rt2x00: Simplify rt2x00_check_rev
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobd1cb64ad1a3f373092d954804fa41cca636ccfcd
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
146 if (unbusy)
147 scsi_device_unbusy(device);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
246 if (resid)
247 *resid = req->data_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost = sdev->host;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 if (scsi_target(sdev)->single_lun)
408 scsi_single_lun_run(sdev);
410 spin_lock_irqsave(shost->host_lock, flags);
411 list_splice_init(&shost->starved_list, &starved_list);
413 while (!list_empty(&starved_list)) {
414 int flagset;
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
420 * starved_list.
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
426 if (scsi_host_is_busy(shost))
427 break;
429 sdev = list_entry(starved_list.next,
430 struct scsi_device, starved_entry);
431 list_del_init(&sdev->starved_entry);
432 if (scsi_target_is_busy(scsi_target(sdev))) {
433 list_move_tail(&sdev->starved_entry,
434 &shost->starved_list);
435 continue;
438 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 !test_bit(QUEUE_FLAG_REENTER,
443 &sdev->request_queue->queue_flags);
444 if (flagset)
445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 __blk_run_queue(sdev->request_queue);
447 if (flagset)
448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 spin_unlock(sdev->request_queue->queue_lock);
451 spin_lock(shost->host_lock);
453 /* put any unprocessed entries back */
454 list_splice(&starved_list, &shost->starved_list);
455 spin_unlock_irqrestore(shost->host_lock, flags);
457 blk_run_queue(q);
461 * Function: scsi_requeue_command()
463 * Purpose: Handle post-processing of completed commands.
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
468 * Returns: Nothing
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
480 struct request *req = cmd->request;
481 unsigned long flags;
483 spin_lock_irqsave(q->queue_lock, flags);
484 scsi_unprep_request(req);
485 blk_requeue_request(q, req);
486 spin_unlock_irqrestore(q->queue_lock, flags);
488 scsi_run_queue(q);
491 void scsi_next_command(struct scsi_cmnd *cmd)
493 struct scsi_device *sdev = cmd->device;
494 struct request_queue *q = sdev->request_queue;
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev->sdev_gendev);
499 scsi_put_command(cmd);
500 scsi_run_queue(q);
502 /* ok to remove device now */
503 put_device(&sdev->sdev_gendev);
506 void scsi_run_host_queues(struct Scsi_Host *shost)
508 struct scsi_device *sdev;
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
517 * Function: scsi_end_request()
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
527 * Lock status: Assumed that lock is not held upon entry.
529 * Returns: cmd if requeue required, NULL otherwise.
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
548 if (blk_end_request(req, error, bytes)) {
549 int leftover = (req->hard_nr_sectors << 9);
551 if (blk_pc_request(req))
552 leftover = req->data_len;
554 /* kill remainder if no retrys */
555 if (error && scsi_noretry_cmd(cmd))
556 blk_end_request(req, error, leftover);
557 else {
558 if (requeue) {
560 * Bleah. Leftovers again. Stick the
561 * leftovers in the front of the
562 * queue, and goose the queue again.
564 scsi_release_buffers(cmd);
565 scsi_requeue_command(q, cmd);
566 cmd = NULL;
568 return cmd;
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
576 __scsi_release_buffers(cmd, 0);
577 scsi_next_command(cmd);
578 return NULL;
581 static inline unsigned int scsi_sgtable_index(unsigned short nents)
583 unsigned int index;
585 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587 if (nents <= 8)
588 index = 0;
589 else
590 index = get_count_order(nents) - 3;
592 return index;
595 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597 struct scsi_host_sg_pool *sgp;
599 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600 mempool_free(sgl, sgp->pool);
603 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605 struct scsi_host_sg_pool *sgp;
607 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 return mempool_alloc(sgp->pool, gfp_mask);
611 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612 gfp_t gfp_mask)
614 int ret;
616 BUG_ON(!nents);
618 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 gfp_mask, scsi_sg_alloc);
620 if (unlikely(ret))
621 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622 scsi_sg_free);
624 return ret;
627 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
632 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
635 if (cmd->sdb.table.nents)
636 scsi_free_sgtable(&cmd->sdb);
638 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641 struct scsi_data_buffer *bidi_sdb =
642 cmd->request->next_rq->special;
643 scsi_free_sgtable(bidi_sdb);
644 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645 cmd->request->next_rq->special = NULL;
648 if (scsi_prot_sg_count(cmd))
649 scsi_free_sgtable(cmd->prot_sdb);
653 * Function: scsi_release_buffers()
655 * Purpose: Completion processing for block device I/O requests.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
661 * Returns: Nothing
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table, and potentially any bounce
667 * buffers.
669 void scsi_release_buffers(struct scsi_cmnd *cmd)
671 __scsi_release_buffers(cmd, 1);
673 EXPORT_SYMBOL(scsi_release_buffers);
676 * Bidi commands Must be complete as a whole, both sides at once.
677 * If part of the bytes were written and lld returned
678 * scsi_in()->resid and/or scsi_out()->resid this information will be left
679 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
680 * decide what to do with this information.
682 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
684 struct request *req = cmd->request;
685 unsigned int dlen = req->data_len;
686 unsigned int next_dlen = req->next_rq->data_len;
688 req->data_len = scsi_out(cmd)->resid;
689 req->next_rq->data_len = scsi_in(cmd)->resid;
691 /* The req and req->next_rq have not been completed */
692 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
694 scsi_release_buffers(cmd);
697 * This will goose the queue request function at the end, so we don't
698 * need to worry about launching another command.
700 scsi_next_command(cmd);
704 * Function: scsi_io_completion()
706 * Purpose: Completion processing for block device I/O requests.
708 * Arguments: cmd - command that is finished.
710 * Lock status: Assumed that no lock is held upon entry.
712 * Returns: Nothing
714 * Notes: This function is matched in terms of capabilities to
715 * the function that created the scatter-gather list.
716 * In other words, if there are no bounce buffers
717 * (the normal case for most drivers), we don't need
718 * the logic to deal with cleaning up afterwards.
720 * We must call scsi_end_request(). This will finish off
721 * the specified number of sectors. If we are done, the
722 * command block will be released and the queue function
723 * will be goosed. If we are not done then we have to
724 * figure out what to do next:
726 * a) We can call scsi_requeue_command(). The request
727 * will be unprepared and put back on the queue. Then
728 * a new command will be created for it. This should
729 * be used if we made forward progress, or if we want
730 * to switch from READ(10) to READ(6) for example.
732 * b) We can call scsi_queue_insert(). The request will
733 * be put back on the queue and retried using the same
734 * command as before, possibly after a delay.
736 * c) We can call blk_end_request() with -EIO to fail
737 * the remainder of the request.
