNEL internally.
407 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
412 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
414 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
415 O_RDWR
| (flags
& O_NONBLOCK
),
423 file
->private_data
= sock
;
426 EXPORT_SYMBOL(sock_alloc_file
);
428 static int sock_map_fd(struct socket
*sock
, int flags
)
430 struct file
*newfile
;
431 int fd
= get_unused_fd_flags(flags
);
432 if (unlikely(fd
< 0)) {
437 newfile
= sock_alloc_file(sock
, flags
, NULL
);
438 if (likely(!IS_ERR(newfile
))) {
439 fd_install(fd
, newfile
);
444 return PTR_ERR(newfile
);
448 * sock_from_file - Return the &socket bounded to @file.
450 * @err: pointer to an error code return
452 * On failure returns %NULL and assigns -ENOTSOCK to @err.
455 struct socket
*sock_from_file(struct file
*file
, int *err
)
457 if (file
->f_op
== &socket_file_ops
)
458 return file
->private_data
; /* set in sock_map_fd */
463 EXPORT_SYMBOL(sock_from_file
);
466 * sockfd_lookup - Go from a file number to its socket slot
468 * @err: pointer to an error code return
470 * The file handle passed in is locked and the socket it is bound
471 * to is returned. If an error occurs the err pointer is overwritten
472 * with a negative errno code and NULL is returned. The function checks
473 * for both invalid handles and passing a handle which is not a socket.
475 * On a success the socket object pointer is returned.
478 struct socket
*sockfd_lookup(int fd
, int *err
)
489 sock
= sock_from_file(file
, err
);
494 EXPORT_SYMBOL(sockfd_lookup
);
496 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
498 struct fd f
= fdget(fd
);
503 sock
= sock_from_file(f
.file
, err
);
505 *fput_needed
= f
.flags
;
513 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
519 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
529 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
534 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
541 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
543 int err
= simple_setattr(dentry
, iattr
);
545 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
546 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
549 sock
->sk
->sk_uid
= iattr
->ia_uid
;
557 static const struct inode_operations sockfs_inode_ops
= {
558 .listxattr
= sockfs_listxattr
,
559 .setattr
= sockfs_setattr
,
563 * sock_alloc - allocate a socket
565 * Allocate a new inode and socket object. The two are bound together
566 * and initialised. The socket is then returned. If we are out of inodes
567 * NULL is returned. This functions uses GFP_KERNEL internally.
570 struct socket
*sock_alloc(void)
575 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
579 sock
= SOCKET_I(inode
);
581 inode
->i_ino
= get_next_ino();
582 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
583 inode
->i_uid
= current_fsuid();
584 inode
->i_gid
= current_fsgid();
585 inode
->i_op
= &sockfs_inode_ops
;
589 EXPORT_SYMBOL(sock_alloc
);
592 * sock_release - close a socket
593 * @sock: socket to close
595 * The socket is released from the protocol stack if it has a release
596 * callback, and the inode is then released if the socket is bound to
597 * an inode not a file.
600 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
603 struct module
*owner
= sock
->ops
->owner
;
607 sock
->ops
->release(sock
);
615 if (sock
->wq
->fasync_list
)
616 pr_err("%s: fasync list not empty!\n", __func__
);
619 iput(SOCK_INODE(sock
));
625 void sock_release(struct socket
*sock
)
627 __sock_release(sock
, NULL
);
629 EXPORT_SYMBOL(sock_release
);
631 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
633 u8 flags
= *tx_flags
;
635 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
636 flags
|= SKBTX_HW_TSTAMP
;
638 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
639 flags
|= SKBTX_SW_TSTAMP
;
641 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
642 flags
|= SKBTX_SCHED_TSTAMP
;
646 EXPORT_SYMBOL(__sock_tx_timestamp
);
648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
650 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
652 int ret
= INDIRECT_CALL_INET4(sock
->ops
->sendmsg
, inet_sendmsg
, sock
,
653 msg
, msg_data_left(msg
));
654 BUG_ON(ret
== -EIOCBQUEUED
);
659 * sock_sendmsg - send a message through @sock
661 * @msg: message to send
663 * Sends @msg through @sock, passing through LSM.
664 * Returns the number of bytes sent, or an error code.
666 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
668 int err
= security_socket_sendmsg(sock
, msg
,
671 return err
?: sock_sendmsg_nosec(sock
, msg
);
673 EXPORT_SYMBOL(sock_sendmsg
);
676 * kernel_sendmsg - send a message through @sock (kernel-space)
678 * @msg: message header
680 * @num: vec array length
681 * @size: total message data size
683 * Builds the message data with @vec and sends it through @sock.
684 * Returns the number of bytes sent, or an error code.
687 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
688 struct kvec
*vec
, size_t num
, size_t size
)
690 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
691 return sock_sendmsg(sock
, msg
);
693 EXPORT_SYMBOL(kernel_sendmsg
);
696 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
698 * @msg: message header
699 * @vec: output s/g array
700 * @num: output s/g array length
701 * @size: total message data size
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 * Caller must hold @sk.
708 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
709 struct kvec
*vec
, size_t num
, size_t size
)
711 struct socket
*sock
= sk
->sk_socket
;
713 if (!sock
->ops
->sendmsg_locked
)
714 return sock_no_sendmsg_locked(sk
, msg
, size
);
716 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
718 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
720 EXPORT_SYMBOL(kernel_sendmsg_locked
);
722 static bool skb_is_err_queue(const struct sk_buff
*skb
)
724 /* pkt_type of skbs enqueued on the error queue are set to
725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 * in recvmsg, since skbs received on a local socket will never
727 * have a pkt_type of PACKET_OUTGOING.
729 return skb
->pkt_type
== PACKET_OUTGOING
;
732 /* On transmit, software and hardware timestamps are returned independently.
733 * As the two skb clones share the hardware timestamp, which may be updated
734 * before the software timestamp is received, a hardware TX timestamp may be
735 * returned only if there is no software TX timestamp. Ignore false software
736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738 * hardware timestamp.
740 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
742 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
745 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
747 struct scm_ts_pktinfo ts_pktinfo
;
748 struct net_device
*orig_dev
;
750 if (!skb_mac_header_was_set(skb
))
753 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
756 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
758 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
761 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
762 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
763 sizeof(ts_pktinfo
), &ts_pktinfo
);
767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
772 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
773 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
774 struct scm_timestamping_internal tss
;
776 int empty
= 1, false_tstamp
= 0;
777 struct skb_shared_hwtstamps
*shhwtstamps
=
780 /* Race occurred between timestamp enabling and packet
781 receiving. Fill in the current time for now. */
782 if (need_software_tstamp
&& skb
->tstamp
== 0) {
783 __net_timestamp(skb
);
787 if (need_software_tstamp
) {
788 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
790 struct __kernel_sock_timeval tv
;
792 skb_get_new_timestamp(skb
, &tv
);
793 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
796 struct __kernel_old_timeval tv
;
798 skb_get_timestamp(skb
, &tv
);
799 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
804 struct __kernel_timespec ts
;
806 skb_get_new_timestampns(skb
, &ts
);
807 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
812 skb_get_timestampns(skb
, &ts
);
813 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
819 memset(&tss
, 0, sizeof(tss
));
820 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
821 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
824 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
825 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
826 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
828 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
829 !skb_is_err_queue(skb
))
830 put_ts_pktinfo(msg
, skb
);
833 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
834 put_cmsg_scm_timestamping64(msg
, &tss
);
836 put_cmsg_scm_timestamping(msg
, &tss
);
838 if (skb_is_err_queue(skb
) && skb
->len
&&
839 SKB_EXT_ERR(skb
)->opt_stats
)
840 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
841 skb
->len
, skb
->data
);
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
846 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
851 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
853 if (!skb
->wifi_acked_valid
)
856 ack
= skb
->wifi_acked
;
858 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
862 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
865 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
866 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
867 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
870 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
873 sock_recv_timestamp(msg
, sk
, skb
);
874 sock_recv_drops(msg
, sk
, skb
);
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
880 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
883 return INDIRECT_CALL_INET4(sock
->ops
->recvmsg
, inet_recvmsg
, sock
, msg
,
884 msg_data_left(msg
), flags
);
888 * sock_recvmsg - receive a message from @sock
890 * @msg: message to receive
891 * @flags: message flags
893 * Receives @msg from @sock, passing through LSM. Returns the total number
894 * of bytes received, or an error.
