rt2x00: Simplify rt2x00_check_rev
[linux/fpc-iii.git] / drivers / md / dm.c
blob8a994be035ba47a89f677ecf34b473d41684cf52
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
26 #define DM_MSG_PREFIX "core"
28 static const char *_name = DM_NAME;
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
33 static DEFINE_SPINLOCK(_minor_lock);
35 * For bio-based dm.
36 * One of these is allocated per bio.
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
57 DEFINE_TRACE(block_bio_complete);
60 * For request-based dm.
61 * One of these is allocated per request.
63 struct dm_rq_target_io {
64 struct mapped_device *md;
65 struct dm_target *ti;
66 struct request *orig, clone;
67 int error;
68 union map_info info;
72 * For request-based dm.
73 * One of these is allocated per bio.
75 struct dm_rq_clone_bio_info {
76 struct bio *orig;
77 struct request *rq;
80 union map_info *dm_get_mapinfo(struct bio *bio)
82 if (bio && bio->bi_private)
83 return &((struct dm_target_io *)bio->bi_private)->info;
84 return NULL;
87 #define MINOR_ALLOCED ((void *)-1)
90 * Bits for the md->flags field.
92 #define DMF_BLOCK_IO_FOR_SUSPEND 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 #define DMF_QUEUE_IO_TO_THREAD 6
101 * Work processed by per-device workqueue.
103 struct mapped_device {
104 struct rw_semaphore io_lock;
105 struct mutex suspend_lock;
106 rwlock_t map_lock;
107 atomic_t holders;
108 atomic_t open_count;
110 unsigned long flags;
112 struct request_queue *queue;
113 struct gendisk *disk;
114 char name[16];
116 void *interface_ptr;
119 * A list of ios that arrived while we were suspended.
121 atomic_t pending;
122 wait_queue_head_t wait;
123 struct work_struct work;
124 struct bio_list deferred;
125 spinlock_t deferred_lock;
128 * An error from the barrier request currently being processed.
130 int barrier_error;
133 * Processing queue (flush/barriers)
135 struct workqueue_struct *wq;
138 * The current mapping.
140 struct dm_table *map;
143 * io objects are allocated from here.
145 mempool_t *io_pool;
146 mempool_t *tio_pool;
148 struct bio_set *bs;
151 * Event handling.
153 atomic_t event_nr;
154 wait_queue_head_t eventq;
155 atomic_t uevent_seq;
156 struct list_head uevent_list;
157 spinlock_t uevent_lock; /* Protect access to uevent_list */
160 * freeze/thaw support require holding onto a super block
162 struct super_block *frozen_sb;
163 struct block_device *suspended_bdev;
165 /* forced geometry settings */
166 struct hd_geometry geometry;
168 /* sysfs handle */
169 struct kobject kobj;
172 #define MIN_IOS 256
173 static struct kmem_cache *_io_cache;
174 static struct kmem_cache *_tio_cache;
175 static struct kmem_cache *_rq_tio_cache;
176 static struct kmem_cache *_rq_bio_info_cache;
178 static int __init local_init(void)
180 int r = -ENOMEM;
182 /* allocate a slab for the dm_ios */
183 _io_cache = KMEM_CACHE(dm_io, 0);
184 if (!_io_cache)
185 return r;
187 /* allocate a slab for the target ios */
188 _tio_cache = KMEM_CACHE(dm_target_io, 0);
189 if (!_tio_cache)
190 goto out_free_io_cache;
192 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
193 if (!_rq_tio_cache)
194 goto out_free_tio_cache;
196 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
197 if (!_rq_bio_info_cache)
198 goto out_free_rq_tio_cache;
200 r = dm_uevent_init();
201 if (r)
202 goto out_free_rq_bio_info_cache;
204 _major = major;
205 r = register_blkdev(_major, _name);
206 if (r < 0)
207 goto out_uevent_exit;
209 if (!_major)
210 _major = r;
212 return 0;
214 out_uevent_exit:
215 dm_uevent_exit();
216 out_free_rq_bio_info_cache:
217 kmem_cache_destroy(_rq_bio_info_cache);
218 out_free_rq_tio_cache:
219 kmem_cache_destroy(_rq_tio_cache);
220 out_free_tio_cache:
221 kmem_cache_destroy(_tio_cache);
222 out_free_io_cache:
223 kmem_cache_destroy(_io_cache);
225 return r;
228 static void local_exit(void)
230 kmem_cache_destroy(_rq_bio_info_cache);
231 kmem_cache_destroy(_rq_tio_cache);
232 kmem_cache_destroy(_tio_cache);
233 kmem_cache_destroy(_io_cache);
234 unregister_blkdev(_major, _name);
235 dm_uevent_exit();
237 _major = 0;
239 DMINFO("cleaned up");
242 static int (*_inits[])(void) __initdata = {
243 local_init,
244 dm_target_init,
245 dm_linear_init,
246 dm_stripe_init,
247 dm_kcopyd_init,
248 dm_interface_init,
251 static void (*_exits[])(void) = {
252 local_exit,
253 dm_target_exit,
254 dm_linear_exit,
255 dm_stripe_exit,
256 dm_kcopyd_exit,
257 dm_interface_exit,
260 static int __init dm_init(void)
262 const int count = ARRAY_SIZE(_inits);
264 int r, i;
266 for (i = 0; i < count; i++) {
267 r = _inits[i]();
268 if (r)
269 goto bad;
272 return 0;
274 bad:
275 while (i--)
276 _exits[i]();
278 return r;
281 static void __exit dm_exit(void)
283 int i = ARRAY_SIZE(_exits);
285 while (i--)
286 _exits[i]();
290 * Block device functions
292 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
294 struct mapped_device *md;
296 spin_lock(&_minor_lock);
298 md = bdev->bd_disk->private_data;
299 if (!md)
300 goto out;
302 if (test_bit(DMF_FREEING, &md->flags) ||
303 test_bit(DMF_DELETING, &md->flags)) {
304 md = NULL;
305 goto out;
308 dm_get(md);
309 atomic_inc(&md->open_count);
311 out:
312 spin_unlock(&_minor_lock);
314 return md ? 0 : -ENXIO;
317 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
319 struct mapped_device *md = disk->private_data;
320 atomic_dec(&md->open_count);
321 dm_put(md);
322 return 0;
325 int dm_open_count(struct mapped_device *md)
327 return atomic_read(&md->open_count);
331 * Guarantees nothing is using the device before it's deleted.