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
741 int result = cmd->result;
742 int this_count;
743 struct request_queue *q = cmd->device->request_queue;
744 struct request *req = cmd->request;
745 int error = 0;
746 struct scsi_sense_hdr sshdr;
747 int sense_valid = 0;
748 int sense_deferred = 0;
749 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
750 ACTION_DELAYED_RETRY} action;
751 char *description = NULL;
753 if (result) {
754 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
755 if (sense_valid)
756 sense_deferred = scsi_sense_is_deferred(&sshdr);
759 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
760 req->errors = result;
761 if (result) {
762 if (sense_valid && req->sense) {
764 * SG_IO wants current and deferred errors
766 int len = 8 + cmd->sense_buffer[7];
768 if (len > SCSI_SENSE_BUFFERSIZE)
769 len = SCSI_SENSE_BUFFERSIZE;
770 memcpy(req->sense, cmd->sense_buffer, len);
771 req->sense_len = len;
773 if (!sense_deferred)
774 error = -EIO;
776 if (scsi_bidi_cmnd(cmd)) {
777 /* will also release_buffers */
778 scsi_end_bidi_request(cmd);
779 return;
781 req->data_len = scsi_get_resid(cmd);
784 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
787 * Next deal with any sectors which we were able to correctly
788 * handle.
790 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
791 "%d bytes done.\n",
792 req->nr_sectors, good_bytes));
795 * Recovered errors need reporting, but they're always treated
796 * as success, so fiddle the result code here. For BLOCK_PC
797 * we already took a copy of the original into rq->errors which
798 * is what gets returned to the user
800 if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
801 if (!(req->cmd_flags & REQ_QUIET))
802 scsi_print_sense("", cmd);
803 result = 0;
804 /* BLOCK_PC may have set error */
805 error = 0;
809 * A number of bytes were successfully read. If there
810 * are leftovers and there is some kind of error
811 * (result != 0), retry the rest.
813 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
814 return;
815 this_count = blk_rq_bytes(req);
817 error = -EIO;
819 if (host_byte(result) == DID_RESET) {
820 /* Third party bus reset or reset for error recovery
821 * reasons. Just retry the command and see what
822 * happens.
824 action = ACTION_RETRY;
825 } else if (sense_valid && !sense_deferred) {
826 switch (sshdr.sense_key) {
827 case UNIT_ATTENTION:
828 if (cmd->device->removable) {
829 /* Detected disc change. Set a bit
830 * and quietly refuse further access.
832 cmd->device->changed = 1;
833 description = "Media Changed";
834 action = ACTION_FAIL;
835 } else {
836 /* Must have been a power glitch, or a
837 * bus reset. Could not have been a
838 * media change, so we just retry the
839 * command and see what happens.
841 action = ACTION_RETRY;
843 break;
844 case ILLEGAL_REQUEST:
845 /* If we had an ILLEGAL REQUEST returned, then
846 * we may have performed an unsupported
847 * command. The only thing this should be
848 * would be a ten byte read where only a six
849 * byte read was supported. Also, on a system
850 * where READ CAPACITY failed, we may have
851 * read past the end of the disk.
853 if ((cmd->device->use_10_for_rw &&
854 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
855 (cmd->cmnd[0] == READ_10 ||
856 cmd->cmnd[0] == WRITE_10)) {
857 /* This will issue a new 6-byte command. */
858 cmd->device->use_10_for_rw = 0;
859 action = ACTION_REPREP;
860 } else if (sshdr.asc == 0x10) /* DIX */ {
861 description = "Host Data Integrity Failure";
862 action = ACTION_FAIL;
863 error = -EILSEQ;
864 } else
865 action = ACTION_FAIL;
866 break;
867 case ABORTED_COMMAND:
868 action = ACTION_FAIL;
869 if (sshdr.asc == 0x10) { /* DIF */
870 description = "Target Data Integrity Failure";
871 error = -EILSEQ;
873 break;
874 case NOT_READY:
875 /* If the device is in the process of becoming
876 * ready, or has a temporary blockage, retry.
878 if (sshdr.asc == 0x04) {
879 switch (sshdr.ascq) {
880 case 0x01: /* becoming ready */
881 case 0x04: /* format in progress */
882 case 0x05: /* rebuild in progress */
883 case 0x06: /* recalculation in progress */
884 case 0x07: /* operation in progress */
885 case 0x08: /* Long write in progress */
886 case 0x09: /* self test in progress */
887 action = ACTION_DELAYED_RETRY;
888 break;
889 default:
890 description = "Device not ready";
891 action = ACTION_FAIL;
892 break;
894 } else {
895 description = "Device not ready";
896 action = ACTION_FAIL;
898 break;
899 case VOLUME_OVERFLOW:
900 /* See SSC3rXX or current. */
901 action = ACTION_FAIL;
902 break;
903 default:
904 description = "Unhandled sense code";
905 action = ACTION_FAIL;
906 break;
908 } else {
909 description = "Unhandled error code";
910 action = ACTION_FAIL;
913 switch (action) {
914 case ACTION_FAIL:
915 /* Give up and fail the remainder of the request */
916 scsi_release_buffers(cmd);
917 if (!(req->cmd_flags & REQ_QUIET)) {
918 if (description)
919 scmd_printk(KERN_INFO, cmd, "%s\n",
920 description);
921 scsi_print_result(cmd);
922 if (driver_byte(result) & DRIVER_SENSE)
923 scsi_print_sense("", cmd);
925 blk_end_request(req, -EIO, blk_rq_bytes(req));
926 scsi_next_command(cmd);
927 break;
928 case ACTION_REPREP:
929 /* Unprep the request and put it back at the head of the queue.
930 * A new command will be prepared and issued.
932 scsi_release_buffers(cmd);
933 scsi_requeue_command(q, cmd);
934 break;
935 case ACTION_RETRY:
936 /* Retry the same command immediately */
937 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
938 break;
939 case ACTION_DELAYED_RETRY:
940 /* Retry the same command after a delay */
941 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
942 break;
946 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
947 gfp_t gfp_mask)
949 int count;
952 * If sg table allocation fails, requeue request later.
954 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
955 gfp_mask))) {
956 return BLKPREP_DEFER;
959 req->buffer = NULL;
962 * Next, walk the list, and fill in the addresses and sizes of
963 * each segment.
965 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
966 BUG_ON(count > sdb->table.nents);
967 sdb->table.nents = count;
968 if (blk_pc_request(req))
969 sdb->length = req->data_len;
970 else
971 sdb->length = req->nr_sectors << 9;
972 return BLKPREP_OK;
976 * Function: scsi_init_io()
978 * Purpose: SCSI I/O initialize function.
