1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
94 /* One semaphore structure for each semaphore in the system. */
96 int semval
; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
105 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter
; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const
; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime
; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp
;
113 /* One sem_array data structure for each set of semaphores in the system. */
115 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
116 time64_t sem_ctime
; /* create/last semctl() time */
117 struct list_head pending_alter
; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const
; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id
; /* undo requests on this array */
122 int sem_nsems
; /* no. of semaphores in array */
123 int complex_count
; /* pending complex operations */
124 unsigned int use_global_lock
;/* >0: global lock required */
127 } __randomize_layout
;
129 /* One queue for each sleeping process in the system. */
131 struct list_head list
; /* queue of pending operations */
132 struct task_struct
*sleeper
; /* this process */
133 struct sem_undo
*undo
; /* undo structure */
134 struct pid
*pid
; /* process id of requesting process */
135 int status
; /* completion status of operation */
136 struct sembuf
*sops
; /* array of pending operations */
137 struct sembuf
*blocking
; /* the operation that blocked */
138 int nsops
; /* number of operations */
139 bool alter
; /* does *sops alter the array? */
140 bool dupsop
; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
147 struct list_head list_proc
; /* per-process list: *
148 * all undos from one process
150 struct rcu_head rcu
; /* rcu struct for sem_undo */
151 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
152 struct list_head list_id
; /* per semaphore array list:
153 * all undos for one array */
154 int semid
; /* semaphore set identifier */
155 short *semadj
; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list
{
165 struct list_head list_proc
;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace
*, struct ipc_params
*);
172 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
189 * a) global sem_lock() for read/write
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
219 #define sc_semmsl sem_ctls[0]
220 #define sc_semmns sem_ctls[1]
221 #define sc_semopm sem_ctls[2]
222 #define sc_semmni sem_ctls[3]
224 void sem_init_ns(struct ipc_namespace
*ns
)
226 ns
->sc_semmsl
= SEMMSL
;
227 ns
->sc_semmns
= SEMMNS
;
228 ns
->sc_semopm
= SEMOPM
;
229 ns
->sc_semmni
= SEMMNI
;
231 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
235 void sem_exit_ns(struct ipc_namespace
*ns
)
237 free_ipcs(ns
, &sem_ids(ns
), freeary
);
238 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
239 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
243 void __init
sem_init(void)
245 sem_init_ns(&init_ipc_ns
);
246 ipc_init_proc_interface("sysvipc/sem",
247 " key semid perms nsems uid gid cuid cgid otime ctime\n",
248 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
252 * unmerge_queues - unmerge queues, if possible.
253 * @sma: semaphore array
255 * The function unmerges the wait queues if complex_count is 0.
256 * It must be called prior to dropping the global semaphore array lock.
258 static void unmerge_queues(struct sem_array
*sma
)
260 struct sem_queue
*q
, *tq
;
262 /* complex operations still around? */
263 if (sma
->complex_count
)
266 * We will switch back to simple mode.
267 * Move all pending operation back into the per-semaphore
270 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
272 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
274 list_add_tail(&q
->list
, &curr
->pending_alter
);
276 INIT_LIST_HEAD(&sma
->pending_alter
);
280 * merge_queues - merge single semop queues into global queue
281 * @sma: semaphore array
283 * This function merges all per-semaphore queues into the global queue.
284 * It is necessary to achieve FIFO ordering for the pending single-sop
285 * operations when a multi-semop operation must sleep.
286 * Only the alter operations must be moved, the const operations can stay.
288 static void merge_queues(struct sem_array
*sma
)
291 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
292 struct sem
*sem
= &sma
->sems
[i
];
294 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
298 static void sem_rcu_free(struct rcu_head
*head
)
300 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
301 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
303 security_sem_free(&sma
->sem_perm
);
308 * Enter the mode suitable for non-simple operations:
309 * Caller must own sem_perm.lock.
311 static void complexmode_enter(struct sem_array
*sma
)
316 if (sma
->use_global_lock
> 0) {
318 * We are already in global lock mode.
319 * Nothing to do, just reset the
320 * counter until we return to simple mode.
322 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
325 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
327 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
329 spin_lock(&sem
->lock
);
330 spin_unlock(&sem
->lock
);
335 * Try to leave the mode that disallows simple operations:
336 * Caller must own sem_perm.lock.
338 static void complexmode_tryleave(struct sem_array
*sma
)
340 if (sma
->complex_count
) {
341 /* Complex ops are sleeping.
342 * We must stay in complex mode
346 if (sma
->use_global_lock
== 1) {
348 * Immediately after setting use_global_lock to 0,
349 * a simple op can start. Thus: all memory writes
350 * performed by the current operation must be visible
351 * before we set use_global_lock to 0.
353 smp_store_release(&sma
->use_global_lock
, 0);
355 sma
->use_global_lock
--;
359 #define SEM_GLOBAL_LOCK (-1)
361 * If the request contains only one semaphore operation, and there are
362 * no complex transactions pending, lock only the semaphore involved.
363 * Otherwise, lock the entire semaphore array, since we either have
364 * multiple semaphores in our own semops, or we need to look at
365 * semaphores from other pending complex operations.
367 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
374 /* Complex operation - acquire a full lock */
375 ipc_lock_object(&sma
->sem_perm
);
377 /* Prevent parallel simple ops */
378 complexmode_enter(sma
);
379 return SEM_GLOBAL_LOCK
;
383 * Only one semaphore affected - try to optimize locking.
384 * Optimized locking is possible if no complex operation
385 * is either enqueued or processed right now.
387 * Both facts are tracked by use_global_mode.
389 idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
390 sem
= &sma
->sems
[idx
];
393 * Initial check for use_global_lock. Just an optimization,
394 * no locking, no memory barrier.
396 if (!sma
->use_global_lock
) {
398 * It appears that no complex operation is around.
399 * Acquire the per-semaphore lock.
