4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
35 struct block_device bdev
;
36 struct inode vfs_inode
;
39 static const struct address_space_operations def_blk_aops
;
41 static inline struct bdev_inode
*BDEV_I(struct inode
*inode
)
43 return container_of(inode
, struct bdev_inode
, vfs_inode
);
46 inline struct block_device
*I_BDEV(struct inode
*inode
)
48 return &BDEV_I(inode
)->bdev
;
50 EXPORT_SYMBOL(I_BDEV
);
52 static void bdev_write_inode(struct inode
*inode
)
54 spin_lock(&inode
->i_lock
);
55 while (inode
->i_state
& I_DIRTY
) {
56 spin_unlock(&inode
->i_lock
);
57 WARN_ON_ONCE(write_inode_now(inode
, true));
58 spin_lock(&inode
->i_lock
);
60 spin_unlock(&inode
->i_lock
);
63 /* Kill _all_ buffers and pagecache , dirty or not.. */
64 void kill_bdev(struct block_device
*bdev
)
66 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
68 if (mapping
->nrpages
== 0 && mapping
->nrshadows
== 0)
72 truncate_inode_pages(mapping
, 0);
74 EXPORT_SYMBOL(kill_bdev
);
76 /* Invalidate clean unused buffers and pagecache. */
77 void invalidate_bdev(struct block_device
*bdev
)
79 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
81 if (mapping
->nrpages
== 0)
85 lru_add_drain_all(); /* make sure all lru add caches are flushed */
86 invalidate_mapping_pages(mapping
, 0, -1);
87 /* 99% of the time, we don't need to flush the cleancache on the bdev.
88 * But, for the strange corners, lets be cautious
90 cleancache_invalidate_inode(mapping
);
92 EXPORT_SYMBOL(invalidate_bdev
);
94 int set_blocksize(struct block_device
*bdev
, int size
)
96 /* Size must be a power of two, and between 512 and PAGE_SIZE */
97 if (size
> PAGE_SIZE
|| size
< 512 || !is_power_of_2(size
))
100 /* Size cannot be smaller than the size supported by the device */
101 if (size
< bdev_logical_block_size(bdev
))
104 /* Don't change the size if it is same as current */
105 if (bdev
->bd_block_size
!= size
) {
107 bdev
->bd_block_size
= size
;
108 bdev
->bd_inode
->i_blkbits
= blksize_bits(size
);
114 EXPORT_SYMBOL(set_blocksize
);
116 int sb_set_blocksize(struct super_block
*sb
, int size
)
118 if (set_blocksize(sb
->s_bdev
, size
))
120 /* If we get here, we know size is power of two
121 * and it's value is between 512 and PAGE_SIZE */
122 sb
->s_blocksize
= size
;
123 sb
->s_blocksize_bits
= blksize_bits(size
);
124 return sb
->s_blocksize
;
127 EXPORT_SYMBOL(sb_set_blocksize
);
129 int sb_min_blocksize(struct super_block
*sb
, int size
)
131 int minsize
= bdev_logical_block_size(sb
->s_bdev
);
134 return sb_set_blocksize(sb
, size
);
137 EXPORT_SYMBOL(sb_min_blocksize
);
140 blkdev_get_block(struct inode
*inode
, sector_t iblock
,
141 struct buffer_head
*bh
, int create
)
143 bh
->b_bdev
= I_BDEV(inode
);
144 bh
->b_blocknr
= iblock
;
145 set_buffer_mapped(bh
);
150 blkdev_direct_IO(int rw
, struct kiocb
*iocb
, struct iov_iter
*iter
,
153 struct file
*file
= iocb
->ki_filp
;
154 struct inode
*inode
= file
->f_mapping
->host
;
156 return __blockdev_direct_IO(rw
, iocb
, inode
, I_BDEV(inode
), iter
,
157 offset
, blkdev_get_block
,
161 int __sync_blockdev(struct block_device
*bdev
, int wait
)
166 return filemap_flush(bdev
->bd_inode
->i_mapping
);
167 return filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
171 * Write out and wait upon all the dirty data associated with a block
172 * device via its mapping. Does not take the superblock lock.
174 int sync_blockdev(struct block_device
*bdev
)
176 return __sync_blockdev(bdev
, 1);
178 EXPORT_SYMBOL(sync_blockdev
);
181 * Write out and wait upon all dirty data associated with this
182 * device. Filesystem data as well as the underlying block
183 * device. Takes the superblock lock.
185 int fsync_bdev(struct block_device
*bdev
)
187 struct super_block
*sb
= get_super(bdev
);
189 int res
= sync_filesystem(sb
);
193 return sync_blockdev(bdev
);
195 EXPORT_SYMBOL(fsync_bdev
);
198 * freeze_bdev -- lock a filesystem and force it into a consistent state
199 * @bdev: blockdevice to lock
201 * If a superblock is found on this device, we take the s_umount semaphore
202 * on it to make sure nobody unmounts until the snapshot creation is done.
203 * The reference counter (bd_fsfreeze_count) guarantees that only the last
204 * unfreeze process can unfreeze the frozen filesystem actually when multiple
205 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
206 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
209 struct super_block
*freeze_bdev(struct block_device
*bdev
)
211 struct super_block
*sb
;
214 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
215 if (++bdev
->bd_fsfreeze_count
> 1) {
217 * We don't even need to grab a reference - the first call
218 * to freeze_bdev grab an active reference and only the last
219 * thaw_bdev drops it.