333 int dm_lock_for_deletion(struct mapped_device *md)
335 int r = 0;
337 spin_lock(&_minor_lock);
339 if (dm_open_count(md))
340 r = -EBUSY;
341 else
342 set_bit(DMF_DELETING, &md->flags);
344 spin_unlock(&_minor_lock);
346 return r;
349 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
351 struct mapped_device *md = bdev->bd_disk->private_data;
353 return dm_get_geometry(md, geo);
356 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
357 unsigned int cmd, unsigned long arg)
359 struct mapped_device *md = bdev->bd_disk->private_data;
360 struct dm_table *map = dm_get_table(md);
361 struct dm_target *tgt;
362 int r = -ENOTTY;
364 if (!map || !dm_table_get_size(map))
365 goto out;
367 /* We only support devices that have a single target */
368 if (dm_table_get_num_targets(map) != 1)
369 goto out;
371 tgt = dm_table_get_target(map, 0);
373 if (dm_suspended(md)) {
374 r = -EAGAIN;
375 goto out;
378 if (tgt->type->ioctl)
379 r = tgt->type->ioctl(tgt, cmd, arg);
381 out:
382 dm_table_put(map);
384 return r;
387 static struct dm_io *alloc_io(struct mapped_device *md)
389 return mempool_alloc(md->io_pool, GFP_NOIO);
392 static void free_io(struct mapped_device *md, struct dm_io *io)
394 mempool_free(io, md->io_pool);
397 static struct dm_target_io *alloc_tio(struct mapped_device *md)
399 return mempool_alloc(md->tio_pool, GFP_NOIO);
402 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
404 mempool_free(tio, md->tio_pool);
407 static void start_io_acct(struct dm_io *io)
409 struct mapped_device *md = io->md;
410 int cpu;
412 io->start_time = jiffies;
414 cpu = part_stat_lock();
415 part_round_stats(cpu, &dm_disk(md)->part0);
416 part_stat_unlock();
417 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
420 static void end_io_acct(struct dm_io *io)
422 struct mapped_device *md = io->md;
423 struct bio *bio = io->bio;
424 unsigned long duration = jiffies - io->start_time;
425 int pending, cpu;
426 int rw = bio_data_dir(bio);
428 cpu = part_stat_lock();
429 part_round_stats(cpu, &dm_disk(md)->part0);
430 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
431 part_stat_unlock();
434 * After this is decremented the bio must not be touched if it is
435 * a barrier.
437 dm_disk(md)->part0.in_flight = pending =
438 atomic_dec_return(&md->pending);
440 /* nudge anyone waiting on suspend queue */
441 if (!pending)
442 wake_up(&md->wait);
446 * Add the bio to the list of deferred io.
448 static void queue_io(struct mapped_device *md, struct bio *bio)
450 down_write(&md->io_lock);
452 spin_lock_irq(&md->deferred_lock);
453 bio_list_add(&md->deferred, bio);
454 spin_unlock_irq(&md->deferred_lock);
456 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
457 queue_work(md->wq, &md->work);
459 up_write(&md->io_lock);
463 * Everyone (including functions in this file), should use this
464 * function to access the md->map field, and make sure they call
465 * dm_table_put() when finished.
467 struct dm_table *dm_get_table(struct mapped_device *md)
469 struct dm_table *t;
471 read_lock(&md->map_lock);
472 t = md->map;
473 if (t)
474 dm_table_get(t);
475 read_unlock(&md->map_lock);
477 return t;
481 * Get the geometry associated with a dm device
483 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
485 *geo = md->geometry;
487 return 0;
491 * Set the geometry of a device.
493 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
495 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
497 if (geo->start > sz) {
498 DMWARN("Start sector is beyond the geometry limits.");
499 return -EINVAL;
502 md->geometry = *geo;
504 return 0;
507 /*-----------------------------------------------------------------
508 * CRUD START:
509 * A more elegant soln is in the works that uses the queue
510 * merge fn, unfortunately there are a couple of changes to
511 * the block layer that I want to make for this. So in the
512 * interests of getting something for people to use I give
513 * you this clearly demarcated crap.
514 *---------------------------------------------------------------*/
516 static int __noflush_suspending(struct mapped_device *md)
518 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
522 * Decrements the number of outstanding ios that a bio has been
523 * cloned into, completing the original io if necc.