401 spin_lock(&sem
->lock
);
403 /* pairs with smp_store_release() */
404 if (!smp_load_acquire(&sma
->use_global_lock
)) {
405 /* fast path successful! */
406 return sops
->sem_num
;
408 spin_unlock(&sem
->lock
);
411 /* slow path: acquire the full lock */
412 ipc_lock_object(&sma
->sem_perm
);
414 if (sma
->use_global_lock
== 0) {
416 * The use_global_lock mode ended while we waited for
417 * sma->sem_perm.lock. Thus we must switch to locking
419 * Unlike in the fast path, there is no need to recheck
420 * sma->use_global_lock after we have acquired sem->lock:
421 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 spin_lock(&sem
->lock
);
426 ipc_unlock_object(&sma
->sem_perm
);
427 return sops
->sem_num
;
430 * Not a false alarm, thus continue to use the global lock
431 * mode. No need for complexmode_enter(), this was done by
432 * the caller that has set use_global_mode to non-zero.
434 return SEM_GLOBAL_LOCK
;
438 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
440 if (locknum
== SEM_GLOBAL_LOCK
) {
442 complexmode_tryleave(sma
);
443 ipc_unlock_object(&sma
->sem_perm
);
445 struct sem
*sem
= &sma
->sems
[locknum
];
446 spin_unlock(&sem
->lock
);
451 * sem_lock_(check_) routines are called in the paths where the rwsem
454 * The caller holds the RCU read lock.
456 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
458 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
461 return ERR_CAST(ipcp
);
463 return container_of(ipcp
, struct sem_array
, sem_perm
);
466 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
469 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
472 return ERR_CAST(ipcp
);
474 return container_of(ipcp
, struct sem_array
, sem_perm
);
477 static inline void sem_lock_and_putref(struct sem_array
*sma
)
479 sem_lock(sma
, NULL
, -1);
480 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
483 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
485 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
488 static struct sem_array
*sem_alloc(size_t nsems
)
490 struct sem_array
*sma
;
493 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
496 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
497 sma
= kvmalloc(size
, GFP_KERNEL
);
501 memset(sma
, 0, size
);
507 * newary - Create a new semaphore set
509 * @params: ptr to the structure that contains key, semflg and nsems
511 * Called with sem_ids.rwsem held (as a writer)
513 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
516 struct sem_array
*sma
;
517 key_t key
= params
->key
;
518 int nsems
= params
->u
.nsems
;
519 int semflg
= params
->flg
;
524 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
527 sma
= sem_alloc(nsems
);
531 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
532 sma
->sem_perm
.key
= key
;
534 sma
->sem_perm
.security
= NULL
;
535 retval
= security_sem_alloc(&sma
->sem_perm
);
541 for (i
= 0; i
< nsems
; i
++) {
542 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
543 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
544 spin_lock_init(&sma
->sems
[i
].lock
);
547 sma
->complex_count
= 0;
548 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
549 INIT_LIST_HEAD(&sma
->pending_alter
);
550 INIT_LIST_HEAD(&sma
->pending_const
);
551 INIT_LIST_HEAD(&sma
->list_id
);
552 sma
->sem_nsems
= nsems
;
553 sma
->sem_ctime
= ktime_get_real_seconds();
555 /* ipc_addid() locks sma upon success. */
556 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
558 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
561 ns
->used_sems
+= nsems
;
566 return sma
->sem_perm
.id
;
571 * Called with sem_ids.rwsem and ipcp locked.
573 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
574 struct ipc_params
*params
)
576 struct sem_array
*sma
;
578 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
579 if (params
->u
.nsems
> sma
->sem_nsems
)
585 long ksys_semget(key_t key
, int nsems
, int semflg
)
587 struct ipc_namespace
*ns
;
588 static const struct ipc_ops sem_ops
= {
590 .associate
= security_sem_associate
,
591 .more_checks
= sem_more_checks
,
593 struct ipc_params sem_params
;
595 ns
= current
->nsproxy
->ipc_ns
;
597 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
600 sem_params
.key
= key
;
601 sem_params
.flg
= semflg
;
602 sem_params
.u
.nsems
= nsems
;
604 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
607 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
609 return ksys_semget(key
, nsems
, semflg
);
613 * perform_atomic_semop[_slow] - Attempt to perform semaphore
614 * operations on a given array.
615 * @sma: semaphore array
616 * @q: struct sem_queue that describes the operation
618 * Caller blocking are as follows, based the value
619 * indicated by the semaphore operation (sem_op):
621 * (1) >0 never blocks.
622 * (2) 0 (wait-for-zero operation): semval is non-zero.
623 * (3) <0 attempting to decrement semval to a value smaller than zero.
625 * Returns 0 if the operation was possible.
626 * Returns 1 if the operation is impossible, the caller must sleep.
627 * Returns <0 for error codes.
629 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
631 int result
, sem_op
, nsops
;
642 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
643 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
644 curr
= &sma
->sems
[idx
];
645 sem_op
= sop
->sem_op
;
646 result
= curr
->semval
;
648 if (!sem_op
&& result
)
657 if (sop
->sem_flg
& SEM_UNDO
) {
658 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
659 /* Exceeding the undo range is an error. */
660 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
662 un
->semadj
[sop
->sem_num
] = undo
;
665 curr
->semval
= result
;
670 while (sop
>= sops
) {
671 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
684 if (sop
->sem_flg
& IPC_NOWAIT
)
691 while (sop
>= sops
) {
692 sem_op
= sop
->sem_op
;
693 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
694 if (sop
->sem_flg
& SEM_UNDO
)
695 un
->semadj
[sop
->sem_num
] += sem_op
;
702 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
704 int result
, sem_op
, nsops
;
714 if (unlikely(q
->dupsop
))
715 return perform_atomic_semop_slow(sma
, q
);
718 * We scan the semaphore set twice, first to ensure that the entire
719 * operation can succeed, therefore avoiding any pointless writes
720 * to shared memory and having to undo such changes in order to block
721 * until the operations can go through.