221 sb
= get_super(bdev
);
223 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
227 sb
= get_active_super(bdev
);
230 if (sb
->s_op
->freeze_super
)
231 error
= sb
->s_op
->freeze_super(sb
);
233 error
= freeze_super(sb
);
235 deactivate_super(sb
);
236 bdev
->bd_fsfreeze_count
--;
237 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
238 return ERR_PTR(error
);
240 deactivate_super(sb
);
243 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
244 return sb
; /* thaw_bdev releases s->s_umount */
246 EXPORT_SYMBOL(freeze_bdev
);
249 * thaw_bdev -- unlock filesystem
250 * @bdev: blockdevice to unlock
251 * @sb: associated superblock
253 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
255 int thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
259 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
260 if (!bdev
->bd_fsfreeze_count
)
264 if (--bdev
->bd_fsfreeze_count
> 0)
270 if (sb
->s_op
->thaw_super
)
271 error
= sb
->s_op
->thaw_super(sb
);
273 error
= thaw_super(sb
);
275 bdev
->bd_fsfreeze_count
++;
276 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
280 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
283 EXPORT_SYMBOL(thaw_bdev
);
285 static int blkdev_writepage(struct page
*page
, struct writeback_control
*wbc
)
287 return block_write_full_page(page
, blkdev_get_block
, wbc
);
290 static int blkdev_readpage(struct file
* file
, struct page
* page
)
292 return block_read_full_page(page
, blkdev_get_block
);
295 static int blkdev_readpages(struct file
*file
, struct address_space
*mapping
,
296 struct list_head
*pages
, unsigned nr_pages
)
298 return mpage_readpages(mapping
, pages
, nr_pages
, blkdev_get_block
);
301 static int blkdev_write_begin(struct file
*file
, struct address_space
*mapping
,
302 loff_t pos
, unsigned len
, unsigned flags
,
303 struct page
**pagep
, void **fsdata
)
305 return block_write_begin(mapping
, pos
, len
, flags
, pagep
,
309 static int blkdev_write_end(struct file
*file
, struct address_space
*mapping
,
310 loff_t pos
, unsigned len
, unsigned copied
,
311 struct page
*page
, void *fsdata
)
314 ret
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
317 page_cache_release(page
);
324 * for a block special file file_inode(file)->i_size is zero
325 * so we compute the size by hand (just as in block_read/write above)
327 static loff_t
block_llseek(struct file
*file
, loff_t offset
, int whence
)
329 struct inode
*bd_inode
= file
->f_mapping
->host
;
332 mutex_lock(&bd_inode
->i_mutex
);
333 retval
= fixed_size_llseek(file
, offset
, whence
, i_size_read(bd_inode
));
334 mutex_unlock(&bd_inode
->i_mutex
);
338 int blkdev_fsync(struct file
*filp
, loff_t start
, loff_t end
, int datasync
)
340 struct inode
*bd_inode
= filp
->f_mapping
->host
;
341 struct block_device
*bdev
= I_BDEV(bd_inode
);
344 error
= filemap_write_and_wait_range(filp
->f_mapping
, start
, end
);
349 * There is no need to serialise calls to blkdev_issue_flush with
350 * i_mutex and doing so causes performance issues with concurrent
351 * O_SYNC writers to a block device.
353 error
= blkdev_issue_flush(bdev
, GFP_KERNEL
, NULL
);
354 if (error
== -EOPNOTSUPP
)
359 EXPORT_SYMBOL(blkdev_fsync
);
362 * bdev_read_page() - Start reading a page from a block device
363 * @bdev: The device to read the page from
364 * @sector: The offset on the device to read the page to (need not be aligned)
365 * @page: The page to read
367 * On entry, the page should be locked. It will be unlocked when the page
368 * has been read. If the block driver implements rw_page synchronously,
369 * that will be true on exit from this function, but it need not be.
371 * Errors returned by this function are usually "soft", eg out of memory, or
372 * queue full; callers should try a different route to read this page rather
373 * than propagate an error back up the stack.
375 * Return: negative errno if an error occurs, 0 if submission was successful.
377 int bdev_read_page(struct block_device
*bdev
, sector_t sector
,
380 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
383 return ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, READ
);
385 EXPORT_SYMBOL_GPL(bdev_read_page
);
388 * bdev_write_page() - Start writing a page to a block device
389 * @bdev: The device to write the page to
390 * @sector: The offset on the device to write the page to (need not be aligned)
391 * @page: The page to write
392 * @wbc: The writeback_control for the write
394 * On entry, the page should be locked and not currently under writeback.
395 * On exit, if the write started successfully, the page will be unlocked and
396 * under writeback. If the write failed already (eg the driver failed to
397 * queue the page to the device), the page will still be locked. If the
398 * caller is a ->writepage implementation, it will need to unlock the page.
400 * Errors returned by this function are usually "soft", eg out of memory, or
401 * queue full; callers should try a different route to write this page rather
402 * than propagate an error back up the stack.
404 * Return: negative errno if an error occurs, 0 if submission was successful.
406 int bdev_write_page(struct block_device
*bdev
, sector_t sector
,
407 struct page
*page
, struct writeback_control
*wbc
)
410 int rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
;
411 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
414 set_page_writeback(page
);
415 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, rw
);
417 end_page_writeback(page
);
422 EXPORT_SYMBOL_GPL(bdev_write_page
);
425 * bdev_direct_access() - Get the address for directly-accessibly memory
426 * @bdev: The device containing the memory
427 * @sector: The offset within the device
428 * @addr: Where to put the address of the memory
429 * @pfn: The Page Frame Number for the memory
430 * @size: The number of bytes requested
432 * If a block device is made up of directly addressable memory, this function
433 * will tell the caller the PFN and the address of the memory. The address
434 * may be directly dereferenced within the kernel without the need to call
435 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
438 * Return: negative errno if an error occurs, otherwise the number of bytes
439 * accessible at this address.
