bonding: fix rx_handler locking
[linux/fpc-iii.git] / arch / ia64 / kernel / efi.c
bloba0f001928502b6c1b8e692e36095df36e6b7f3b5
1 /*
2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
19 * Implemented EFI runtime services and virtual mode calls. --davidm
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/time.h>
31 #include <linux/efi.h>
32 #include <linux/kexec.h>
33 #include <linux/mm.h>
35 #include <asm/io.h>
36 #include <asm/kregs.h>
37 #include <asm/meminit.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/mca.h>
41 #include <asm/tlbflush.h>
43 #define EFI_DEBUG 0
45 extern efi_status_t efi_call_phys (void *, ...);
47 struct efi efi;
48 EXPORT_SYMBOL(efi);
49 static efi_runtime_services_t *runtime;
50 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
52 #define efi_call_virt(f, args...) (*(f))(args)
54 #define STUB_GET_TIME(prefix, adjust_arg) \
55 static efi_status_t \
56 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
57 { \
58 struct ia64_fpreg fr[6]; \
59 efi_time_cap_t *atc = NULL; \
60 efi_status_t ret; \
62 if (tc) \
63 atc = adjust_arg(tc); \
64 ia64_save_scratch_fpregs(fr); \
65 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
66 adjust_arg(tm), atc); \
67 ia64_load_scratch_fpregs(fr); \
68 return ret; \
71 #define STUB_SET_TIME(prefix, adjust_arg) \
72 static efi_status_t \
73 prefix##_set_time (efi_time_t *tm) \
74 { \
75 struct ia64_fpreg fr[6]; \
76 efi_status_t ret; \
78 ia64_save_scratch_fpregs(fr); \
79 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
80 adjust_arg(tm)); \
81 ia64_load_scratch_fpregs(fr); \
82 return ret; \
85 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
86 static efi_status_t \
87 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
88 efi_time_t *tm) \
89 { \
90 struct ia64_fpreg fr[6]; \
91 efi_status_t ret; \
93 ia64_save_scratch_fpregs(fr); \
94 ret = efi_call_##prefix( \
95 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
96 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
97 ia64_load_scratch_fpregs(fr); \
98 return ret; \
101 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
102 static efi_status_t \
103 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
105 struct ia64_fpreg fr[6]; \
106 efi_time_t *atm = NULL; \
107 efi_status_t ret; \
109 if (tm) \
110 atm = adjust_arg(tm); \
111 ia64_save_scratch_fpregs(fr); \
112 ret = efi_call_##prefix( \
113 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
114 enabled, atm); \
115 ia64_load_scratch_fpregs(fr); \
116 return ret; \
119 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
120 static efi_status_t \
121 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
122 unsigned long *data_size, void *data) \
124 struct ia64_fpreg fr[6]; \
125 u32 *aattr = NULL; \
126 efi_status_t ret; \
128 if (attr) \
129 aattr = adjust_arg(attr); \
130 ia64_save_scratch_fpregs(fr); \
131 ret = efi_call_##prefix( \
132 (efi_get_variable_t *) __va(runtime->get_variable), \
133 adjust_arg(name), adjust_arg(vendor), aattr, \
134 adjust_arg(data_size), adjust_arg(data)); \
135 ia64_load_scratch_fpregs(fr); \
136 return ret; \
139 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
140 static efi_status_t \
141 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
142 efi_guid_t *vendor) \
144 struct ia64_fpreg fr[6]; \
145 efi_status_t ret; \
147 ia64_save_scratch_fpregs(fr); \
148 ret = efi_call_##prefix( \
149 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
150 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
151 ia64_load_scratch_fpregs(fr); \
152 return ret; \
155 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
156 static efi_status_t \
157 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
158 unsigned long attr, unsigned long data_size, \
159 void *data) \
161 struct ia64_fpreg fr[6]; \
162 efi_status_t ret; \
164 ia64_save_scratch_fpregs(fr); \
165 ret = efi_call_##prefix( \
166 (efi_set_variable_t *) __va(runtime->set_variable), \
167 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
168 adjust_arg(data)); \
169 ia64_load_scratch_fpregs(fr); \
170 return ret; \
173 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
174 static efi_status_t \
175 prefix##_get_next_high_mono_count (u32 *count) \
177 struct ia64_fpreg fr[6]; \
178 efi_status_t ret; \
180 ia64_save_scratch_fpregs(fr); \
181 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
182 __va(runtime->get_next_high_mono_count), \
183 adjust_arg(count)); \
184 ia64_load_scratch_fpregs(fr); \
185 return ret; \