723 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
724 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
726 curr
= &sma
->sems
[idx
];
727 sem_op
= sop
->sem_op
;
728 result
= curr
->semval
;
730 if (!sem_op
&& result
)
731 goto would_block
; /* wait-for-zero */
740 if (sop
->sem_flg
& SEM_UNDO
) {
741 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
743 /* Exceeding the undo range is an error. */
744 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
749 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
750 curr
= &sma
->sems
[sop
->sem_num
];
751 sem_op
= sop
->sem_op
;
752 result
= curr
->semval
;
754 if (sop
->sem_flg
& SEM_UNDO
) {
755 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
757 un
->semadj
[sop
->sem_num
] = undo
;
759 curr
->semval
+= sem_op
;
760 ipc_update_pid(&curr
->sempid
, q
->pid
);
767 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
770 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
771 struct wake_q_head
*wake_q
)
773 wake_q_add(wake_q
, q
->sleeper
);
775 * Rely on the above implicit barrier, such that we can
776 * ensure that we hold reference to the task before setting
777 * q->status. Otherwise we could race with do_exit if the
778 * task is awoken by an external event before calling
781 WRITE_ONCE(q
->status
, error
);
784 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
788 sma
->complex_count
--;
791 /** check_restart(sma, q)
792 * @sma: semaphore array
793 * @q: the operation that just completed
795 * update_queue is O(N^2) when it restarts scanning the whole queue of
796 * waiting operations. Therefore this function checks if the restart is
797 * really necessary. It is called after a previously waiting operation
798 * modified the array.
799 * Note that wait-for-zero operations are handled without restart.
801 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
803 /* pending complex alter operations are too difficult to analyse */
804 if (!list_empty(&sma
->pending_alter
))
807 /* we were a sleeping complex operation. Too difficult */
811 /* It is impossible that someone waits for the new value:
812 * - complex operations always restart.
813 * - wait-for-zero are handled seperately.
814 * - q is a previously sleeping simple operation that
815 * altered the array. It must be a decrement, because
816 * simple increments never sleep.
817 * - If there are older (higher priority) decrements
818 * in the queue, then they have observed the original
819 * semval value and couldn't proceed. The operation
820 * decremented to value - thus they won't proceed either.
826 * wake_const_ops - wake up non-alter tasks
827 * @sma: semaphore array.
828 * @semnum: semaphore that was modified.
829 * @wake_q: lockless wake-queue head.
831 * wake_const_ops must be called after a semaphore in a semaphore array
832 * was set to 0. If complex const operations are pending, wake_const_ops must
833 * be called with semnum = -1, as well as with the number of each modified
835 * The tasks that must be woken up are added to @wake_q. The return code
836 * is stored in q->pid.
837 * The function returns 1 if at least one operation was completed successfully.
839 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
840 struct wake_q_head
*wake_q
)
842 struct sem_queue
*q
, *tmp
;
843 struct list_head
*pending_list
;
844 int semop_completed
= 0;
847 pending_list
= &sma
->pending_const
;
849 pending_list
= &sma
->sems
[semnum
].pending_const
;
851 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
852 int error
= perform_atomic_semop(sma
, q
);
856 /* operation completed, remove from queue & wakeup */
857 unlink_queue(sma
, q
);
859 wake_up_sem_queue_prepare(q
, error
, wake_q
);
864 return semop_completed
;
868 * do_smart_wakeup_zero - wakeup all wait for zero tasks
869 * @sma: semaphore array
870 * @sops: operations that were performed
871 * @nsops: number of operations
872 * @wake_q: lockless wake-queue head
874 * Checks all required queue for wait-for-zero operations, based
875 * on the actual changes that were performed on the semaphore array.
876 * The function returns 1 if at least one operation was completed successfully.
878 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
879 int nsops
, struct wake_q_head
*wake_q
)
882 int semop_completed
= 0;
885 /* first: the per-semaphore queues, if known */
887 for (i
= 0; i
< nsops
; i
++) {
888 int num
= sops
[i
].sem_num
;
890 if (sma
->sems
[num
].semval
== 0) {
892 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
897 * No sops means modified semaphores not known.
898 * Assume all were changed.
900 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
901 if (sma
->sems
[i
].semval
== 0) {
903 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
908 * If one of the modified semaphores got 0,
909 * then check the global queue, too.
912 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
914 return semop_completed
;
919 * update_queue - look for tasks that can be completed.
920 * @sma: semaphore array.
921 * @semnum: semaphore that was modified.
922 * @wake_q: lockless wake-queue head.
924 * update_queue must be called after a semaphore in a semaphore array
925 * was modified. If multiple semaphores were modified, update_queue must
926 * be called with semnum = -1, as well as with the number of each modified
928 * The tasks that must be woken up are added to @wake_q. The return code
929 * is stored in q->pid.
930 * The function internally checks if const operations can now succeed.
932 * The function return 1 if at least one semop was completed successfully.
934 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
936 struct sem_queue
*q
, *tmp
;
937 struct list_head
*pending_list
;
938 int semop_completed
= 0;
941 pending_list
= &sma
->pending_alter
;
943 pending_list
= &sma
->sems
[semnum
].pending_alter
;
946 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
949 /* If we are scanning the single sop, per-semaphore list of
950 * one semaphore and that semaphore is 0, then it is not
951 * necessary to scan further: simple increments
952 * that affect only one entry succeed immediately and cannot
953 * be in the per semaphore pending queue, and decrements
954 * cannot be successful if the value is already 0.
956 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
959 error
= perform_atomic_semop(sma
, q
);
961 /* Does q->sleeper still need to sleep? */
965 unlink_queue(sma
, q
);
971 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
972 restart
= check_restart(sma
, q
);
975 wake_up_sem_queue_prepare(q
, error
, wake_q
);
979 return semop_completed
;
983 * set_semotime - set sem_otime
984 * @sma: semaphore array
985 * @sops: operations that modified the array, may be NULL
987 * sem_otime is replicated to avoid cache line trashing.
988 * This function sets one instance to the current time.