525 static void dec_pending(struct dm_io *io, int error)
527 unsigned long flags;
528 int io_error;
529 struct bio *bio;
530 struct mapped_device *md = io->md;
532 /* Push-back supersedes any I/O errors */
533 if (error && !(io->error > 0 && __noflush_suspending(md)))
534 io->error = error;
536 if (atomic_dec_and_test(&io->io_count)) {
537 if (io->error == DM_ENDIO_REQUEUE) {
539 * Target requested pushing back the I/O.
541 spin_lock_irqsave(&md->deferred_lock, flags);
542 if (__noflush_suspending(md))
543 bio_list_add_head(&md->deferred, io->bio);
544 else
545 /* noflush suspend was interrupted. */
546 io->error = -EIO;
547 spin_unlock_irqrestore(&md->deferred_lock, flags);
550 io_error = io->error;
551 bio = io->bio;
553 if (bio_barrier(bio)) {
555 * There can be just one barrier request so we use
556 * a per-device variable for error reporting.
557 * Note that you can't touch the bio after end_io_acct
559 md->barrier_error = io_error;
560 end_io_acct(io);
561 } else {
562 end_io_acct(io);
564 if (io_error != DM_ENDIO_REQUEUE) {
565 trace_block_bio_complete(md->queue, bio);
567 bio_endio(bio, io_error);
571 free_io(md, io);
575 static void clone_endio(struct bio *bio, int error)
577 int r = 0;
578 struct dm_target_io *tio = bio->bi_private;
579 struct dm_io *io = tio->io;
580 struct mapped_device *md = tio->io->md;
581 dm_endio_fn endio = tio->ti->type->end_io;
583 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
584 error = -EIO;
586 if (endio) {
587 r = endio(tio->ti, bio, error, &tio->info);
588 if (r < 0 || r == DM_ENDIO_REQUEUE)
590 * error and requeue request are handled
591 * in dec_pending().
593 error = r;
594 else if (r == DM_ENDIO_INCOMPLETE)
595 /* The target will handle the io */
596 return;
597 else if (r) {
598 DMWARN("unimplemented target endio return value: %d", r);
599 BUG();
604 * Store md for cleanup instead of tio which is about to get freed.
606 bio->bi_private = md->bs;
608 free_tio(md, tio);
609 bio_put(bio);
610 dec_pending(io, error);
613 static sector_t max_io_len(struct mapped_device *md,
614 sector_t sector, struct dm_target *ti)
616 sector_t offset = sector - ti->begin;
617 sector_t len = ti->len - offset;
620 * Does the target need to split even further ?
622 if (ti->split_io) {
623 sector_t boundary;
624 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
625 - offset;
626 if (len > boundary)
627 len = boundary;
630 return len;
633 static void __map_bio(struct dm_target *ti, struct bio *clone,
634 struct dm_target_io *tio)
636 int r;
637 sector_t sector;
638 struct mapped_device *md;
641 * Sanity checks.
643 BUG_ON(!clone->bi_size);
645 clone->bi_end_io = clone_endio;
646 clone->bi_private = tio;
649 * Map the clone. If r == 0 we don't need to do
650 * anything, the target has assumed ownership of
651 * this io.
653 atomic_inc(&tio->io->io_count);
654 sector = clone->bi_sector;
655 r = ti->type->map(ti, clone, &tio->info);
656 if (r == DM_MAPIO_REMAPPED) {
657 /* the bio has been remapped so dispatch it */
659 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
660 tio->io->bio->bi_bdev->bd_dev,
661 clone->bi_sector, sector);
663 generic_make_request(clone);
664 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
665 /* error the io and bail out, or requeue it if needed */
666 md = tio->io->md;
667 dec_pending(tio->io, r);
669 * Store bio_set for cleanup.
671 clone->bi_private = md->bs;
672 bio_put(clone);
673 free_tio(md, tio);
674 } else if (r) {
675 DMWARN("unimplemented target map return value: %d", r);
676 BUG();
680 struct clone_info {
681 struct mapped_device *md;
682 struct dm_table *map;
683 struct bio *bio;
684 struct dm_io *io;
685 sector_t sector;
686 sector_t sector_count;
687 unsigned short idx;
690 static void dm_bio_destructor(struct bio *bio)
692 struct bio_set *bs = bio->bi_private;
694 bio_free(bio, bs);
698 * Creates a little bio that is just does part of a bvec.
700 static struct bio *split_bvec(struct bio *bio, sector_t sector,
701 unsigned short idx, unsigned int offset,
702 unsigned int len, struct bio_set *bs)
704 struct bio *clone;
705 struct bio_vec *bv = bio->bi_io_vec + idx;
707 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
708 clone->bi_destructor = dm_bio_destructor;
709 *clone->bi_io_vec = *bv;
711 clone->bi_sector = sector;
712 clone->bi_bdev = bio->bi_bdev;
713 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
714 clone->bi_vcnt = 1;
715 clone->bi_size = to_bytes(len);
716 clone->bi_io_vec->bv_offset = offset;
717 clone->bi_io_vec->bv_len = clone->bi_size;
718 clone->bi_flags |= 1 << BIO_CLONED;
720 if (bio_integrity(bio)) {
721 bio_integrity_clone(clone, bio, GFP_NOIO);
722 bio_integrity_trim(clone,
723 bio_sector_offset(bio, idx, offset), len);
726 return clone;
730 * Creates a bio that consists of range of complete bvecs.