188 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
189 static void \
190 prefix##_reset_system (int reset_type, efi_status_t status, \
191 unsigned long data_size, efi_char16_t *data) \
193 struct ia64_fpreg fr[6]; \
194 efi_char16_t *adata = NULL; \
196 if (data) \
197 adata = adjust_arg(data); \
199 ia64_save_scratch_fpregs(fr); \
200 efi_call_##prefix( \
201 (efi_reset_system_t *) __va(runtime->reset_system), \
202 reset_type, status, data_size, adata); \
203 /* should not return, but just in case... */ \
204 ia64_load_scratch_fpregs(fr); \
207 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
209 STUB_GET_TIME(phys, phys_ptr)
210 STUB_SET_TIME(phys, phys_ptr)
211 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
213 STUB_GET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
215 STUB_SET_VARIABLE(phys, phys_ptr)
216 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
217 STUB_RESET_SYSTEM(phys, phys_ptr)
219 #define id(arg) arg
221 STUB_GET_TIME(virt, id)
222 STUB_SET_TIME(virt, id)
223 STUB_GET_WAKEUP_TIME(virt, id)
224 STUB_SET_WAKEUP_TIME(virt, id)
225 STUB_GET_VARIABLE(virt, id)
226 STUB_GET_NEXT_VARIABLE(virt, id)
227 STUB_SET_VARIABLE(virt, id)
228 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
229 STUB_RESET_SYSTEM(virt, id)
231 void
232 efi_gettimeofday (struct timespec *ts)
234 efi_time_t tm;
236 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
237 memset(ts, 0, sizeof(*ts));
238 return;
241 ts->tv_sec = mktime(tm.year, tm.month, tm.day,
242 tm.hour, tm.minute, tm.second);
243 ts->tv_nsec = tm.nanosecond;
246 static int
247 is_memory_available (efi_memory_desc_t *md)
249 if (!(md->attribute & EFI_MEMORY_WB))
250 return 0;
252 switch (md->type) {
253 case EFI_LOADER_CODE:
254 case EFI_LOADER_DATA:
255 case EFI_BOOT_SERVICES_CODE:
256 case EFI_BOOT_SERVICES_DATA:
257 case EFI_CONVENTIONAL_MEMORY:
258 return 1;
260 return 0;
263 typedef struct kern_memdesc {
264 u64 attribute;
265 u64 start;
266 u64 num_pages;
267 } kern_memdesc_t;
269 static kern_memdesc_t *kern_memmap;
271 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
273 static inline u64
274 kmd_end(kern_memdesc_t *kmd)
276 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
279 static inline u64
280 efi_md_end(efi_memory_desc_t *md)
282 return (md->phys_addr + efi_md_size(md));
285 static inline int
286 efi_wb(efi_memory_desc_t *md)
288 return (md->attribute & EFI_MEMORY_WB);
291 static inline int
292 efi_uc(efi_memory_desc_t *md)
294 return (md->attribute & EFI_MEMORY_UC);
297 static void
298 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
300 kern_memdesc_t *k;
301 u64 start, end, voff;
303 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
304 for (k = kern_memmap; k->start != ~0UL; k++) {
305 if (k->attribute != attr)
306 continue;
307 start = PAGE_ALIGN(k->start);
308 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
309 if (start < end)
310 if ((*callback)(start + voff, end + voff, arg) < 0)
311 return;
316 * Walk the EFI memory map and call CALLBACK once for each EFI memory
317 * descriptor that has memory that is available for OS use.
319 void
320 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
322 walk(callback, arg, EFI_MEMORY_WB);
326 * Walk the EFI memory map and call CALLBACK once for each EFI memory
327 * descriptor that has memory that is available for uncached allocator.
329 void
330 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
332 walk(callback, arg, EFI_MEMORY_UC);
336 * Look for the PAL_CODE region reported by EFI and map it using an
337 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
338 * Abstraction Layer chapter 11 in ADAG
340 void *
341 efi_get_pal_addr (void)
343 void *efi_map_start, *efi_map_end, *p;
344 efi_memory_desc_t *md;
345 u64 efi_desc_size;
346 int pal_code_count = 0;
347 u64 vaddr, mask;
349 efi_map_start = __va(ia64_boot_param->efi_memmap);
350 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
351 efi_desc_size = ia64_boot_param->efi_memdesc_size;
353 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
354 md = p;
355 if (md->type != EFI_PAL_CODE)
356 continue;
358 if (++pal_code_count > 1) {
359 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
360 "dropped @ %llx\n", md->phys_addr);
361 continue;
364 * The only ITLB entry in region 7 that is used is the one
365 * installed by __start(). That entry covers a 64MB range.
367 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
368 vaddr = PAGE_OFFSET + md->phys_addr;
371 * We must check that the PAL mapping won't overlap with the
372 * kernel mapping.