980 * Arguments: cmd - Command descriptor we wish to initialize
982 * Returns: 0 on success
983 * BLKPREP_DEFER if the failure is retryable
984 * BLKPREP_KILL if the failure is fatal
986 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
988 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
989 if (error)
990 goto err_exit;
992 if (blk_bidi_rq(cmd->request)) {
993 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
994 scsi_sdb_cache, GFP_ATOMIC);
995 if (!bidi_sdb) {
996 error = BLKPREP_DEFER;
997 goto err_exit;
1000 cmd->request->next_rq->special = bidi_sdb;
1001 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1002 GFP_ATOMIC);
1003 if (error)
1004 goto err_exit;
1007 if (blk_integrity_rq(cmd->request)) {
1008 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1009 int ivecs, count;
1011 BUG_ON(prot_sdb == NULL);
1012 ivecs = blk_rq_count_integrity_sg(cmd->request);
1014 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1015 error = BLKPREP_DEFER;
1016 goto err_exit;
1019 count = blk_rq_map_integrity_sg(cmd->request,
1020 prot_sdb->table.sgl);
1021 BUG_ON(unlikely(count > ivecs));
1023 cmd->prot_sdb = prot_sdb;
1024 cmd->prot_sdb->table.nents = count;
1027 return BLKPREP_OK ;
1029 err_exit:
1030 scsi_release_buffers(cmd);
1031 if (error == BLKPREP_KILL)
1032 scsi_put_command(cmd);
1033 else /* BLKPREP_DEFER */
1034 scsi_unprep_request(cmd->request);
1036 return error;
1038 EXPORT_SYMBOL(scsi_init_io);
1040 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1041 struct request *req)
1043 struct scsi_cmnd *cmd;
1045 if (!req->special) {
1046 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1047 if (unlikely(!cmd))
1048 return NULL;
1049 req->special = cmd;
1050 } else {
1051 cmd = req->special;
1054 /* pull a tag out of the request if we have one */
1055 cmd->tag = req->tag;
1056 cmd->request = req;
1058 cmd->cmnd = req->cmd;
1060 return cmd;
1063 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1065 struct scsi_cmnd *cmd;
1066 int ret = scsi_prep_state_check(sdev, req);
1068 if (ret != BLKPREP_OK)
1069 return ret;
1071 cmd = scsi_get_cmd_from_req(sdev, req);
1072 if (unlikely(!cmd))
1073 return BLKPREP_DEFER;
1076 * BLOCK_PC requests may transfer data, in which case they must
1077 * a bio attached to them. Or they might contain a SCSI command
1078 * that does not transfer data, in which case they may optionally
1079 * submit a request without an attached bio.
1081 if (req->bio) {
1082 int ret;
1084 BUG_ON(!req->nr_phys_segments);
1086 ret = scsi_init_io(cmd, GFP_ATOMIC);
1087 if (unlikely(ret))
1088 return ret;
1089 } else {
1090 BUG_ON(req->data_len);
1091 BUG_ON(req->data);
1093 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1094 req->buffer = NULL;
1097 cmd->cmd_len = req->cmd_len;
1098 if (!req->data_len)
1099 cmd->sc_data_direction = DMA_NONE;
1100 else if (rq_data_dir(req) == WRITE)
1101 cmd->sc_data_direction = DMA_TO_DEVICE;
1102 else
1103 cmd->sc_data_direction = DMA_FROM_DEVICE;
1105 cmd->transfersize = req->data_len;
1106 cmd->allowed = req->retries;
1107 return BLKPREP_OK;
1109 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1112 * Setup a REQ_TYPE_FS command. These are simple read/write request
1113 * from filesystems that still need to be translated to SCSI CDBs from
1114 * the ULD.
1116 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1118 struct scsi_cmnd *cmd;
1119 int ret = scsi_prep_state_check(sdev, req);
1121 if (ret != BLKPREP_OK)
1122 return ret;
1124 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1125 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1126 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1127 if (ret != BLKPREP_OK)
1128 return ret;
1132 * Filesystem requests must transfer data.
1134 BUG_ON(!req->nr_phys_segments);
1136 cmd = scsi_get_cmd_from_req(sdev, req);
1137 if (unlikely(!cmd))
1138 return BLKPREP_DEFER;
1140 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1141 return scsi_init_io(cmd, GFP_ATOMIC);
1143 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1145 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1147 int ret = BLKPREP_OK;
1150 * If the device is not in running state we will reject some
1151 * or all commands.
1153 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1154 switch (sdev->sdev_state) {
1155 case SDEV_OFFLINE:
1157 * If the device is offline we refuse to process any
1158 * commands. The device must be brought online
1159 * before trying any recovery commands.
1161 sdev_printk(KERN_ERR, sdev,
1162 "rejecting I/O to offline device\n");
1163 ret = BLKPREP_KILL;
1164 break;
1165 case SDEV_DEL:
1167 * If the device is fully deleted, we refuse to
1168 * process any commands as well.
1170 sdev_printk(KERN_ERR, sdev,
1171 "rejecting I/O to dead device\n");
1172 ret = BLKPREP_KILL;
1173 break;
1174 case SDEV_QUIESCE:
1175 case SDEV_BLOCK:
1176 case SDEV_CREATED_BLOCK:
1178 * If the devices is blocked we defer normal commands.
1180 if (!(req->cmd_flags & REQ_PREEMPT))
1181 ret = BLKPREP_DEFER;
1182 break;
1183 default:
1185 * For any other not fully online state we only allow
1186 * special commands. In particular any user initiated
1187 * command is not allowed.
1189 if (!(req->cmd_flags & REQ_PREEMPT))
1190 ret = BLKPREP_KILL;
1191 break;
1194 return ret;
1196 EXPORT_SYMBOL(scsi_prep_state_check);
1198 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1200 struct scsi_device *sdev = q->queuedata;
1202 switch (ret) {
1203 case BLKPREP_KILL:
1204 req->errors = DID_NO_CONNECT << 16;
1205 /* release the command and kill it */
1206 if (req->special) {
1207 struct scsi_cmnd *cmd = req->special;
1208 scsi_release_buffers(cmd);
1209 scsi_put_command(cmd);
1210 req->special = NULL;
1212 break;
1213 case BLKPREP_DEFER:
1215 * If we defer, the elv_next_request() returns NULL, but the
1216 * queue must be restarted, so we plug here if no returning
1217 * command will automatically do that.
1219 if (sdev->device_busy == 0)
1220 blk_plug_device(q);
1221 break;
1222 default:
1223 req->cmd_flags |= REQ_DONTPREP;
1226 return ret;
1228 EXPORT_SYMBOL(scsi_prep_return);
1230 int scsi_prep_fn(struct request_queue *q, struct request *req)
1232 struct scsi_device *sdev = q->queuedata;
1233 int ret = BLKPREP_KILL;
1235 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1236 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1237 return scsi_prep_return(q, req, ret);
1241 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1242 * return 0.
1244 * Called with the queue_lock held.
1246 static inline int scsi_dev_queue_ready(struct request_queue *q,
1247 struct scsi_device *sdev)
1249 if (sdev->device_busy == 0 && sdev->device_blocked) {
1251 * unblock after device_blocked iterates to zero
1253 if (--sdev->device_blocked == 0) {
1254 SCSI_LOG_MLQUEUE(3,
1255 sdev_printk(KERN_INFO, sdev,
1256 "unblocking device at zero depth\n"));
1257 } else {
1258 blk_plug_device(q);
1259 return 0;
1262 if (scsi_device_is_busy(sdev))
1263 return 0;
1265 return 1;
1270 * scsi_target_queue_ready: checks if there we can send commands to target
1271 * @sdev: scsi device on starget to check.
1273 * Called with the host lock held.
