2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
85 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
87 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
94 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
95 struct kvm_cpuid_entry2 __user
*entries
);
97 struct kvm_x86_ops
*kvm_x86_ops
;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
101 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
103 #define KVM_NR_SHARED_MSRS 16
105 struct kvm_shared_msrs_global
{
107 u32 msrs
[KVM_NR_SHARED_MSRS
];
110 struct kvm_shared_msrs
{
111 struct user_return_notifier urn
;
113 struct kvm_shared_msr_values
{
116 } values
[KVM_NR_SHARED_MSRS
];
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
122 struct kvm_stats_debugfs_item debugfs_entries
[] = {
123 { "pf_fixed", VCPU_STAT(pf_fixed
) },
124 { "pf_guest", VCPU_STAT(pf_guest
) },
125 { "tlb_flush", VCPU_STAT(tlb_flush
) },
126 { "invlpg", VCPU_STAT(invlpg
) },
127 { "exits", VCPU_STAT(exits
) },
128 { "io_exits", VCPU_STAT(io_exits
) },
129 { "mmio_exits", VCPU_STAT(mmio_exits
) },
130 { "signal_exits", VCPU_STAT(signal_exits
) },
131 { "irq_window", VCPU_STAT(irq_window_exits
) },
132 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
133 { "halt_exits", VCPU_STAT(halt_exits
) },
134 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
135 { "hypercalls", VCPU_STAT(hypercalls
) },
136 { "request_irq", VCPU_STAT(request_irq_exits
) },
137 { "irq_exits", VCPU_STAT(irq_exits
) },
138 { "host_state_reload", VCPU_STAT(host_state_reload
) },
139 { "efer_reload", VCPU_STAT(efer_reload
) },
140 { "fpu_reload", VCPU_STAT(fpu_reload
) },
141 { "insn_emulation", VCPU_STAT(insn_emulation
) },
142 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
143 { "irq_injections", VCPU_STAT(irq_injections
) },
144 { "nmi_injections", VCPU_STAT(nmi_injections
) },
145 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
146 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
147 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
148 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
149 { "mmu_flooded", VM_STAT(mmu_flooded
) },
150 { "mmu_recycled", VM_STAT(mmu_recycled
) },
151 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
152 { "mmu_unsync", VM_STAT(mmu_unsync
) },
153 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
154 { "largepages", VM_STAT(lpages
) },
158 u64 __read_mostly host_xcr0
;
160 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
163 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
164 vcpu
->arch
.apf
.gfns
[i
] = ~0;
167 static void kvm_on_user_return(struct user_return_notifier
*urn
)
170 struct kvm_shared_msrs
*locals
171 = container_of(urn
, struct kvm_shared_msrs
, urn
);
172 struct kvm_shared_msr_values
*values
;
174 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
175 values
= &locals
->values
[slot
];
176 if (values
->host
!= values
->curr
) {
177 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
178 values
->curr
= values
->host
;
181 locals
->registered
= false;
182 user_return_notifier_unregister(urn
);
185 static void shared_msr_update(unsigned slot
, u32 msr
)
187 struct kvm_shared_msrs
*smsr
;
190 smsr
= &__get_cpu_var(shared_msrs
);
191 /* only read, and nobody should modify it at this time,
192 * so don't need lock */
193 if (slot
>= shared_msrs_global
.nr
) {
194 printk(KERN_ERR
"kvm: invalid MSR slot!");
197 rdmsrl_safe(msr
, &value
);
198 smsr
->values
[slot
].host
= value
;
199 smsr
->values
[slot
].curr
= value
;
202 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
204 if (slot
>= shared_msrs_global
.nr
)
205 shared_msrs_global
.nr
= slot
+ 1;
206 shared_msrs_global
.msrs
[slot
] = msr
;
207 /* we need ensured the shared_msr_global have been updated */
210 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
212 static void kvm_shared_msr_cpu_online(void)
216 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
217 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
220 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
222 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
224 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
226 smsr
->values
[slot
].curr
= value
;
227 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
228 if (!smsr
->registered
) {
229 smsr
->urn
.on_user_return
= kvm_on_user_return
;