374 * PAL code is guaranteed to be aligned on a power of 2 between
375 * 4k and 256KB and that only one ITR is needed to map it. This
376 * implies that the PAL code is always aligned on its size,
377 * i.e., the closest matching page size supported by the TLB.
378 * Therefore PAL code is guaranteed never to cross a 64MB unless
379 * it is bigger than 64MB (very unlikely!). So for now the
380 * following test is enough to determine whether or not we need
381 * a dedicated ITR for the PAL code.
383 if ((vaddr & mask) == (KERNEL_START & mask)) {
384 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
385 __func__);
386 continue;
389 if (efi_md_size(md) > IA64_GRANULE_SIZE)
390 panic("Whoa! PAL code size bigger than a granule!");
392 #if EFI_DEBUG
393 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
395 printk(KERN_INFO "CPU %d: mapping PAL code "
396 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
397 smp_processor_id(), md->phys_addr,
398 md->phys_addr + efi_md_size(md),
399 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
400 #endif
401 return __va(md->phys_addr);
403 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
404 __func__);
405 return NULL;
409 static u8 __init palo_checksum(u8 *buffer, u32 length)
411 u8 sum = 0;
412 u8 *end = buffer + length;
414 while (buffer < end)
415 sum = (u8) (sum + *(buffer++));
417 return sum;
421 * Parse and handle PALO table which is published at:
422 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
424 static void __init handle_palo(unsigned long palo_phys)
426 struct palo_table *palo = __va(palo_phys);
427 u8 checksum;
429 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
430 printk(KERN_INFO "PALO signature incorrect.\n");
431 return;
434 checksum = palo_checksum((u8 *)palo, palo->length);
435 if (checksum) {
436 printk(KERN_INFO "PALO checksum incorrect.\n");
437 return;
440 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
443 void
444 efi_map_pal_code (void)
446 void *pal_vaddr = efi_get_pal_addr ();
447 u64 psr;
449 if (!pal_vaddr)
450 return;
453 * Cannot write to CRx with PSR.ic=1
455 psr = ia64_clear_ic();
456 ia64_itr(0x1, IA64_TR_PALCODE,
457 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
458 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
459 IA64_GRANULE_SHIFT);
460 paravirt_dv_serialize_data();
461 ia64_set_psr(psr); /* restore psr */
464 void __init
465 efi_init (void)
467 void *efi_map_start, *efi_map_end;
468 efi_config_table_t *config_tables;
469 efi_char16_t *c16;
470 u64 efi_desc_size;
471 char *cp, vendor[100] = "unknown";
472 int i;
473 unsigned long palo_phys;
476 * It's too early to be able to use the standard kernel command line
477 * support...
479 for (cp = boot_command_line; *cp; ) {
480 if (memcmp(cp, "mem=", 4) == 0) {
481 mem_limit = memparse(cp + 4, &cp);
482 } else if (memcmp(cp, "max_addr=", 9) == 0) {
483 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
484 } else if (memcmp(cp, "min_addr=", 9) == 0) {
485 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486 } else {
487 while (*cp != ' ' && *cp)
488 ++cp;
489 while (*cp == ' ')
490 ++cp;
493 if (min_addr != 0UL)
494 printk(KERN_INFO "Ignoring memory below %lluMB\n",
495 min_addr >> 20);
496 if (max_addr != ~0UL)
497 printk(KERN_INFO "Ignoring memory above %lluMB\n",
498 max_addr >> 20);
500 efi.systab = __va(ia64_boot_param->efi_systab);
503 * Verify the EFI Table
505 if (efi.systab == NULL)
506 panic("Whoa! Can't find EFI system table.\n");
507 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
508 panic("Whoa! EFI system table signature incorrect\n");
509 if ((efi.systab->hdr.revision >> 16) == 0)
510 printk(KERN_WARNING "Warning: EFI system table version "
511 "%d.%02d, expected 1.00 or greater\n",
512 efi.systab->hdr.revision >> 16,
513 efi.systab->hdr.revision & 0xffff);
515 config_tables = __va(efi.systab->tables);
517 /* Show what we know for posterity */
518 c16 = __va(efi.systab->fw_vendor);
519 if (c16) {
520 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
521 vendor[i] = *c16++;
522 vendor[i] = '\0';
525 printk(KERN_INFO "EFI v%u.%.02u by %s:",
526 efi.systab->hdr.revision >> 16,
527 efi.systab->hdr.revision & 0xffff, vendor);
529 efi.mps = EFI_INVALID_TABLE_ADDR;
530 efi.acpi = EFI_INVALID_TABLE_ADDR;
531 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
532 efi.smbios = EFI_INVALID_TABLE_ADDR;
533 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
534 efi.boot_info = EFI_INVALID_TABLE_ADDR;
535 efi.hcdp = EFI_INVALID_TABLE_ADDR;
536 efi.uga = EFI_INVALID_TABLE_ADDR;
538 palo_phys = EFI_INVALID_TABLE_ADDR;
540 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
541 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
542 efi.mps = config_tables[i].table;
543 printk(" MPS=0x%lx", config_tables[i].table);