896 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
898 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
900 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
902 EXPORT_SYMBOL(sock_recvmsg
);
905 * kernel_recvmsg - Receive a message from a socket (kernel space)
906 * @sock: The socket to receive the message from
907 * @msg: Received message
908 * @vec: Input s/g array for message data
909 * @num: Size of input s/g array
910 * @size: Number of bytes to read
911 * @flags: Message flags (MSG_DONTWAIT, etc...)
913 * On return the msg structure contains the scatter/gather array passed in the
914 * vec argument. The array is modified so that it consists of the unfilled
915 * portion of the original array.
917 * The returned value is the total number of bytes received, or an error.
920 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
921 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
923 mm_segment_t oldfs
= get_fs();
926 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
928 result
= sock_recvmsg(sock
, msg
, flags
);
932 EXPORT_SYMBOL(kernel_recvmsg
);
934 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
935 int offset
, size_t size
, loff_t
*ppos
, int more
)
940 sock
= file
->private_data
;
942 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
943 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
946 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
949 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
950 struct pipe_inode_info
*pipe
, size_t len
,
953 struct socket
*sock
= file
->private_data
;
955 if (unlikely(!sock
->ops
->splice_read
))
956 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
958 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
961 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
963 struct file
*file
= iocb
->ki_filp
;
964 struct socket
*sock
= file
->private_data
;
965 struct msghdr msg
= {.msg_iter
= *to
,
969 if (file
->f_flags
& O_NONBLOCK
)
970 msg
.msg_flags
= MSG_DONTWAIT
;
972 if (iocb
->ki_pos
!= 0)
975 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
978 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
983 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
985 struct file
*file
= iocb
->ki_filp
;
986 struct socket
*sock
= file
->private_data
;
987 struct msghdr msg
= {.msg_iter
= *from
,
991 if (iocb
->ki_pos
!= 0)
994 if (file
->f_flags
& O_NONBLOCK
)
995 msg
.msg_flags
= MSG_DONTWAIT
;
997 if (sock
->type
== SOCK_SEQPACKET
)
998 msg
.msg_flags
|= MSG_EOR
;
1000 res
= sock_sendmsg(sock
, &msg
);
1001 *from
= msg
.msg_iter
;
1006 * Atomic setting of ioctl hooks to avoid race
1007 * with module unload.
1010 static DEFINE_MUTEX(br_ioctl_mutex
);
1011 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1013 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1015 mutex_lock(&br_ioctl_mutex
);
1016 br_ioctl_hook
= hook
;
1017 mutex_unlock(&br_ioctl_mutex
);
1019 EXPORT_SYMBOL(brioctl_set
);
1021 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1022 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1024 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1026 mutex_lock(&vlan_ioctl_mutex
);
1027 vlan_ioctl_hook
= hook
;
1028 mutex_unlock(&vlan_ioctl_mutex
);
1030 EXPORT_SYMBOL(vlan_ioctl_set
);
1032 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1033 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1035 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1037 mutex_lock(&dlci_ioctl_mutex
);
1038 dlci_ioctl_hook
= hook
;
1039 mutex_unlock(&dlci_ioctl_mutex
);
1041 EXPORT_SYMBOL(dlci_ioctl_set
);
1043 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1044 unsigned int cmd
, unsigned long arg
)
1047 void __user
*argp
= (void __user
*)arg
;
1049 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1052 * If this ioctl is unknown try to hand it down
1053 * to the NIC driver.
1055 if (err
!= -ENOIOCTLCMD
)
1058 if (cmd
== SIOCGIFCONF
) {
1060 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1063 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1065 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1070 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1072 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1073 if (!err
&& need_copyout
)
1074 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1081 * With an ioctl, arg may well be a user mode pointer, but we don't know
1082 * what to do with it - that's up to the protocol still.
1086 * get_net_ns - increment the refcount of the network namespace
1087 * @ns: common namespace (net)
1089 * Returns the net's common namespace.
1092 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1094 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1096 EXPORT_SYMBOL_GPL(get_net_ns
);
1098 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1100 struct socket
*sock
;
1102 void __user
*argp
= (void __user
*)arg
;
1106 sock
= file
->private_data
;
1109 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1112 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1114 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1115 if (!err
&& need_copyout
)
1116 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1119 #ifdef CONFIG_WEXT_CORE
1120 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1121 err
= wext_handle_ioctl(net
, cmd
, argp
);
1128 if (get_user(pid
, (int __user
*)argp
))
1130 err
= f_setown(sock
->file
, pid
, 1);
1134 err
= put_user(f_getown(sock
->file
),
1135 (int __user
*)argp
);
1143 request_module("bridge");
1145 mutex_lock(&br_ioctl_mutex
);
1147 err
= br_ioctl_hook(net
, cmd
, argp
);
1148 mutex_unlock(&br_ioctl_mutex
);
1153 if (!vlan_ioctl_hook
)
1154 request_module("8021q");
1156 mutex_lock(&vlan_ioctl_mutex
);
1157 if (vlan_ioctl_hook
)
1158 err
= vlan_ioctl_hook(net
, argp
);
1159 mutex_unlock(&vlan_ioctl_mutex
);
1164 if (!dlci_ioctl_hook
)
1165 request_module("dlci");
1167 mutex_lock(&dlci_ioctl_mutex
);
1168 if (dlci_ioctl_hook
)
1169 err
= dlci_ioctl_hook(cmd
, argp
);
1170 mutex_unlock(&dlci_ioctl_mutex
);
1174 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1177 err
= open_related_ns(&net
->ns
, get_net_ns
);
1179 case SIOCGSTAMP_OLD
:
1180 case SIOCGSTAMPNS_OLD
:
1181 if (!sock
->ops
->gettstamp
) {
1185 err
= sock
->ops
->gettstamp(sock
, argp
,
1186 cmd
== SIOCGSTAMP_OLD
,
1187 !IS_ENABLED(CONFIG_64BIT
));
1189 case SIOCGSTAMP_NEW
:
1190 case SIOCGSTAMPNS_NEW
:
1191 if (!sock
->ops
->gettstamp
) {
1195 err
= sock
->ops
->gettstamp(sock
, argp
,
1196 cmd
== SIOCGSTAMP_NEW
,
1200 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1207 * sock_create_lite - creates a socket
1208 * @family: protocol family (AF_INET, ...)
1209 * @type: communication type (SOCK_STREAM, ...)
1210 * @protocol: protocol (0, ...)
1213 * Creates a new socket and assigns it to @res, passing through LSM.
1214 * The new socket initialization is not complete, see kernel_accept().
1215 * Returns 0 or an error. On failure @res is set to %NULL.
1216 * This function internally uses GFP_KERNEL.