990 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
993 sma
->sems
[0].sem_otime
= ktime_get_real_seconds();
995 sma
->sems
[sops
[0].sem_num
].sem_otime
=
996 ktime_get_real_seconds();
1001 * do_smart_update - optimized update_queue
1002 * @sma: semaphore array
1003 * @sops: operations that were performed
1004 * @nsops: number of operations
1005 * @otime: force setting otime
1006 * @wake_q: lockless wake-queue head
1008 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1009 * based on the actual changes that were performed on the semaphore array.
1010 * Note that the function does not do the actual wake-up: the caller is
1011 * responsible for calling wake_up_q().
1012 * It is safe to perform this call after dropping all locks.
1014 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1015 int otime
, struct wake_q_head
*wake_q
)
1019 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1021 if (!list_empty(&sma
->pending_alter
)) {
1022 /* semaphore array uses the global queue - just process it. */
1023 otime
|= update_queue(sma
, -1, wake_q
);
1027 * No sops, thus the modified semaphores are not
1030 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1031 otime
|= update_queue(sma
, i
, wake_q
);
1034 * Check the semaphores that were increased:
1035 * - No complex ops, thus all sleeping ops are
1037 * - if we decreased the value, then any sleeping
1038 * semaphore ops wont be able to run: If the
1039 * previous value was too small, then the new
1040 * value will be too small, too.
1042 for (i
= 0; i
< nsops
; i
++) {
1043 if (sops
[i
].sem_op
> 0) {
1044 otime
|= update_queue(sma
,
1045 sops
[i
].sem_num
, wake_q
);
1051 set_semotime(sma
, sops
);
1055 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1057 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1060 struct sembuf
*sop
= q
->blocking
;
1063 * Linux always (since 0.99.10) reported a task as sleeping on all
1064 * semaphores. This violates SUS, therefore it was changed to the
1065 * standard compliant behavior.
1066 * Give the administrators a chance to notice that an application
1067 * might misbehave because it relies on the Linux behavior.
1069 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1070 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1071 current
->comm
, task_pid_nr(current
));
1073 if (sop
->sem_num
!= semnum
)
1076 if (count_zero
&& sop
->sem_op
== 0)
1078 if (!count_zero
&& sop
->sem_op
< 0)
1084 /* The following counts are associated to each semaphore:
1085 * semncnt number of tasks waiting on semval being nonzero
1086 * semzcnt number of tasks waiting on semval being zero
1088 * Per definition, a task waits only on the semaphore of the first semop
1089 * that cannot proceed, even if additional operation would block, too.
1091 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1094 struct list_head
*l
;
1095 struct sem_queue
*q
;
1099 /* First: check the simple operations. They are easy to evaluate */
1101 l
= &sma
->sems
[semnum
].pending_const
;
1103 l
= &sma
->sems
[semnum
].pending_alter
;
1105 list_for_each_entry(q
, l
, list
) {
1106 /* all task on a per-semaphore list sleep on exactly
1112 /* Then: check the complex operations. */
1113 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1114 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1117 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1118 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1124 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1125 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1126 * remains locked on exit.
1128 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1130 struct sem_undo
*un
, *tu
;
1131 struct sem_queue
*q
, *tq
;
1132 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1134 DEFINE_WAKE_Q(wake_q
);
1136 /* Free the existing undo structures for this semaphore set. */
1137 ipc_assert_locked_object(&sma
->sem_perm
);
1138 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1139 list_del(&un
->list_id
);
1140 spin_lock(&un
->ulp
->lock
);
1142 list_del_rcu(&un
->list_proc
);
1143 spin_unlock(&un
->ulp
->lock
);
1147 /* Wake up all pending processes and let them fail with EIDRM. */
1148 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1149 unlink_queue(sma
, q
);
1150 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1153 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1154 unlink_queue(sma
, q
);
1155 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1157 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1158 struct sem
*sem
= &sma
->sems
[i
];
1159 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1160 unlink_queue(sma
, q
);
1161 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1163 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1164 unlink_queue(sma
, q
);
1165 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1167 ipc_update_pid(&sem
->sempid
, NULL
);
1170 /* Remove the semaphore set from the IDR */
1172 sem_unlock(sma
, -1);
1176 ns
->used_sems
-= sma
->sem_nsems
;
1177 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1180 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1184 return copy_to_user(buf
, in
, sizeof(*in
));
1187 struct semid_ds out
;
1189 memset(&out
, 0, sizeof(out
));
1191 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1193 out
.sem_otime
= in
->sem_otime
;
1194 out
.sem_ctime
= in
->sem_ctime
;
1195 out
.sem_nsems
= in
->sem_nsems
;
1197 return copy_to_user(buf
, &out
, sizeof(out
));
1204 static time64_t
get_semotime(struct sem_array
*sma
)
1209 res
= sma
->sems
[0].sem_otime
;
1210 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1211 time64_t to
= sma
->sems
[i
].sem_otime
;
1219 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1220 int cmd
, struct semid64_ds
*semid64
)
1222 struct sem_array
*sma
;
1226 memset(semid64
, 0, sizeof(*semid64
));
1229 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1230 sma
= sem_obtain_object(ns
, semid
);
1235 } else { /* IPC_STAT */
1236 sma
= sem_obtain_object_check(ns
, semid
);
1243 /* see comment for SHM_STAT_ANY */
1244 if (cmd
== SEM_STAT_ANY