1275 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1276 struct scsi_device *sdev)
1278 struct scsi_target *starget = scsi_target(sdev);
1280 if (starget->single_lun) {
1281 if (starget->starget_sdev_user &&
1282 starget->starget_sdev_user != sdev)
1283 return 0;
1284 starget->starget_sdev_user = sdev;
1287 if (starget->target_busy == 0 && starget->target_blocked) {
1289 * unblock after target_blocked iterates to zero
1291 if (--starget->target_blocked == 0) {
1292 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1293 "unblocking target at zero depth\n"));
1294 } else {
1295 blk_plug_device(sdev->request_queue);
1296 return 0;
1300 if (scsi_target_is_busy(starget)) {
1301 if (list_empty(&sdev->starved_entry)) {
1302 list_add_tail(&sdev->starved_entry,
1303 &shost->starved_list);
1304 return 0;
1308 /* We're OK to process the command, so we can't be starved */
1309 if (!list_empty(&sdev->starved_entry))
1310 list_del_init(&sdev->starved_entry);
1311 return 1;
1315 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1316 * return 0. We must end up running the queue again whenever 0 is
1317 * returned, else IO can hang.
1319 * Called with host_lock held.
1321 static inline int scsi_host_queue_ready(struct request_queue *q,
1322 struct Scsi_Host *shost,
1323 struct scsi_device *sdev)
1325 if (scsi_host_in_recovery(shost))
1326 return 0;
1327 if (shost->host_busy == 0 && shost->host_blocked) {
1329 * unblock after host_blocked iterates to zero
1331 if (--shost->host_blocked == 0) {
1332 SCSI_LOG_MLQUEUE(3,
1333 printk("scsi%d unblocking host at zero depth\n",
1334 shost->host_no));
1335 } else {
1336 return 0;
1339 if (scsi_host_is_busy(shost)) {
1340 if (list_empty(&sdev->starved_entry))
1341 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1342 return 0;
1345 /* We're OK to process the command, so we can't be starved */
1346 if (!list_empty(&sdev->starved_entry))
1347 list_del_init(&sdev->starved_entry);
1349 return 1;
1353 * Busy state exporting function for request stacking drivers.
1355 * For efficiency, no lock is taken to check the busy state of
1356 * shost/starget/sdev, since the returned value is not guaranteed and
1357 * may be changed after request stacking drivers call the function,
1358 * regardless of taking lock or not.
1360 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1361 * (e.g. !sdev), scsi needs to return 'not busy'.
1362 * Otherwise, request stacking drivers may hold requests forever.
1364 static int scsi_lld_busy(struct request_queue *q)
1366 struct scsi_device *sdev = q->queuedata;
1367 struct Scsi_Host *shost;
1368 struct scsi_target *starget;
1370 if (!sdev)
1371 return 0;
1373 shost = sdev->host;
1374 starget = scsi_target(sdev);
1376 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1377 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1378 return 1;
1380 return 0;
1384 * Kill a request for a dead device
1386 static void scsi_kill_request(struct request *req, struct request_queue *q)
1388 struct scsi_cmnd *cmd = req->special;
1389 struct scsi_device *sdev = cmd->device;
1390 struct scsi_target *starget = scsi_target(sdev);
1391 struct Scsi_Host *shost = sdev->host;
1393 blkdev_dequeue_request(req);
1395 if (unlikely(cmd == NULL)) {
1396 printk(KERN_CRIT "impossible request in %s.\n",
1397 __func__);
1398 BUG();
1401 scsi_init_cmd_errh(cmd);
1402 cmd->result = DID_NO_CONNECT << 16;
1403 atomic_inc(&cmd->device->iorequest_cnt);
1406 * SCSI request completion path will do scsi_device_unbusy(),
1407 * bump busy counts. To bump the counters, we need to dance
1408 * with the locks as normal issue path does.
1410 sdev->device_busy++;
1411 spin_unlock(sdev->request_queue->queue_lock);
1412 spin_lock(shost->host_lock);
1413 shost->host_busy++;
1414 starget->target_busy++;
1415 spin_unlock(shost->host_lock);
1416 spin_lock(sdev->request_queue->queue_lock);
1418 blk_complete_request(req);
1421 static void scsi_softirq_done(struct request *rq)
1423 struct scsi_cmnd *cmd = rq->special;
1424 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1425 int disposition;
1427 INIT_LIST_HEAD(&cmd->eh_entry);
1430 * Set the serial numbers back to zero
1432 cmd->serial_number = 0;
1434 atomic_inc(&cmd->device->iodone_cnt);
1435 if (cmd->result)
1436 atomic_inc(&cmd->device->ioerr_cnt);
1438 disposition = scsi_decide_disposition(cmd);
1439 if (disposition != SUCCESS &&
1440 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1441 sdev_printk(KERN_ERR, cmd->device,
1442 "timing out command, waited %lus\n",
1443 wait_for/HZ);
1444 disposition = SUCCESS;
1447 scsi_log_completion(cmd, disposition);
1449 switch (disposition) {
1450 case SUCCESS:
1451 scsi_finish_command(cmd);
1452 break;
1453 case NEEDS_RETRY:
1454 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1455 break;
1456 case ADD_TO_MLQUEUE:
1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1458 break;
1459 default:
1460 if (!scsi_eh_scmd_add(cmd, 0))
1461 scsi_finish_command(cmd);
1466 * Function: scsi_request_fn()
1468 * Purpose: Main strategy routine for SCSI.
1470 * Arguments: q - Pointer to actual queue.
1472 * Returns: Nothing
1474 * Lock status: IO request lock assumed to be held when called.
1476 static void scsi_request_fn(struct request_queue *q)
1478 struct scsi_device *sdev = q->queuedata;
1479 struct Scsi_Host *shost;
1480 struct scsi_cmnd *cmd;
1481 struct request *req;
1483 if (!sdev) {
1484 printk("scsi: killing requests for dead queue\n");
1485 while ((req = elv_next_request(q)) != NULL)
1486 scsi_kill_request(req, q);
1487 return;
1490 if(!get_device(&sdev->sdev_gendev))
1491 /* We must be tearing the block queue down already */
1492 return;
1495 * To start with, we keep looping until the queue is empty, or until
1496 * the host is no longer able to accept any more requests.
1498 shost = sdev->host;
1499 while (!blk_queue_plugged(q)) {
1500 int rtn;
1502 * get next queueable request. We do this early to make sure
1503 * that the request is fully prepared even if we cannot
1504 * accept it.
1506 req = elv_next_request(q);
1507 if (!req || !scsi_dev_queue_ready(q, sdev))
1508 break;
1510 if (unlikely(!scsi_device_online(sdev))) {
1511 sdev_printk(KERN_ERR, sdev,
1512 "rejecting I/O to offline device\n");
1513 scsi_kill_request(req, q);
1514 continue;
1519 * Remove the request from the request list.