1219 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1222 struct socket
*sock
= NULL
;
1224 err
= security_socket_create(family
, type
, protocol
, 1);
1228 sock
= sock_alloc();
1235 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1247 EXPORT_SYMBOL(sock_create_lite
);
1249 /* No kernel lock held - perfect */
1250 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1252 struct socket
*sock
= file
->private_data
;
1253 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1255 if (!sock
->ops
->poll
)
1258 if (sk_can_busy_loop(sock
->sk
)) {
1259 /* poll once if requested by the syscall */
1260 if (events
& POLL_BUSY_LOOP
)
1261 sk_busy_loop(sock
->sk
, 1);
1263 /* if this socket can poll_ll, tell the system call */
1264 flag
= POLL_BUSY_LOOP
;
1267 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1270 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1272 struct socket
*sock
= file
->private_data
;
1274 return sock
->ops
->mmap(file
, sock
, vma
);
1277 static int sock_close(struct inode
*inode
, struct file
*filp
)
1279 __sock_release(SOCKET_I(inode
), inode
);
1284 * Update the socket async list
1286 * Fasync_list locking strategy.
1288 * 1. fasync_list is modified only under process context socket lock
1289 * i.e. under semaphore.
1290 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1291 * or under socket lock
1294 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1296 struct socket
*sock
= filp
->private_data
;
1297 struct sock
*sk
= sock
->sk
;
1298 struct socket_wq
*wq
;
1305 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1307 if (!wq
->fasync_list
)
1308 sock_reset_flag(sk
, SOCK_FASYNC
);
1310 sock_set_flag(sk
, SOCK_FASYNC
);
1316 /* This function may be called only under rcu_lock */
1318 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1320 if (!wq
|| !wq
->fasync_list
)
1324 case SOCK_WAKE_WAITD
:
1325 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1328 case SOCK_WAKE_SPACE
:
1329 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1334 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1337 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1342 EXPORT_SYMBOL(sock_wake_async
);
1345 * __sock_create - creates a socket
1346 * @net: net namespace
1347 * @family: protocol family (AF_INET, ...)
1348 * @type: communication type (SOCK_STREAM, ...)
1349 * @protocol: protocol (0, ...)
1351 * @kern: boolean for kernel space sockets
1353 * Creates a new socket and assigns it to @res, passing through LSM.
1354 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1355 * be set to true if the socket resides in kernel space.
1356 * This function internally uses GFP_KERNEL.
1359 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1360 struct socket
**res
, int kern
)
1363 struct socket
*sock
;
1364 const struct net_proto_family
*pf
;
1367 * Check protocol is in range
1369 if (family
< 0 || family
>= NPROTO
)
1370 return -EAFNOSUPPORT
;
1371 if (type
< 0 || type
>= SOCK_MAX
)
1376 This uglymoron is moved from INET layer to here to avoid
1377 deadlock in module load.
1379 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1380 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1385 err
= security_socket_create(family
, type
, protocol
, kern
);
1390 * Allocate the socket and allow the family to set things up. if
1391 * the protocol is 0, the family is instructed to select an appropriate
1394 sock
= sock_alloc();
1396 net_warn_ratelimited("socket: no more sockets\n");
1397 return -ENFILE
; /* Not exactly a match, but its the
1398 closest posix thing */
1403 #ifdef CONFIG_MODULES
1404 /* Attempt to load a protocol module if the find failed.
1406 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1407 * requested real, full-featured networking support upon configuration.
1408 * Otherwise module support will break!
1410 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1411 request_module("net-pf-%d", family
);
1415 pf
= rcu_dereference(net_families
[family
]);
1416 err
= -EAFNOSUPPORT
;
1421 * We will call the ->create function, that possibly is in a loadable
1422 * module, so we have to bump that loadable module refcnt first.
1424 if (!try_module_get(pf
->owner
))
1427 /* Now protected by module ref count */
1430 err
= pf
->create(net
, sock
, protocol
, kern
);
1432 goto out_module_put
;
1435 * Now to bump the refcnt of the [loadable] module that owns this
1436 * socket at sock_release time we decrement its refcnt.
1438 if (!try_module_get(sock
->ops
->owner
))
1439 goto out_module_busy
;
1442 * Now that we're done with the ->create function, the [loadable]
1443 * module can have its refcnt decremented
1445 module_put(pf
->owner
);
1446 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1448 goto out_sock_release
;
1454 err
= -EAFNOSUPPORT
;
1457 module_put(pf
->owner
);
1464 goto out_sock_release
;
1466 EXPORT_SYMBOL(__sock_create
);
1469 * sock_create - creates a socket
1470 * @family: protocol family (AF_INET, ...)
1471 * @type: communication type (SOCK_STREAM, ...)
1472 * @protocol: protocol (0, ...)
1475 * A wrapper around __sock_create().
1476 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1479 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1481 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1483 EXPORT_SYMBOL(sock_create
);
1486 * sock_create_kern - creates a socket (kernel space)
1487 * @net: net namespace
1488 * @family: protocol family (AF_INET, ...)
1489 * @type: communication type (SOCK_STREAM, ...)
1490 * @protocol: protocol (0, ...)
1493 * A wrapper around __sock_create().
1494 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1497 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1499 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1501 EXPORT_SYMBOL(sock_create_kern
);
1503 int __sys_socket(int family
, int type
, int protocol
)
1506 struct socket
*sock
;
1509 /* Check the SOCK_* constants for consistency. */
1510 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1511 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1512 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1513 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1515 flags
= type
& ~SOCK_TYPE_MASK
;
1516 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1518 type
&= SOCK_TYPE_MASK
;
1520 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1521 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1523 retval
= sock_create(family
, type
, protocol
, &sock
);
1527 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1530 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1532 return __sys_socket(family
, type
, protocol
);
1536 * Create a pair of connected sockets.
1539 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1541 struct socket
*sock1
, *sock2
;
1543 struct file
*newfile1
, *newfile2
;
1546 flags
= type
& ~SOCK_TYPE_MASK
;
1547 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1549 type
&= SOCK_TYPE_MASK
;
1551 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1552 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1555 * reserve descriptors and make sure we won't fail
1556 * to return them to userland.
1558 fd1
= get_unused_fd_flags(flags
);
1559 if (unlikely(fd1
< 0))
1562 fd2
= get_unused_fd_flags(flags
);
1563 if (unlikely(fd2
< 0)) {
1568 err
= put_user(fd1
, &usockvec
[0]);
1572 err
= put_user(fd2
, &usockvec
[1]);
1577 * Obtain the first socket and check if the underlying protocol
1578 * supports the socketpair call.
1581 err
= sock_create(family
, type
, protocol
, &sock1
);
1582 if (unlikely(err
< 0))
1585 err
= sock_create(family
, type
, protocol
, &sock2
);
1586 if (unlikely(err
< 0)) {
1587 sock_release(sock1
);
1591 err
= security_socket_socketpair(sock1
, sock2
);
1592 if (unlikely(err
)) {
1593 sock_release(sock2
);
1594 sock_release(sock1
);
1598 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1599 if (unlikely(err
< 0)) {
1600 sock_release(sock2
);
1601 sock_release(sock1
);
1605 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1606 if (IS_ERR(newfile1
)) {
1607 err
= PTR_ERR(newfile1
);
1608 sock_release(sock2
);
1612 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1613 if (IS_ERR(newfile2
)) {
1614 err
= PTR_ERR(newfile2
);
1619 audit_fd_pair(fd1
, fd2
);
1621 fd_install(fd1
, newfile1
);
1622 fd_install(fd2
, newfile2
);
1631 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1632 int __user
*, usockvec
)
1634 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1638 * Bind a name to a socket. Nothing much to do here since it's
1639 * the protocol's responsibility to handle the local address.
