media: vicodec: add V4L2_CID_MIN_BUFFERS_FOR_OUTPUT
[linux/fpc-iii.git] / net / tls / tls_device.c
blobca54a7c7ec81a44529b157b294464744ea116b75
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
41 /* device_offload_lock is used to synchronize tls_dev_add
42 * against NETDEV_DOWN notifications.
44 static DECLARE_RWSEM(device_offload_lock);
46 static void tls_device_gc_task(struct work_struct *work);
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
53 static void tls_device_free_ctx(struct tls_context *ctx)
55 if (ctx->tx_conf == TLS_HW) {
56 kfree(tls_offload_ctx_tx(ctx));
57 kfree(ctx->tx.rec_seq);
58 kfree(ctx->tx.iv);
61 if (ctx->rx_conf == TLS_HW)
62 kfree(tls_offload_ctx_rx(ctx));
64 kfree(ctx);
67 static void tls_device_gc_task(struct work_struct *work)
69 struct tls_context *ctx, *tmp;
70 unsigned long flags;
71 LIST_HEAD(gc_list);
73 spin_lock_irqsave(&tls_device_lock, flags);
74 list_splice_init(&tls_device_gc_list, &gc_list);
75 spin_unlock_irqrestore(&tls_device_lock, flags);
77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 struct net_device *netdev = ctx->netdev;
80 if (netdev && ctx->tx_conf == TLS_HW) {
81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
87 list_del(&ctx->list);
88 tls_device_free_ctx(ctx);
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
94 unsigned long flags;
96 spin_lock_irqsave(&tls_device_lock, flags);
97 list_move_tail(&ctx->list, &tls_device_gc_list);
99 /* schedule_work inside the spinlock
100 * to make sure tls_device_down waits for that work.
102 schedule_work(&tls_device_gc_work);
104 spin_unlock_irqrestore(&tls_device_lock, flags);
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
110 struct dst_entry *dst = sk_dst_get(sk);
111 struct net_device *netdev = NULL;
113 if (likely(dst)) {
114 netdev = dst->dev;
115 dev_hold(netdev);
118 dst_release(dst);
120 return netdev;
123 static void destroy_record(struct tls_record_info *record)
125 int nr_frags = record->num_frags;
126 skb_frag_t *frag;
128 while (nr_frags-- > 0) {
129 frag = &record->frags[nr_frags];
130 __skb_frag_unref(frag);
132 kfree(record);
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
137 struct tls_record_info *info, *temp;
139 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140 list_del(&info->list);
141 destroy_record(info);
144 offload_ctx->retransmit_hint = NULL;
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
149 struct tls_context *tls_ctx = tls_get_ctx(sk);
150 struct tls_record_info *info, *temp;
151 struct tls_offload_context_tx *ctx;
152 u64 deleted_records = 0;
153 unsigned long flags;
155 if (!tls_ctx)
156 return;
158 ctx = tls_offload_ctx_tx(tls_ctx);
160 spin_lock_irqsave(&ctx->lock, flags);
161 info = ctx->retransmit_hint;
162 if (info && !before(acked_seq, info->end_seq)) {
163 ctx->retransmit_hint = NULL;
164 list_del(&info->list);
165 destroy_record(info);
166 deleted_records++;
169 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
170 if (before(acked_seq, info->end_seq))
171 break;
172 list_del(&info->list);
174 destroy_record(info);
175 deleted_records++;
178 ctx->unacked_record_sn += deleted_records;
179 spin_unlock_irqrestore(&ctx->lock, flags);
182 /* At this point, there should be no references on this
183 * socket and no in-flight SKBs associated with this
184 * socket, so it is safe to free all the resources.