544 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
545 efi.acpi20 = config_tables[i].table;
546 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
547 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
548 efi.acpi = config_tables[i].table;
549 printk(" ACPI=0x%lx", config_tables[i].table);
550 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
551 efi.smbios = config_tables[i].table;
552 printk(" SMBIOS=0x%lx", config_tables[i].table);
553 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
554 efi.sal_systab = config_tables[i].table;
555 printk(" SALsystab=0x%lx", config_tables[i].table);
556 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
557 efi.hcdp = config_tables[i].table;
558 printk(" HCDP=0x%lx", config_tables[i].table);
559 } else if (efi_guidcmp(config_tables[i].guid,
560 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
561 palo_phys = config_tables[i].table;
562 printk(" PALO=0x%lx", config_tables[i].table);
565 printk("\n");
567 if (palo_phys != EFI_INVALID_TABLE_ADDR)
568 handle_palo(palo_phys);
570 runtime = __va(efi.systab->runtime);
571 efi.get_time = phys_get_time;
572 efi.set_time = phys_set_time;
573 efi.get_wakeup_time = phys_get_wakeup_time;
574 efi.set_wakeup_time = phys_set_wakeup_time;
575 efi.get_variable = phys_get_variable;
576 efi.get_next_variable = phys_get_next_variable;
577 efi.set_variable = phys_set_variable;
578 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
579 efi.reset_system = phys_reset_system;
581 efi_map_start = __va(ia64_boot_param->efi_memmap);
582 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
583 efi_desc_size = ia64_boot_param->efi_memdesc_size;
585 #if EFI_DEBUG
586 /* print EFI memory map: */
588 efi_memory_desc_t *md;
589 void *p;
591 for (i = 0, p = efi_map_start; p < efi_map_end;
592 ++i, p += efi_desc_size)
594 const char *unit;
595 unsigned long size;
597 md = p;
598 size = md->num_pages << EFI_PAGE_SHIFT;
600 if ((size >> 40) > 0) {
601 size >>= 40;
602 unit = "TB";
603 } else if ((size >> 30) > 0) {
604 size >>= 30;
605 unit = "GB";
606 } else if ((size >> 20) > 0) {
607 size >>= 20;
608 unit = "MB";
609 } else {
610 size >>= 10;
611 unit = "KB";
614 printk("mem%02d: type=%2u, attr=0x%016lx, "
615 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
616 i, md->type, md->attribute, md->phys_addr,
617 md->phys_addr + efi_md_size(md), size, unit);
620 #endif
622 efi_map_pal_code();
623 efi_enter_virtual_mode();
626 void
627 efi_enter_virtual_mode (void)
629 void *efi_map_start, *efi_map_end, *p;
630 efi_memory_desc_t *md;
631 efi_status_t status;
632 u64 efi_desc_size;
634 efi_map_start = __va(ia64_boot_param->efi_memmap);
635 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
636 efi_desc_size = ia64_boot_param->efi_memdesc_size;
638 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
639 md = p;
640 if (md->attribute & EFI_MEMORY_RUNTIME) {
642 * Some descriptors have multiple bits set, so the
643 * order of the tests is relevant.
645 if (md->attribute & EFI_MEMORY_WB) {
646 md->virt_addr = (u64) __va(md->phys_addr);
647 } else if (md->attribute & EFI_MEMORY_UC) {
648 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
649 } else if (md->attribute & EFI_MEMORY_WC) {
650 #if 0
651 md->virt_addr = ia64_remap(md->phys_addr,
652 (_PAGE_A |
653 _PAGE_P |
654 _PAGE_D |
655 _PAGE_MA_WC |
656 _PAGE_PL_0 |
657 _PAGE_AR_RW));
658 #else
659 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
660 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
661 #endif
662 } else if (md->attribute & EFI_MEMORY_WT) {
663 #if 0
664 md->virt_addr = ia64_remap(md->phys_addr,
665 (_PAGE_A |
666 _PAGE_P |
667 _PAGE_D |
668 _PAGE_MA_WT |
669 _PAGE_PL_0 |
670 _PAGE_AR_RW));
671 #else
672 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
673 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
674 #endif
679 status = efi_call_phys(__va(runtime->set_virtual_address_map),
680 ia64_boot_param->efi_memmap_size,
681 efi_desc_size,
682 ia64_boot_param->efi_memdesc_version,
683 ia64_boot_param->efi_memmap);
684 if (status != EFI_SUCCESS) {
685 printk(KERN_WARNING "warning: unable to switch EFI into "
686 "virtual mode (status=%lu)\n", status);
687 return;
691 * Now that EFI is in virtual mode, we call the EFI functions more
692 * efficiently:
694 efi.get_time = virt_get_time;
695 efi.set_time = virt_set_time;
696 efi.get_wakeup_time = virt_get_wakeup_time;
697 efi.set_wakeup_time = virt_set_wakeup_time;
698 efi.get_variable = virt_get_variable;
699 efi.get_next_variable = virt_get_next_variable;
700 efi.set_variable = virt_set_variable;
701 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
702 efi.reset_system = virt_reset_system;
706 * Walk the EFI memory map looking for the I/O port range. There can only be
707 * one entry of this type, other I/O port ranges should be described via ACPI.