1641 * We move the socket address to kernel space before we call
1642 * the protocol layer (having also checked the address is ok).
1645 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1647 struct socket
*sock
;
1648 struct sockaddr_storage address
;
1649 int err
, fput_needed
;
1651 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1653 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1655 err
= security_socket_bind(sock
,
1656 (struct sockaddr
*)&address
,
1659 err
= sock
->ops
->bind(sock
,
1663 fput_light(sock
->file
, fput_needed
);
1668 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1670 return __sys_bind(fd
, umyaddr
, addrlen
);
1674 * Perform a listen. Basically, we allow the protocol to do anything
1675 * necessary for a listen, and if that works, we mark the socket as
1676 * ready for listening.
1679 int __sys_listen(int fd
, int backlog
)
1681 struct socket
*sock
;
1682 int err
, fput_needed
;
1685 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1687 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1688 if ((unsigned int)backlog
> somaxconn
)
1689 backlog
= somaxconn
;
1691 err
= security_socket_listen(sock
, backlog
);
1693 err
= sock
->ops
->listen(sock
, backlog
);
1695 fput_light(sock
->file
, fput_needed
);
1700 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1702 return __sys_listen(fd
, backlog
);
1706 * For accept, we attempt to create a new socket, set up the link
1707 * with the client, wake up the client, then return the new
1708 * connected fd. We collect the address of the connector in kernel
1709 * space and move it to user at the very end. This is unclean because
1710 * we open the socket then return an error.
1712 * 1003.1g adds the ability to recvmsg() to query connection pending
1713 * status to recvmsg. We need to add that support in a way thats
1714 * clean when we restructure accept also.
1717 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1718 int __user
*upeer_addrlen
, int flags
)
1720 struct socket
*sock
, *newsock
;
1721 struct file
*newfile
;
1722 int err
, len
, newfd
, fput_needed
;
1723 struct sockaddr_storage address
;
1725 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1728 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1729 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1731 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1736 newsock
= sock_alloc();
1740 newsock
->type
= sock
->type
;
1741 newsock
->ops
= sock
->ops
;
1744 * We don't need try_module_get here, as the listening socket (sock)
1745 * has the protocol module (sock->ops->owner) held.
1747 __module_get(newsock
->ops
->owner
);
1749 newfd
= get_unused_fd_flags(flags
);
1750 if (unlikely(newfd
< 0)) {
1752 sock_release(newsock
);
1755 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1756 if (IS_ERR(newfile
)) {
1757 err
= PTR_ERR(newfile
);
1758 put_unused_fd(newfd
);
1762 err
= security_socket_accept(sock
, newsock
);
1766 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1770 if (upeer_sockaddr
) {
1771 len
= newsock
->ops
->getname(newsock
,
1772 (struct sockaddr
*)&address
, 2);
1774 err
= -ECONNABORTED
;
1777 err
= move_addr_to_user(&address
,
1778 len
, upeer_sockaddr
, upeer_addrlen
);
1783 /* File flags are not inherited via accept() unlike another OSes. */
1785 fd_install(newfd
, newfile
);
1789 fput_light(sock
->file
, fput_needed
);
1794 put_unused_fd(newfd
);
1798 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1799 int __user
*, upeer_addrlen
, int, flags
)
1801 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1804 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1805 int __user
*, upeer_addrlen
)
1807 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1811 * Attempt to connect to a socket with the server address. The address
1812 * is in user space so we verify it is OK and move it to kernel space.
1814 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1817 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1818 * other SEQPACKET protocols that take time to connect() as it doesn't
1819 * include the -EINPROGRESS status for such sockets.
1822 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1824 struct socket
*sock
;
1825 struct sockaddr_storage address
;
1826 int err
, fput_needed
;
1828 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1831 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1836 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1840 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1841 sock
->file
->f_flags
);
1843 fput_light(sock
->file
, fput_needed
);
1848 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1851 return __sys_connect(fd
, uservaddr
, addrlen
);
1855 * Get the local address ('name') of a socket object. Move the obtained
1856 * name to user space.
1859 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1860 int __user
*usockaddr_len
)
1862 struct socket
*sock
;
1863 struct sockaddr_storage address
;
1864 int err
, fput_needed
;
1866 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1870 err
= security_socket_getsockname(sock
);
1874 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1877 /* "err" is actually length in this case */
1878 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1881 fput_light(sock
->file
, fput_needed
);
1886 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1887 int __user
*, usockaddr_len
)
1889 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1893 * Get the remote address ('name') of a socket object. Move the obtained
1894 * name to user space.
1897 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1898 int __user
*usockaddr_len
)
1900 struct socket
*sock
;
1901 struct sockaddr_storage address
;
1902 int err
, fput_needed
;
1904 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1906 err
= security_socket_getpeername(sock
);
1908 fput_light(sock
->file
, fput_needed
);
1912 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1914 /* "err" is actually length in this case */
1915 err
= move_addr_to_user(&address
, err
, usockaddr
,
1917 fput_light(sock
->file
, fput_needed
);
1922 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1923 int __user
*, usockaddr_len
)
1925 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1929 * Send a datagram to a given address. We move the address into kernel
1930 * space and check the user space data area is readable before invoking
1933 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1934 struct sockaddr __user
*addr
, int addr_len
)
1936 struct socket
*sock
;
1937 struct sockaddr_storage address
;
1943 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1946 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1950 msg
.msg_name
= NULL
;
1951 msg
.msg_control
= NULL
;
1952 msg
.msg_controllen
= 0;
1953 msg
.msg_namelen
= 0;
1955 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1958 msg
.msg_name
= (struct sockaddr
*)&address
;
1959 msg
.msg_namelen
= addr_len
;
1961 if (sock
->file
->f_flags
& O_NONBLOCK
)
1962 flags
|= MSG_DONTWAIT
;
1963 msg
.msg_flags
= flags
;
1964 err
= sock_sendmsg(sock
, &msg
);
1967 fput_light(sock
->file
, fput_needed
);
1972 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1973 unsigned int, flags
, struct sockaddr __user
*, addr
,
1976 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1980 * Send a datagram down a socket.
1983 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1984 unsigned int, flags
)
1986 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1990 * Receive a frame from the socket and optionally record the address of the
1991 * sender. We verify the buffers are writable and if needed move the
1992 * sender address from kernel to user space.
1994 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1995 struct sockaddr __user
*addr
, int __user
*addr_len
)
1997 struct socket
*sock
;
2000 struct sockaddr_storage address
;
2004 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
2007 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2011 msg
.msg_control
= NULL
;
2012 msg
.msg_controllen
= 0;
2013 /* Save some cycles and don't copy the address if not needed */
2014 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2015 /* We assume all kernel code knows the size of sockaddr_storage */
2016 msg
.msg_namelen
= 0;
2017 msg
.msg_iocb
= NULL
;
2019 if (sock
->file
->f_flags
& O_NONBLOCK
)
2020 flags
|= MSG_DONTWAIT
;
2021 err
= sock_recvmsg(sock
, &msg
, flags
);
2023 if (err
>= 0 && addr
!= NULL
) {
2024 err2
= move_addr_to_user(&address
,
2025 msg
.msg_namelen
, addr
, addr_len
);
2030 fput_light(sock
->file
, fput_needed
);
2035 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2036 unsigned int, flags
, struct sockaddr __user
*, addr
,
2037 int __user
*, addr_len
)
2039 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2043 * Receive a datagram from a socket.