441 long bdev_direct_access(struct block_device
*bdev
, sector_t sector
,
442 void **addr
, unsigned long *pfn
, long size
)
445 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
449 if (!ops
->direct_access
)
451 if ((sector
+ DIV_ROUND_UP(size
, 512)) >
452 part_nr_sects_read(bdev
->bd_part
))
454 sector
+= get_start_sect(bdev
);
455 if (sector
% (PAGE_SIZE
/ 512))
457 avail
= ops
->direct_access(bdev
, sector
, addr
, pfn
, size
);
460 return min(avail
, size
);
462 EXPORT_SYMBOL_GPL(bdev_direct_access
);
468 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(bdev_lock
);
469 static struct kmem_cache
* bdev_cachep __read_mostly
;
471 static struct inode
*bdev_alloc_inode(struct super_block
*sb
)
473 struct bdev_inode
*ei
= kmem_cache_alloc(bdev_cachep
, GFP_KERNEL
);
476 return &ei
->vfs_inode
;
479 static void bdev_i_callback(struct rcu_head
*head
)
481 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
482 struct bdev_inode
*bdi
= BDEV_I(inode
);
484 kmem_cache_free(bdev_cachep
, bdi
);
487 static void bdev_destroy_inode(struct inode
*inode
)
489 call_rcu(&inode
->i_rcu
, bdev_i_callback
);
492 static void init_once(void *foo
)
494 struct bdev_inode
*ei
= (struct bdev_inode
*) foo
;
495 struct block_device
*bdev
= &ei
->bdev
;
497 memset(bdev
, 0, sizeof(*bdev
));
498 mutex_init(&bdev
->bd_mutex
);
499 INIT_LIST_HEAD(&bdev
->bd_inodes
);
500 INIT_LIST_HEAD(&bdev
->bd_list
);
502 INIT_LIST_HEAD(&bdev
->bd_holder_disks
);
504 inode_init_once(&ei
->vfs_inode
);
505 /* Initialize mutex for freeze. */
506 mutex_init(&bdev
->bd_fsfreeze_mutex
);
509 static inline void __bd_forget(struct inode
*inode
)
511 list_del_init(&inode
->i_devices
);
512 inode
->i_bdev
= NULL
;
513 inode
->i_mapping
= &inode
->i_data
;
516 static void bdev_evict_inode(struct inode
*inode
)
518 struct block_device
*bdev
= &BDEV_I(inode
)->bdev
;
520 truncate_inode_pages_final(&inode
->i_data
);
521 invalidate_inode_buffers(inode
); /* is it needed here? */
523 spin_lock(&bdev_lock
);
524 while ( (p
= bdev
->bd_inodes
.next
) != &bdev
->bd_inodes
) {
525 __bd_forget(list_entry(p
, struct inode
, i_devices
));
527 list_del_init(&bdev
->bd_list
);
528 spin_unlock(&bdev_lock
);
531 static const struct super_operations bdev_sops
= {
532 .statfs
= simple_statfs
,
533 .alloc_inode
= bdev_alloc_inode
,
534 .destroy_inode
= bdev_destroy_inode
,
535 .drop_inode
= generic_delete_inode
,
536 .evict_inode
= bdev_evict_inode
,
539 static struct dentry
*bd_mount(struct file_system_type
*fs_type
,
540 int flags
, const char *dev_name
, void *data
)
542 return mount_pseudo(fs_type
, "bdev:", &bdev_sops
, NULL
, BDEVFS_MAGIC
);
545 static struct file_system_type bd_type
= {
548 .kill_sb
= kill_anon_super
,
551 static struct super_block
*blockdev_superblock __read_mostly
;
553 void __init
bdev_cache_init(void)
556 static struct vfsmount
*bd_mnt
;
558 bdev_cachep
= kmem_cache_create("bdev_cache", sizeof(struct bdev_inode
),
559 0, (SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|
560 SLAB_MEM_SPREAD
|SLAB_PANIC
),
562 err
= register_filesystem(&bd_type
);
564 panic("Cannot register bdev pseudo-fs");
565 bd_mnt
= kern_mount(&bd_type
);
567 panic("Cannot create bdev pseudo-fs");
568 blockdev_superblock
= bd_mnt
->mnt_sb
; /* For writeback */
572 * Most likely _very_ bad one - but then it's hardly critical for small
573 * /dev and can be fixed when somebody will need really large one.
574 * Keep in mind that it will be fed through icache hash function too.
576 static inline unsigned long hash(dev_t dev
)
578 return MAJOR(dev
)+MINOR(dev
);
581 static int bdev_test(struct inode
*inode
, void *data
)
583 return BDEV_I(inode
)->bdev
.bd_dev
== *(dev_t
*)data
;
586 static int bdev_set(struct inode
*inode
, void *data
)
588 BDEV_I(inode
)->bdev
.bd_dev
= *(dev_t
*)data
;
592 static LIST_HEAD(all_bdevs
);
594 struct block_device
*bdget(dev_t dev
)
596 struct block_device
*bdev
;
599 inode
= iget5_locked(blockdev_superblock
, hash(dev
),
600 bdev_test
, bdev_set
, &dev
);
605 bdev
= &BDEV_I(inode
)->bdev
;
607 if (inode
->i_state
& I_NEW
) {
608 bdev
->bd_contains
= NULL
;
609 bdev
->bd_super
= NULL
;
610 bdev
->bd_inode
= inode
;
611 bdev
->bd_block_size
= (1 << inode
->i_blkbits
);
612 bdev
->bd_part_count
= 0;
613 bdev
->bd_invalidated
= 0;
614 inode
->i_mode
= S_IFBLK
;
616 inode
->i_bdev
= bdev
;
617 inode
->i_data
.a_ops
= &def_blk_aops
;
618 mapping_set_gfp_mask(&inode
->i_data
, GFP_USER
);
619 spin_lock(&bdev_lock
);
620 list_add(&bdev
->bd_list
, &all_bdevs
);
621 spin_unlock(&bdev_lock
);
622 unlock_new_inode(inode
);
627 EXPORT_SYMBOL(bdget
);
630 * bdgrab -- Grab a reference to an already referenced block device
631 * @bdev: Block device to grab a reference to.
633 struct block_device
*bdgrab(struct block_device
*bdev
)
635 ihold(bdev
->bd_inode
);
638 EXPORT_SYMBOL(bdgrab
);
640 long nr_blockdev_pages(void)
642 struct block_device
*bdev
;
644 spin_lock(&bdev_lock
);
645 list_for_each_entry(bdev
, &all_bdevs
, bd_list
) {
646 ret
+= bdev
->bd_inode
->i_mapping
->nrpages
;
648 spin_unlock(&bdev_lock
);
652 void bdput(struct block_device
*bdev
)
654 iput(bdev
->bd_inode
);
657 EXPORT_SYMBOL(bdput
);
659 static struct block_device
*bd_acquire(struct inode
*inode
)
661 struct block_device
*bdev
;
663 spin_lock(&bdev_lock
);
664 bdev
= inode
->i_bdev
;
666 ihold(bdev
->bd_inode
);
667 spin_unlock(&bdev_lock
);
670 spin_unlock(&bdev_lock
);
672 bdev
= bdget(inode
->i_rdev
);
674 spin_lock(&bdev_lock
);
675 if (!inode
->i_bdev
) {
677 * We take an additional reference to bd_inode,
678 * and it's released in clear_inode() of inode.