230 user_return_notifier_register(&smsr
->urn
);
231 smsr
->registered
= true;
234 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
236 static void drop_user_return_notifiers(void *ignore
)
238 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
240 if (smsr
->registered
)
241 kvm_on_user_return(&smsr
->urn
);
244 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
246 if (irqchip_in_kernel(vcpu
->kvm
))
247 return vcpu
->arch
.apic_base
;
249 return vcpu
->arch
.apic_base
;
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
253 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
255 /* TODO: reserve bits check */
256 if (irqchip_in_kernel(vcpu
->kvm
))
257 kvm_lapic_set_base(vcpu
, data
);
259 vcpu
->arch
.apic_base
= data
;
261 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
263 #define EXCPT_BENIGN 0
264 #define EXCPT_CONTRIBUTORY 1
267 static int exception_class(int vector
)
277 return EXCPT_CONTRIBUTORY
;
284 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
285 unsigned nr
, bool has_error
, u32 error_code
,
291 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
293 if (!vcpu
->arch
.exception
.pending
) {
295 vcpu
->arch
.exception
.pending
= true;
296 vcpu
->arch
.exception
.has_error_code
= has_error
;
297 vcpu
->arch
.exception
.nr
= nr
;
298 vcpu
->arch
.exception
.error_code
= error_code
;
299 vcpu
->arch
.exception
.reinject
= reinject
;
303 /* to check exception */
304 prev_nr
= vcpu
->arch
.exception
.nr
;
305 if (prev_nr
== DF_VECTOR
) {
306 /* triple fault -> shutdown */
307 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
310 class1
= exception_class(prev_nr
);
311 class2
= exception_class(nr
);
312 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
313 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
314 /* generate double fault per SDM Table 5-5 */
315 vcpu
->arch
.exception
.pending
= true;
316 vcpu
->arch
.exception
.has_error_code
= true;
317 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
318 vcpu
->arch
.exception
.error_code
= 0;
320 /* replace previous exception with a new one in a hope
321 that instruction re-execution will regenerate lost
326 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
328 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
330 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
332 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
334 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
336 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
338 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
341 kvm_inject_gp(vcpu
, 0);
343 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
345 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
347 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
349 ++vcpu
->stat
.pf_guest
;
350 vcpu
->arch
.cr2
= fault
->address
;
351 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
354 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
356 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
357 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
359 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
362 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
364 kvm_make_request(KVM_REQ_NMI
, vcpu
);
365 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
369 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
371 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
375 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
377 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
385 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
387 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
389 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
392 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
399 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
400 gfn_t ngfn
, void *data
, int offset
, int len
,
406 ngpa
= gfn_to_gpa(ngfn
);
407 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
408 if (real_gfn
== UNMAPPED_GVA
)
411 real_gfn
= gpa_to_gfn(real_gfn
);
413 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
417 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
418 void *data
, int offset
, int len
, u32 access
)
420 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
421 data
, offset
, len
, access
);
425 * Load the pae pdptrs. Return true is they are all valid.