2046 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2047 unsigned int, flags
)
2049 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2053 * Set a socket option. Because we don't know the option lengths we have
2054 * to pass the user mode parameter for the protocols to sort out.
2057 static int __sys_setsockopt(int fd
, int level
, int optname
,
2058 char __user
*optval
, int optlen
)
2060 int err
, fput_needed
;
2061 struct socket
*sock
;
2066 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2068 err
= security_socket_setsockopt(sock
, level
, optname
);
2072 if (level
== SOL_SOCKET
)
2074 sock_setsockopt(sock
, level
, optname
, optval
,
2078 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2081 fput_light(sock
->file
, fput_needed
);
2086 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2087 char __user
*, optval
, int, optlen
)
2089 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2093 * Get a socket option. Because we don't know the option lengths we have
2094 * to pass a user mode parameter for the protocols to sort out.
2097 static int __sys_getsockopt(int fd
, int level
, int optname
,
2098 char __user
*optval
, int __user
*optlen
)
2100 int err
, fput_needed
;
2101 struct socket
*sock
;
2103 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2105 err
= security_socket_getsockopt(sock
, level
, optname
);
2109 if (level
== SOL_SOCKET
)
2111 sock_getsockopt(sock
, level
, optname
, optval
,
2115 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2118 fput_light(sock
->file
, fput_needed
);
2123 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2124 char __user
*, optval
, int __user
*, optlen
)
2126 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2130 * Shutdown a socket.
2133 int __sys_shutdown(int fd
, int how
)
2135 int err
, fput_needed
;
2136 struct socket
*sock
;
2138 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2140 err
= security_socket_shutdown(sock
, how
);
2142 err
= sock
->ops
->shutdown(sock
, how
);
2143 fput_light(sock
->file
, fput_needed
);
2148 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2150 return __sys_shutdown(fd
, how
);
2153 /* A couple of helpful macros for getting the address of the 32/64 bit
2154 * fields which are the same type (int / unsigned) on our platforms.
2156 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2157 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2158 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2160 struct used_address
{
2161 struct sockaddr_storage name
;
2162 unsigned int name_len
;
2165 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2166 struct user_msghdr __user
*umsg
,
2167 struct sockaddr __user
**save_addr
,
2170 struct user_msghdr msg
;
2173 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2176 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2177 kmsg
->msg_controllen
= msg
.msg_controllen
;
2178 kmsg
->msg_flags
= msg
.msg_flags
;
2180 kmsg
->msg_namelen
= msg
.msg_namelen
;
2182 kmsg
->msg_namelen
= 0;
2184 if (kmsg
->msg_namelen
< 0)
2187 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2188 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2191 *save_addr
= msg
.msg_name
;
2193 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2195 err
= move_addr_to_kernel(msg
.msg_name
,
2202 kmsg
->msg_name
= NULL
;
2203 kmsg
->msg_namelen
= 0;
2206 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2209 kmsg
->msg_iocb
= NULL
;
2211 return import_iovec(save_addr
? READ
: WRITE
,
2212 msg
.msg_iov
, msg
.msg_iovlen
,
2213 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2216 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2217 struct msghdr
*msg_sys
, unsigned int flags
,
2218 struct used_address
*used_address
,
2219 unsigned int allowed_msghdr_flags
)
2221 struct compat_msghdr __user
*msg_compat
=
2222 (struct compat_msghdr __user
*)msg
;
2223 struct sockaddr_storage address
;
2224 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2225 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2226 __aligned(sizeof(__kernel_size_t
));
2227 /* 20 is size of ipv6_pktinfo */
2228 unsigned char *ctl_buf
= ctl
;
2232 msg_sys
->msg_name
= &address
;
2234 if (MSG_CMSG_COMPAT
& flags
)
2235 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2237 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2243 if (msg_sys
->msg_controllen
> INT_MAX
)
2245 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2246 ctl_len
= msg_sys
->msg_controllen
;
2247 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2249 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2253 ctl_buf
= msg_sys
->msg_control
;
2254 ctl_len
= msg_sys
->msg_controllen
;
2255 } else if (ctl_len
) {
2256 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2257 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2258 if (ctl_len
> sizeof(ctl
)) {
2259 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2260 if (ctl_buf
== NULL
)
2265 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2266 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2267 * checking falls down on this.
2269 if (copy_from_user(ctl_buf
,
2270 (void __user __force
*)msg_sys
->msg_control
,
2273 msg_sys
->msg_control
= ctl_buf
;
2275 msg_sys
->msg_flags
= flags
;
2277 if (sock
->file
->f_flags
& O_NONBLOCK
)
2278 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2280 * If this is sendmmsg() and current destination address is same as
2281 * previously succeeded address, omit asking LSM's decision.
2282 * used_address->name_len is initialized to UINT_MAX so that the first
2283 * destination address never matches.
2285 if (used_address
&& msg_sys
->msg_name
&&
2286 used_address
->name_len
== msg_sys
->msg_namelen
&&
2287 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2288 used_address
->name_len
)) {
2289 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2292 err
= sock_sendmsg(sock
, msg_sys
);
2294 * If this is sendmmsg() and sending to current destination address was
2295 * successful, remember it.
2297 if (used_address
&& err
>= 0) {
2298 used_address
->name_len
= msg_sys
->msg_namelen
;
2299 if (msg_sys
->msg_name
)
2300 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2301 used_address
->name_len
);
2306 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2313 * BSD sendmsg interface
2316 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2317 bool forbid_cmsg_compat
)
2319 int fput_needed
, err
;
2320 struct msghdr msg_sys
;
2321 struct socket
*sock
;
2323 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2326 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2330 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2332 fput_light(sock
->file
, fput_needed
);
2337 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2339 return __sys_sendmsg(fd
, msg
, flags
, true);
2343 * Linux sendmmsg interface
2346 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2347 unsigned int flags
, bool forbid_cmsg_compat
)
2349 int fput_needed
, err
, datagrams
;
2350 struct socket
*sock
;
2351 struct mmsghdr __user
*entry
;
2352 struct compat_mmsghdr __user
*compat_entry
;
2353 struct msghdr msg_sys
;
2354 struct used_address used_address
;
2355 unsigned int oflags
= flags
;
2357 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2360 if (vlen
> UIO_MAXIOV
)
2365 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2369 used_address
.name_len
= UINT_MAX
;
2371 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2375 while (datagrams
< vlen
) {
2376 if (datagrams
== vlen
- 1)
2379 if (MSG_CMSG_COMPAT
& flags
) {
2380 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2381 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2384 err
= __put_user(err
, &compat_entry
->msg_len
);
2387 err
= ___sys_sendmsg(sock
,
2388 (struct user_msghdr __user
*)entry
,
2389 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2392 err
= put_user(err
, &entry
->msg_len
);
2399 if (msg_data_left(&msg_sys
))
2404 fput_light(sock
->file
, fput_needed
);
2406 /* We only return an error if no datagrams were able to be sent */
2413 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2414 unsigned int, vlen
, unsigned int, flags
)
2416 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2419 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2420 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2422 struct compat_msghdr __user
*msg_compat
=
2423 (struct compat_msghdr __user
*)msg
;
2424 struct iovec iovstack
[UIO_FASTIOV
];
2425 struct iovec
*iov
= iovstack
;
2426 unsigned long cmsg_ptr
;
2430 /* kernel mode address */
2431 struct sockaddr_storage addr
;
2433 /* user mode address pointers */
2434 struct sockaddr __user
*uaddr
;
2435 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2437 msg_sys
->msg_name
= &addr
;
2439 if (MSG_CMSG_COMPAT
& flags
)
2440 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2442 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2446 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2447 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2449 /* We assume all kernel code knows the size of sockaddr_storage */
2450 msg_sys
->msg_namelen
= 0;
2452 if (sock
->file
->f_flags
& O_NONBLOCK
)
2453 flags
|= MSG_DONTWAIT
;
2454 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2459 if (uaddr
!= NULL
) {
2460 err
= move_addr_to_user(&addr
,
2461 msg_sys
->msg_namelen
, uaddr
,
2466 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2470 if (MSG_CMSG_COMPAT
& flags
)
2471 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2472 &msg_compat
->msg_controllen
);
2474 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2475 &msg
->msg_controllen
);
2486 * BSD recvmsg interface
2489 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2490 bool forbid_cmsg_compat
)
2492 int fput_needed
, err
;
2493 struct msghdr msg_sys
;
2494 struct socket
*sock
;
2496 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2499 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2503 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2505 fput_light(sock
->file
, fput_needed
);
2510 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2511 unsigned int, flags
)
2513 return __sys_recvmsg(fd
, msg
, flags
, true);
2517 * Linux recvmmsg interface
2520 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2521 unsigned int vlen
, unsigned int flags
,
2522 struct timespec64
*timeout
)
2524 int fput_needed
, err
, datagrams
;
2525 struct socket
*sock
;
2526 struct mmsghdr __user
*entry
;
2527 struct compat_mmsghdr __user
*compat_entry
;
2528 struct msghdr msg_sys
;
2529 struct timespec64 end_time
;
2530 struct timespec64 timeout64
;
2533 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2539 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2543 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2544 err
= sock_error(sock
->sk
);
2552 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2554 while (datagrams
< vlen
) {
2556 * No need to ask LSM for more than the first datagram.