)
1245 audit_ipc_obj(&sma
->sem_perm
);
1248 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1252 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1256 ipc_lock_object(&sma
->sem_perm
);
1258 if (!ipc_valid_object(&sma
->sem_perm
)) {
1259 ipc_unlock_object(&sma
->sem_perm
);
1264 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1265 semotime
= get_semotime(sma
);
1266 semid64
->sem_otime
= semotime
;
1267 semid64
->sem_ctime
= sma
->sem_ctime
;
1268 #ifndef CONFIG_64BIT
1269 semid64
->sem_otime_high
= semotime
>> 32;
1270 semid64
->sem_ctime_high
= sma
->sem_ctime
>> 32;
1272 semid64
->sem_nsems
= sma
->sem_nsems
;
1274 if (cmd
== IPC_STAT
) {
1276 * As defined in SUS:
1277 * Return 0 on success
1282 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1283 * Return the full id, including the sequence number
1285 err
= sma
->sem_perm
.id
;
1287 ipc_unlock_object(&sma
->sem_perm
);
1293 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1294 int cmd
, void __user
*p
)
1296 struct seminfo seminfo
;
1300 err
= security_sem_semctl(NULL
, cmd
);
1304 memset(&seminfo
, 0, sizeof(seminfo
));
1305 seminfo
.semmni
= ns
->sc_semmni
;
1306 seminfo
.semmns
= ns
->sc_semmns
;
1307 seminfo
.semmsl
= ns
->sc_semmsl
;
1308 seminfo
.semopm
= ns
->sc_semopm
;
1309 seminfo
.semvmx
= SEMVMX
;
1310 seminfo
.semmnu
= SEMMNU
;
1311 seminfo
.semmap
= SEMMAP
;
1312 seminfo
.semume
= SEMUME
;
1313 down_read(&sem_ids(ns
).rwsem
);
1314 if (cmd
== SEM_INFO
) {
1315 seminfo
.semusz
= sem_ids(ns
).in_use
;
1316 seminfo
.semaem
= ns
->used_sems
;
1318 seminfo
.semusz
= SEMUSZ
;
1319 seminfo
.semaem
= SEMAEM
;
1321 max_idx
= ipc_get_maxidx(&sem_ids(ns
));
1322 up_read(&sem_ids(ns
).rwsem
);
1323 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1325 return (max_idx
< 0) ? 0 : max_idx
;
1328 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1331 struct sem_undo
*un
;
1332 struct sem_array
*sma
;
1335 DEFINE_WAKE_Q(wake_q
);
1337 if (val
> SEMVMX
|| val
< 0)
1341 sma
= sem_obtain_object_check(ns
, semid
);
1344 return PTR_ERR(sma
);
1347 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1353 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1358 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1364 sem_lock(sma
, NULL
, -1);
1366 if (!ipc_valid_object(&sma
->sem_perm
)) {
1367 sem_unlock(sma
, -1);
1372 semnum
= array_index_nospec(semnum
, sma
->sem_nsems
);
1373 curr
= &sma
->sems
[semnum
];
1375 ipc_assert_locked_object(&sma
->sem_perm
);
1376 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1377 un
->semadj
[semnum
] = 0;
1380 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1381 sma
->sem_ctime
= ktime_get_real_seconds();
1382 /* maybe some queued-up processes were waiting for this */
1383 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1384 sem_unlock(sma
, -1);
1390 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1391 int cmd
, void __user
*p
)
1393 struct sem_array
*sma
;
1396 ushort fast_sem_io
[SEMMSL_FAST
];
1397 ushort
*sem_io
= fast_sem_io
;
1398 DEFINE_WAKE_Q(wake_q
);
1401 sma
= sem_obtain_object_check(ns
, semid
);
1404 return PTR_ERR(sma
);
1407 nsems
= sma
->sem_nsems
;
1410 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1411 goto out_rcu_wakeup
;
1413 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1415 goto out_rcu_wakeup
;
1421 ushort __user
*array
= p
;
1424 sem_lock(sma
, NULL
, -1);
1425 if (!ipc_valid_object(&sma
->sem_perm
)) {
1429 if (nsems
> SEMMSL_FAST
) {
1430 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1434 sem_unlock(sma
, -1);
1436 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1438 if (sem_io
== NULL
) {
1439 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1444 sem_lock_and_putref(sma
);
1445 if (!ipc_valid_object(&sma
->sem_perm
)) {
1450 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1451 sem_io
[i
] = sma
->sems
[i
].semval
;
1452 sem_unlock(sma
, -1);
1455 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1462 struct sem_undo
*un
;
1464 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1466 goto out_rcu_wakeup
;
1470 if (nsems
> SEMMSL_FAST
) {
1471 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1473 if (sem_io
== NULL
) {
1474 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1479 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1480 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1485 for (i
= 0; i
< nsems
; i
++) {
1486 if (sem_io
[i
] > SEMVMX
) {
1487 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1493 sem_lock_and_putref(sma
);
1494 if (!ipc_valid_object(&sma
->sem_perm
)) {
1499 for (i
= 0; i
< nsems
; i
++) {
1500 sma
->sems
[i
].semval
= sem_io
[i
];
1501 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1504 ipc_assert_locked_object(&sma
->sem_perm
);
1505 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1506 for (i
= 0; i
< nsems
; i
++)
1509 sma
->sem_ctime
= ktime_get_real_seconds();
1510 /* maybe some queued-up processes were waiting for this */
1511 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1515 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1518 if (semnum
< 0 || semnum
>= nsems
)
1519 goto out_rcu_wakeup
;
1521 sem_lock(sma
, NULL
, -1);
1522 if (!ipc_valid_object(&sma
->sem_perm
)) {
1527 semnum
= array_index_nospec(semnum
, nsems
);
1528 curr
= &sma
->sems
[semnum
];
1535 err
= pid_vnr(curr
->sempid
);
1538 err
= count_semcnt(sma
, semnum
, 0);
1541 err
= count_semcnt(sma
, semnum
, 1);
1546 sem_unlock(sma
, -1);
1551 if (sem_io
!= fast_sem_io
)
1556 static inline unsigned long
1557 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1561 if (copy_from_user(out
, buf
, sizeof(*out
)))
1566 struct semid_ds tbuf_old
;
1568 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1571 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1572 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1573 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1583 * This function handles some semctl commands which require the rwsem
1584 * to be held in write mode.
1585 * NOTE: no locks must be held, the rwsem is taken inside this function.