710 efi_get_iobase (void)
712 void *efi_map_start, *efi_map_end, *p;
713 efi_memory_desc_t *md;
714 u64 efi_desc_size;
716 efi_map_start = __va(ia64_boot_param->efi_memmap);
717 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
718 efi_desc_size = ia64_boot_param->efi_memdesc_size;
720 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
721 md = p;
722 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
723 if (md->attribute & EFI_MEMORY_UC)
724 return md->phys_addr;
727 return 0;
730 static struct kern_memdesc *
731 kern_memory_descriptor (unsigned long phys_addr)
733 struct kern_memdesc *md;
735 for (md = kern_memmap; md->start != ~0UL; md++) {
736 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
737 return md;
739 return NULL;
742 static efi_memory_desc_t *
743 efi_memory_descriptor (unsigned long phys_addr)
745 void *efi_map_start, *efi_map_end, *p;
746 efi_memory_desc_t *md;
747 u64 efi_desc_size;
749 efi_map_start = __va(ia64_boot_param->efi_memmap);
750 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
751 efi_desc_size = ia64_boot_param->efi_memdesc_size;
753 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
754 md = p;
756 if (phys_addr - md->phys_addr < efi_md_size(md))
757 return md;
759 return NULL;
762 static int
763 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
765 void *efi_map_start, *efi_map_end, *p;
766 efi_memory_desc_t *md;
767 u64 efi_desc_size;
768 unsigned long end;
770 efi_map_start = __va(ia64_boot_param->efi_memmap);
771 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
772 efi_desc_size = ia64_boot_param->efi_memdesc_size;
774 end = phys_addr + size;
776 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
777 md = p;
778 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
779 return 1;
781 return 0;
785 efi_mem_type (unsigned long phys_addr)
787 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789 if (md)
790 return md->type;
791 return 0;
795 efi_mem_attributes (unsigned long phys_addr)
797 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
799 if (md)
800 return md->attribute;
801 return 0;
803 EXPORT_SYMBOL(efi_mem_attributes);
806 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
808 unsigned long end = phys_addr + size;
809 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
810 u64 attr;
812 if (!md)
813 return 0;
816 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
817 * the kernel that firmware needs this region mapped.
819 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
820 do {
821 unsigned long md_end = efi_md_end(md);
823 if (end <= md_end)
824 return attr;
826 md = efi_memory_descriptor(md_end);
827 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
828 return 0;
829 } while (md);
830 return 0; /* never reached */
834 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
836 unsigned long end = phys_addr + size;
837 struct kern_memdesc *md;
838 u64 attr;
841 * This is a hack for ioremap calls before we set up kern_memmap.
842 * Maybe we should do efi_memmap_init() earlier instead.
844 if (!kern_memmap) {
845 attr = efi_mem_attribute(phys_addr, size);
846 if (attr & EFI_MEMORY_WB)
847 return EFI_MEMORY_WB;
848 return 0;
851 md = kern_memory_descriptor(phys_addr);
852 if (!md)
853 return 0;
855 attr = md->attribute;
856 do {
857 unsigned long md_end = kmd_end(md);
859 if (end <= md_end)
860 return attr;
862 md = kern_memory_descriptor(md_end);
863 if (!md || md->attribute != attr)
864 return 0;
865 } while (md);
866 return 0; /* never reached */
868 EXPORT_SYMBOL(kern_mem_attribute);
871 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
873 u64 attr;
876 * /dev/mem reads and writes use copy_to_user(), which implicitly
877 * uses a granule-sized kernel identity mapping. It's really
878 * only safe to do this for regions in kern_memmap. For more
879 * details, see Documentation/ia64/aliasing.txt.
881 attr = kern_mem_attribute(phys_addr, size);
882 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
883 return 1;
884 return 0;
888 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
890 unsigned long phys_addr = pfn << PAGE_SHIFT;
891 u64 attr;
893 attr = efi_mem_attribute(phys_addr, size);
896 * /dev/mem mmap uses normal user pages, so we don't need the entire
897 * granule, but the entire region we're mapping must support the same
898 * attribute.