186 static void tls_device_sk_destruct(struct sock *sk)
188 struct tls_context *tls_ctx = tls_get_ctx(sk);
189 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
191 tls_ctx->sk_destruct(sk);
193 if (tls_ctx->tx_conf == TLS_HW) {
194 if (ctx->open_record)
195 destroy_record(ctx->open_record);
196 delete_all_records(ctx);
197 crypto_free_aead(ctx->aead_send);
198 clean_acked_data_disable(inet_csk(sk));
201 if (refcount_dec_and_test(&tls_ctx->refcount))
202 tls_device_queue_ctx_destruction(tls_ctx);
205 void tls_device_free_resources_tx(struct sock *sk)
207 struct tls_context *tls_ctx = tls_get_ctx(sk);
209 tls_free_partial_record(sk, tls_ctx);
212 static void tls_append_frag(struct tls_record_info *record,
213 struct page_frag *pfrag,
214 int size)
216 skb_frag_t *frag;
218 frag = &record->frags[record->num_frags - 1];
219 if (frag->page.p == pfrag->page &&
220 frag->page_offset + frag->size == pfrag->offset) {
221 frag->size += size;
222 } else {
223 ++frag;
224 frag->page.p = pfrag->page;
225 frag->page_offset = pfrag->offset;
226 frag->size = size;
227 ++record->num_frags;
228 get_page(pfrag->page);
231 pfrag->offset += size;
232 record->len += size;
235 static int tls_push_record(struct sock *sk,
236 struct tls_context *ctx,
237 struct tls_offload_context_tx *offload_ctx,
238 struct tls_record_info *record,
239 struct page_frag *pfrag,
240 int flags,
241 unsigned char record_type)
243 struct tls_prot_info *prot = &ctx->prot_info;
244 struct tcp_sock *tp = tcp_sk(sk);
245 struct page_frag dummy_tag_frag;
246 skb_frag_t *frag;
247 int i;
249 /* fill prepend */
250 frag = &record->frags[0];
251 tls_fill_prepend(ctx,
252 skb_frag_address(frag),
253 record->len - prot->prepend_size,
254 record_type,
255 ctx->crypto_send.info.version);
257 /* HW doesn't care about the data in the tag, because it fills it. */
258 dummy_tag_frag.page = skb_frag_page(frag);
259 dummy_tag_frag.offset = 0;
261 tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
262 record->end_seq = tp->write_seq + record->len;
263 spin_lock_irq(&offload_ctx->lock);
264 list_add_tail(&record->list, &offload_ctx->records_list);
265 spin_unlock_irq(&offload_ctx->lock);
266 offload_ctx->open_record = NULL;
267 tls_advance_record_sn(sk, &ctx->tx, ctx->crypto_send.info.version);
269 for (i = 0; i < record->num_frags; i++) {
270 frag = &record->frags[i];
271 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
272 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
273 frag->size, frag->page_offset);
274 sk_mem_charge(sk, frag->size);
275 get_page(skb_frag_page(frag));
277 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
279 /* all ready, send */
280 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
283 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
284 struct page_frag *pfrag,
285 size_t prepend_size)
287 struct tls_record_info *record;
288 skb_frag_t *frag;
290 record = kmalloc(sizeof(*record), GFP_KERNEL);
291 if (!record)
292 return -ENOMEM;
294 frag = &record->frags[0];
295 __skb_frag_set_page(frag, pfrag->page);
296 frag->page_offset = pfrag->offset;
297 skb_frag_size_set(frag, prepend_size);
299 get_page(pfrag->page);
300 pfrag->offset += prepend_size;
302 record->num_frags = 1;
303 record->len = prepend_size;
304 offload_ctx->open_record = record;
305 return 0;
308 static int tls_do_allocation(struct sock *sk,
309 struct tls_offload_context_tx *offload_ctx,
310 struct page_frag *pfrag,
311 size_t prepend_size)
313 int ret;
315 if (!offload_ctx->open_record) {
316 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
317 sk->sk_allocation))) {
318 sk->sk_prot->enter_memory_pressure(sk);
319 sk_stream_moderate_sndbuf(sk);
320 return -ENOMEM;
323 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
324 if (ret)
325 return ret;
327 if (pfrag->size > pfrag->offset)
328 return 0;
331 if (!sk_page_frag_refill(sk, pfrag))
332 return -ENOMEM;
334 return 0;
337 static int tls_push_data(struct sock *sk,
338 struct iov_iter *msg_iter,
339 size_t size, int flags,
340 unsigned char record_type)
342 struct tls_context *tls_ctx = tls_get_ctx(sk);
343 struct tls_prot_info *prot = &tls_ctx->prot_info;
344 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
345 int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
346 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
347 struct tls_record_info *record = ctx->open_record;
348 struct page_frag *pfrag;
349 size_t orig_size = size;
350 u32 max_open_record_len;
351 int copy, rc = 0;
352 bool done = false;
353 long timeo;
355 if (flags &
356 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
357 return -ENOTSUPP;
359 if (sk->sk_err)
360 return -sk->sk_err;
362 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
363 if (tls_is_partially_sent_record(tls_ctx)) {
364 rc = tls_push_partial_record(sk, tls_ctx, flags);
365 if (rc < 0)
366 return rc;
369 pfrag = sk_page_frag(sk);
371 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
372 * we need to leave room for an authentication tag.