1587 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1588 int cmd
, struct semid64_ds
*semid64
)
1590 struct sem_array
*sma
;
1592 struct kern_ipc_perm
*ipcp
;
1594 down_write(&sem_ids(ns
).rwsem
);
1597 ipcp
= ipcctl_obtain_check(ns
, &sem_ids(ns
), semid
, cmd
,
1598 &semid64
->sem_perm
, 0);
1600 err
= PTR_ERR(ipcp
);
1604 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1606 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1612 sem_lock(sma
, NULL
, -1);
1613 /* freeary unlocks the ipc object and rcu */
1617 sem_lock(sma
, NULL
, -1);
1618 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1621 sma
->sem_ctime
= ktime_get_real_seconds();
1629 sem_unlock(sma
, -1);
1633 up_write(&sem_ids(ns
).rwsem
);
1637 long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1640 struct ipc_namespace
*ns
;
1641 void __user
*p
= (void __user
*)arg
;
1642 struct semid64_ds semid64
;
1648 version
= ipc_parse_version(&cmd
);
1649 ns
= current
->nsproxy
->ipc_ns
;
1654 return semctl_info(ns
, semid
, cmd
, p
);
1658 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1661 if (copy_semid_to_user(p
, &semid64
, version
))
1670 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1673 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1674 /* big-endian 64bit */
1677 /* 32bit or little-endian 64bit */
1680 return semctl_setval(ns
, semid
, semnum
, val
);
1683 if (copy_semid_from_user(&semid64
, p
, version
))
1686 return semctl_down(ns
, semid
, cmd
, &semid64
);
1692 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1694 return ksys_semctl(semid
, semnum
, cmd
, arg
);
1697 #ifdef CONFIG_COMPAT
1699 struct compat_semid_ds
{
1700 struct compat_ipc_perm sem_perm
;
1701 old_time32_t sem_otime
;
1702 old_time32_t sem_ctime
;
1703 compat_uptr_t sem_base
;
1704 compat_uptr_t sem_pending
;
1705 compat_uptr_t sem_pending_last
;
1707 unsigned short sem_nsems
;
1710 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1713 memset(out
, 0, sizeof(*out
));
1714 if (version
== IPC_64
) {
1715 struct compat_semid64_ds __user
*p
= buf
;
1716 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1718 struct compat_semid_ds __user
*p
= buf
;
1719 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1723 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1726 if (version
== IPC_64
) {
1727 struct compat_semid64_ds v
;
1728 memset(&v
, 0, sizeof(v
));
1729 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1730 v
.sem_otime
= lower_32_bits(in
->sem_otime
);
1731 v
.sem_otime_high
= upper_32_bits(in
->sem_otime
);
1732 v
.sem_ctime
= lower_32_bits(in
->sem_ctime
);
1733 v
.sem_ctime_high
= upper_32_bits(in
->sem_ctime
);
1734 v
.sem_nsems
= in
->sem_nsems
;
1735 return copy_to_user(buf
, &v
, sizeof(v
));
1737 struct compat_semid_ds v
;
1738 memset(&v
, 0, sizeof(v
));
1739 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1740 v
.sem_otime
= in
->sem_otime
;
1741 v
.sem_ctime
= in
->sem_ctime
;
1742 v
.sem_nsems
= in
->sem_nsems
;
1743 return copy_to_user(buf
, &v
, sizeof(v
));
1747 long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
)
1749 void __user
*p
= compat_ptr(arg
);
1750 struct ipc_namespace
*ns
;
1751 struct semid64_ds semid64
;
1752 int version
= compat_ipc_parse_version(&cmd
);
1755 ns
= current
->nsproxy
->ipc_ns
;
1760 switch (cmd
& (~IPC_64
)) {
1763 return semctl_info(ns
, semid
, cmd
, p
);
1767 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1770 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1779 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1781 return semctl_setval(ns
, semid
, semnum
, arg
);
1783 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1787 return semctl_down(ns
, semid
, cmd
, &semid64
);
1793 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1795 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
);
1799 /* If the task doesn't already have a undo_list, then allocate one
1800 * here. We guarantee there is only one thread using this undo list,
1801 * and current is THE ONE
1803 * If this allocation and assignment succeeds, but later
1804 * portions of this code fail, there is no need to free the sem_undo_list.
1805 * Just let it stay associated with the task, and it'll be freed later
1808 * This can block, so callers must hold no locks.
1810 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1812 struct sem_undo_list
*undo_list
;
1814 undo_list
= current
->sysvsem
.undo_list
;
1816 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1817 if (undo_list
== NULL
)
1819 spin_lock_init(&undo_list
->lock
);
1820 refcount_set(&undo_list
->refcnt
, 1);
1821 INIT_LIST_HEAD(&undo_list
->list_proc
);
1823 current
->sysvsem
.undo_list
= undo_list
;
1825 *undo_listp
= undo_list
;
1829 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1831 struct sem_undo
*un
;
1833 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1834 if (un
->semid
== semid
)
1840 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1842 struct sem_undo
*un
;
1844 assert_spin_locked(&ulp
->lock
);
1846 un
= __lookup_undo(ulp
, semid
);
1848 list_del_rcu(&un
->list_proc
);
1849 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1855 * find_alloc_undo - lookup (and if not present create) undo array
1857 * @semid: semaphore array id
1859 * The function looks up (and if not present creates) the undo structure.
1860 * The size of the undo structure depends on the size of the semaphore
1861 * array, thus the alloc path is not that straightforward.
1862 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1863 * performs a rcu_read_lock().
1865 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1867 struct sem_array
*sma
;
1868 struct sem_undo_list
*ulp
;
1869 struct sem_undo
*un
, *new;
1872 error
= get_undo_list(&ulp
);
1874 return ERR_PTR(error
);
1877 spin_lock(&ulp
->lock
);
1878 un
= lookup_undo(ulp
, semid
);
1879 spin_unlock(&ulp
->lock
);
1880 if (likely(un
!= NULL
))
1883 /* no undo structure around - allocate one. */
1884 /* step 1: figure out the size of the semaphore array */
1885 sma
= sem_obtain_object_check(ns
, semid
);
1888 return ERR_CAST(sma
);
1891 nsems
= sma
->sem_nsems
;
1892 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1894 un
= ERR_PTR(-EIDRM
);
1899 /* step 2: allocate new undo structure */
1900 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1902 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1903 return ERR_PTR(-ENOMEM
);
1906 /* step 3: Acquire the lock on semaphore array */
1908 sem_lock_and_putref(sma
);
1909 if (!ipc_valid_object(&sma
->sem_perm
)) {
1910 sem_unlock(sma
, -1);
1913 un
= ERR_PTR(-EIDRM
);
1916 spin_lock(&ulp
->lock
);
1919 * step 4: check for races: did someone else allocate the undo struct?