732 static struct bio *clone_bio(struct bio *bio, sector_t sector,
733 unsigned short idx, unsigned short bv_count,
734 unsigned int len, struct bio_set *bs)
736 struct bio *clone;
738 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
739 __bio_clone(clone, bio);
740 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
741 clone->bi_destructor = dm_bio_destructor;
742 clone->bi_sector = sector;
743 clone->bi_idx = idx;
744 clone->bi_vcnt = idx + bv_count;
745 clone->bi_size = to_bytes(len);
746 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
748 if (bio_integrity(bio)) {
749 bio_integrity_clone(clone, bio, GFP_NOIO);
751 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
752 bio_integrity_trim(clone,
753 bio_sector_offset(bio, idx, 0), len);
756 return clone;
759 static int __clone_and_map(struct clone_info *ci)
761 struct bio *clone, *bio = ci->bio;
762 struct dm_target *ti;
763 sector_t len = 0, max;
764 struct dm_target_io *tio;
766 ti = dm_table_find_target(ci->map, ci->sector);
767 if (!dm_target_is_valid(ti))
768 return -EIO;
770 max = max_io_len(ci->md, ci->sector, ti);
773 * Allocate a target io object.
775 tio = alloc_tio(ci->md);
776 tio->io = ci->io;
777 tio->ti = ti;
778 memset(&tio->info, 0, sizeof(tio->info));
780 if (ci->sector_count <= max) {
782 * Optimise for the simple case where we can do all of
783 * the remaining io with a single clone.
785 clone = clone_bio(bio, ci->sector, ci->idx,
786 bio->bi_vcnt - ci->idx, ci->sector_count,
787 ci->md->bs);
788 __map_bio(ti, clone, tio);
789 ci->sector_count = 0;
791 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
793 * There are some bvecs that don't span targets.
794 * Do as many of these as possible.
796 int i;
797 sector_t remaining = max;
798 sector_t bv_len;
800 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
801 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
803 if (bv_len > remaining)
804 break;
806 remaining -= bv_len;
807 len += bv_len;
810 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
811 ci->md->bs);
812 __map_bio(ti, clone, tio);
814 ci->sector += len;
815 ci->sector_count -= len;
816 ci->idx = i;
818 } else {
820 * Handle a bvec that must be split between two or more targets.
822 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
823 sector_t remaining = to_sector(bv->bv_len);
824 unsigned int offset = 0;
826 do {
827 if (offset) {
828 ti = dm_table_find_target(ci->map, ci->sector);
829 if (!dm_target_is_valid(ti))
830 return -EIO;
832 max = max_io_len(ci->md, ci->sector, ti);
834 tio = alloc_tio(ci->md);
835 tio->io = ci->io;
836 tio->ti = ti;
837 memset(&tio->info, 0, sizeof(tio->info));
840 len = min(remaining, max);
842 clone = split_bvec(bio, ci->sector, ci->idx,
843 bv->bv_offset + offset, len,
844 ci->md->bs);
846 __map_bio(ti, clone, tio);
848 ci->sector += len;
849 ci->sector_count -= len;
850 offset += to_bytes(len);
851 } while (remaining -= len);
853 ci->idx++;
856 return 0;
860 * Split the bio into several clones and submit it to targets.
862 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
864 struct clone_info ci;
865 int error = 0;
867 ci.map = dm_get_table(md);
868 if (unlikely(!ci.map)) {
869 if (!bio_barrier(bio))
870 bio_io_error(bio);
871 else
872 md->barrier_error = -EIO;
873 return;
876 ci.md = md;
877 ci.bio = bio;
878 ci.io = alloc_io(md);
879 ci.io->error = 0;
880 atomic_set(&ci.io->io_count, 1);
881 ci.io->bio = bio;
882 ci.io->md = md;
883 ci.sector = bio->bi_sector;
884 ci.sector_count = bio_sectors(bio);
885 ci.idx = bio->bi_idx;
887 start_io_acct(ci.io);
888 while (ci.sector_count && !error)
889 error = __clone_and_map(&ci);
891 /* drop the extra reference count */
892 dec_pending(ci.io, error);
893 dm_table_put(ci.map);
895 /*-----------------------------------------------------------------
896 * CRUD END
897 *---------------------------------------------------------------*/
899 static int dm_merge_bvec(struct request_queue *q,
900 struct bvec_merge_data *bvm,
901 struct bio_vec *biovec)
903 struct mapped_device *md = q->queuedata;
904 struct dm_table *map = dm_get_table(md);
905 struct dm_target *ti;
906 sector_t max_sectors;
907 int max_size = 0;
909 if (unlikely(!map))
910 goto out;
912 ti = dm_table_find_target(map, bvm->bi_sector);
913 if (!dm_target_is_valid(ti))
914 goto out_table;
917 * Find maximum amount of I/O that won't need splitting
919 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
920 (sector_t) BIO_MAX_SECTORS);
921 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
922 if (max_size < 0)
923 max_size = 0;
926 * merge_bvec_fn() returns number of bytes
927 * it can accept at this offset
928 * max is precomputed maximal io size
930 if (max_size && ti->type->merge)
931 max_size = ti->type->merge(ti, bvm, biovec, max_size);
933 out_table:
934 dm_table_put(map);
936 out:
938 * Always allow an entire first page
940 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
941 max_size = biovec->bv_len;
943 return max_size;
947 * The request function that just remaps the bio built up by
948 * dm_merge_bvec.