679 * So, we can access it via ->i_mapping always
682 ihold(bdev
->bd_inode
);
683 inode
->i_bdev
= bdev
;
684 inode
->i_mapping
= bdev
->bd_inode
->i_mapping
;
685 list_add(&inode
->i_devices
, &bdev
->bd_inodes
);
687 spin_unlock(&bdev_lock
);
692 int sb_is_blkdev_sb(struct super_block
*sb
)
694 return sb
== blockdev_superblock
;
697 /* Call when you free inode */
699 void bd_forget(struct inode
*inode
)
701 struct block_device
*bdev
= NULL
;
703 spin_lock(&bdev_lock
);
704 if (!sb_is_blkdev_sb(inode
->i_sb
))
705 bdev
= inode
->i_bdev
;
707 spin_unlock(&bdev_lock
);
710 iput(bdev
->bd_inode
);
714 * bd_may_claim - test whether a block device can be claimed
715 * @bdev: block device of interest
716 * @whole: whole block device containing @bdev, may equal @bdev
717 * @holder: holder trying to claim @bdev
719 * Test whether @bdev can be claimed by @holder.
722 * spin_lock(&bdev_lock).
725 * %true if @bdev can be claimed, %false otherwise.
727 static bool bd_may_claim(struct block_device
*bdev
, struct block_device
*whole
,
730 if (bdev
->bd_holder
== holder
)
731 return true; /* already a holder */
732 else if (bdev
->bd_holder
!= NULL
)
733 return false; /* held by someone else */
734 else if (bdev
->bd_contains
== bdev
)
735 return true; /* is a whole device which isn't held */
737 else if (whole
->bd_holder
== bd_may_claim
)
738 return true; /* is a partition of a device that is being partitioned */
739 else if (whole
->bd_holder
!= NULL
)
740 return false; /* is a partition of a held device */
742 return true; /* is a partition of an un-held device */
746 * bd_prepare_to_claim - prepare to claim a block device
747 * @bdev: block device of interest
748 * @whole: the whole device containing @bdev, may equal @bdev
749 * @holder: holder trying to claim @bdev
751 * Prepare to claim @bdev. This function fails if @bdev is already
752 * claimed by another holder and waits if another claiming is in
753 * progress. This function doesn't actually claim. On successful
754 * return, the caller has ownership of bd_claiming and bd_holder[s].
757 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
761 * 0 if @bdev can be claimed, -EBUSY otherwise.
763 static int bd_prepare_to_claim(struct block_device
*bdev
,
764 struct block_device
*whole
, void *holder
)
767 /* if someone else claimed, fail */
768 if (!bd_may_claim(bdev
, whole
, holder
))
771 /* if claiming is already in progress, wait for it to finish */
772 if (whole
->bd_claiming
) {
773 wait_queue_head_t
*wq
= bit_waitqueue(&whole
->bd_claiming
, 0);
776 prepare_to_wait(wq
, &wait
, TASK_UNINTERRUPTIBLE
);
777 spin_unlock(&bdev_lock
);
779 finish_wait(wq
, &wait
);
780 spin_lock(&bdev_lock
);
789 * bd_start_claiming - start claiming a block device
790 * @bdev: block device of interest
791 * @holder: holder trying to claim @bdev
793 * @bdev is about to be opened exclusively. Check @bdev can be opened
794 * exclusively and mark that an exclusive open is in progress. Each
795 * successful call to this function must be matched with a call to
796 * either bd_finish_claiming() or bd_abort_claiming() (which do not
799 * This function is used to gain exclusive access to the block device
800 * without actually causing other exclusive open attempts to fail. It
801 * should be used when the open sequence itself requires exclusive
802 * access but may subsequently fail.
808 * Pointer to the block device containing @bdev on success, ERR_PTR()
811 static struct block_device
*bd_start_claiming(struct block_device
*bdev
,
814 struct gendisk
*disk
;
815 struct block_device
*whole
;
821 * @bdev might not have been initialized properly yet, look up
822 * and grab the outer block device the hard way.
824 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
826 return ERR_PTR(-ENXIO
);
829 * Normally, @bdev should equal what's returned from bdget_disk()
830 * if partno is 0; however, some drivers (floppy) use multiple
831 * bdev's for the same physical device and @bdev may be one of the
832 * aliases. Keep @bdev if partno is 0. This means claimer
833 * tracking is broken for those devices but it has always been that
837 whole
= bdget_disk(disk
, 0);
839 whole
= bdgrab(bdev
);
841 module_put(disk
->fops
->owner
);
844 return ERR_PTR(-ENOMEM
);
846 /* prepare to claim, if successful, mark claiming in progress */
847 spin_lock(&bdev_lock
);
849 err
= bd_prepare_to_claim(bdev
, whole
, holder
);
851 whole
->bd_claiming
= holder
;
852 spin_unlock(&bdev_lock
);
855 spin_unlock(&bdev_lock
);
862 struct bd_holder_disk
{
863 struct list_head list
;
864 struct gendisk
*disk
;
868 static struct bd_holder_disk
*bd_find_holder_disk(struct block_device
*bdev
,
869 struct gendisk
*disk
)
871 struct bd_holder_disk
*holder
;
873 list_for_each_entry(holder
, &bdev
->bd_holder_disks
, list
)
874 if (holder
->disk
== disk
)
879 static int add_symlink(struct kobject
*from
, struct kobject
*to
)
881 return sysfs_create_link(from
, to
, kobject_name(to
));
884 static void del_symlink(struct kobject
*from
, struct kobject
*to
)
886 sysfs_remove_link(from
, kobject_name(to
));
890 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
891 * @bdev: the claimed slave bdev
892 * @disk: the holding disk
894 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
896 * This functions creates the following sysfs symlinks.
898 * - from "slaves" directory of the holder @disk to the claimed @bdev
899 * - from "holders" directory of the @bdev to the holder @disk
901 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
902 * passed to bd_link_disk_holder(), then:
904 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
905 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
907 * The caller must have claimed @bdev before calling this function and
908 * ensure that both @bdev and @disk are valid during the creation and
909 * lifetime of these symlinks.