374 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
375 prot->prepend_size;
376 do {
377 rc = tls_do_allocation(sk, ctx, pfrag,
378 prot->prepend_size);
379 if (rc) {
380 rc = sk_stream_wait_memory(sk, &timeo);
381 if (!rc)
382 continue;
384 record = ctx->open_record;
385 if (!record)
386 break;
387 handle_error:
388 if (record_type != TLS_RECORD_TYPE_DATA) {
389 /* avoid sending partial
390 * record with type !=
391 * application_data
393 size = orig_size;
394 destroy_record(record);
395 ctx->open_record = NULL;
396 } else if (record->len > prot->prepend_size) {
397 goto last_record;
400 break;
403 record = ctx->open_record;
404 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
405 copy = min_t(size_t, copy, (max_open_record_len - record->len));
407 if (copy_from_iter_nocache(page_address(pfrag->page) +
408 pfrag->offset,
409 copy, msg_iter) != copy) {
410 rc = -EFAULT;
411 goto handle_error;
413 tls_append_frag(record, pfrag, copy);
415 size -= copy;
416 if (!size) {
417 last_record:
418 tls_push_record_flags = flags;
419 if (more) {
420 tls_ctx->pending_open_record_frags =
421 !!record->num_frags;
422 break;
425 done = true;
428 if (done || record->len >= max_open_record_len ||
429 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
430 rc = tls_push_record(sk,
431 tls_ctx,
432 ctx,
433 record,
434 pfrag,
435 tls_push_record_flags,
436 record_type);
437 if (rc < 0)
438 break;
440 } while (!done);
442 if (orig_size - size > 0)
443 rc = orig_size - size;
445 return rc;
448 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
450 unsigned char record_type = TLS_RECORD_TYPE_DATA;
451 int rc;
453 lock_sock(sk);
455 if (unlikely(msg->msg_controllen)) {
456 rc = tls_proccess_cmsg(sk, msg, &record_type);
457 if (rc)
458 goto out;
461 rc = tls_push_data(sk, &msg->msg_iter, size,
462 msg->msg_flags, record_type);
464 out:
465 release_sock(sk);
466 return rc;
469 int tls_device_sendpage(struct sock *sk, struct page *page,
470 int offset, size_t size, int flags)
472 struct iov_iter msg_iter;
473 char *kaddr = kmap(page);
474 struct kvec iov;
475 int rc;
477 if (flags & MSG_SENDPAGE_NOTLAST)
478 flags |= MSG_MORE;
480 lock_sock(sk);
482 if (flags & MSG_OOB) {
483 rc = -ENOTSUPP;
484 goto out;
487 iov.iov_base = kaddr + offset;
488 iov.iov_len = size;
489 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
490 rc = tls_push_data(sk, &msg_iter, size,
491 flags, TLS_RECORD_TYPE_DATA);
492 kunmap(page);
494 out:
495 release_sock(sk);
496 return rc;
499 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
500 u32 seq, u64 *p_record_sn)
502 u64 record_sn = context->hint_record_sn;
503 struct tls_record_info *info;
505 info = context->retransmit_hint;
506 if (!info ||
507 before(seq, info->end_seq - info->len)) {
508 /* if retransmit_hint is irrelevant start
509 * from the beggining of the list
511 info = list_first_entry(&context->records_list,
512 struct tls_record_info, list);
513 record_sn = context->unacked_record_sn;
516 list_for_each_entry_from(info, &context->records_list, list) {
517 if (before(seq, info->end_seq)) {
518 if (!context->retransmit_hint ||
519 after(info->end_seq,
520 context->retransmit_hint->end_seq)) {
521 context->hint_record_sn = record_sn;
522 context->retransmit_hint = info;
524 *p_record_sn = record_sn;
525 return info;
527 record_sn++;
530 return NULL;
532 EXPORT_SYMBOL(tls_get_record);
534 static int tls_device_push_pending_record(struct sock *sk, int flags)
536 struct iov_iter msg_iter;
538 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
539 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