427 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
429 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
430 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
433 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
435 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
436 offset
* sizeof(u64
), sizeof(pdpte
),
437 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
442 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
443 if (is_present_gpte(pdpte
[i
]) &&
444 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
451 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
452 __set_bit(VCPU_EXREG_PDPTR
,
453 (unsigned long *)&vcpu
->arch
.regs_avail
);
454 __set_bit(VCPU_EXREG_PDPTR
,
455 (unsigned long *)&vcpu
->arch
.regs_dirty
);
460 EXPORT_SYMBOL_GPL(load_pdptrs
);
462 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
464 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
470 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
473 if (!test_bit(VCPU_EXREG_PDPTR
,
474 (unsigned long *)&vcpu
->arch
.regs_avail
))
477 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
478 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
479 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
480 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
483 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
489 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
491 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
492 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
493 X86_CR0_CD
| X86_CR0_NW
;
498 if (cr0
& 0xffffffff00000000UL
)
502 cr0
&= ~CR0_RESERVED_BITS
;
504 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
507 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
510 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
512 if ((vcpu
->arch
.efer
& EFER_LME
)) {
517 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
522 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
527 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
529 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
530 kvm_clear_async_pf_completion_queue(vcpu
);
531 kvm_async_pf_hash_reset(vcpu
);
534 if ((cr0
^ old_cr0
) & update_bits
)
535 kvm_mmu_reset_context(vcpu
);
538 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
540 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
542 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
544 EXPORT_SYMBOL_GPL(kvm_lmsw
);
546 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
551 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
554 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
556 if (!(xcr0
& XSTATE_FP
))
558 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
560 if (xcr0
& ~host_xcr0
)
562 vcpu
->arch
.xcr0
= xcr0
;
563 vcpu
->guest_xcr0_loaded
= 0;
567 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
569 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
570 kvm_inject_gp(vcpu
, 0);
575 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
579 struct kvm_cpuid_entry2
*best
;
581 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
582 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
585 static void update_cpuid(struct kvm_vcpu
*vcpu
)
587 struct kvm_cpuid_entry2
*best
;
589 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
593 /* Update OSXSAVE bit */
594 if (cpu_has_xsave
&& best
->function
== 0x1) {
595 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
596 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
597 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
601 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
603 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
604 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
606 if (cr4
& CR4_RESERVED_BITS
)
609 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
612 if (is_long_mode(vcpu
)) {
613 if (!(cr4
& X86_CR4_PAE
))
615 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
616 && ((cr4
^ old_cr4
) & pdptr_bits
)
617 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
621 if (cr4
& X86_CR4_VMXE
)
624 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
626 if ((cr4
^ old_cr4
) & pdptr_bits
)
627 kvm_mmu_reset_context(vcpu
);
629 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
634 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
636 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
638 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
639 kvm_mmu_sync_roots(vcpu
);
640 kvm_mmu_flush_tlb(vcpu
);
644 if (is_long_mode(vcpu
)) {
645 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
649 if (cr3
& CR3_PAE_RESERVED_BITS
)
651 if (is_paging(vcpu
) &&
652 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
656 * We don't check reserved bits in nonpae mode, because
657 * this isn't enforced, and VMware depends on this.
662 * Does the new cr3 value map to physical memory? (Note, we
663 * catch an invalid cr3 even in real-mode, because it would
664 * cause trouble later on when we turn on paging anyway.)
666 * A real CPU would silently accept an invalid cr3 and would
667 * attempt to use it - with largely undefined (and often hard
668 * to debug) behavior on the guest side.