1921 un
= lookup_undo(ulp
, semid
);
1926 /* step 5: initialize & link new undo structure */
1927 new->semadj
= (short *) &new[1];
1930 assert_spin_locked(&ulp
->lock
);
1931 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1932 ipc_assert_locked_object(&sma
->sem_perm
);
1933 list_add(&new->list_id
, &sma
->list_id
);
1937 spin_unlock(&ulp
->lock
);
1938 sem_unlock(sma
, -1);
1943 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1944 unsigned nsops
, const struct timespec64
*timeout
)
1946 int error
= -EINVAL
;
1947 struct sem_array
*sma
;
1948 struct sembuf fast_sops
[SEMOPM_FAST
];
1949 struct sembuf
*sops
= fast_sops
, *sop
;
1950 struct sem_undo
*un
;
1952 bool undos
= false, alter
= false, dupsop
= false;
1953 struct sem_queue queue
;
1954 unsigned long dup
= 0, jiffies_left
= 0;
1955 struct ipc_namespace
*ns
;
1957 ns
= current
->nsproxy
->ipc_ns
;
1959 if (nsops
< 1 || semid
< 0)
1961 if (nsops
> ns
->sc_semopm
)
1963 if (nsops
> SEMOPM_FAST
) {
1964 sops
= kvmalloc_array(nsops
, sizeof(*sops
), GFP_KERNEL
);
1969 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1975 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1976 timeout
->tv_nsec
>= 1000000000L) {
1980 jiffies_left
= timespec64_to_jiffies(timeout
);
1984 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1985 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1987 if (sop
->sem_num
>= max
)
1989 if (sop
->sem_flg
& SEM_UNDO
)
1993 * There was a previous alter access that appears
1994 * to have accessed the same semaphore, thus use
1995 * the dupsop logic. "appears", because the detection
1996 * can only check % BITS_PER_LONG.
2000 if (sop
->sem_op
!= 0) {
2007 /* On success, find_alloc_undo takes the rcu_read_lock */
2008 un
= find_alloc_undo(ns
, semid
);
2010 error
= PTR_ERR(un
);
2018 sma
= sem_obtain_object_check(ns
, semid
);
2021 error
= PTR_ERR(sma
);
2026 if (max
>= sma
->sem_nsems
) {
2032 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2037 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2044 locknum
= sem_lock(sma
, sops
, nsops
);
2046 * We eventually might perform the following check in a lockless
2047 * fashion, considering ipc_valid_object() locking constraints.
2048 * If nsops == 1 and there is no contention for sem_perm.lock, then
2049 * only a per-semaphore lock is held and it's OK to proceed with the
2050 * check below. More details on the fine grained locking scheme
2051 * entangled here and why it's RMID race safe on comments at sem_lock()
2053 if (!ipc_valid_object(&sma
->sem_perm
))
2054 goto out_unlock_free
;
2056 * semid identifiers are not unique - find_alloc_undo may have
2057 * allocated an undo structure, it was invalidated by an RMID
2058 * and now a new array with received the same id. Check and fail.
2059 * This case can be detected checking un->semid. The existence of
2060 * "un" itself is guaranteed by rcu.
2062 if (un
&& un
->semid
== -1)
2063 goto out_unlock_free
;
2066 queue
.nsops
= nsops
;
2068 queue
.pid
= task_tgid(current
);
2069 queue
.alter
= alter
;
2070 queue
.dupsop
= dupsop
;
2072 error
= perform_atomic_semop(sma
, &queue
);
2073 if (error
== 0) { /* non-blocking succesfull path */
2074 DEFINE_WAKE_Q(wake_q
);
2077 * If the operation was successful, then do
2078 * the required updates.
2081 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2083 set_semotime(sma
, sops
);
2085 sem_unlock(sma
, locknum
);
2091 if (error
< 0) /* non-blocking error path */
2092 goto out_unlock_free
;
2095 * We need to sleep on this operation, so we put the current
2096 * task into the pending queue and go to sleep.
2100 int idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
2101 curr
= &sma
->sems
[idx
];
2104 if (sma
->complex_count
) {
2105 list_add_tail(&queue
.list
,
2106 &sma
->pending_alter
);
2109 list_add_tail(&queue
.list
,
2110 &curr
->pending_alter
);
2113 list_add_tail(&queue
.list
, &curr
->pending_const
);
2116 if (!sma
->complex_count
)
2120 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2122 list_add_tail(&queue
.list
, &sma
->pending_const
);
2124 sma
->complex_count
++;
2128 WRITE_ONCE(queue
.status
, -EINTR
);
2129 queue
.sleeper
= current
;
2131 __set_current_state(TASK_INTERRUPTIBLE
);
2132 sem_unlock(sma
, locknum
);
2136 jiffies_left
= schedule_timeout(jiffies_left
);
2141 * fastpath: the semop has completed, either successfully or
2142 * not, from the syscall pov, is quite irrelevant to us at this
2143 * point; we're done.
2145 * We _do_ care, nonetheless, about being awoken by a signal or
2146 * spuriously. The queue.status is checked again in the
2147 * slowpath (aka after taking sem_lock), such that we can detect
2148 * scenarios where we were awakened externally, during the
2149 * window between wake_q_add() and wake_up_q().
2151 error
= READ_ONCE(queue
.status
);
2152 if (error
!= -EINTR
) {
2154 * User space could assume that semop() is a memory
2155 * barrier: Without the mb(), the cpu could
2156 * speculatively read in userspace stale data that was
2157 * overwritten by the previous owner of the semaphore.