542 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
544 if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
545 gfp_t sk_allocation = sk->sk_allocation;
547 sk->sk_allocation = GFP_ATOMIC;
548 tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL);
549 sk->sk_allocation = sk_allocation;
553 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
555 struct tls_context *tls_ctx = tls_get_ctx(sk);
556 struct net_device *netdev = tls_ctx->netdev;
557 struct tls_offload_context_rx *rx_ctx;
558 u32 is_req_pending;
559 s64 resync_req;
560 u32 req_seq;
562 if (tls_ctx->rx_conf != TLS_HW)
563 return;
565 rx_ctx = tls_offload_ctx_rx(tls_ctx);
566 resync_req = atomic64_read(&rx_ctx->resync_req);
567 req_seq = (resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
568 is_req_pending = resync_req;
570 if (unlikely(is_req_pending) && req_seq == seq &&
571 atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
572 netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk,
573 seq + TLS_HEADER_SIZE - 1,
574 rcd_sn);
577 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
579 struct strp_msg *rxm = strp_msg(skb);
580 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
581 struct sk_buff *skb_iter, *unused;
582 struct scatterlist sg[1];
583 char *orig_buf, *buf;
585 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
586 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
587 if (!orig_buf)
588 return -ENOMEM;
589 buf = orig_buf;
591 nsg = skb_cow_data(skb, 0, &unused);
592 if (unlikely(nsg < 0)) {
593 err = nsg;
594 goto free_buf;
597 sg_init_table(sg, 1);
598 sg_set_buf(&sg[0], buf,
599 rxm->full_len + TLS_HEADER_SIZE +
600 TLS_CIPHER_AES_GCM_128_IV_SIZE);
601 skb_copy_bits(skb, offset, buf,
602 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
604 /* We are interested only in the decrypted data not the auth */
605 err = decrypt_skb(sk, skb, sg);
606 if (err != -EBADMSG)
607 goto free_buf;
608 else
609 err = 0;
611 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
613 if (skb_pagelen(skb) > offset) {
614 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
616 if (skb->decrypted)
617 skb_store_bits(skb, offset, buf, copy);
619 offset += copy;
620 buf += copy;
623 pos = skb_pagelen(skb);
624 skb_walk_frags(skb, skb_iter) {
625 int frag_pos;
627 /* Practically all frags must belong to msg if reencrypt
628 * is needed with current strparser and coalescing logic,
629 * but strparser may "get optimized", so let's be safe.
631 if (pos + skb_iter->len <= offset)
632 goto done_with_frag;
633 if (pos >= data_len + rxm->offset)
634 break;
636 frag_pos = offset - pos;
637 copy = min_t(int, skb_iter->len - frag_pos,
638 data_len + rxm->offset - offset);
640 if (skb_iter->decrypted)
641 skb_store_bits(skb_iter, frag_pos, buf, copy);
643 offset += copy;
644 buf += copy;
645 done_with_frag:
646 pos += skb_iter->len;
649 free_buf:
650 kfree(orig_buf);
651 return err;
654 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
656 struct tls_context *tls_ctx = tls_get_ctx(sk);
657 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
658 int is_decrypted = skb->decrypted;
659 int is_encrypted = !is_decrypted;
660 struct sk_buff *skb_iter;
662 /* Skip if it is already decrypted */
663 if (ctx->sw.decrypted)
664 return 0;
666 /* Check if all the data is decrypted already */
667 skb_walk_frags(skb, skb_iter) {
668 is_decrypted &= skb_iter->decrypted;
669 is_encrypted &= !skb_iter->decrypted;
672 ctx->sw.decrypted |= is_decrypted;
674 /* Return immedeatly if the record is either entirely plaintext or
675 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
676 * record.