1521 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1522 blkdev_dequeue_request(req);
1523 sdev->device_busy++;
1525 spin_unlock(q->queue_lock);
1526 cmd = req->special;
1527 if (unlikely(cmd == NULL)) {
1528 printk(KERN_CRIT "impossible request in %s.\n"
1529 "please mail a stack trace to "
1530 "linux-scsi@vger.kernel.org\n",
1531 __func__);
1532 blk_dump_rq_flags(req, "foo");
1533 BUG();
1535 spin_lock(shost->host_lock);
1538 * We hit this when the driver is using a host wide
1539 * tag map. For device level tag maps the queue_depth check
1540 * in the device ready fn would prevent us from trying
1541 * to allocate a tag. Since the map is a shared host resource
1542 * we add the dev to the starved list so it eventually gets
1543 * a run when a tag is freed.
1545 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1546 if (list_empty(&sdev->starved_entry))
1547 list_add_tail(&sdev->starved_entry,
1548 &shost->starved_list);
1549 goto not_ready;
1552 if (!scsi_target_queue_ready(shost, sdev))
1553 goto not_ready;
1555 if (!scsi_host_queue_ready(q, shost, sdev))
1556 goto not_ready;
1558 scsi_target(sdev)->target_busy++;
1559 shost->host_busy++;
1562 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563 * take the lock again.
1565 spin_unlock_irq(shost->host_lock);
1568 * Finally, initialize any error handling parameters, and set up
1569 * the timers for timeouts.
1571 scsi_init_cmd_errh(cmd);
1574 * Dispatch the command to the low-level driver.
1576 rtn = scsi_dispatch_cmd(cmd);
1577 spin_lock_irq(q->queue_lock);
1578 if(rtn) {
1579 /* we're refusing the command; because of
1580 * the way locks get dropped, we need to
1581 * check here if plugging is required */
1582 if(sdev->device_busy == 0)
1583 blk_plug_device(q);
1585 break;
1589 goto out;
1591 not_ready:
1592 spin_unlock_irq(shost->host_lock);
1595 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 * must return with queue_lock held.
1598 * Decrementing device_busy without checking it is OK, as all such
1599 * cases (host limits or settings) should run the queue at some
1600 * later time.
1602 spin_lock_irq(q->queue_lock);
1603 blk_requeue_request(q, req);
1604 sdev->device_busy--;
1605 if(sdev->device_busy == 0)
1606 blk_plug_device(q);
1607 out:
1608 /* must be careful here...if we trigger the ->remove() function
1609 * we cannot be holding the q lock */
1610 spin_unlock_irq(q->queue_lock);
1611 put_device(&sdev->sdev_gendev);
1612 spin_lock_irq(q->queue_lock);
1615 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1617 struct device *host_dev;
1618 u64 bounce_limit = 0xffffffff;
1620 if (shost->unchecked_isa_dma)
1621 return BLK_BOUNCE_ISA;
1623 * Platforms with virtual-DMA translation
1624 * hardware have no practical limit.
1626 if (!PCI_DMA_BUS_IS_PHYS)
1627 return BLK_BOUNCE_ANY;
1629 host_dev = scsi_get_device(shost);
1630 if (host_dev && host_dev->dma_mask)
1631 bounce_limit = *host_dev->dma_mask;
1633 return bounce_limit;
1635 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1637 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638 request_fn_proc *request_fn)
1640 struct request_queue *q;
1641 struct device *dev = shost->shost_gendev.parent;
1643 q = blk_init_queue(request_fn, NULL);
1644 if (!q)
1645 return NULL;
1648 * this limit is imposed by hardware restrictions
1650 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1651 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1653 blk_queue_max_sectors(q, shost->max_sectors);
1654 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1655 blk_queue_segment_boundary(q, shost->dma_boundary);
1656 dma_set_seg_boundary(dev, shost->dma_boundary);
1658 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1660 /* New queue, no concurrency on queue_flags */
1661 if (!shost->use_clustering)
1662 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1665 * set a reasonable default alignment on word boundaries: the
1666 * host and device may alter it using
1667 * blk_queue_update_dma_alignment() later.
1669 blk_queue_dma_alignment(q, 0x03);
1671 return q;
1673 EXPORT_SYMBOL(__scsi_alloc_queue);
1675 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1677 struct request_queue *q;
1679 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1680 if (!q)
1681 return NULL;
1683 blk_queue_prep_rq(q, scsi_prep_fn);
1684 blk_queue_softirq_done(q, scsi_softirq_done);
1685 blk_queue_rq_timed_out(q, scsi_times_out);
1686 blk_queue_lld_busy(q, scsi_lld_busy);
1687 return q;
1690 void scsi_free_queue(struct request_queue *q)
1692 blk_cleanup_queue(q);
1696 * Function: scsi_block_requests()
1698 * Purpose: Utility function used by low-level drivers to prevent further
1699 * commands from being queued to the device.
1701 * Arguments: shost - Host in question
1703 * Returns: Nothing
1705 * Lock status: No locks are assumed held.
1707 * Notes: There is no timer nor any other means by which the requests
1708 * get unblocked other than the low-level driver calling
1709 * scsi_unblock_requests().
1711 void scsi_block_requests(struct Scsi_Host *shost)
1713 shost->host_self_blocked = 1;
1715 EXPORT_SYMBOL(scsi_block_requests);
1718 * Function: scsi_unblock_requests()
1720 * Purpose: Utility function used by low-level drivers to allow further
1721 * commands from being queued to the device.
1723 * Arguments: shost - Host in question
1725 * Returns: Nothing
1727 * Lock status: No locks are assumed held.
1729 * Notes: There is no timer nor any other means by which the requests
1730 * get unblocked other than the low-level driver calling
1731 * scsi_unblock_requests().
1733 * This is done as an API function so that changes to the
1734 * internals of the scsi mid-layer won't require wholesale
1735 * changes to drivers that use this feature.
1737 void scsi_unblock_requests(struct Scsi_Host *shost)
1739 shost->host_self_blocked = 0;
1740 scsi_run_host_queues(shost);
1742 EXPORT_SYMBOL(scsi_unblock_requests);
1744 int __init scsi_init_queue(void)
1746 int i;
1748 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1749 sizeof(struct scsi_data_buffer),
1750 0, 0, NULL);
1751 if (!scsi_sdb_cache) {
1752 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1753 return -ENOMEM;
1756 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1757 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1758 int size = sgp->size * sizeof(struct scatterlist);
1760 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1761 SLAB_HWCACHE_ALIGN, NULL);
1762 if (!sgp->slab) {
1763 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1764 sgp->name);
1765 goto cleanup_sdb;
1768 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769 sgp->slab);
1770 if (!sgp->pool) {
1771 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772 sgp->name);
1773 goto cleanup_sdb;
1777 return 0;
1779 cleanup_sdb:
1780 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1781 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1782 if (sgp->pool)
1783 mempool_destroy(sgp->pool);
1784 if (sgp->slab)
1785 kmem_cache_destroy(sgp->slab);
1787 kmem_cache_destroy(scsi_sdb_cache);
1789 return -ENOMEM;
1792 void scsi_exit_queue(void)
1794 int i;
1796 kmem_cache_destroy(scsi_sdb_cache);
1798 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800 mempool_destroy(sgp->pool);
1801 kmem_cache_destroy(sgp->slab);
1806 * scsi_mode_select - issue a mode select
1807 * @sdev: SCSI device to be queried
1808 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1809 * @sp: Save page bit (0 == don't save, 1 == save)
1810 * @modepage: mode page being requested
1811 * @buffer: request buffer (may not be smaller than eight bytes)
1812 * @len: length of request buffer.