915 * 0 on success, -errno on failure.
917 int bd_link_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
919 struct bd_holder_disk
*holder
;
922 mutex_lock(&bdev
->bd_mutex
);
924 WARN_ON_ONCE(!bdev
->bd_holder
);
926 /* FIXME: remove the following once add_disk() handles errors */
927 if (WARN_ON(!disk
->slave_dir
|| !bdev
->bd_part
->holder_dir
))
930 holder
= bd_find_holder_disk(bdev
, disk
);
936 holder
= kzalloc(sizeof(*holder
), GFP_KERNEL
);
942 INIT_LIST_HEAD(&holder
->list
);
946 ret
= add_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
950 ret
= add_symlink(bdev
->bd_part
->holder_dir
, &disk_to_dev(disk
)->kobj
);
954 * bdev could be deleted beneath us which would implicitly destroy
955 * the holder directory. Hold on to it.
957 kobject_get(bdev
->bd_part
->holder_dir
);
959 list_add(&holder
->list
, &bdev
->bd_holder_disks
);
963 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
967 mutex_unlock(&bdev
->bd_mutex
);
970 EXPORT_SYMBOL_GPL(bd_link_disk_holder
);
973 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
974 * @bdev: the calimed slave bdev
975 * @disk: the holding disk
977 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
982 void bd_unlink_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
984 struct bd_holder_disk
*holder
;
986 mutex_lock(&bdev
->bd_mutex
);
988 holder
= bd_find_holder_disk(bdev
, disk
);
990 if (!WARN_ON_ONCE(holder
== NULL
) && !--holder
->refcnt
) {
991 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
992 del_symlink(bdev
->bd_part
->holder_dir
,
993 &disk_to_dev(disk
)->kobj
);
994 kobject_put(bdev
->bd_part
->holder_dir
);
995 list_del_init(&holder
->list
);
999 mutex_unlock(&bdev
->bd_mutex
);
1001 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder
);
1005 * flush_disk - invalidates all buffer-cache entries on a disk
1007 * @bdev: struct block device to be flushed
1008 * @kill_dirty: flag to guide handling of dirty inodes
1010 * Invalidates all buffer-cache entries on a disk. It should be called
1011 * when a disk has been changed -- either by a media change or online
1014 static void flush_disk(struct block_device
*bdev
, bool kill_dirty
)
1016 if (__invalidate_device(bdev
, kill_dirty
)) {
1017 char name
[BDEVNAME_SIZE
] = "";
1020 disk_name(bdev
->bd_disk
, 0, name
);
1021 printk(KERN_WARNING
"VFS: busy inodes on changed media or "
1022 "resized disk %s\n", name
);
1027 if (disk_part_scan_enabled(bdev
->bd_disk
))
1028 bdev
->bd_invalidated
= 1;
1032 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1033 * @disk: struct gendisk to check
1034 * @bdev: struct bdev to adjust.
1036 * This routine checks to see if the bdev size does not match the disk size
1037 * and adjusts it if it differs.
1039 void check_disk_size_change(struct gendisk
*disk
, struct block_device
*bdev
)
1041 loff_t disk_size
, bdev_size
;
1043 disk_size
= (loff_t
)get_capacity(disk
) << 9;
1044 bdev_size
= i_size_read(bdev
->bd_inode
);
1045 if (disk_size
!= bdev_size
) {
1046 char name
[BDEVNAME_SIZE
];
1048 disk_name(disk
, 0, name
);
1050 "%s: detected capacity change from %lld to %lld\n",
1051 name
, bdev_size
, disk_size
);
1052 i_size_write(bdev
->bd_inode
, disk_size
);
1053 flush_disk(bdev
, false);
1056 EXPORT_SYMBOL(check_disk_size_change
);
1059 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1060 * @disk: struct gendisk to be revalidated
1062 * This routine is a wrapper for lower-level driver's revalidate_disk
1063 * call-backs. It is used to do common pre and post operations needed
1064 * for all revalidate_disk operations.
1066 int revalidate_disk(struct gendisk
*disk
)
1068 struct block_device
*bdev
;
1071 if (disk
->fops
->revalidate_disk
)
1072 ret
= disk
->fops
->revalidate_disk(disk
);
1074 bdev
= bdget_disk(disk
, 0);
1078 mutex_lock(&bdev
->bd_mutex
);
1079 check_disk_size_change(disk
, bdev
);
1080 bdev
->bd_invalidated
= 0;
1081 mutex_unlock(&bdev
->bd_mutex
);
1085 EXPORT_SYMBOL(revalidate_disk
);
1088 * This routine checks whether a removable media has been changed,
1089 * and invalidates all buffer-cache-entries in that case. This
1090 * is a relatively slow routine, so we have to try to minimize using
1091 * it. Thus it is called only upon a 'mount' or 'open'. This
1092 * is the best way of combining speed and utility, I think.
1093 * People changing diskettes in the middle of an operation deserve
1096 int check_disk_change(struct block_device
*bdev
)
1098 struct gendisk
*disk
= bdev
->bd_disk
;
1099 const struct block_device_operations
*bdops
= disk
->fops
;
1100 unsigned int events
;
1102 events
= disk_clear_events(disk
, DISK_EVENT_MEDIA_CHANGE
|
1103 DISK_EVENT_EJECT_REQUEST
);
1104 if (!(events
& DISK_EVENT_MEDIA_CHANGE
))
1107 flush_disk(bdev
, true);
1108 if (bdops
->revalidate_disk
)
1109 bdops
->revalidate_disk(bdev
->bd_disk
);
1113 EXPORT_SYMBOL(check_disk_change
);
1115 void bd_set_size(struct block_device
*bdev
, loff_t size
)
1117 unsigned bsize
= bdev_logical_block_size(bdev
);
1119 mutex_lock(&bdev
->bd_inode
->i_mutex
);
1120 i_size_write(bdev
->bd_inode
, size
);
1121 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
1122 while (bsize
< PAGE_CACHE_SIZE
) {
1127 bdev
->bd_block_size
= bsize
;
1128 bdev
->bd_inode
->i_blkbits
= blksize_bits(bsize
);
1130 EXPORT_SYMBOL(bd_set_size
);
1132 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
);
1137 * mutex_lock(part->bd_mutex)
1138 * mutex_lock_nested(whole->bd_mutex, 1)
1141 static int __blkdev_get(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1143 struct gendisk
*disk
;
1144 struct module
*owner
;
1149 if (mode
& FMODE_READ
)
1151 if (mode
& FMODE_WRITE
)
1154 * hooks: /n/, see "layering violations".