900 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
901 return 1;
904 * Intel firmware doesn't tell us about all the MMIO regions, so
905 * in general we have to allow mmap requests. But if EFI *does*
906 * tell us about anything inside this region, we should deny it.
907 * The user can always map a smaller region to avoid the overlap.
909 if (efi_memmap_intersects(phys_addr, size))
910 return 0;
912 return 1;
915 pgprot_t
916 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
917 pgprot_t vma_prot)
919 unsigned long phys_addr = pfn << PAGE_SHIFT;
920 u64 attr;
923 * For /dev/mem mmap, we use user mappings, but if the region is
924 * in kern_memmap (and hence may be covered by a kernel mapping),
925 * we must use the same attribute as the kernel mapping.
927 attr = kern_mem_attribute(phys_addr, size);
928 if (attr & EFI_MEMORY_WB)
929 return pgprot_cacheable(vma_prot);
930 else if (attr & EFI_MEMORY_UC)
931 return pgprot_noncached(vma_prot);
934 * Some chipsets don't support UC access to memory. If
935 * WB is supported, we prefer that.
937 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
938 return pgprot_cacheable(vma_prot);
940 return pgprot_noncached(vma_prot);
943 int __init
944 efi_uart_console_only(void)
946 efi_status_t status;
947 char *s, name[] = "ConOut";
948 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
949 efi_char16_t *utf16, name_utf16[32];
950 unsigned char data[1024];
951 unsigned long size = sizeof(data);
952 struct efi_generic_dev_path *hdr, *end_addr;
953 int uart = 0;
955 /* Convert to UTF-16 */
956 utf16 = name_utf16;
957 s = name;
958 while (*s)
959 *utf16++ = *s++ & 0x7f;
960 *utf16 = 0;
962 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
963 if (status != EFI_SUCCESS) {
964 printk(KERN_ERR "No EFI %s variable?\n", name);
965 return 0;
968 hdr = (struct efi_generic_dev_path *) data;
969 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
970 while (hdr < end_addr) {
971 if (hdr->type == EFI_DEV_MSG &&
972 hdr->sub_type == EFI_DEV_MSG_UART)
973 uart = 1;
974 else if (hdr->type == EFI_DEV_END_PATH ||
975 hdr->type == EFI_DEV_END_PATH2) {
976 if (!uart)
977 return 0;
978 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
979 return 1;
980 uart = 0;
982 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
984 printk(KERN_ERR "Malformed %s value\n", name);
985 return 0;
989 * Look for the first granule aligned memory descriptor memory
990 * that is big enough to hold EFI memory map. Make sure this
991 * descriptor is atleast granule sized so it does not get trimmed
993 struct kern_memdesc *
994 find_memmap_space (void)
996 u64 contig_low=0, contig_high=0;
997 u64 as = 0, ae;
998 void *efi_map_start, *efi_map_end, *p, *q;
999 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1000 u64 space_needed, efi_desc_size;
1001 unsigned long total_mem = 0;
1003 efi_map_start = __va(ia64_boot_param->efi_memmap);
1004 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1005 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1008 * Worst case: we need 3 kernel descriptors for each efi descriptor
1009 * (if every entry has a WB part in the middle, and UC head and tail),
1010 * plus one for the end marker.
1012 space_needed = sizeof(kern_memdesc_t) *
1013 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1015 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1016 md = p;
1017 if (!efi_wb(md)) {
1018 continue;
1020 if (pmd == NULL || !efi_wb(pmd) ||
1021 efi_md_end(pmd) != md->phys_addr) {
1022 contig_low = GRANULEROUNDUP(md->phys_addr);
1023 contig_high = efi_md_end(md);
1024 for (q = p + efi_desc_size; q < efi_map_end;
1025 q += efi_desc_size) {
1026 check_md = q;
1027 if (!efi_wb(check_md))
1028 break;
1029 if (contig_high != check_md->phys_addr)
1030 break;
1031 contig_high = efi_md_end(check_md);
1033 contig_high = GRANULEROUNDDOWN(contig_high);
1035 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1036 continue;
1038 /* Round ends inward to granule boundaries */
1039 as = max(contig_low, md->phys_addr);
1040 ae = min(contig_high, efi_md_end(md));
1042 /* keep within max_addr= and min_addr= command line arg */
1043 as = max(as, min_addr);
1044 ae = min(ae, max_addr);
1045 if (ae <= as)
1046 continue;
1048 /* avoid going over mem= command line arg */
1049 if (total_mem + (ae - as) > mem_limit)
1050 ae -= total_mem + (ae - as) - mem_limit;
1052 if (ae <= as)
1053 continue;
1055 if (ae - as > space_needed)
1056 break;
1058 if (p >= efi_map_end)
1059 panic("Can't allocate space for kernel memory descriptors");
1061 return __va(as);
1065 * Walk the EFI memory map and gather all memory available for kernel
1066 * to use. We can allocate partial granules only if the unavailable
1067 * parts exist, and are WB.