2558 if (MSG_CMSG_COMPAT
& flags
) {
2559 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2560 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2564 err
= __put_user(err
, &compat_entry
->msg_len
);
2567 err
= ___sys_recvmsg(sock
,
2568 (struct user_msghdr __user
*)entry
,
2569 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2573 err
= put_user(err
, &entry
->msg_len
);
2581 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2582 if (flags
& MSG_WAITFORONE
)
2583 flags
|= MSG_DONTWAIT
;
2586 ktime_get_ts64(&timeout64
);
2587 *timeout
= timespec64_sub(end_time
, timeout64
);
2588 if (timeout
->tv_sec
< 0) {
2589 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2593 /* Timeout, return less than vlen datagrams */
2594 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2598 /* Out of band data, return right away */
2599 if (msg_sys
.msg_flags
& MSG_OOB
)
2607 if (datagrams
== 0) {
2613 * We may return less entries than requested (vlen) if the
2614 * sock is non block and there aren't enough datagrams...
2616 if (err
!= -EAGAIN
) {
2618 * ... or if recvmsg returns an error after we
2619 * received some datagrams, where we record the
2620 * error to return on the next call or if the
2621 * app asks about it using getsockopt(SO_ERROR).
2623 sock
->sk
->sk_err
= -err
;
2626 fput_light(sock
->file
, fput_needed
);
2631 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2632 unsigned int vlen
, unsigned int flags
,
2633 struct __kernel_timespec __user
*timeout
,
2634 struct old_timespec32 __user
*timeout32
)
2637 struct timespec64 timeout_sys
;
2639 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2642 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2645 if (!timeout
&& !timeout32
)
2646 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2648 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2653 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2654 datagrams
= -EFAULT
;
2656 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2657 datagrams
= -EFAULT
;
2662 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2663 unsigned int, vlen
, unsigned int, flags
,
2664 struct __kernel_timespec __user
*, timeout
)
2666 if (flags
& MSG_CMSG_COMPAT
)
2669 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2672 #ifdef CONFIG_COMPAT_32BIT_TIME
2673 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2674 unsigned int, vlen
, unsigned int, flags
,
2675 struct old_timespec32 __user
*, timeout
)
2677 if (flags
& MSG_CMSG_COMPAT
)
2680 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2684 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2685 /* Argument list sizes for sys_socketcall */
2686 #define AL(x) ((x) * sizeof(unsigned long))
2687 static const unsigned char nargs
[21] = {
2688 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2689 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2690 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2697 * System call vectors.
2699 * Argument checking cleaned up. Saved 20% in size.
2700 * This function doesn't need to set the kernel lock because
2701 * it is set by the callees.
2704 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2706 unsigned long a
[AUDITSC_ARGS
];
2707 unsigned long a0
, a1
;
2711 if (call
< 1 || call
> SYS_SENDMMSG
)
2713 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2716 if (len
> sizeof(a
))
2719 /* copy_from_user should be SMP safe. */
2720 if (copy_from_user(a
, args
, len
))
2723 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2732 err
= __sys_socket(a0
, a1
, a
[2]);
2735 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2738 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2741 err
= __sys_listen(a0
, a1
);
2744 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2745 (int __user
*)a
[2], 0);
2747 case SYS_GETSOCKNAME
:
2749 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2750 (int __user
*)a
[2]);
2752 case SYS_GETPEERNAME
:
2754 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2755 (int __user
*)a
[2]);
2757 case SYS_SOCKETPAIR
:
2758 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2761 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2765 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2766 (struct sockaddr __user
*)a
[4], a
[5]);
2769 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2773 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2774 (struct sockaddr __user
*)a
[4],
2775 (int __user
*)a
[5]);
2778 err
= __sys_shutdown(a0
, a1
);
2780 case SYS_SETSOCKOPT
:
2781 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2784 case SYS_GETSOCKOPT
:
2786 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2787 (int __user
*)a
[4]);
2790 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2794 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2798 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2802 if (IS_ENABLED(CONFIG_64BIT
) || !IS_ENABLED(CONFIG_64BIT_TIME
))
2803 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2805 (struct __kernel_timespec __user
*)a
[4],
2808 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2810 (struct old_timespec32 __user
*)a
[4]);
2813 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2814 (int __user
*)a
[2], a
[3]);
2823 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2826 * sock_register - add a socket protocol handler
2827 * @ops: description of protocol
2829 * This function is called by a protocol handler that wants to
2830 * advertise its address family, and have it linked into the
2831 * socket interface. The value ops->family corresponds to the
2832 * socket system call protocol family.
2834 int sock_register(const struct net_proto_family
*ops
)
2838 if (ops
->family
>= NPROTO
) {
2839 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2843 spin_lock(&net_family_lock
);
2844 if (rcu_dereference_protected(net_families
[ops
->family
],
2845 lockdep_is_held(&net_family_lock
)))
2848 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2851 spin_unlock(&net_family_lock
);
2853 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2856 EXPORT_SYMBOL(sock_register
);
2859 * sock_unregister - remove a protocol handler
2860 * @family: protocol family to remove
2862 * This function is called by a protocol handler that wants to
2863 * remove its address family, and have it unlinked from the
2864 * new socket creation.
2866 * If protocol handler is a module, then it can use module reference
2867 * counts to protect against new references. If protocol handler is not
2868 * a module then it needs to provide its own protection in
2869 * the ops->create routine.
2871 void sock_unregister(int family
)
2873 BUG_ON(family
< 0 || family
>= NPROTO
);
2875 spin_lock(&net_family_lock
);
2876 RCU_INIT_POINTER(net_families
[family
], NULL
);
2877 spin_unlock(&net_family_lock
);
2881 pr_info("NET: Unregistered protocol family %d\n", family
);
2883 EXPORT_SYMBOL(sock_unregister
);
2885 bool sock_is_registered(int family
)
2887 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2890 static int __init
sock_init(void)
2894 * Initialize the network sysctl infrastructure.