950 static int dm_request(struct request_queue *q, struct bio *bio)
952 int rw = bio_data_dir(bio);
953 struct mapped_device *md = q->queuedata;
954 int cpu;
956 down_read(&md->io_lock);
958 cpu = part_stat_lock();
959 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
960 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
961 part_stat_unlock();
964 * If we're suspended or the thread is processing barriers
965 * we have to queue this io for later.
967 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
968 unlikely(bio_barrier(bio))) {
969 up_read(&md->io_lock);
971 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
972 bio_rw(bio) == READA) {
973 bio_io_error(bio);
974 return 0;
977 queue_io(md, bio);
979 return 0;
982 __split_and_process_bio(md, bio);
983 up_read(&md->io_lock);
984 return 0;
987 static void dm_unplug_all(struct request_queue *q)
989 struct mapped_device *md = q->queuedata;
990 struct dm_table *map = dm_get_table(md);
992 if (map) {
993 dm_table_unplug_all(map);
994 dm_table_put(map);
998 static int dm_any_congested(void *congested_data, int bdi_bits)
1000 int r = bdi_bits;
1001 struct mapped_device *md = congested_data;
1002 struct dm_table *map;
1004 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1005 map = dm_get_table(md);
1006 if (map) {
1007 r = dm_table_any_congested(map, bdi_bits);
1008 dm_table_put(map);
1012 return r;
1015 /*-----------------------------------------------------------------
1016 * An IDR is used to keep track of allocated minor numbers.
1017 *---------------------------------------------------------------*/
1018 static DEFINE_IDR(_minor_idr);
1020 static void free_minor(int minor)
1022 spin_lock(&_minor_lock);
1023 idr_remove(&_minor_idr, minor);
1024 spin_unlock(&_minor_lock);
1028 * See if the device with a specific minor # is free.
1030 static int specific_minor(int minor)
1032 int r, m;
1034 if (minor >= (1 << MINORBITS))
1035 return -EINVAL;
1037 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1038 if (!r)
1039 return -ENOMEM;
1041 spin_lock(&_minor_lock);
1043 if (idr_find(&_minor_idr, minor)) {
1044 r = -EBUSY;
1045 goto out;
1048 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1049 if (r)
1050 goto out;
1052 if (m != minor) {
1053 idr_remove(&_minor_idr, m);
1054 r = -EBUSY;
1055 goto out;
1058 out:
1059 spin_unlock(&_minor_lock);
1060 return r;
1063 static int next_free_minor(int *minor)
1065 int r, m;
1067 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1068 if (!r)
1069 return -ENOMEM;
1071 spin_lock(&_minor_lock);
1073 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1074 if (r)
1075 goto out;
1077 if (m >= (1 << MINORBITS)) {
1078 idr_remove(&_minor_idr, m);
1079 r = -ENOSPC;
1080 goto out;
1083 *minor = m;
1085 out:
1086 spin_unlock(&_minor_lock);
1087 return r;
1090 static struct block_device_operations dm_blk_dops;
1092 static void dm_wq_work(struct work_struct *work);
1095 * Allocate and initialise a blank device with a given minor.
1097 static struct mapped_device *alloc_dev(int minor)
1099 int r;
1100 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1101 void *old_md;
1103 if (!md) {
1104 DMWARN("unable to allocate device, out of memory.");
1105 return NULL;
1108 if (!try_module_get(THIS_MODULE))
1109 goto bad_module_get;
1111 /* get a minor number for the dev */
1112 if (minor == DM_ANY_MINOR)
1113 r = next_free_minor(&minor);
1114 else
1115 r = specific_minor(minor);
1116 if (r < 0)
1117 goto bad_minor;
1119 init_rwsem(&md->io_lock);
1120 mutex_init(&md->suspend_lock);
1121 spin_lock_init(&md->deferred_lock);
1122 rwlock_init(&md->map_lock);
1123 atomic_set(&md->holders, 1);
1124 atomic_set(&md->open_count, 0);
1125 atomic_set(&md->event_nr, 0);
1126 atomic_set(&md->uevent_seq, 0);
1127 INIT_LIST_HEAD(&md->uevent_list);
1128 spin_lock_init(&md->uevent_lock);
1130 md->queue = blk_alloc_queue(GFP_KERNEL);
1131 if (!md->queue)
1132 goto bad_queue;
1134 md->queue->queuedata = md;
1135 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1136 md->queue->backing_dev_info.congested_data = md;
1137 blk_queue_make_request(md->queue, dm_request);