1069 unsigned long
1070 efi_memmap_init(u64 *s, u64 *e)
1072 struct kern_memdesc *k, *prev = NULL;
1073 u64 contig_low=0, contig_high=0;
1074 u64 as, ae, lim;
1075 void *efi_map_start, *efi_map_end, *p, *q;
1076 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1077 u64 efi_desc_size;
1078 unsigned long total_mem = 0;
1080 k = kern_memmap = find_memmap_space();
1082 efi_map_start = __va(ia64_boot_param->efi_memmap);
1083 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1084 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1086 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1087 md = p;
1088 if (!efi_wb(md)) {
1089 if (efi_uc(md) &&
1090 (md->type == EFI_CONVENTIONAL_MEMORY ||
1091 md->type == EFI_BOOT_SERVICES_DATA)) {
1092 k->attribute = EFI_MEMORY_UC;
1093 k->start = md->phys_addr;
1094 k->num_pages = md->num_pages;
1095 k++;
1097 continue;
1099 if (pmd == NULL || !efi_wb(pmd) ||
1100 efi_md_end(pmd) != md->phys_addr) {
1101 contig_low = GRANULEROUNDUP(md->phys_addr);
1102 contig_high = efi_md_end(md);
1103 for (q = p + efi_desc_size; q < efi_map_end;
1104 q += efi_desc_size) {
1105 check_md = q;
1106 if (!efi_wb(check_md))
1107 break;
1108 if (contig_high != check_md->phys_addr)
1109 break;
1110 contig_high = efi_md_end(check_md);
1112 contig_high = GRANULEROUNDDOWN(contig_high);
1114 if (!is_memory_available(md))
1115 continue;
1117 #ifdef CONFIG_CRASH_DUMP
1118 /* saved_max_pfn should ignore max_addr= command line arg */
1119 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1120 saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1121 #endif
1123 * Round ends inward to granule boundaries
1124 * Give trimmings to uncached allocator
1126 if (md->phys_addr < contig_low) {
1127 lim = min(efi_md_end(md), contig_low);
1128 if (efi_uc(md)) {
1129 if (k > kern_memmap &&
1130 (k-1)->attribute == EFI_MEMORY_UC &&
1131 kmd_end(k-1) == md->phys_addr) {
1132 (k-1)->num_pages +=
1133 (lim - md->phys_addr)
1134 >> EFI_PAGE_SHIFT;
1135 } else {
1136 k->attribute = EFI_MEMORY_UC;
1137 k->start = md->phys_addr;
1138 k->num_pages = (lim - md->phys_addr)
1139 >> EFI_PAGE_SHIFT;
1140 k++;
1143 as = contig_low;
1144 } else
1145 as = md->phys_addr;
1147 if (efi_md_end(md) > contig_high) {
1148 lim = max(md->phys_addr, contig_high);
1149 if (efi_uc(md)) {
1150 if (lim == md->phys_addr && k > kern_memmap &&
1151 (k-1)->attribute == EFI_MEMORY_UC &&
1152 kmd_end(k-1) == md->phys_addr) {
1153 (k-1)->num_pages += md->num_pages;
1154 } else {
1155 k->attribute = EFI_MEMORY_UC;
1156 k->start = lim;
1157 k->num_pages = (efi_md_end(md) - lim)
1158 >> EFI_PAGE_SHIFT;
1159 k++;
1162 ae = contig_high;
1163 } else
1164 ae = efi_md_end(md);
1166 /* keep within max_addr= and min_addr= command line arg */
1167 as = max(as, min_addr);
1168 ae = min(ae, max_addr);
1169 if (ae <= as)
1170 continue;
1172 /* avoid going over mem= command line arg */
1173 if (total_mem + (ae - as) > mem_limit)
1174 ae -= total_mem + (ae - as) - mem_limit;
1176 if (ae <= as)
1177 continue;
1178 if (prev && kmd_end(prev) == md->phys_addr) {
1179 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1180 total_mem += ae - as;
1181 continue;
1183 k->attribute = EFI_MEMORY_WB;
1184 k->start = as;
1185 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1186 total_mem += ae - as;
1187 prev = k++;
1189 k->start = ~0L; /* end-marker */
1191 /* reserve the memory we are using for kern_memmap */
1192 *s = (u64)kern_memmap;
1193 *e = (u64)++k;
1195 return total_mem;
1198 void
1199 efi_initialize_iomem_resources(struct resource *code_resource,
1200 struct resource *data_resource,
1201 struct resource *bss_resource)
1203 struct resource *res;
1204 void *efi_map_start, *efi_map_end, *p;
1205 efi_memory_desc_t *md;
1206 u64 efi_desc_size;
1207 char *name;
1208 unsigned long flags;
1210 efi_map_start = __va(ia64_boot_param->efi_memmap);
1211 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1212 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1214 res = NULL;