670 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
672 vcpu
->arch
.cr3
= cr3
;
673 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
674 vcpu
->arch
.mmu
.new_cr3(vcpu
);
677 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
679 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
681 if (cr8
& CR8_RESERVED_BITS
)
683 if (irqchip_in_kernel(vcpu
->kvm
))
684 kvm_lapic_set_tpr(vcpu
, cr8
);
686 vcpu
->arch
.cr8
= cr8
;
689 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
691 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
693 if (irqchip_in_kernel(vcpu
->kvm
))
694 return kvm_lapic_get_cr8(vcpu
);
696 return vcpu
->arch
.cr8
;
698 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
700 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
704 vcpu
->arch
.db
[dr
] = val
;
705 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
706 vcpu
->arch
.eff_db
[dr
] = val
;
709 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
713 if (val
& 0xffffffff00000000ULL
)
715 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
718 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
722 if (val
& 0xffffffff00000000ULL
)
724 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
725 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
726 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
727 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
735 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
739 res
= __kvm_set_dr(vcpu
, dr
, val
);
741 kvm_queue_exception(vcpu
, UD_VECTOR
);
743 kvm_inject_gp(vcpu
, 0);
747 EXPORT_SYMBOL_GPL(kvm_set_dr
);
749 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
753 *val
= vcpu
->arch
.db
[dr
];
756 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
760 *val
= vcpu
->arch
.dr6
;
763 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
767 *val
= vcpu
->arch
.dr7
;
774 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
776 if (_kvm_get_dr(vcpu
, dr
, val
)) {
777 kvm_queue_exception(vcpu
, UD_VECTOR
);
782 EXPORT_SYMBOL_GPL(kvm_get_dr
);
785 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
786 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
788 * This list is modified at module load time to reflect the
789 * capabilities of the host cpu. This capabilities test skips MSRs that are
790 * kvm-specific. Those are put in the beginning of the list.
793 #define KVM_SAVE_MSRS_BEGIN 8
794 static u32 msrs_to_save
[] = {
795 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
796 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
797 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
798 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
,
799 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
802 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
804 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
807 static unsigned num_msrs_to_save
;
809 static u32 emulated_msrs
[] = {
810 MSR_IA32_MISC_ENABLE
,
815 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
817 u64 old_efer
= vcpu
->arch
.efer
;
819 if (efer
& efer_reserved_bits
)
823 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
826 if (efer
& EFER_FFXSR
) {
827 struct kvm_cpuid_entry2
*feat
;
829 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
830 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
834 if (efer
& EFER_SVME
) {
835 struct kvm_cpuid_entry2
*feat
;
837 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
838 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
843 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
845 kvm_x86_ops
->set_efer(vcpu
, efer
);
847 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
849 /* Update reserved bits */
850 if ((efer
^ old_efer
) & EFER_NX
)
851 kvm_mmu_reset_context(vcpu
);
856 void kvm_enable_efer_bits(u64 mask
)
858 efer_reserved_bits
&= ~mask
;
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
864 * Writes msr value into into the appropriate "register".
865 * Returns 0 on success, non-0 otherwise.
866 * Assumes vcpu_load() was already called.
868 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
870 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
874 * Adapt set_msr() to msr_io()'s calling convention
876 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
878 return kvm_set_msr(vcpu
, index
, *data
);
881 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
885 struct pvclock_wall_clock wc
;
886 struct timespec boot
;
891 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
896 ++version
; /* first time write, random junk */
900 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
903 * The guest calculates current wall clock time by adding
904 * system time (updated by kvm_guest_time_update below) to the
905 * wall clock specified here. guest system time equals host
906 * system time for us, thus we must fill in host boot time here.