1138 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1139 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1140 md->queue->unplug_fn = dm_unplug_all;
1141 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1143 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1144 if (!md->io_pool)
1145 goto bad_io_pool;
1147 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1148 if (!md->tio_pool)
1149 goto bad_tio_pool;
1151 md->bs = bioset_create(16, 0);
1152 if (!md->bs)
1153 goto bad_no_bioset;
1155 md->disk = alloc_disk(1);
1156 if (!md->disk)
1157 goto bad_disk;
1159 atomic_set(&md->pending, 0);
1160 init_waitqueue_head(&md->wait);
1161 INIT_WORK(&md->work, dm_wq_work);
1162 init_waitqueue_head(&md->eventq);
1164 md->disk->major = _major;
1165 md->disk->first_minor = minor;
1166 md->disk->fops = &dm_blk_dops;
1167 md->disk->queue = md->queue;
1168 md->disk->private_data = md;
1169 sprintf(md->disk->disk_name, "dm-%d", minor);
1170 add_disk(md->disk);
1171 format_dev_t(md->name, MKDEV(_major, minor));
1173 md->wq = create_singlethread_workqueue("kdmflush");
1174 if (!md->wq)
1175 goto bad_thread;
1177 /* Populate the mapping, nobody knows we exist yet */
1178 spin_lock(&_minor_lock);
1179 old_md = idr_replace(&_minor_idr, md, minor);
1180 spin_unlock(&_minor_lock);
1182 BUG_ON(old_md != MINOR_ALLOCED);
1184 return md;
1186 bad_thread:
1187 put_disk(md->disk);
1188 bad_disk:
1189 bioset_free(md->bs);
1190 bad_no_bioset:
1191 mempool_destroy(md->tio_pool);
1192 bad_tio_pool:
1193 mempool_destroy(md->io_pool);
1194 bad_io_pool:
1195 blk_cleanup_queue(md->queue);
1196 bad_queue:
1197 free_minor(minor);
1198 bad_minor:
1199 module_put(THIS_MODULE);
1200 bad_module_get:
1201 kfree(md);
1202 return NULL;
1205 static void unlock_fs(struct mapped_device *md);
1207 static void free_dev(struct mapped_device *md)
1209 int minor = MINOR(disk_devt(md->disk));
1211 if (md->suspended_bdev) {
1212 unlock_fs(md);
1213 bdput(md->suspended_bdev);
1215 destroy_workqueue(md->wq);
1216 mempool_destroy(md->tio_pool);
1217 mempool_destroy(md->io_pool);
1218 bioset_free(md->bs);
1219 blk_integrity_unregister(md->disk);
1220 del_gendisk(md->disk);
1221 free_minor(minor);
1223 spin_lock(&_minor_lock);
1224 md->disk->private_data = NULL;
1225 spin_unlock(&_minor_lock);
1227 put_disk(md->disk);
1228 blk_cleanup_queue(md->queue);
1229 module_put(THIS_MODULE);
1230 kfree(md);
1234 * Bind a table to the device.
1236 static void event_callback(void *context)
1238 unsigned long flags;
1239 LIST_HEAD(uevents);
1240 struct mapped_device *md = (struct mapped_device *) context;
1242 spin_lock_irqsave(&md->uevent_lock, flags);
1243 list_splice_init(&md->uevent_list, &uevents);
1244 spin_unlock_irqrestore(&md->uevent_lock, flags);
1246 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1248 atomic_inc(&md->event_nr);
1249 wake_up(&md->eventq);
1252 static void __set_size(struct mapped_device *md, sector_t size)
1254 set_capacity(md->disk, size);
1256 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1257 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1258 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1261 static int __bind(struct mapped_device *md, struct dm_table *t)
1263 struct request_queue *q = md->queue;
1264 sector_t size;
1266 size = dm_table_get_size(t);
1269 * Wipe any geometry if the size of the table changed.
1271 if (size != get_capacity(md->disk))
1272 memset(&md->geometry, 0, sizeof(md->geometry));
1274 if (md->suspended_bdev)
1275 __set_size(md, size);
1277 if (!size) {
1278 dm_table_destroy(t);
1279 return 0;
1282 dm_table_event_callback(t, event_callback, md);
1284 write_lock(&md->map_lock);
1285 md->map = t;
1286 dm_table_set_restrictions(t, q);
1287 write_unlock(&md->map_lock);
1289 return 0;
1292 static void __unbind(struct mapped_device *md)
1294 struct dm_table *map = md->map;
1296 if (!map)
1297 return;
1299 dm_table_event_callback(map, NULL, NULL);
1300 write_lock(&md->map_lock);
1301 md->map = NULL;
1302 write_unlock(&md->map_lock);
1303 dm_table_destroy(map);
1307 * Constructor for a new device.