1157 ret
= devcgroup_inode_permission(bdev
->bd_inode
, perm
);
1167 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
1170 owner
= disk
->fops
->owner
;
1172 disk_block_events(disk
);
1173 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1174 if (!bdev
->bd_openers
) {
1175 bdev
->bd_disk
= disk
;
1176 bdev
->bd_queue
= disk
->queue
;
1177 bdev
->bd_contains
= bdev
;
1180 bdev
->bd_part
= disk_get_part(disk
, partno
);
1185 if (disk
->fops
->open
) {
1186 ret
= disk
->fops
->open(bdev
, mode
);
1187 if (ret
== -ERESTARTSYS
) {
1188 /* Lost a race with 'disk' being
1189 * deleted, try again.
1192 disk_put_part(bdev
->bd_part
);
1193 bdev
->bd_part
= NULL
;
1194 bdev
->bd_disk
= NULL
;
1195 bdev
->bd_queue
= NULL
;
1196 mutex_unlock(&bdev
->bd_mutex
);
1197 disk_unblock_events(disk
);
1205 bd_set_size(bdev
,(loff_t
)get_capacity(disk
)<<9);
1208 * If the device is invalidated, rescan partition
1209 * if open succeeded or failed with -ENOMEDIUM.
1210 * The latter is necessary to prevent ghost
1211 * partitions on a removed medium.
1213 if (bdev
->bd_invalidated
) {
1215 rescan_partitions(disk
, bdev
);
1216 else if (ret
== -ENOMEDIUM
)
1217 invalidate_partitions(disk
, bdev
);
1222 struct block_device
*whole
;
1223 whole
= bdget_disk(disk
, 0);
1228 ret
= __blkdev_get(whole
, mode
, 1);
1231 bdev
->bd_contains
= whole
;
1232 bdev
->bd_part
= disk_get_part(disk
, partno
);
1233 if (!(disk
->flags
& GENHD_FL_UP
) ||
1234 !bdev
->bd_part
|| !bdev
->bd_part
->nr_sects
) {
1238 bd_set_size(bdev
, (loff_t
)bdev
->bd_part
->nr_sects
<< 9);
1241 if (bdev
->bd_contains
== bdev
) {
1243 if (bdev
->bd_disk
->fops
->open
)
1244 ret
= bdev
->bd_disk
->fops
->open(bdev
, mode
);
1245 /* the same as first opener case, read comment there */
1246 if (bdev
->bd_invalidated
) {
1248 rescan_partitions(bdev
->bd_disk
, bdev
);
1249 else if (ret
== -ENOMEDIUM
)
1250 invalidate_partitions(bdev
->bd_disk
, bdev
);
1253 goto out_unlock_bdev
;
1255 /* only one opener holds refs to the module and disk */
1261 bdev
->bd_part_count
++;
1262 mutex_unlock(&bdev
->bd_mutex
);
1263 disk_unblock_events(disk
);
1267 disk_put_part(bdev
->bd_part
);
1268 bdev
->bd_disk
= NULL
;
1269 bdev
->bd_part
= NULL
;
1270 bdev
->bd_queue
= NULL
;
1271 if (bdev
!= bdev
->bd_contains
)
1272 __blkdev_put(bdev
->bd_contains
, mode
, 1);
1273 bdev
->bd_contains
= NULL
;
1275 mutex_unlock(&bdev
->bd_mutex
);
1276 disk_unblock_events(disk
);
1286 * blkdev_get - open a block device
1287 * @bdev: block_device to open
1288 * @mode: FMODE_* mask
1289 * @holder: exclusive holder identifier
1291 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1292 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1293 * @holder is invalid. Exclusive opens may nest for the same @holder.
1295 * On success, the reference count of @bdev is unchanged. On failure,
1302 * 0 on success, -errno on failure.
1304 int blkdev_get(struct block_device
*bdev
, fmode_t mode
, void *holder
)
1306 struct block_device
*whole
= NULL
;
1309 WARN_ON_ONCE((mode
& FMODE_EXCL
) && !holder
);
1311 if ((mode
& FMODE_EXCL
) && holder
) {
1312 whole
= bd_start_claiming(bdev
, holder
);
1313 if (IS_ERR(whole
)) {
1315 return PTR_ERR(whole
);
1319 res
= __blkdev_get(bdev
, mode
, 0);
1322 struct gendisk
*disk
= whole
->bd_disk
;
1324 /* finish claiming */
1325 mutex_lock(&bdev
->bd_mutex
);
1326 spin_lock(&bdev_lock
);
1329 BUG_ON(!bd_may_claim(bdev
, whole
, holder
));
1331 * Note that for a whole device bd_holders
1332 * will be incremented twice, and bd_holder
1333 * will be set to bd_may_claim before being
1336 whole
->bd_holders
++;
1337 whole
->bd_holder
= bd_may_claim
;
1339 bdev
->bd_holder
= holder
;
1342 /* tell others that we're done */
1343 BUG_ON(whole
->bd_claiming
!= holder
);
1344 whole
->bd_claiming
= NULL
;
1345 wake_up_bit(&whole
->bd_claiming
, 0);
1347 spin_unlock(&bdev_lock
);
1350 * Block event polling for write claims if requested. Any
1351 * write holder makes the write_holder state stick until
1352 * all are released. This is good enough and tracking
1353 * individual writeable reference is too fragile given the
1354 * way @mode is used in blkdev_get/put().