1813 * @timeout: command timeout
1814 * @retries: number of retries before failing
1815 * @data: returns a structure abstracting the mode header data
1816 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1817 * must be SCSI_SENSE_BUFFERSIZE big.
1819 * Returns zero if successful; negative error number or scsi
1820 * status on error
1824 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1825 unsigned char *buffer, int len, int timeout, int retries,
1826 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1828 unsigned char cmd[10];
1829 unsigned char *real_buffer;
1830 int ret;
1832 memset(cmd, 0, sizeof(cmd));
1833 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1835 if (sdev->use_10_for_ms) {
1836 if (len > 65535)
1837 return -EINVAL;
1838 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1839 if (!real_buffer)
1840 return -ENOMEM;
1841 memcpy(real_buffer + 8, buffer, len);
1842 len += 8;
1843 real_buffer[0] = 0;
1844 real_buffer[1] = 0;
1845 real_buffer[2] = data->medium_type;
1846 real_buffer[3] = data->device_specific;
1847 real_buffer[4] = data->longlba ? 0x01 : 0;
1848 real_buffer[5] = 0;
1849 real_buffer[6] = data->block_descriptor_length >> 8;
1850 real_buffer[7] = data->block_descriptor_length;
1852 cmd[0] = MODE_SELECT_10;
1853 cmd[7] = len >> 8;
1854 cmd[8] = len;
1855 } else {
1856 if (len > 255 || data->block_descriptor_length > 255 ||
1857 data->longlba)
1858 return -EINVAL;
1860 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1861 if (!real_buffer)
1862 return -ENOMEM;
1863 memcpy(real_buffer + 4, buffer, len);
1864 len += 4;
1865 real_buffer[0] = 0;
1866 real_buffer[1] = data->medium_type;
1867 real_buffer[2] = data->device_specific;
1868 real_buffer[3] = data->block_descriptor_length;
1871 cmd[0] = MODE_SELECT;
1872 cmd[4] = len;
1875 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1876 sshdr, timeout, retries, NULL);
1877 kfree(real_buffer);
1878 return ret;
1880 EXPORT_SYMBOL_GPL(scsi_mode_select);
1883 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1884 * @sdev: SCSI device to be queried
1885 * @dbd: set if mode sense will allow block descriptors to be returned
1886 * @modepage: mode page being requested
1887 * @buffer: request buffer (may not be smaller than eight bytes)
1888 * @len: length of request buffer.
1889 * @timeout: command timeout
1890 * @retries: number of retries before failing
1891 * @data: returns a structure abstracting the mode header data
1892 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1893 * must be SCSI_SENSE_BUFFERSIZE big.
1895 * Returns zero if unsuccessful, or the header offset (either 4
1896 * or 8 depending on whether a six or ten byte command was
1897 * issued) if successful.
1900 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1901 unsigned char *buffer, int len, int timeout, int retries,
1902 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1904 unsigned char cmd[12];
1905 int use_10_for_ms;
1906 int header_length;
1907 int result;
1908 struct scsi_sense_hdr my_sshdr;
1910 memset(data, 0, sizeof(*data));
1911 memset(&cmd[0], 0, 12);
1912 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1913 cmd[2] = modepage;
1915 /* caller might not be interested in sense, but we need it */
1916 if (!sshdr)
1917 sshdr = &my_sshdr;
1919 retry:
1920 use_10_for_ms = sdev->use_10_for_ms;
1922 if (use_10_for_ms) {
1923 if (len < 8)
1924 len = 8;
1926 cmd[0] = MODE_SENSE_10;
1927 cmd[8] = len;
1928 header_length = 8;
1929 } else {
1930 if (len < 4)
1931 len = 4;
1933 cmd[0] = MODE_SENSE;
1934 cmd[4] = len;
1935 header_length = 4;
1938 memset(buffer, 0, len);
1940 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1941 sshdr, timeout, retries, NULL);
1943 /* This code looks awful: what it's doing is making sure an
1944 * ILLEGAL REQUEST sense return identifies the actual command
1945 * byte as the problem. MODE_SENSE commands can return
1946 * ILLEGAL REQUEST if the code page isn't supported */
1948 if (use_10_for_ms && !scsi_status_is_good(result) &&
1949 (driver_byte(result) & DRIVER_SENSE)) {
1950 if (scsi_sense_valid(sshdr)) {
1951 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1952 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1954 * Invalid command operation code
1956 sdev->use_10_for_ms = 0;
1957 goto retry;
1962 if(scsi_status_is_good(result)) {
1963 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1964 (modepage == 6 || modepage == 8))) {
1965 /* Initio breakage? */
1966 header_length = 0;
1967 data->length = 13;
1968 data->medium_type = 0;
1969 data->device_specific = 0;
1970 data->longlba = 0;
1971 data->block_descriptor_length = 0;
1972 } else if(use_10_for_ms) {
1973 data->length = buffer[0]*256 + buffer[1] + 2;
1974 data->medium_type = buffer[2];
1975 data->device_specific = buffer[3];
1976 data->longlba = buffer[4] & 0x01;
1977 data->block_descriptor_length = buffer[6]*256
1978 + buffer[7];
1979 } else {
1980 data->length = buffer[0] + 1;
1981 data->medium_type = buffer[1];
1982 data->device_specific = buffer[2];
1983 data->block_descriptor_length = buffer[3];
1985 data->header_length = header_length;
1988 return result;
1990 EXPORT_SYMBOL(scsi_mode_sense);
1993 * scsi_test_unit_ready - test if unit is ready
1994 * @sdev: scsi device to change the state of.
1995 * @timeout: command timeout
1996 * @retries: number of retries before failing
1997 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1998 * returning sense. Make sure that this is cleared before passing
1999 * in.
2001 * Returns zero if unsuccessful or an error if TUR failed. For
2002 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2003 * translated to success, with the ->changed flag updated.
2006 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2007 struct scsi_sense_hdr *sshdr_external)
2009 char cmd[] = {
2010 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2012 struct scsi_sense_hdr *sshdr;
2013 int result;
2015 if (!sshdr_external)
2016 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2017 else
2018 sshdr = sshdr_external;
2020 /* try to eat the UNIT_ATTENTION if there are enough retries */
2021 do {
2022 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2023 timeout, retries, NULL);
2024 if (sdev->removable && scsi_sense_valid(sshdr) &&
2025 sshdr->sense_key == UNIT_ATTENTION)
2026 sdev->changed = 1;
2027 } while (scsi_sense_valid(sshdr) &&
2028 sshdr->sense_key == UNIT_ATTENTION && --retries);
2030 if (!sshdr)
2031 /* could not allocate sense buffer, so can't process it */
2032 return result;
2034 if (sdev->removable && scsi_sense_valid(sshdr) &&
2035 (sshdr->sense_key == UNIT_ATTENTION ||
2036 sshdr->sense_key == NOT_READY)) {
2037 sdev->changed = 1;
2038 result = 0;
2040 if (!sshdr_external)
2041 kfree(sshdr);
2042 return result;
2044 EXPORT_SYMBOL(scsi_test_unit_ready);
2047 * scsi_device_set_state - Take the given device through the device state model.
