4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
27 bool can_do_mlock(void)
29 if (rlimit(RLIMIT_MEMLOCK
) != 0)
31 if (capable(CAP_IPC_LOCK
))
35 EXPORT_SYMBOL(can_do_mlock
);
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
55 * LRU accounting for clear_page_mlock()
57 void clear_page_mlock(struct page
*page
)
59 if (!TestClearPageMlocked(page
))
62 mod_zone_page_state(page_zone(page
), NR_MLOCK
,
63 -hpage_nr_pages(page
));
64 count_vm_event(UNEVICTABLE_PGCLEARED
);
65 if (!isolate_lru_page(page
)) {
66 putback_lru_page(page
);
69 * We lost the race. the page already moved to evictable list.
71 if (PageUnevictable(page
))
72 count_vm_event(UNEVICTABLE_PGSTRANDED
);
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
80 void mlock_vma_page(struct page
*page
)
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page
));
85 VM_BUG_ON_PAGE(PageTail(page
), page
);
86 VM_BUG_ON_PAGE(PageCompound(page
) && PageDoubleMap(page
), page
);
88 if (!TestSetPageMlocked(page
)) {
89 mod_zone_page_state(page_zone(page
), NR_MLOCK
,
90 hpage_nr_pages(page
));
91 count_vm_event(UNEVICTABLE_PGMLOCKED
);
92 if (!isolate_lru_page(page
))
93 putback_lru_page(page
);
98 * Isolate a page from LRU with optional get_page() pin.
99 * Assumes lru_lock already held and page already pinned.
101 static bool __munlock_isolate_lru_page(struct page
*page
, bool getpage
)
104 struct lruvec
*lruvec
;
106 lruvec
= mem_cgroup_page_lruvec(page
, page_zone(page
));
110 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
118 * Finish munlock after successful page isolation
120 * Page must be locked. This is a wrapper for try_to_munlock()
121 * and putback_lru_page() with munlock accounting.
123 static void __munlock_isolated_page(struct page
*page
)
125 int ret
= SWAP_AGAIN
;
128 * Optimization: if the page was mapped just once, that's our mapping
129 * and we don't need to check all the other vmas.
131 if (page_mapcount(page
) > 1)
132 ret
= try_to_munlock(page
);
134 /* Did try_to_unlock() succeed or punt? */
135 if (ret
!= SWAP_MLOCK
)
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
138 putback_lru_page(page
);
142 * Accounting for page isolation fail during munlock
144 * Performs accounting when page isolation fails in munlock. There is nothing
145 * else to do because it means some other task has already removed the page
146 * from the LRU. putback_lru_page() will take care of removing the page from
147 * the unevictable list, if necessary. vmscan [page_referenced()] will move
148 * the page back to the unevictable list if some other vma has it mlocked.
150 static void __munlock_isolation_failed(struct page
*page
)
152 if (PageUnevictable(page
))
153 __count_vm_event(UNEVICTABLE_PGSTRANDED
);
155 __count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
159 * munlock_vma_page - munlock a vma page
160 * @page - page to be unlocked, either a normal page or THP page head
162 * returns the size of the page as a page mask (0 for normal page,
163 * HPAGE_PMD_NR - 1 for THP head page)
165 * called from munlock()/munmap() path with page supposedly on the LRU.
166 * When we munlock a page, because the vma where we found the page is being
167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168 * page locked so that we can leave it on the unevictable lru list and not
169 * bother vmscan with it. However, to walk the page's rmap list in
170 * try_to_munlock() we must isolate the page from the LRU. If some other
171 * task has removed the page from the LRU, we won't be able to do that.
172 * So we clear the PageMlocked as we might not get another chance. If we
173 * can't isolate the page, we leave it for putback_lru_page() and vmscan
174 * [page_referenced()/try_to_unmap()] to deal with.