910 wc
.sec
= boot
.tv_sec
;
911 wc
.nsec
= boot
.tv_nsec
;
912 wc
.version
= version
;
914 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
917 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
920 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
922 uint32_t quotient
, remainder
;
924 /* Don't try to replace with do_div(), this one calculates
925 * "(dividend << 32) / divisor" */
927 : "=a" (quotient
), "=d" (remainder
)
928 : "0" (0), "1" (dividend
), "r" (divisor
) );
932 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
933 s8
*pshift
, u32
*pmultiplier
)
940 tps64
= base_khz
* 1000LL;
941 scaled64
= scaled_khz
* 1000LL;
942 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
947 tps32
= (uint32_t)tps64
;
948 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
949 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
957 *pmultiplier
= div_frac(scaled64
, tps32
);
959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
963 static inline u64
get_kernel_ns(void)
967 WARN_ON(preemptible());
969 monotonic_to_bootbased(&ts
);
970 return timespec_to_ns(&ts
);
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
974 unsigned long max_tsc_khz
;
976 static inline int kvm_tsc_changes_freq(void)
979 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
980 cpufreq_quick_get(cpu
) != 0;
985 static inline u64
nsec_to_cycles(u64 nsec
)
989 WARN_ON(preemptible());
990 if (kvm_tsc_changes_freq())
991 printk_once(KERN_WARNING
992 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
993 ret
= nsec
* __this_cpu_read(cpu_tsc_khz
);
994 do_div(ret
, USEC_PER_SEC
);
998 static void kvm_arch_set_tsc_khz(struct kvm
*kvm
, u32 this_tsc_khz
)
1000 /* Compute a scale to convert nanoseconds in TSC cycles */
1001 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1002 &kvm
->arch
.virtual_tsc_shift
,
1003 &kvm
->arch
.virtual_tsc_mult
);
1004 kvm
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1007 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1009 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1010 vcpu
->kvm
->arch
.virtual_tsc_mult
,
1011 vcpu
->kvm
->arch
.virtual_tsc_shift
);
1012 tsc
+= vcpu
->arch
.last_tsc_write
;
1016 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1018 struct kvm
*kvm
= vcpu
->kvm
;
1019 u64 offset
, ns
, elapsed
;
1020 unsigned long flags
;
1023 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1024 offset
= data
- native_read_tsc();
1025 ns
= get_kernel_ns();
1026 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1027 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1032 * Special case: close write to TSC within 5 seconds of
1033 * another CPU is interpreted as an attempt to synchronize
1034 * The 5 seconds is to accommodate host load / swapping as
1035 * well as any reset of TSC during the boot process.
1037 * In that case, for a reliable TSC, we can match TSC offsets,
1038 * or make a best guest using elapsed value.
1040 if (sdiff
< nsec_to_cycles(5ULL * NSEC_PER_SEC
) &&
1041 elapsed
< 5ULL * NSEC_PER_SEC
) {
1042 if (!check_tsc_unstable()) {
1043 offset
= kvm
->arch
.last_tsc_offset
;
1044 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1046 u64 delta
= nsec_to_cycles(elapsed
);
1048 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1050 ns
= kvm
->arch
.last_tsc_nsec
;
1052 kvm
->arch
.last_tsc_nsec
= ns
;
1053 kvm
->arch
.last_tsc_write
= data
;
1054 kvm
->arch
.last_tsc_offset
= offset
;
1055 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1056 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1058 /* Reset of TSC must disable overshoot protection below */
1059 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1060 vcpu
->arch
.last_tsc_write
= data
;
1061 vcpu
->arch
.last_tsc_nsec
= ns
;
1063 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1065 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1067 unsigned long flags
;
1068 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1070 unsigned long this_tsc_khz
;
1071 s64 kernel_ns
, max_kernel_ns
;
1074 /* Keep irq disabled to prevent changes to the clock */
1075 local_irq_save(flags
);
1076 kvm_get_msr(v
, MSR_IA32_TSC
, &tsc_timestamp
);
1077 kernel_ns
= get_kernel_ns();
1078 this_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1080 if (unlikely(this_tsc_khz
== 0)) {
1081 local_irq_restore(flags
);
1082 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1087 * We may have to catch up the TSC to match elapsed wall clock
1088 * time for two reasons, even if kvmclock is used.