1216 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1217 md = p;
1219 if (md->num_pages == 0) /* should not happen */
1220 continue;
1222 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1223 switch (md->type) {
1225 case EFI_MEMORY_MAPPED_IO:
1226 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1227 continue;
1229 case EFI_LOADER_CODE:
1230 case EFI_LOADER_DATA:
1231 case EFI_BOOT_SERVICES_DATA:
1232 case EFI_BOOT_SERVICES_CODE:
1233 case EFI_CONVENTIONAL_MEMORY:
1234 if (md->attribute & EFI_MEMORY_WP) {
1235 name = "System ROM";
1236 flags |= IORESOURCE_READONLY;
1237 } else if (md->attribute == EFI_MEMORY_UC)
1238 name = "Uncached RAM";
1239 else
1240 name = "System RAM";
1241 break;
1243 case EFI_ACPI_MEMORY_NVS:
1244 name = "ACPI Non-volatile Storage";
1245 break;
1247 case EFI_UNUSABLE_MEMORY:
1248 name = "reserved";
1249 flags |= IORESOURCE_DISABLED;
1250 break;
1252 case EFI_RESERVED_TYPE:
1253 case EFI_RUNTIME_SERVICES_CODE:
1254 case EFI_RUNTIME_SERVICES_DATA:
1255 case EFI_ACPI_RECLAIM_MEMORY:
1256 default:
1257 name = "reserved";
1258 break;
1261 if ((res = kzalloc(sizeof(struct resource),
1262 GFP_KERNEL)) == NULL) {
1263 printk(KERN_ERR
1264 "failed to allocate resource for iomem\n");
1265 return;
1268 res->name = name;
1269 res->start = md->phys_addr;
1270 res->end = md->phys_addr + efi_md_size(md) - 1;
1271 res->flags = flags;
1273 if (insert_resource(&iomem_resource, res) < 0)
1274 kfree(res);
1275 else {
1277 * We don't know which region contains
1278 * kernel data so we try it repeatedly and
1279 * let the resource manager test it.
1281 insert_resource(res, code_resource);
1282 insert_resource(res, data_resource);
1283 insert_resource(res, bss_resource);
1284 #ifdef CONFIG_KEXEC
1285 insert_resource(res, &efi_memmap_res);
1286 insert_resource(res, &boot_param_res);
1287 if (crashk_res.end > crashk_res.start)
1288 insert_resource(res, &crashk_res);
1289 #endif
1294 #ifdef CONFIG_KEXEC
1295 /* find a block of memory aligned to 64M exclude reserved regions
1296 rsvd_regions are sorted
1298 unsigned long __init
1299 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1301 int i;
1302 u64 start, end;
1303 u64 alignment = 1UL << _PAGE_SIZE_64M;
1304 void *efi_map_start, *efi_map_end, *p;
1305 efi_memory_desc_t *md;
1306 u64 efi_desc_size;
1308 efi_map_start = __va(ia64_boot_param->efi_memmap);
1309 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1310 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1312 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1313 md = p;
1314 if (!efi_wb(md))
1315 continue;
1316 start = ALIGN(md->phys_addr, alignment);
1317 end = efi_md_end(md);
1318 for (i = 0; i < n; i++) {
1319 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1320 if (__pa(r[i].start) > start + size)
1321 return start;
1322 start = ALIGN(__pa(r[i].end), alignment);
1323 if (i < n-1 &&
1324 __pa(r[i+1].start) < start + size)
1325 continue;
1326 else
1327 break;
1330 if (end > start + size)
1331 return start;
1334 printk(KERN_WARNING
1335 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1336 return ~0UL;
1338 #endif
1340 #ifdef CONFIG_CRASH_DUMP
1341 /* locate the size find a the descriptor at a certain address */
1342 unsigned long __init
1343 vmcore_find_descriptor_size (unsigned long address)
1345 void *efi_map_start, *efi_map_end, *p;
1346 efi_memory_desc_t *md;
1347 u64 efi_desc_size;
1348 unsigned long ret = 0;
1350 efi_map_start = __va(ia64_boot_param->efi_memmap);
1351 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1352 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1354 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1355 md = p;
1356 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1357 && md->phys_addr == address) {
1358 ret = efi_md_size(md);
1359 break;
1363 if (ret == 0)
1364 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1366 return ret;
1368 #endif