176 unsigned int munlock_vma_page(struct page
*page
)
179 struct zone
*zone
= page_zone(page
);
181 /* For try_to_munlock() and to serialize with page migration */
182 BUG_ON(!PageLocked(page
));
184 VM_BUG_ON_PAGE(PageTail(page
), page
);
187 * Serialize with any parallel __split_huge_page_refcount() which
188 * might otherwise copy PageMlocked to part of the tail pages before
189 * we clear it in the head page. It also stabilizes hpage_nr_pages().
191 spin_lock_irq(&zone
->lru_lock
);
193 nr_pages
= hpage_nr_pages(page
);
194 if (!TestClearPageMlocked(page
))
197 __mod_zone_page_state(zone
, NR_MLOCK
, -nr_pages
);
199 if (__munlock_isolate_lru_page(page
, true)) {
200 spin_unlock_irq(&zone
->lru_lock
);
201 __munlock_isolated_page(page
);
204 __munlock_isolation_failed(page
);
207 spin_unlock_irq(&zone
->lru_lock
);
214 * convert get_user_pages() return value to posix mlock() error
216 static int __mlock_posix_error_return(long retval
)
218 if (retval
== -EFAULT
)
220 else if (retval
== -ENOMEM
)
226 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
228 * The fast path is available only for evictable pages with single mapping.
229 * Then we can bypass the per-cpu pvec and get better performance.
230 * when mapcount > 1 we need try_to_munlock() which can fail.
231 * when !page_evictable(), we need the full redo logic of putback_lru_page to
232 * avoid leaving evictable page in unevictable list.
234 * In case of success, @page is added to @pvec and @pgrescued is incremented
235 * in case that the page was previously unevictable. @page is also unlocked.
237 static bool __putback_lru_fast_prepare(struct page
*page
, struct pagevec
*pvec
,
240 VM_BUG_ON_PAGE(PageLRU(page
), page
);
241 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
243 if (page_mapcount(page
) <= 1 && page_evictable(page
)) {
244 pagevec_add(pvec
, page
);
245 if (TestClearPageUnevictable(page
))
255 * Putback multiple evictable pages to the LRU
257 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
258 * the pages might have meanwhile become unevictable but that is OK.
260 static void __putback_lru_fast(struct pagevec
*pvec
, int pgrescued
)
262 count_vm_events(UNEVICTABLE_PGMUNLOCKED
, pagevec_count(pvec
));
264 *__pagevec_lru_add() calls release_pages() so we don't call
265 * put_page() explicitly
267 __pagevec_lru_add(pvec
);
268 count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
272 * Munlock a batch of pages from the same zone
274 * The work is split to two main phases. First phase clears the Mlocked flag
275 * and attempts to isolate the pages, all under a single zone lru lock.
276 * The second phase finishes the munlock only for pages where isolation
279 * Note that the pagevec may be modified during the process.
281 static void __munlock_pagevec(struct pagevec
*pvec
, struct zone
*zone
)
284 int nr
= pagevec_count(pvec
);
286 struct pagevec pvec_putback
;
289 pagevec_init(&pvec_putback
, 0);
291 /* Phase 1: page isolation */
292 spin_lock_irq(&zone
->lru_lock
);
293 for (i
= 0; i
< nr
; i
++) {
294 struct page
*page
= pvec
->pages
[i
];
296 if (TestClearPageMlocked(page
)) {
298 * We already have pin from follow_page_mask()
299 * so we can spare the get_page() here.
301 if (__munlock_isolate_lru_page(page
, false))
304 __munlock_isolation_failed(page
);
308 * We won't be munlocking this page in the next phase
309 * but we still need to release the follow_page_mask()
310 * pin. We cannot do it under lru_lock however. If it's
311 * the last pin, __page_cache_release() would deadlock.