1309 int dm_create(int minor, struct mapped_device **result)
1311 struct mapped_device *md;
1313 md = alloc_dev(minor);
1314 if (!md)
1315 return -ENXIO;
1317 dm_sysfs_init(md);
1319 *result = md;
1320 return 0;
1323 static struct mapped_device *dm_find_md(dev_t dev)
1325 struct mapped_device *md;
1326 unsigned minor = MINOR(dev);
1328 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1329 return NULL;
1331 spin_lock(&_minor_lock);
1333 md = idr_find(&_minor_idr, minor);
1334 if (md && (md == MINOR_ALLOCED ||
1335 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1336 test_bit(DMF_FREEING, &md->flags))) {
1337 md = NULL;
1338 goto out;
1341 out:
1342 spin_unlock(&_minor_lock);
1344 return md;
1347 struct mapped_device *dm_get_md(dev_t dev)
1349 struct mapped_device *md = dm_find_md(dev);
1351 if (md)
1352 dm_get(md);
1354 return md;
1357 void *dm_get_mdptr(struct mapped_device *md)
1359 return md->interface_ptr;
1362 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1364 md->interface_ptr = ptr;
1367 void dm_get(struct mapped_device *md)
1369 atomic_inc(&md->holders);
1372 const char *dm_device_name(struct mapped_device *md)
1374 return md->name;
1376 EXPORT_SYMBOL_GPL(dm_device_name);
1378 void dm_put(struct mapped_device *md)
1380 struct dm_table *map;
1382 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1384 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1385 map = dm_get_table(md);
1386 idr_replace(&_minor_idr, MINOR_ALLOCED,
1387 MINOR(disk_devt(dm_disk(md))));
1388 set_bit(DMF_FREEING, &md->flags);
1389 spin_unlock(&_minor_lock);
1390 if (!dm_suspended(md)) {
1391 dm_table_presuspend_targets(map);
1392 dm_table_postsuspend_targets(map);
1394 dm_sysfs_exit(md);
1395 dm_table_put(map);
1396 __unbind(md);
1397 free_dev(md);
1400 EXPORT_SYMBOL_GPL(dm_put);
1402 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1404 int r = 0;
1405 DECLARE_WAITQUEUE(wait, current);
1407 dm_unplug_all(md->queue);
1409 add_wait_queue(&md->wait, &wait);
1411 while (1) {
1412 set_current_state(interruptible);
1414 smp_mb();
1415 if (!atomic_read(&md->pending))
1416 break;
1418 if (interruptible == TASK_INTERRUPTIBLE &&
1419 signal_pending(current)) {
1420 r = -EINTR;
1421 break;
1424 io_schedule();
1426 set_current_state(TASK_RUNNING);
1428 remove_wait_queue(&md->wait, &wait);
1430 return r;
1433 static int dm_flush(struct mapped_device *md)
1435 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1436 return 0;
1439 static void process_barrier(struct mapped_device *md, struct bio *bio)
1441 int error = dm_flush(md);
1443 if (unlikely(error)) {
1444 bio_endio(bio, error);
1445 return;
1447 if (bio_empty_barrier(bio)) {
1448 bio_endio(bio, 0);
1449 return;
1452 __split_and_process_bio(md, bio);
1454 error = dm_flush(md);
1456 if (!error && md->barrier_error)
1457 error = md->barrier_error;
1459 if (md->barrier_error != DM_ENDIO_REQUEUE)
1460 bio_endio(bio, error);
1464 * Process the deferred bios
1466 static void dm_wq_work(struct work_struct *work)
1468 struct mapped_device *md = container_of(work, struct mapped_device,
1469 work);
1470 struct bio *c;
1472 down_write(&md->io_lock);
1474 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1475 spin_lock_irq(&md->deferred_lock);
1476 c = bio_list_pop(&md->deferred);
1477 spin_unlock_irq(&md->deferred_lock);
1479 if (!c) {
1480 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1481 break;
1484 up_write(&md->io_lock);
1486 if (bio_barrier(c))
1487 process_barrier(md, c);
1488 else
1489 __split_and_process_bio(md, c);
1491 down_write(&md->io_lock);
1494 up_write(&md->io_lock);
1497 static void dm_queue_flush(struct mapped_device *md)
1499 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1500 smp_mb__after_clear_bit();
1501 queue_work(md->wq, &md->work);
1505 * Swap in a new table (destroying old one).
1507 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1509 int r = -EINVAL;
1511 mutex_lock(&md->suspend_lock);
1513 /* device must be suspended */
1514 if (!dm_suspended(md))
1515 goto out;
1517 /* without bdev, the device size cannot be changed */
1518 if (!md->suspended_bdev)
1519 if (get_capacity(md->disk) != dm_table_get_size(table))
1520 goto out;
1522 __unbind(md);
1523 r = __bind(md, table);
1525 out:
1526 mutex_unlock(&md->suspend_lock);
1527 return r;
1531 * Functions to lock and unlock any filesystem running on the
1532 * device.
1534 static int lock_fs(struct mapped_device *md)
1536 int r;
1538 WARN_ON(md->frozen_sb);
1540 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1541 if (IS_ERR(md->frozen_sb)) {
1542 r = PTR_ERR(md->frozen_sb);
1543 md->frozen_sb = NULL;
1544 return r;
1547 set_bit(DMF_FROZEN, &md->flags);
1549 /* don't bdput right now, we don't want the bdev
1550 * to go away while it is locked.
1552 return 0;
1555 static void unlock_fs(struct mapped_device *md)
1557 if (!test_bit(DMF_FROZEN, &md->flags))
1558 return;
1560 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1561 md->frozen_sb = NULL;
1562 clear_bit(DMF_FROZEN, &md->flags);
1566 * We need to be able to change a mapping table under a mounted
1567 * filesystem. For example we might want to move some data in
1568 * the background. Before the table can be swapped with
1569 * dm_bind_table, dm_suspend must be called to flush any in
1570 * flight bios and ensure that any further io gets deferred.
1572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1574 struct dm_table *map = NULL;
1575 int r = 0;
1576 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1577 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1579 mutex_lock(&md->suspend_lock);
1581 if (dm_suspended(md)) {
1582 r = -EINVAL;
1583 goto out_unlock;
1586 map = dm_get_table(md);
1589 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1590 * This flag is cleared before dm_suspend returns.
1592 if (noflush)
1593 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1595 /* This does not get reverted if there's an error later. */
1596 dm_table_presuspend_targets(map);
1598 /* bdget() can stall if the pending I/Os are not flushed */
1599 if (!noflush) {
1600 md->suspended_bdev = bdget_disk(md->disk, 0);
1601 if (!md->suspended_bdev) {
1602 DMWARN("bdget failed in dm_suspend");
1603 r = -ENOMEM;
1604 goto out;
1608 * Flush I/O to the device. noflush supersedes do_lockfs,
1609 * because lock_fs() needs to flush I/Os.