2896 err
= net_sysctl_init();
2901 * Initialize skbuff SLAB cache
2906 * Initialize the protocols module.
2911 err
= register_filesystem(&sock_fs_type
);
2914 sock_mnt
= kern_mount(&sock_fs_type
);
2915 if (IS_ERR(sock_mnt
)) {
2916 err
= PTR_ERR(sock_mnt
);
2920 /* The real protocol initialization is performed in later initcalls.
2923 #ifdef CONFIG_NETFILTER
2924 err
= netfilter_init();
2929 ptp_classifier_init();
2935 unregister_filesystem(&sock_fs_type
);
2940 core_initcall(sock_init
); /* early initcall */
2942 #ifdef CONFIG_PROC_FS
2943 void socket_seq_show(struct seq_file
*seq
)
2945 seq_printf(seq
, "sockets: used %d\n",
2946 sock_inuse_get(seq
->private));
2948 #endif /* CONFIG_PROC_FS */
2950 #ifdef CONFIG_COMPAT
2951 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2953 struct compat_ifconf ifc32
;
2957 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2960 ifc
.ifc_len
= ifc32
.ifc_len
;
2961 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2964 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2969 ifc32
.ifc_len
= ifc
.ifc_len
;
2970 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2976 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2978 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2979 bool convert_in
= false, convert_out
= false;
2980 size_t buf_size
= 0;
2981 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2983 u32 rule_cnt
= 0, actual_rule_cnt
;
2988 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2991 compat_rxnfc
= compat_ptr(data
);
2993 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2996 /* Most ethtool structures are defined without padding.
2997 * Unfortunately struct ethtool_rxnfc is an exception.
3002 case ETHTOOL_GRXCLSRLALL
:
3003 /* Buffer size is variable */
3004 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3006 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3008 buf_size
+= rule_cnt
* sizeof(u32
);
3010 case ETHTOOL_GRXRINGS
:
3011 case ETHTOOL_GRXCLSRLCNT
:
3012 case ETHTOOL_GRXCLSRULE
:
3013 case ETHTOOL_SRXCLSRLINS
:
3016 case ETHTOOL_SRXCLSRLDEL
:
3017 buf_size
+= sizeof(struct ethtool_rxnfc
);
3019 rxnfc
= compat_alloc_user_space(buf_size
);
3023 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3026 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3029 /* We expect there to be holes between fs.m_ext and
3030 * fs.ring_cookie and at the end of fs, but nowhere else.
3032 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3033 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3034 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3035 sizeof(rxnfc
->fs
.m_ext
));
3037 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3038 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3039 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3040 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3042 if (copy_in_user(rxnfc
, compat_rxnfc
,
3043 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3044 (void __user
*)rxnfc
) ||
3045 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3046 &compat_rxnfc
->fs
.ring_cookie
,
3047 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3048 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3050 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3051 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3053 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3054 &compat_rxnfc
->rule_cnt
,
3055 sizeof(rxnfc
->rule_cnt
)))
3059 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3064 if (copy_in_user(compat_rxnfc
, rxnfc
,
3065 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3066 (const void __user
*)rxnfc
) ||
3067 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3068 &rxnfc
->fs
.ring_cookie
,
3069 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3070 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3071 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3072 sizeof(rxnfc
->rule_cnt
)))
3075 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3076 /* As an optimisation, we only copy the actual
3077 * number of rules that the underlying
3078 * function returned. Since Mallory might
3079 * change the rule count in user memory, we
3080 * check that it is less than the rule count
3081 * originally given (as the user buffer size),
3082 * which has been range-checked.
3084 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3086 if (actual_rule_cnt
< rule_cnt
)
3087 rule_cnt
= actual_rule_cnt
;
3088 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3089 &rxnfc
->rule_locs
[0],
3090 rule_cnt
* sizeof(u32
)))
3098 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3100 compat_uptr_t uptr32
;
3105 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3108 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3111 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3112 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3114 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3116 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3117 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3124 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3125 struct compat_ifreq __user
*u_ifreq32
)
3130 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3132 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3134 ifreq
.ifr_data
= compat_ptr(data32
);
3136 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3139 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3141 struct compat_ifreq __user
*uifr32
)
3143 struct ifreq __user
*uifr
;
3146 /* Handle the fact that while struct ifreq has the same *layout* on
3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 * which are handled elsewhere, it still has different *size* due to
3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 * As a result, if the struct happens to be at the end of a page and
3152 * the next page isn't readable/writable, we get a fault. To prevent
3153 * that, copy back and forth to the full size.
3156 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3157 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3160 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3171 case SIOCGIFBRDADDR
:
3172 case SIOCGIFDSTADDR
:
3173 case SIOCGIFNETMASK
:
3179 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3187 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3188 struct compat_ifreq __user
*uifr32
)
3191 struct compat_ifmap __user
*uifmap32
;
3194 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3195 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3196 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3197 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3198 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3199 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3200 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3201 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3205 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3207 if (cmd
== SIOCGIFMAP
&& !err
) {
3208 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3209 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3210 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3211 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3212 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3213 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3214 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3223 struct sockaddr rt_dst
; /* target address */
3224 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3225 struct sockaddr rt_genmask
; /* target network mask (IP) */
3226 unsigned short rt_flags
;
3229 unsigned char rt_tos
;
3230 unsigned char rt_class
;
3232 short rt_metric
; /* +1 for binary compatibility! */
3233 /* char * */ u32 rt_dev
; /* forcing the device at add */
3234 u32 rt_mtu
; /* per route MTU/Window */
3235 u32 rt_window
; /* Window clamping */
3236 unsigned short rt_irtt
; /* Initial RTT */
3239 struct in6_rtmsg32
{
3240 struct in6_addr rtmsg_dst
;
3241 struct in6_addr rtmsg_src
;
3242 struct in6_addr rtmsg_gateway
;
3252 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3253 unsigned int cmd
, void __user
*argp
)
3257 struct in6_rtmsg r6
;
3261 mm_segment_t old_fs
= get_fs();
3263 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3264 struct in6_rtmsg32 __user
*ur6
= argp
;
3265 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3266 3 * sizeof(struct in6_addr
));
3267 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3268 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3269 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3270 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3271 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3272 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3273 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3277 struct rtentry32 __user
*ur4
= argp
;
3278 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3279 3 * sizeof(struct sockaddr
));
3280 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3281 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3282 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3283 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3284 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3285 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3287 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3288 r4
.rt_dev
= (char __user __force
*)devname
;
3302 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3310 * for some operations; this forces use of the newer bridge-utils that
3311 * use compatible ioctls
3313 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3317 if (get_user(tmp
, argp
))
3319 if (tmp
== BRCTL_GET_VERSION
)
3320 return BRCTL_VERSION
+ 1;
3324 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3325 unsigned int cmd
, unsigned long arg
)
3327 void __user
*argp
= compat_ptr(arg
);
3328 struct sock
*sk
= sock
->sk
;
3329 struct net
*net
= sock_net(sk
);
3331 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3332 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3337 return old_bridge_ioctl(argp
);
3339 return compat_dev_ifconf(net
, argp
);
3341 return ethtool_ioctl(net
, argp
);
3343 return compat_siocwandev(net
, argp
);
3346 return compat_sioc_ifmap(net
, cmd
, argp
);
3349 return routing_ioctl(net
, sock
, cmd
, argp
);
3350 case SIOCGSTAMP_OLD
:
3351 case SIOCGSTAMPNS_OLD
:
3352 if (!sock
->ops
->gettstamp
)
3353 return -ENOIOCTLCMD
;
3354 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3355 !COMPAT_USE_64BIT_TIME
);
3357 case SIOCBONDSLAVEINFOQUERY
:
3358 case SIOCBONDINFOQUERY
:
3361 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3374 case SIOCGSTAMP_NEW
:
3375 case SIOCGSTAMPNS_NEW
:
3376 return sock_ioctl(file
, cmd
, arg
);
3393 case SIOCSIFHWBROADCAST
:
3395 case SIOCGIFBRDADDR
:
3396 case SIOCSIFBRDADDR
:
3397 case SIOCGIFDSTADDR
:
3398 case SIOCSIFDSTADDR
:
3399 case SIOCGIFNETMASK
:
3400 case SIOCSIFNETMASK
:
3412 case SIOCBONDENSLAVE
:
3413 case SIOCBONDRELEASE
:
3414 case SIOCBONDSETHWADDR
:
3415 case SIOCBONDCHANGEACTIVE
:
3416 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3422 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3425 return -ENOIOCTLCMD
;
3428 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3431 struct socket
*sock
= file
->private_data
;
3432 int ret
= -ENOIOCTLCMD
;
3439 if (sock
->ops
->compat_ioctl
)
3440 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3442 if (ret
== -ENOIOCTLCMD
&&
3443 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3444 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3446 if (ret
== -ENOIOCTLCMD
)
3447 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3454 * kernel_bind - bind an address to a socket (kernel space)
3457 * @addrlen: length of address
3459 * Returns 0 or an error.