313 pagevec_add(&pvec_putback
, pvec
->pages
[i
]);
314 pvec
->pages
[i
] = NULL
;
316 delta_munlocked
= -nr
+ pagevec_count(&pvec_putback
);
317 __mod_zone_page_state(zone
, NR_MLOCK
, delta_munlocked
);
318 spin_unlock_irq(&zone
->lru_lock
);
320 /* Now we can release pins of pages that we are not munlocking */
321 pagevec_release(&pvec_putback
);
323 /* Phase 2: page munlock */
324 for (i
= 0; i
< nr
; i
++) {
325 struct page
*page
= pvec
->pages
[i
];
329 if (!__putback_lru_fast_prepare(page
, &pvec_putback
,
332 * Slow path. We don't want to lose the last
333 * pin before unlock_page()
335 get_page(page
); /* for putback_lru_page() */
336 __munlock_isolated_page(page
);
338 put_page(page
); /* from follow_page_mask() */
344 * Phase 3: page putback for pages that qualified for the fast path
345 * This will also call put_page() to return pin from follow_page_mask()
347 if (pagevec_count(&pvec_putback
))
348 __putback_lru_fast(&pvec_putback
, pgrescued
);
352 * Fill up pagevec for __munlock_pagevec using pte walk
354 * The function expects that the struct page corresponding to @start address is
355 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
357 * The rest of @pvec is filled by subsequent pages within the same pmd and same
358 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
359 * pages also get pinned.
361 * Returns the address of the next page that should be scanned. This equals
362 * @start + PAGE_SIZE when no page could be added by the pte walk.
364 static unsigned long __munlock_pagevec_fill(struct pagevec
*pvec
,
365 struct vm_area_struct
*vma
, int zoneid
, unsigned long start
,
372 * Initialize pte walk starting at the already pinned page where we
373 * are sure that there is a pte, as it was pinned under the same
376 pte
= get_locked_pte(vma
->vm_mm
, start
, &ptl
);
377 /* Make sure we do not cross the page table boundary */
378 end
= pgd_addr_end(start
, end
);
379 end
= pud_addr_end(start
, end
);
380 end
= pmd_addr_end(start
, end
);
382 /* The page next to the pinned page is the first we will try to get */
384 while (start
< end
) {
385 struct page
*page
= NULL
;
387 if (pte_present(*pte
))
388 page
= vm_normal_page(vma
, start
, *pte
);
390 * Break if page could not be obtained or the page's node+zone does not
393 if (!page
|| page_zone_id(page
) != zoneid
)
397 * Do not use pagevec for PTE-mapped THP,
398 * munlock_vma_pages_range() will handle them.
400 if (PageTransCompound(page
))
405 * Increase the address that will be returned *before* the
406 * eventual break due to pvec becoming full by adding the page
409 if (pagevec_add(pvec
, page
) == 0)
412 pte_unmap_unlock(pte
, ptl
);
417 * munlock_vma_pages_range() - munlock all pages in the vma range.'
418 * @vma - vma containing range to be munlock()ed.
419 * @start - start address in @vma of the range
420 * @end - end of range in @vma.
422 * For mremap(), munmap() and exit().
424 * Called with @vma VM_LOCKED.
426 * Returns with VM_LOCKED cleared. Callers must be prepared to
429 * We don't save and restore VM_LOCKED here because pages are
430 * still on lru. In unmap path, pages might be scanned by reclaim
431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
432 * free them. This will result in freeing mlocked pages.
434 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
435 unsigned long start
, unsigned long end
)
437 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
439 while (start
< end
) {
441 unsigned int page_mask
;
442 unsigned long page_increm
;
447 pagevec_init(&pvec
, 0);
449 * Although FOLL_DUMP is intended for get_dump_page(),
450 * it just so happens that its special treatment of the
451 * ZERO_PAGE (returning an error instead of doing get_page)
452 * suits munlock very well (and if somehow an abnormal page
453 * has sneaked into the range, we won't oops here: great).