678 return (is_encrypted || is_decrypted) ? 0 :
679 tls_device_reencrypt(sk, skb);
682 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
683 struct net_device *netdev)
685 if (sk->sk_destruct != tls_device_sk_destruct) {
686 refcount_set(&ctx->refcount, 1);
687 dev_hold(netdev);
688 ctx->netdev = netdev;
689 spin_lock_irq(&tls_device_lock);
690 list_add_tail(&ctx->list, &tls_device_list);
691 spin_unlock_irq(&tls_device_lock);
693 ctx->sk_destruct = sk->sk_destruct;
694 sk->sk_destruct = tls_device_sk_destruct;
698 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
700 u16 nonce_size, tag_size, iv_size, rec_seq_size;
701 struct tls_context *tls_ctx = tls_get_ctx(sk);
702 struct tls_prot_info *prot = &tls_ctx->prot_info;
703 struct tls_record_info *start_marker_record;
704 struct tls_offload_context_tx *offload_ctx;
705 struct tls_crypto_info *crypto_info;
706 struct net_device *netdev;
707 char *iv, *rec_seq;
708 struct sk_buff *skb;
709 int rc = -EINVAL;
710 __be64 rcd_sn;
712 if (!ctx)
713 goto out;
715 if (ctx->priv_ctx_tx) {
716 rc = -EEXIST;
717 goto out;
720 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
721 if (!start_marker_record) {
722 rc = -ENOMEM;
723 goto out;
726 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
727 if (!offload_ctx) {
728 rc = -ENOMEM;
729 goto free_marker_record;
732 crypto_info = &ctx->crypto_send.info;
733 switch (crypto_info->cipher_type) {
734 case TLS_CIPHER_AES_GCM_128:
735 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
736 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
737 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
738 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
739 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
740 rec_seq =
741 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
742 break;
743 default:
744 rc = -EINVAL;
745 goto free_offload_ctx;
748 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
749 prot->tag_size = tag_size;
750 prot->overhead_size = prot->prepend_size + prot->tag_size;
751 prot->iv_size = iv_size;
752 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
753 GFP_KERNEL);
754 if (!ctx->tx.iv) {
755 rc = -ENOMEM;
756 goto free_offload_ctx;
759 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
761 prot->rec_seq_size = rec_seq_size;
762 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
763 if (!ctx->tx.rec_seq) {
764 rc = -ENOMEM;
765 goto free_iv;
768 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
769 if (rc)
770 goto free_rec_seq;
772 /* start at rec_seq - 1 to account for the start marker record */
773 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
774 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
776 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
777 start_marker_record->len = 0;
778 start_marker_record->num_frags = 0;
780 INIT_LIST_HEAD(&offload_ctx->records_list);
781 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
782 spin_lock_init(&offload_ctx->lock);
783 sg_init_table(offload_ctx->sg_tx_data,
784 ARRAY_SIZE(offload_ctx->sg_tx_data));
786 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
787 ctx->push_pending_record = tls_device_push_pending_record;
789 /* TLS offload is greatly simplified if we don't send
790 * SKBs where only part of the payload needs to be encrypted.
791 * So mark the last skb in the write queue as end of record.
793 skb = tcp_write_queue_tail(sk);
794 if (skb)
795 TCP_SKB_CB(skb)->eor = 1;
797 /* We support starting offload on multiple sockets
798 * concurrently, so we only need a read lock here.
799 * This lock must precede get_netdev_for_sock to prevent races between
800 * NETDEV_DOWN and setsockopt.
802 down_read(&device_offload_lock);
803 netdev = get_netdev_for_sock(sk);
804 if (!netdev) {
805 pr_err_ratelimited("%s: netdev not found\n", __func__);
806 rc = -EINVAL;
807 goto release_lock;
810 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
811 rc = -ENOTSUPP;
812 goto release_netdev;
815 /* Avoid offloading if the device is down
816 * We don't want to offload new flows after
817 * the NETDEV_DOWN event
819 if (!(netdev->flags & IFF_UP)) {
820 rc = -EINVAL;
821 goto release_netdev;
824 ctx->priv_ctx_tx = offload_ctx;
825 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
826 &ctx->crypto_send.info,
827 tcp_sk(sk)->write_seq);
828 if (rc)
829 goto release_netdev;
831 tls_device_attach(ctx, sk, netdev);
833 /* following this assignment tls_is_sk_tx_device_offloaded
834 * will return true and the context might be accessed
835 * by the netdev's xmit function.
837 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
838 dev_put(netdev);
839 up_read(&device_offload_lock);
840 goto out;
842 release_netdev:
843 dev_put(netdev);
844 release_lock:
845 up_read(&device_offload_lock);
846 clean_acked_data_disable(inet_csk(sk));
847 crypto_free_aead(offload_ctx->aead_send);
848 free_rec_seq:
849 kfree(ctx->tx.rec_seq);
850 free_iv:
851 kfree(ctx->tx.iv);
852 free_offload_ctx:
853 kfree(offload_ctx);
854 ctx->priv_ctx_tx = NULL;
855 free_marker_record:
856 kfree(start_marker_record);
857 out:
858 return rc;
861 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
863 struct tls_offload_context_rx *context;
864 struct net_device *netdev;
865 int rc = 0;
867 /* We support starting offload on multiple sockets
868 * concurrently, so we only need a read lock here.
869 * This lock must precede get_netdev_for_sock to prevent races between
870 * NETDEV_DOWN and setsockopt.