2048 * @sdev: scsi device to change the state of.
2049 * @state: state to change to.
2051 * Returns zero if unsuccessful or an error if the requested
2052 * transition is illegal.
2055 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2057 enum scsi_device_state oldstate = sdev->sdev_state;
2059 if (state == oldstate)
2060 return 0;
2062 switch (state) {
2063 case SDEV_CREATED:
2064 switch (oldstate) {
2065 case SDEV_CREATED_BLOCK:
2066 break;
2067 default:
2068 goto illegal;
2070 break;
2072 case SDEV_RUNNING:
2073 switch (oldstate) {
2074 case SDEV_CREATED:
2075 case SDEV_OFFLINE:
2076 case SDEV_QUIESCE:
2077 case SDEV_BLOCK:
2078 break;
2079 default:
2080 goto illegal;
2082 break;
2084 case SDEV_QUIESCE:
2085 switch (oldstate) {
2086 case SDEV_RUNNING:
2087 case SDEV_OFFLINE:
2088 break;
2089 default:
2090 goto illegal;
2092 break;
2094 case SDEV_OFFLINE:
2095 switch (oldstate) {
2096 case SDEV_CREATED:
2097 case SDEV_RUNNING:
2098 case SDEV_QUIESCE:
2099 case SDEV_BLOCK:
2100 break;
2101 default:
2102 goto illegal;
2104 break;
2106 case SDEV_BLOCK:
2107 switch (oldstate) {
2108 case SDEV_RUNNING:
2109 case SDEV_CREATED_BLOCK:
2110 break;
2111 default:
2112 goto illegal;
2114 break;
2116 case SDEV_CREATED_BLOCK:
2117 switch (oldstate) {
2118 case SDEV_CREATED:
2119 break;
2120 default:
2121 goto illegal;
2123 break;
2125 case SDEV_CANCEL:
2126 switch (oldstate) {
2127 case SDEV_CREATED:
2128 case SDEV_RUNNING:
2129 case SDEV_QUIESCE:
2130 case SDEV_OFFLINE:
2131 case SDEV_BLOCK:
2132 break;
2133 default:
2134 goto illegal;
2136 break;
2138 case SDEV_DEL:
2139 switch (oldstate) {
2140 case SDEV_CREATED:
2141 case SDEV_RUNNING:
2142 case SDEV_OFFLINE:
2143 case SDEV_CANCEL:
2144 break;
2145 default:
2146 goto illegal;
2148 break;
2151 sdev->sdev_state = state;
2152 return 0;
2154 illegal:
2155 SCSI_LOG_ERROR_RECOVERY(1,
2156 sdev_printk(KERN_ERR, sdev,
2157 "Illegal state transition %s->%s\n",
2158 scsi_device_state_name(oldstate),
2159 scsi_device_state_name(state))
2161 return -EINVAL;
2163 EXPORT_SYMBOL(scsi_device_set_state);
2166 * sdev_evt_emit - emit a single SCSI device uevent
2167 * @sdev: associated SCSI device
2168 * @evt: event to emit
2170 * Send a single uevent (scsi_event) to the associated scsi_device.
2172 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2174 int idx = 0;
2175 char *envp[3];
2177 switch (evt->evt_type) {
2178 case SDEV_EVT_MEDIA_CHANGE:
2179 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2180 break;
2182 default:
2183 /* do nothing */
2184 break;
2187 envp[idx++] = NULL;
2189 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2193 * sdev_evt_thread - send a uevent for each scsi event
2194 * @work: work struct for scsi_device
2196 * Dispatch queued events to their associated scsi_device kobjects
2197 * as uevents.
2199 void scsi_evt_thread(struct work_struct *work)
2201 struct scsi_device *sdev;
2202 LIST_HEAD(event_list);
2204 sdev = container_of(work, struct scsi_device, event_work);
2206 while (1) {
2207 struct scsi_event *evt;
2208 struct list_head *this, *tmp;
2209 unsigned long flags;
2211 spin_lock_irqsave(&sdev->list_lock, flags);
2212 list_splice_init(&sdev->event_list, &event_list);
2213 spin_unlock_irqrestore(&sdev->list_lock, flags);
2215 if (list_empty(&event_list))
2216 break;
2218 list_for_each_safe(this, tmp, &event_list) {
2219 evt = list_entry(this, struct scsi_event, node);
2220 list_del(&evt->node);
2221 scsi_evt_emit(sdev, evt);
2222 kfree(evt);
2228 * sdev_evt_send - send asserted event to uevent thread
2229 * @sdev: scsi_device event occurred on
2230 * @evt: event to send
2232 * Assert scsi device event asynchronously.
2234 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2236 unsigned long flags;
2238 #if 0
2239 /* FIXME: currently this check eliminates all media change events
2240 * for polled devices. Need to update to discriminate between AN
2241 * and polled events */
2242 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2243 kfree(evt);
2244 return;
2246 #endif
2248 spin_lock_irqsave(&sdev->list_lock, flags);
2249 list_add_tail(&evt->node, &sdev->event_list);
2250 schedule_work(&sdev->event_work);
2251 spin_unlock_irqrestore(&sdev->list_lock, flags);
2253 EXPORT_SYMBOL_GPL(sdev_evt_send);
2256 * sdev_evt_alloc - allocate a new scsi event
2257 * @evt_type: type of event to allocate
2258 * @gfpflags: GFP flags for allocation
2260 * Allocates and returns a new scsi_event.
2262 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2263 gfp_t gfpflags)
2265 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2266 if (!evt)
2267 return NULL;
2269 evt->evt_type = evt_type;
2270 INIT_LIST_HEAD(&evt->node);
2272 /* evt_type-specific initialization, if any */
2273 switch (evt_type) {
2274 case SDEV_EVT_MEDIA_CHANGE:
2275 default:
2276 /* do nothing */
2277 break;
2280 return evt;
2282 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2285 * sdev_evt_send_simple - send asserted event to uevent thread
2286 * @sdev: scsi_device event occurred on
2287 * @evt_type: type of event to send
2288 * @gfpflags: GFP flags for allocation
2290 * Assert scsi device event asynchronously, given an event type.
2292 void sdev_evt_send_simple(struct scsi_device *sdev,
2293 enum scsi_device_event evt_type, gfp_t gfpflags)
2295 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2296 if (!evt) {
2297 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2298 evt_type);
2299 return;
2302 sdev_evt_send(sdev, evt);
2304 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2307 * scsi_device_quiesce - Block user issued commands.
2308 * @sdev: scsi device to quiesce.