1356 if (!res
&& (mode
& FMODE_WRITE
) && !bdev
->bd_write_holder
&&
1357 (disk
->flags
& GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE
)) {
1358 bdev
->bd_write_holder
= true;
1359 disk_block_events(disk
);
1362 mutex_unlock(&bdev
->bd_mutex
);
1368 EXPORT_SYMBOL(blkdev_get
);
1371 * blkdev_get_by_path - open a block device by name
1372 * @path: path to the block device to open
1373 * @mode: FMODE_* mask
1374 * @holder: exclusive holder identifier
1376 * Open the blockdevice described by the device file at @path. @mode
1377 * and @holder are identical to blkdev_get().
1379 * On success, the returned block_device has reference count of one.
1385 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1387 struct block_device
*blkdev_get_by_path(const char *path
, fmode_t mode
,
1390 struct block_device
*bdev
;
1393 bdev
= lookup_bdev(path
);
1397 err
= blkdev_get(bdev
, mode
, holder
);
1399 return ERR_PTR(err
);
1401 if ((mode
& FMODE_WRITE
) && bdev_read_only(bdev
)) {
1402 blkdev_put(bdev
, mode
);
1403 return ERR_PTR(-EACCES
);
1408 EXPORT_SYMBOL(blkdev_get_by_path
);
1411 * blkdev_get_by_dev - open a block device by device number
1412 * @dev: device number of block device to open
1413 * @mode: FMODE_* mask
1414 * @holder: exclusive holder identifier
1416 * Open the blockdevice described by device number @dev. @mode and
1417 * @holder are identical to blkdev_get().
1419 * Use it ONLY if you really do not have anything better - i.e. when
1420 * you are behind a truly sucky interface and all you are given is a
1421 * device number. _Never_ to be used for internal purposes. If you
1422 * ever need it - reconsider your API.
1424 * On success, the returned block_device has reference count of one.
1430 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1432 struct block_device
*blkdev_get_by_dev(dev_t dev
, fmode_t mode
, void *holder
)
1434 struct block_device
*bdev
;
1439 return ERR_PTR(-ENOMEM
);
1441 err
= blkdev_get(bdev
, mode
, holder
);
1443 return ERR_PTR(err
);
1447 EXPORT_SYMBOL(blkdev_get_by_dev
);
1449 static int blkdev_open(struct inode
* inode
, struct file
* filp
)
1451 struct block_device
*bdev
;
1454 * Preserve backwards compatibility and allow large file access
1455 * even if userspace doesn't ask for it explicitly. Some mkfs
1456 * binary needs it. We might want to drop this workaround
1457 * during an unstable branch.
1459 filp
->f_flags
|= O_LARGEFILE
;
1461 if (filp
->f_flags
& O_NDELAY
)
1462 filp
->f_mode
|= FMODE_NDELAY
;
1463 if (filp
->f_flags
& O_EXCL
)
1464 filp
->f_mode
|= FMODE_EXCL
;
1465 if ((filp
->f_flags
& O_ACCMODE
) == 3)
1466 filp
->f_mode
|= FMODE_WRITE_IOCTL
;
1468 bdev
= bd_acquire(inode
);
1472 filp
->f_mapping
= bdev
->bd_inode
->i_mapping
;
1474 return blkdev_get(bdev
, filp
->f_mode
, filp
);
1477 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1479 struct gendisk
*disk
= bdev
->bd_disk
;
1480 struct block_device
*victim
= NULL
;
1482 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1484 bdev
->bd_part_count
--;
1486 if (!--bdev
->bd_openers
) {
1487 WARN_ON_ONCE(bdev
->bd_holders
);
1488 sync_blockdev(bdev
);
1491 * ->release can cause the queue to disappear, so flush all
1492 * dirty data before.
1494 bdev_write_inode(bdev
->bd_inode
);
1496 if (bdev
->bd_contains
== bdev
) {
1497 if (disk
->fops
->release
)
1498 disk
->fops
->release(disk
, mode
);
1500 if (!bdev
->bd_openers
) {
1501 struct module
*owner
= disk
->fops
->owner
;
1503 disk_put_part(bdev
->bd_part
);
1504 bdev
->bd_part
= NULL
;
1505 bdev
->bd_disk
= NULL
;
1506 if (bdev
!= bdev
->bd_contains
)
1507 victim
= bdev
->bd_contains
;
1508 bdev
->bd_contains
= NULL
;
1513 mutex_unlock(&bdev
->bd_mutex
);
1516 __blkdev_put(victim
, mode
, 1);
1519 void blkdev_put(struct block_device
*bdev
, fmode_t mode
)
1521 mutex_lock(&bdev
->bd_mutex
);
1523 if (mode
& FMODE_EXCL
) {
1527 * Release a claim on the device. The holder fields
1528 * are protected with bdev_lock. bd_mutex is to
1529 * synchronize disk_holder unlinking.
1531 spin_lock(&bdev_lock
);
1533 WARN_ON_ONCE(--bdev
->bd_holders
< 0);
1534 WARN_ON_ONCE(--bdev
->bd_contains
->bd_holders
< 0);
1536 /* bd_contains might point to self, check in a separate step */
1537 if ((bdev_free
= !bdev
->bd_holders
))
1538 bdev
->bd_holder
= NULL
;
1539 if (!bdev
->bd_contains
->bd_holders
)
1540 bdev
->bd_contains
->bd_holder
= NULL
;
1542 spin_unlock(&bdev_lock
);
1545 * If this was the last claim, remove holder link and
1546 * unblock evpoll if it was a write holder.
1548 if (bdev_free
&& bdev
->bd_write_holder
) {
1549 disk_unblock_events(bdev
->bd_disk
);
1550 bdev
->bd_write_holder
= false;
1555 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1556 * event. This is to ensure detection of media removal commanded
1557 * from userland - e.g. eject(1).
1559 disk_flush_events(bdev
->bd_disk
, DISK_EVENT_MEDIA_CHANGE
);
1561 mutex_unlock(&bdev
->bd_mutex
);
1563 __blkdev_put(bdev
, mode
, 0);
1565 EXPORT_SYMBOL(blkdev_put
);
1567 static int blkdev_close(struct inode
* inode
, struct file
* filp
)
1569 struct block_device
*bdev
= I_BDEV(filp
->f_mapping
->host
);
1570 blkdev_put(bdev
, filp
->f_mode
);
1574 static long block_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1576 struct block_device
*bdev
= I_BDEV(file
->f_mapping
->host
);
1577 fmode_t mode
= file
->f_mode
;
1580 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1581 * to updated it before every ioctl.