455 page
= follow_page_mask(vma
, start
, FOLL_GET
| FOLL_DUMP
,
458 if (page
&& !IS_ERR(page
)) {
459 if (PageTransTail(page
)) {
460 VM_BUG_ON_PAGE(PageMlocked(page
), page
);
461 put_page(page
); /* follow_page_mask() */
462 } else if (PageTransHuge(page
)) {
465 * Any THP page found by follow_page_mask() may
466 * have gotten split before reaching
467 * munlock_vma_page(), so we need to recompute
468 * the page_mask here.
470 page_mask
= munlock_vma_page(page
);
472 put_page(page
); /* follow_page_mask() */
475 * Non-huge pages are handled in batches via
476 * pagevec. The pin from follow_page_mask()
477 * prevents them from collapsing by THP.
479 pagevec_add(&pvec
, page
);
480 zone
= page_zone(page
);
481 zoneid
= page_zone_id(page
);
484 * Try to fill the rest of pagevec using fast
485 * pte walk. This will also update start to
486 * the next page to process. Then munlock the
489 start
= __munlock_pagevec_fill(&pvec
, vma
,
491 __munlock_pagevec(&pvec
, zone
);
495 page_increm
= 1 + page_mask
;
496 start
+= page_increm
* PAGE_SIZE
;
503 * mlock_fixup - handle mlock[all]/munlock[all] requests.
505 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
506 * munlock is a no-op. However, for some special vmas, we go ahead and
509 * For vmas that pass the filters, merge/split as appropriate.
511 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
512 unsigned long start
, unsigned long end
, vm_flags_t newflags
)
514 struct mm_struct
*mm
= vma
->vm_mm
;
518 int lock
= !!(newflags
& VM_LOCKED
);
520 if (newflags
== vma
->vm_flags
|| (vma
->vm_flags
& VM_SPECIAL
) ||
521 is_vm_hugetlb_page(vma
) || vma
== get_gate_vma(current
->mm
))
522 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
525 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
526 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
527 vma
->vm_file
, pgoff
, vma_policy(vma
),
528 vma
->vm_userfaultfd_ctx
);
534 if (start
!= vma
->vm_start
) {
535 ret
= split_vma(mm
, vma
, start
, 1);
540 if (end
!= vma
->vm_end
) {
541 ret
= split_vma(mm
, vma
, end
, 0);
548 * Keep track of amount of locked VM.
550 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
552 nr_pages
= -nr_pages
;
553 mm
->locked_vm
+= nr_pages
;
556 * vm_flags is protected by the mmap_sem held in write mode.
557 * It's okay if try_to_unmap_one unmaps a page just after we
558 * set VM_LOCKED, populate_vma_page_range will bring it back.
562 vma
->vm_flags
= newflags
;
564 munlock_vma_pages_range(vma
, start
, end
);
571 static int apply_vma_lock_flags(unsigned long start
, size_t len
,
574 unsigned long nstart
, end
, tmp
;
575 struct vm_area_struct
* vma
, * prev
;
578 VM_BUG_ON(offset_in_page(start
));
579 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
585 vma
= find_vma(current
->mm
, start
);
586 if (!vma
|| vma
->vm_start
> start
)
590 if (start
> vma
->vm_start
)
593 for (nstart
= start
; ; ) {
594 vm_flags_t newflags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
598 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
602 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
606 if (nstart
< prev
->vm_end
)
607 nstart
= prev
->vm_end
;
612 if (!vma
|| vma
->vm_start
!= nstart
) {
620 static __must_check
int do_mlock(unsigned long start
, size_t len
, vm_flags_t flags
)
622 unsigned long locked
;
623 unsigned long lock_limit
;
629 lru_add_drain_all(); /* flush pagevec */
631 len
= PAGE_ALIGN(len
+ (offset_in_page(start
)));
634 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
635 lock_limit
>>= PAGE_SHIFT
;
636 locked
= len
>> PAGE_SHIFT
;
638 if (down_write_killable(¤t
->mm
->mmap_sem
))
641 locked
+= current