872 down_read(&device_offload_lock);
873 netdev = get_netdev_for_sock(sk);
874 if (!netdev) {
875 pr_err_ratelimited("%s: netdev not found\n", __func__);
876 rc = -EINVAL;
877 goto release_lock;
880 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
881 rc = -ENOTSUPP;
882 goto release_netdev;
885 /* Avoid offloading if the device is down
886 * We don't want to offload new flows after
887 * the NETDEV_DOWN event
889 if (!(netdev->flags & IFF_UP)) {
890 rc = -EINVAL;
891 goto release_netdev;
894 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
895 if (!context) {
896 rc = -ENOMEM;
897 goto release_netdev;
900 ctx->priv_ctx_rx = context;
901 rc = tls_set_sw_offload(sk, ctx, 0);
902 if (rc)
903 goto release_ctx;
905 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
906 &ctx->crypto_recv.info,
907 tcp_sk(sk)->copied_seq);
908 if (rc)
909 goto free_sw_resources;
911 tls_device_attach(ctx, sk, netdev);
912 goto release_netdev;
914 free_sw_resources:
915 up_read(&device_offload_lock);
916 tls_sw_free_resources_rx(sk);
917 down_read(&device_offload_lock);
918 release_ctx:
919 ctx->priv_ctx_rx = NULL;
920 release_netdev:
921 dev_put(netdev);
922 release_lock:
923 up_read(&device_offload_lock);
924 return rc;
927 void tls_device_offload_cleanup_rx(struct sock *sk)
929 struct tls_context *tls_ctx = tls_get_ctx(sk);
930 struct net_device *netdev;
932 down_read(&device_offload_lock);
933 netdev = tls_ctx->netdev;
934 if (!netdev)
935 goto out;
937 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
938 pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n",
939 __func__);
940 goto out;
943 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
944 TLS_OFFLOAD_CTX_DIR_RX);
946 if (tls_ctx->tx_conf != TLS_HW) {
947 dev_put(netdev);
948 tls_ctx->netdev = NULL;
950 out:
951 up_read(&device_offload_lock);
952 tls_sw_release_resources_rx(sk);
955 static int tls_device_down(struct net_device *netdev)
957 struct tls_context *ctx, *tmp;
958 unsigned long flags;
959 LIST_HEAD(list);
961 /* Request a write lock to block new offload attempts */
962 down_write(&device_offload_lock);
964 spin_lock_irqsave(&tls_device_lock, flags);
965 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
966 if (ctx->netdev != netdev ||
967 !refcount_inc_not_zero(&ctx->refcount))
968 continue;
970 list_move(&ctx->list, &list);
972 spin_unlock_irqrestore(&tls_device_lock, flags);
974 list_for_each_entry_safe(ctx, tmp, &list, list) {
975 if (ctx->tx_conf == TLS_HW)
976 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
977 TLS_OFFLOAD_CTX_DIR_TX);
978 if (ctx->rx_conf == TLS_HW)
979 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
980 TLS_OFFLOAD_CTX_DIR_RX);
981 ctx->netdev = NULL;
982 dev_put(netdev);
983 list_del_init(&ctx->list);
985 if (refcount_dec_and_test(&ctx->refcount))
986 tls_device_free_ctx(ctx);
989 up_write(&device_offload_lock);
991 flush_work(&tls_device_gc_work);
993 return NOTIFY_DONE;
996 static int tls_dev_event(struct notifier_block *this, unsigned long event,
997 void *ptr)
999 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1001 if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1002 return NOTIFY_DONE;
1004 switch (event) {
1005 case NETDEV_REGISTER:
1006 case NETDEV_FEAT_CHANGE:
1007 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1008 !dev->tlsdev_ops->tls_dev_resync_rx)
1009 return NOTIFY_BAD;
1011 if (dev->tlsdev_ops &&
1012 dev->tlsdev_ops->tls_dev_add &&
1013 dev->tlsdev_ops->tls_dev_del)
1014 return NOTIFY_DONE;
1015 else
1016 return NOTIFY_BAD;
1017 case NETDEV_DOWN:
1018 return tls_device_down(dev);
1020 return NOTIFY_DONE;
1023 static struct notifier_block tls_dev_notifier = {
1024 .notifier_call = tls_dev_event,
1027 void __init tls_device_init(void)
1029 register_netdevice_notifier(&tls_dev_notifier);
1032 void __exit tls_device_cleanup(void)
1034 unregister_netdevice_notifier(&tls_dev_notifier);
1035 flush_work(&tls_device_gc_work);
1036 clean_acked_data_flush();