3462 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3464 return sock
->ops
->bind(sock
, addr
, addrlen
);
3466 EXPORT_SYMBOL(kernel_bind
);
3469 * kernel_listen - move socket to listening state (kernel space)
3471 * @backlog: pending connections queue size
3473 * Returns 0 or an error.
3476 int kernel_listen(struct socket
*sock
, int backlog
)
3478 return sock
->ops
->listen(sock
, backlog
);
3480 EXPORT_SYMBOL(kernel_listen
);
3483 * kernel_accept - accept a connection (kernel space)
3484 * @sock: listening socket
3485 * @newsock: new connected socket
3488 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3489 * If it fails, @newsock is guaranteed to be %NULL.
3490 * Returns 0 or an error.
3493 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3495 struct sock
*sk
= sock
->sk
;
3498 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3503 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3505 sock_release(*newsock
);
3510 (*newsock
)->ops
= sock
->ops
;
3511 __module_get((*newsock
)->ops
->owner
);
3516 EXPORT_SYMBOL(kernel_accept
);
3519 * kernel_connect - connect a socket (kernel space)
3522 * @addrlen: address length
3523 * @flags: flags (O_NONBLOCK, ...)
3525 * For datagram sockets, @addr is the addres to which datagrams are sent
3526 * by default, and the only address from which datagrams are received.
3527 * For stream sockets, attempts to connect to @addr.
3528 * Returns 0 or an error code.
3531 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3534 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3536 EXPORT_SYMBOL(kernel_connect
);
3539 * kernel_getsockname - get the address which the socket is bound (kernel space)
3541 * @addr: address holder
3543 * Fills the @addr pointer with the address which the socket is bound.
3544 * Returns 0 or an error code.
3547 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3549 return sock
->ops
->getname(sock
, addr
, 0);
3551 EXPORT_SYMBOL(kernel_getsockname
);
3554 * kernel_peername - get the address which the socket is connected (kernel space)
3556 * @addr: address holder
3558 * Fills the @addr pointer with the address which the socket is connected.
3559 * Returns 0 or an error code.
3562 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3564 return sock
->ops
->getname(sock
, addr
, 1);
3566 EXPORT_SYMBOL(kernel_getpeername
);
3569 * kernel_getsockopt - get a socket option (kernel space)
3571 * @level: API level (SOL_SOCKET, ...)
3572 * @optname: option tag
3573 * @optval: option value
3574 * @optlen: option length
3576 * Assigns the option length to @optlen.
3577 * Returns 0 or an error.
3580 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3581 char *optval
, int *optlen
)
3583 mm_segment_t oldfs
= get_fs();
3584 char __user
*uoptval
;
3585 int __user
*uoptlen
;
3588 uoptval
= (char __user __force
*) optval
;
3589 uoptlen
= (int __user __force
*) optlen
;
3592 if (level
== SOL_SOCKET
)
3593 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3595 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3600 EXPORT_SYMBOL(kernel_getsockopt
);
3603 * kernel_setsockopt - set a socket option (kernel space)
3605 * @level: API level (SOL_SOCKET, ...)
3606 * @optname: option tag
3607 * @optval: option value
3608 * @optlen: option length
3610 * Returns 0 or an error.
3613 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3614 char *optval
, unsigned int optlen
)
3616 mm_segment_t oldfs
= get_fs();
3617 char __user
*uoptval
;
3620 uoptval
= (char __user __force
*) optval
;
3623 if (level
== SOL_SOCKET
)
3624 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3626 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3631 EXPORT_SYMBOL(kernel_setsockopt
);
3634 * kernel_sendpage - send a &page through a socket (kernel space)
3637 * @offset: page offset
3638 * @size: total size in bytes
3639 * @flags: flags (MSG_DONTWAIT, ...)
3641 * Returns the total amount sent in bytes or an error.
3644 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3645 size_t size
, int flags
)
3647 if (sock
->ops
->sendpage
)
3648 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3650 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3652 EXPORT_SYMBOL(kernel_sendpage
);
3655 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3658 * @offset: page offset
3659 * @size: total size in bytes
3660 * @flags: flags (MSG_DONTWAIT, ...)
3662 * Returns the total amount sent in bytes or an error.
3663 * Caller must hold @sk.
3666 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3667 size_t size
, int flags
)
3669 struct socket
*sock
= sk
->sk_socket
;
3671 if (sock
->ops
->sendpage_locked
)
3672 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3675 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3677 EXPORT_SYMBOL(kernel_sendpage_locked
);
3680 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3682 * @how: connection part
3684 * Returns 0 or an error.
3687 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3689 return sock
->ops
->shutdown(sock
, how
);
3691 EXPORT_SYMBOL(kernel_sock_shutdown
);
3694 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3697 * This routine returns the IP overhead imposed by a socket i.e.
3698 * the length of the underlying IP header, depending on whether
3699 * this is an IPv4 or IPv6 socket and the length from IP options turned
3700 * on at the socket. Assumes that the caller has a lock on the socket.
3703 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3705 struct inet_sock
*inet
;
3706 struct ip_options_rcu
*opt
;
3708 #if IS_ENABLED(CONFIG_IPV6)
3709 struct ipv6_pinfo
*np
;
3710 struct ipv6_txoptions
*optv6
= NULL
;
3711 #endif /* IS_ENABLED(CONFIG_IPV6) */
3716 switch (sk
->sk_family
) {
3719 overhead
+= sizeof(struct iphdr
);
3720 opt
= rcu_dereference_protected(inet
->inet_opt
,
3721 sock_owned_by_user(sk
));
3723 overhead
+= opt
->opt
.optlen
;
3725 #if IS_ENABLED(CONFIG_IPV6)
3728 overhead
+= sizeof(struct ipv6hdr
);
3730 optv6
= rcu_dereference_protected(np
->opt
,
3731 sock_owned_by_user(sk
));
3733 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3735 #endif /* IS_ENABLED(CONFIG_IPV6) */
3736 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3740 EXPORT_SYMBOL(kernel_sock_ip_overhead
);