->mm
->locked_vm
;
643 /* check against resource limits */
644 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
645 error
= apply_vma_lock_flags(start
, len
, flags
);
647 up_write(¤t
->mm
->mmap_sem
);
651 error
= __mm_populate(start
, len
, 0);
653 return __mlock_posix_error_return(error
);
657 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
659 return do_mlock(start
, len
, VM_LOCKED
);
662 SYSCALL_DEFINE3(mlock2
, unsigned long, start
, size_t, len
, int, flags
)
664 vm_flags_t vm_flags
= VM_LOCKED
;
666 if (flags
& ~MLOCK_ONFAULT
)
669 if (flags
& MLOCK_ONFAULT
)
670 vm_flags
|= VM_LOCKONFAULT
;
672 return do_mlock(start
, len
, vm_flags
);
675 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
679 len
= PAGE_ALIGN(len
+ (offset_in_page(start
)));
682 if (down_write_killable(¤t
->mm
->mmap_sem
))
684 ret
= apply_vma_lock_flags(start
, len
, 0);
685 up_write(¤t
->mm
->mmap_sem
);
691 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
692 * and translate into the appropriate modifications to mm->def_flags and/or the
693 * flags for all current VMAs.
695 * There are a couple of subtleties with this. If mlockall() is called multiple
696 * times with different flags, the values do not necessarily stack. If mlockall
697 * is called once including the MCL_FUTURE flag and then a second time without
698 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
700 static int apply_mlockall_flags(int flags
)
702 struct vm_area_struct
* vma
, * prev
= NULL
;
703 vm_flags_t to_add
= 0;
705 current
->mm
->def_flags
&= VM_LOCKED_CLEAR_MASK
;
706 if (flags
& MCL_FUTURE
) {
707 current
->mm
->def_flags
|= VM_LOCKED
;
709 if (flags
& MCL_ONFAULT
)
710 current
->mm
->def_flags
|= VM_LOCKONFAULT
;
712 if (!(flags
& MCL_CURRENT
))
716 if (flags
& MCL_CURRENT
) {
718 if (flags
& MCL_ONFAULT
)
719 to_add
|= VM_LOCKONFAULT
;
722 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
725 newflags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
729 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
730 cond_resched_rcu_qs();
736 SYSCALL_DEFINE1(mlockall
, int, flags
)
738 unsigned long lock_limit
;
741 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
| MCL_ONFAULT
)))
747 if (flags
& MCL_CURRENT
)
748 lru_add_drain_all(); /* flush pagevec */
750 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
751 lock_limit
>>= PAGE_SHIFT
;
753 if (down_write_killable(¤t
->mm
->mmap_sem
))
757 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
758 capable(CAP_IPC_LOCK
))
759 ret
= apply_mlockall_flags(flags
);
760 up_write(¤t
->mm
->mmap_sem
);
761 if (!ret
&& (flags
& MCL_CURRENT
))
762 mm_populate(0, TASK_SIZE
);
767 SYSCALL_DEFINE0(munlockall
)
771 if (down_write_killable(¤t
->mm
->mmap_sem
))
773 ret
= apply_mlockall_flags(0);
774 up_write(¤t
->mm
->mmap_sem
);
779 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
780 * shm segments) get accounted against the user_struct instead.
782 static DEFINE_SPINLOCK(shmlock_user_lock
);
784 int user_shm_lock(size_t size
, struct user_struct
*user
)
786 unsigned long lock_limit
, locked
;
789 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
790 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
791 if (lock_limit
== RLIM_INFINITY
)
793 lock_limit
>>= PAGE_SHIFT
;
794 spin_lock(&shmlock_user_lock
);
796 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
799 user
->locked_shm
+= locked
;
802 spin_unlock(&shmlock_user_lock
);
806 void user_shm_unlock(size_t size
, struct user_struct
*user
)
808 spin_lock(&shmlock_user_lock
);
809 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
810 spin_unlock(&shmlock_user_lock
);