2164 locknum
= sem_lock(sma
, sops
, nsops
);
2166 if (!ipc_valid_object(&sma
->sem_perm
))
2167 goto out_unlock_free
;
2169 error
= READ_ONCE(queue
.status
);
2172 * If queue.status != -EINTR we are woken up by another process.
2173 * Leave without unlink_queue(), but with sem_unlock().
2175 if (error
!= -EINTR
)
2176 goto out_unlock_free
;
2179 * If an interrupt occurred we have to clean up the queue.
2181 if (timeout
&& jiffies_left
== 0)
2183 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2185 unlink_queue(sma
, &queue
);
2188 sem_unlock(sma
, locknum
);
2191 if (sops
!= fast_sops
)
2196 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2197 unsigned int nsops
, const struct __kernel_timespec __user
*timeout
)
2200 struct timespec64 ts
;
2201 if (get_timespec64(&ts
, timeout
))
2203 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2205 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2208 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2209 unsigned int, nsops
, const struct __kernel_timespec __user
*, timeout
)
2211 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2214 #ifdef CONFIG_COMPAT_32BIT_TIME
2215 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2217 const struct old_timespec32 __user
*timeout
)
2220 struct timespec64 ts
;
2221 if (get_old_timespec32(&ts
, timeout
))
2223 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2225 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2228 COMPAT_SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsems
,
2229 unsigned int, nsops
,
2230 const struct old_timespec32 __user
*, timeout
)
2232 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2236 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2239 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2242 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2243 * parent and child tasks.
2246 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2248 struct sem_undo_list
*undo_list
;
2251 if (clone_flags
& CLONE_SYSVSEM
) {
2252 error
= get_undo_list(&undo_list
);
2255 refcount_inc(&undo_list
->refcnt
);
2256 tsk
->sysvsem
.undo_list
= undo_list
;
2258 tsk
->sysvsem
.undo_list
= NULL
;
2264 * add semadj values to semaphores, free undo structures.
2265 * undo structures are not freed when semaphore arrays are destroyed
2266 * so some of them may be out of date.
2267 * IMPLEMENTATION NOTE: There is some confusion over whether the
2268 * set of adjustments that needs to be done should be done in an atomic
2269 * manner or not. That is, if we are attempting to decrement the semval
2270 * should we queue up and wait until we can do so legally?
2271 * The original implementation attempted to do this (queue and wait).
2272 * The current implementation does not do so. The POSIX standard
2273 * and SVID should be consulted to determine what behavior is mandated.
2275 void exit_sem(struct task_struct
*tsk
)
2277 struct sem_undo_list
*ulp
;
2279 ulp
= tsk
->sysvsem
.undo_list
;
2282 tsk
->sysvsem
.undo_list
= NULL
;
2284 if (!refcount_dec_and_test(&ulp
->refcnt
))
2288 struct sem_array
*sma
;
2289 struct sem_undo
*un
;
2291 DEFINE_WAKE_Q(wake_q
);
2296 un
= list_entry_rcu(ulp
->list_proc
.next
,
2297 struct sem_undo
, list_proc
);
2298 if (&un
->list_proc
== &ulp
->list_proc
) {
2300 * We must wait for freeary() before freeing this ulp,
2301 * in case we raced with last sem_undo. There is a small
2302 * possibility where we exit while freeary() didn't
2303 * finish unlocking sem_undo_list.
2305 spin_lock(&ulp
->lock
);
2306 spin_unlock(&ulp
->lock
);
2310 spin_lock(&ulp
->lock
);
2312 spin_unlock(&ulp
->lock
);
2314 /* exit_sem raced with IPC_RMID, nothing to do */
2320 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2321 /* exit_sem raced with IPC_RMID, nothing to do */
2327 sem_lock(sma
, NULL
, -1);
2328 /* exit_sem raced with IPC_RMID, nothing to do */
2329 if (!ipc_valid_object(&sma
->sem_perm
)) {
2330 sem_unlock(sma
, -1);
2334 un
= __lookup_undo(ulp
, semid
);
2336 /* exit_sem raced with IPC_RMID+semget() that created
2337 * exactly the same semid. Nothing to do.
2339 sem_unlock(sma
, -1);
2344 /* remove un from the linked lists */
2345 ipc_assert_locked_object(&sma
->sem_perm
);
2346 list_del(&un
->list_id
);
2348 /* we are the last process using this ulp, acquiring ulp->lock
2349 * isn't required. Besides that, we are also protected against
2350 * IPC_RMID as we hold sma->sem_perm lock now
2352 list_del_rcu(&un
->list_proc
);
2354 /* perform adjustments registered in un */
2355 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2356 struct sem
*semaphore
= &sma
->sems
[i
];
2357 if (un
->semadj
[i
]) {
2358 semaphore
->semval
+= un
->semadj
[i
];
2360 * Range checks of the new semaphore value,
2361 * not defined by sus:
2362 * - Some unices ignore the undo entirely
2363 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2364 * - some cap the value (e.g. FreeBSD caps
2365 * at 0, but doesn't enforce SEMVMX)
2367 * Linux caps the semaphore value, both at 0
2370 * Manfred <manfred@colorfullife.com>
2372 if (semaphore
->semval
< 0)
2373 semaphore
->semval
= 0;
2374 if (semaphore
->semval
> SEMVMX
)
2375 semaphore
->semval
= SEMVMX
;
2376 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2379 /* maybe some queued-up processes were waiting for this */
2380 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2381 sem_unlock(sma
, -1);
2390 #ifdef CONFIG_PROC_FS
2391 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2393 struct user_namespace
*user_ns
= seq_user_ns(s
);
2394 struct kern_ipc_perm
*ipcp
= it
;
2395 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2399 * The proc interface isn't aware of sem_lock(), it calls
2400 * ipc_lock_object() directly (in sysvipc_find_ipc).
2401 * In order to stay compatible with sem_lock(), we must
2402 * enter / leave complex_mode.
2404 complexmode_enter(sma
);
2406 sem_otime
= get_semotime(sma
);
2409 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2414 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2415 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2416 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2417 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2421 complexmode_tryleave(sma
);