1583 if (file
->f_flags
& O_NDELAY
)
1584 mode
|= FMODE_NDELAY
;
1586 mode
&= ~FMODE_NDELAY
;
1588 return blkdev_ioctl(bdev
, mode
, cmd
, arg
);
1592 * Write data to the block device. Only intended for the block device itself
1593 * and the raw driver which basically is a fake block device.
1595 * Does not take i_mutex for the write and thus is not for general purpose
1598 ssize_t
blkdev_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1600 struct file
*file
= iocb
->ki_filp
;
1601 struct blk_plug plug
;
1604 blk_start_plug(&plug
);
1605 ret
= __generic_file_write_iter(iocb
, from
);
1608 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
1612 blk_finish_plug(&plug
);
1615 EXPORT_SYMBOL_GPL(blkdev_write_iter
);
1617 ssize_t
blkdev_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1619 struct file
*file
= iocb
->ki_filp
;
1620 struct inode
*bd_inode
= file
->f_mapping
->host
;
1621 loff_t size
= i_size_read(bd_inode
);
1622 loff_t pos
= iocb
->ki_pos
;
1628 iov_iter_truncate(to
, size
);
1629 return generic_file_read_iter(iocb
, to
);
1631 EXPORT_SYMBOL_GPL(blkdev_read_iter
);
1634 * Try to release a page associated with block device when the system
1635 * is under memory pressure.
1637 static int blkdev_releasepage(struct page
*page
, gfp_t wait
)
1639 struct super_block
*super
= BDEV_I(page
->mapping
->host
)->bdev
.bd_super
;
1641 if (super
&& super
->s_op
->bdev_try_to_free_page
)
1642 return super
->s_op
->bdev_try_to_free_page(super
, page
, wait
);
1644 return try_to_free_buffers(page
);
1647 static const struct address_space_operations def_blk_aops
= {
1648 .readpage
= blkdev_readpage
,
1649 .readpages
= blkdev_readpages
,
1650 .writepage
= blkdev_writepage
,
1651 .write_begin
= blkdev_write_begin
,
1652 .write_end
= blkdev_write_end
,
1653 .writepages
= generic_writepages
,
1654 .releasepage
= blkdev_releasepage
,
1655 .direct_IO
= blkdev_direct_IO
,
1656 .is_dirty_writeback
= buffer_check_dirty_writeback
,
1659 const struct file_operations def_blk_fops
= {
1660 .open
= blkdev_open
,
1661 .release
= blkdev_close
,
1662 .llseek
= block_llseek
,
1663 .read
= new_sync_read
,
1664 .write
= new_sync_write
,
1665 .read_iter
= blkdev_read_iter
,
1666 .write_iter
= blkdev_write_iter
,
1667 .mmap
= generic_file_mmap
,
1668 .fsync
= blkdev_fsync
,
1669 .unlocked_ioctl
= block_ioctl
,
1670 #ifdef CONFIG_COMPAT
1671 .compat_ioctl
= compat_blkdev_ioctl
,
1673 .splice_read
= generic_file_splice_read
,
1674 .splice_write
= iter_file_splice_write
,
1677 int ioctl_by_bdev(struct block_device
*bdev
, unsigned cmd
, unsigned long arg
)
1680 mm_segment_t old_fs
= get_fs();
1682 res
= blkdev_ioctl(bdev
, 0, cmd
, arg
);
1687 EXPORT_SYMBOL(ioctl_by_bdev
);
1690 * lookup_bdev - lookup a struct block_device by name
1691 * @pathname: special file representing the block device
1693 * Get a reference to the blockdevice at @pathname in the current
1694 * namespace if possible and return it. Return ERR_PTR(error)
1697 struct block_device
*lookup_bdev(const char *pathname
)
1699 struct block_device
*bdev
;
1700 struct inode
*inode
;
1704 if (!pathname
|| !*pathname
)
1705 return ERR_PTR(-EINVAL
);
1707 error
= kern_path(pathname
, LOOKUP_FOLLOW
, &path
);
1709 return ERR_PTR(error
);
1711 inode
= path
.dentry
->d_inode
;
1713 if (!S_ISBLK(inode
->i_mode
))
1716 if (path
.mnt
->mnt_flags
& MNT_NODEV
)
1719 bdev
= bd_acquire(inode
);
1726 bdev
= ERR_PTR(error
);
1729 EXPORT_SYMBOL(lookup_bdev
);
1731 int __invalidate_device(struct block_device
*bdev
, bool kill_dirty
)
1733 struct super_block
*sb
= get_super(bdev
);
1738 * no need to lock the super, get_super holds the
1739 * read mutex so the filesystem cannot go away
1740 * under us (->put_super runs with the write lock
1743 shrink_dcache_sb(sb
);
1744 res
= invalidate_inodes(sb
, kill_dirty
);
1747 invalidate_bdev(bdev
);
1750 EXPORT_SYMBOL(__invalidate_device
);
1752 void iterate_bdevs(void (*func
)(struct block_device
*, void *), void *arg
)
1754 struct inode
*inode
, *old_inode
= NULL
;
1756 spin_lock(&inode_sb_list_lock
);
1757 list_for_each_entry(inode
, &blockdev_superblock
->s_inodes
, i_sb_list
) {
1758 struct address_space
*mapping
= inode
->i_mapping
;
1760 spin_lock(&inode
->i_lock
);
1761 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
) ||
1762 mapping
->nrpages
== 0) {
1763 spin_unlock(&inode
->i_lock
);
1767 spin_unlock(&inode
->i_lock
);
1768 spin_unlock(&inode_sb_list_lock
);
1770 * We hold a reference to 'inode' so it couldn't have been
1771 * removed from s_inodes list while we dropped the
1772 * inode_sb_list_lock. We cannot iput the inode now as we can
1773 * be holding the last reference and we cannot iput it under
1774 * inode_sb_list_lock. So we keep the reference and iput it
1780 func(I_BDEV(inode
), arg
);
1782 spin_lock(&inode_sb_list_lock
);
1784 spin_unlock(&inode_sb_list_lock
);