1611 if (do_lockfs) {
1612 r = lock_fs(md);
1613 if (r)
1614 goto out;
1619 * Here we must make sure that no processes are submitting requests
1620 * to target drivers i.e. no one may be executing
1621 * __split_and_process_bio. This is called from dm_request and
1622 * dm_wq_work.
1624 * To get all processes out of __split_and_process_bio in dm_request,
1625 * we take the write lock. To prevent any process from reentering
1626 * __split_and_process_bio from dm_request, we set
1627 * DMF_QUEUE_IO_TO_THREAD.
1629 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1630 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1631 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1632 * further calls to __split_and_process_bio from dm_wq_work.
1634 down_write(&md->io_lock);
1635 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1636 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1637 up_write(&md->io_lock);
1639 flush_workqueue(md->wq);
1642 * At this point no more requests are entering target request routines.
1643 * We call dm_wait_for_completion to wait for all existing requests
1644 * to finish.
1646 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1648 down_write(&md->io_lock);
1649 if (noflush)
1650 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1651 up_write(&md->io_lock);
1653 /* were we interrupted ? */
1654 if (r < 0) {
1655 dm_queue_flush(md);
1657 unlock_fs(md);
1658 goto out; /* pushback list is already flushed, so skip flush */
1662 * If dm_wait_for_completion returned 0, the device is completely
1663 * quiescent now. There is no request-processing activity. All new
1664 * requests are being added to md->deferred list.
1667 dm_table_postsuspend_targets(map);
1669 set_bit(DMF_SUSPENDED, &md->flags);
1671 out:
1672 if (r && md->suspended_bdev) {
1673 bdput(md->suspended_bdev);
1674 md->suspended_bdev = NULL;
1677 dm_table_put(map);
1679 out_unlock:
1680 mutex_unlock(&md->suspend_lock);
1681 return r;
1684 int dm_resume(struct mapped_device *md)
1686 int r = -EINVAL;
1687 struct dm_table *map = NULL;
1689 mutex_lock(&md->suspend_lock);
1690 if (!dm_suspended(md))
1691 goto out;
1693 map = dm_get_table(md);
1694 if (!map || !dm_table_get_size(map))
1695 goto out;
1697 r = dm_table_resume_targets(map);
1698 if (r)
1699 goto out;
1701 dm_queue_flush(md);
1703 unlock_fs(md);
1705 if (md->suspended_bdev) {
1706 bdput(md->suspended_bdev);
1707 md->suspended_bdev = NULL;
1710 clear_bit(DMF_SUSPENDED, &md->flags);
1712 dm_table_unplug_all(map);
1714 dm_kobject_uevent(md);
1716 r = 0;
1718 out:
1719 dm_table_put(map);
1720 mutex_unlock(&md->suspend_lock);
1722 return r;
1725 /*-----------------------------------------------------------------
1726 * Event notification.
1727 *---------------------------------------------------------------*/
1728 void dm_kobject_uevent(struct mapped_device *md)
1730 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1733 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1735 return atomic_add_return(1, &md->uevent_seq);
1738 uint32_t dm_get_event_nr(struct mapped_device *md)
1740 return atomic_read(&md->event_nr);
1743 int dm_wait_event(struct mapped_device *md, int event_nr)
1745 return wait_event_interruptible(md->eventq,
1746 (event_nr != atomic_read(&md->event_nr)));
1749 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1751 unsigned long flags;
1753 spin_lock_irqsave(&md->uevent_lock, flags);
1754 list_add(elist, &md->uevent_list);
1755 spin_unlock_irqrestore(&md->uevent_lock, flags);
1759 * The gendisk is only valid as long as you have a reference
1760 * count on 'md'.
1762 struct gendisk *dm_disk(struct mapped_device *md)
1764 return md->disk;
1767 struct kobject *dm_kobject(struct mapped_device *md)
1769 return &md->kobj;
1773 * struct mapped_device should not be exported outside of dm.c
1774 * so use this check to verify that kobj is part of md structure
1776 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1778 struct mapped_device *md;
1780 md = container_of(kobj, struct mapped_device, kobj);
1781 if (&md->kobj != kobj)
1782 return NULL;
1784 dm_get(md);
1785 return md;
1788 int dm_suspended(struct mapped_device *md)
1790 return test_bit(DMF_SUSPENDED, &md->flags);
1793 int dm_noflush_suspending(struct dm_target *ti)
1795 struct mapped_device *md = dm_table_get_md(ti->table);
1796 int r = __noflush_suspending(md);
1798 dm_put(md);
1800 return r;
1802 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1804 static struct block_device_operations dm_blk_dops = {
1805 .open = dm_blk_open,
1806 .release = dm_blk_close,
1807 .ioctl = dm_blk_ioctl,
1808 .getgeo = dm_blk_getgeo,
1809 .owner = THIS_MODULE
1812 EXPORT_SYMBOL(dm_get_mapinfo);
1815 * module hooks
1817 module_init(dm_init);
1818 module_exit(dm_exit);
1820 module_param(major, uint, 0);
1821 MODULE_PARM_DESC(major, "The major number of the device mapper");
1822 MODULE_DESCRIPTION(DM_NAME " driver");
1823 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1824 MODULE_LICENSE("GPL");