2310 * This works by trying to transition to the SDEV_QUIESCE state
2311 * (which must be a legal transition). When the device is in this
2312 * state, only special requests will be accepted, all others will
2313 * be deferred. Since special requests may also be requeued requests,
2314 * a successful return doesn't guarantee the device will be
2315 * totally quiescent.
2317 * Must be called with user context, may sleep.
2319 * Returns zero if unsuccessful or an error if not.
2322 scsi_device_quiesce(struct scsi_device *sdev)
2324 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2325 if (err)
2326 return err;
2328 scsi_run_queue(sdev->request_queue);
2329 while (sdev->device_busy) {
2330 msleep_interruptible(200);
2331 scsi_run_queue(sdev->request_queue);
2333 return 0;
2335 EXPORT_SYMBOL(scsi_device_quiesce);
2338 * scsi_device_resume - Restart user issued commands to a quiesced device.
2339 * @sdev: scsi device to resume.
2341 * Moves the device from quiesced back to running and restarts the
2342 * queues.
2344 * Must be called with user context, may sleep.
2346 void
2347 scsi_device_resume(struct scsi_device *sdev)
2349 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2350 return;
2351 scsi_run_queue(sdev->request_queue);
2353 EXPORT_SYMBOL(scsi_device_resume);
2355 static void
2356 device_quiesce_fn(struct scsi_device *sdev, void *data)
2358 scsi_device_quiesce(sdev);
2361 void
2362 scsi_target_quiesce(struct scsi_target *starget)
2364 starget_for_each_device(starget, NULL, device_quiesce_fn);
2366 EXPORT_SYMBOL(scsi_target_quiesce);
2368 static void
2369 device_resume_fn(struct scsi_device *sdev, void *data)
2371 scsi_device_resume(sdev);
2374 void
2375 scsi_target_resume(struct scsi_target *starget)
2377 starget_for_each_device(starget, NULL, device_resume_fn);
2379 EXPORT_SYMBOL(scsi_target_resume);
2382 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2383 * @sdev: device to block
2385 * Block request made by scsi lld's to temporarily stop all
2386 * scsi commands on the specified device. Called from interrupt
2387 * or normal process context.
2389 * Returns zero if successful or error if not
2391 * Notes:
2392 * This routine transitions the device to the SDEV_BLOCK state
2393 * (which must be a legal transition). When the device is in this
2394 * state, all commands are deferred until the scsi lld reenables
2395 * the device with scsi_device_unblock or device_block_tmo fires.
2396 * This routine assumes the host_lock is held on entry.
2399 scsi_internal_device_block(struct scsi_device *sdev)
2401 struct request_queue *q = sdev->request_queue;
2402 unsigned long flags;
2403 int err = 0;
2405 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2406 if (err) {
2407 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2409 if (err)
2410 return err;
2414 * The device has transitioned to SDEV_BLOCK. Stop the
2415 * block layer from calling the midlayer with this device's
2416 * request queue.
2418 spin_lock_irqsave(q->queue_lock, flags);
2419 blk_stop_queue(q);
2420 spin_unlock_irqrestore(q->queue_lock, flags);
2422 return 0;
2424 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2427 * scsi_internal_device_unblock - resume a device after a block request
2428 * @sdev: device to resume
2430 * Called by scsi lld's or the midlayer to restart the device queue
2431 * for the previously suspended scsi device. Called from interrupt or
2432 * normal process context.
2434 * Returns zero if successful or error if not.
2436 * Notes:
2437 * This routine transitions the device to the SDEV_RUNNING state
2438 * (which must be a legal transition) allowing the midlayer to
2439 * goose the queue for this device. This routine assumes the
2440 * host_lock is held upon entry.
2443 scsi_internal_device_unblock(struct scsi_device *sdev)
2445 struct request_queue *q = sdev->request_queue;
2446 int err;
2447 unsigned long flags;
2450 * Try to transition the scsi device to SDEV_RUNNING
2451 * and goose the device queue if successful.
2453 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2454 if (err) {
2455 err = scsi_device_set_state(sdev, SDEV_CREATED);
2457 if (err)
2458 return err;
2461 spin_lock_irqsave(q->queue_lock, flags);
2462 blk_start_queue(q);
2463 spin_unlock_irqrestore(q->queue_lock, flags);
2465 return 0;
2467 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2469 static void
2470 device_block(struct scsi_device *sdev, void *data)
2472 scsi_internal_device_block(sdev);
2475 static int
2476 target_block(struct device *dev, void *data)
2478 if (scsi_is_target_device(dev))
2479 starget_for_each_device(to_scsi_target(dev), NULL,
2480 device_block);
2481 return 0;
2484 void
2485 scsi_target_block(struct device *dev)
2487 if (scsi_is_target_device(dev))
2488 starget_for_each_device(to_scsi_target(dev), NULL,
2489 device_block);
2490 else
2491 device_for_each_child(dev, NULL, target_block);
2493 EXPORT_SYMBOL_GPL(scsi_target_block);
2495 static void
2496 device_unblock(struct scsi_device *sdev, void *data)
2498 scsi_internal_device_unblock(sdev);
2501 static int
2502 target_unblock(struct device *dev, void *data)
2504 if (scsi_is_target_device(dev))
2505 starget_for_each_device(to_scsi_target(dev), NULL,
2506 device_unblock);
2507 return 0;
2510 void
2511 scsi_target_unblock(struct device *dev)
2513 if (scsi_is_target_device(dev))
2514 starget_for_each_device(to_scsi_target(dev), NULL,
2515 device_unblock);
2516 else
2517 device_for_each_child(dev, NULL, target_unblock);
2519 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2522 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2523 * @sgl: scatter-gather list
2524 * @sg_count: number of segments in sg
2525 * @offset: offset in bytes into sg, on return offset into the mapped area
2526 * @len: bytes to map, on return number of bytes mapped
2528 * Returns virtual address of the start of the mapped page
2530 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2531 size_t *offset, size_t *len)
2533 int i;
2534 size_t sg_len = 0, len_complete = 0;
2535 struct scatterlist *sg;
2536 struct page *page;
2538 WARN_ON(!irqs_disabled());
2540 for_each_sg(sgl, sg, sg_count, i) {
2541 len_complete = sg_len; /* Complete sg-entries */
2542 sg_len += sg->length;
2543 if (sg_len > *offset)
2544 break;
2547 if (unlikely(i == sg_count)) {
2548 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2549 "elements %d\n",
2550 __func__, sg_len, *offset, sg_count);
2551 WARN_ON(1);
2552 return NULL;
2555 /* Offset starting from the beginning of first page in this sg-entry */
2556 *offset = *offset - len_complete + sg->offset;
2558 /* Assumption: contiguous pages can be accessed as "page + i" */
2559 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2560 *offset &= ~PAGE_MASK;
2562 /* Bytes in this sg-entry from *offset to the end of the page */
2563 sg_len = PAGE_SIZE - *offset;
2564 if (*len > sg_len)
2565 *len = sg_len;
2567 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2569 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2572 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2573 * @virt: virtual address to be unmapped
2575 void scsi_kunmap_atomic_sg(void *virt)
2577 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2579 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);