1089 * 1) CPU could have been running below the maximum TSC rate
1090 * 2) Broken TSC compensation resets the base at each VCPU
1091 * entry to avoid unknown leaps of TSC even when running
1092 * again on the same CPU. This may cause apparent elapsed
1093 * time to disappear, and the guest to stand still or run
1096 if (vcpu
->tsc_catchup
) {
1097 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1098 if (tsc
> tsc_timestamp
) {
1099 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1100 tsc_timestamp
= tsc
;
1104 local_irq_restore(flags
);
1106 if (!vcpu
->time_page
)
1110 * Time as measured by the TSC may go backwards when resetting the base
1111 * tsc_timestamp. The reason for this is that the TSC resolution is
1112 * higher than the resolution of the other clock scales. Thus, many
1113 * possible measurments of the TSC correspond to one measurement of any
1114 * other clock, and so a spread of values is possible. This is not a
1115 * problem for the computation of the nanosecond clock; with TSC rates
1116 * around 1GHZ, there can only be a few cycles which correspond to one
1117 * nanosecond value, and any path through this code will inevitably
1118 * take longer than that. However, with the kernel_ns value itself,
1119 * the precision may be much lower, down to HZ granularity. If the
1120 * first sampling of TSC against kernel_ns ends in the low part of the
1121 * range, and the second in the high end of the range, we can get:
1123 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1125 * As the sampling errors potentially range in the thousands of cycles,
1126 * it is possible such a time value has already been observed by the
1127 * guest. To protect against this, we must compute the system time as
1128 * observed by the guest and ensure the new system time is greater.
1131 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1132 max_kernel_ns
= vcpu
->last_guest_tsc
-
1133 vcpu
->hv_clock
.tsc_timestamp
;
1134 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1135 vcpu
->hv_clock
.tsc_to_system_mul
,
1136 vcpu
->hv_clock
.tsc_shift
);
1137 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1140 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1141 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1142 &vcpu
->hv_clock
.tsc_shift
,
1143 &vcpu
->hv_clock
.tsc_to_system_mul
);
1144 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1147 if (max_kernel_ns
> kernel_ns
)
1148 kernel_ns
= max_kernel_ns
;
1150 /* With all the info we got, fill in the values */
1151 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1152 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1153 vcpu
->last_kernel_ns
= kernel_ns
;
1154 vcpu
->last_guest_tsc
= tsc_timestamp
;
1155 vcpu
->hv_clock
.flags
= 0;
1158 * The interface expects us to write an even number signaling that the
1159 * update is finished. Since the guest won't see the intermediate
1160 * state, we just increase by 2 at the end.
1162 vcpu
->hv_clock
.version
+= 2;
1164 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1166 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1167 sizeof(vcpu
->hv_clock
));
1169 kunmap_atomic(shared_kaddr
, KM_USER0
);
1171 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1175 static bool msr_mtrr_valid(unsigned msr
)
1178 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1179 case MSR_MTRRfix64K_00000
:
1180 case MSR_MTRRfix16K_80000
:
1181 case MSR_MTRRfix16K_A0000
:
1182 case MSR_MTRRfix4K_C0000
:
1183 case MSR_MTRRfix4K_C8000
:
1184 case MSR_MTRRfix4K_D0000
:
1185 case MSR_MTRRfix4K_D8000
:
1186 case MSR_MTRRfix4K_E0000
:
1187 case MSR_MTRRfix4K_E8000
:
1188 case MSR_MTRRfix4K_F0000
:
1189 case MSR_MTRRfix4K_F8000
:
1190 case MSR_MTRRdefType
:
1191 case MSR_IA32_CR_PAT
:
1199 static bool valid_pat_type(unsigned t
)
1201 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1204 static bool valid_mtrr_type(unsigned t
)
1206 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1209 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1213 if (!msr_mtrr_valid(msr
))
1216 if (msr
== MSR_IA32_CR_PAT
) {
1217 for (i
= 0; i
< 8; i
++)
1218 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1221 } else if (msr
== MSR_MTRRdefType
) {
1224 return valid_mtrr_type(data
& 0xff);
1225 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1226 for (i
= 0; i
< 8 ; i
++)
1227 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1232 /* variable MTRRs */
1233 return valid_mtrr_type(data
& 0xff);
1236 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1238 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1240 if (!mtrr_valid(vcpu
, msr
, data
))
1243 if (msr
== MSR_MTRRdefType
) {
1244 vcpu
->arch
.mtrr_state
.def_type
= data
;
1245 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1246 } else if (msr
== MSR_MTRRfix64K_00000
)
1248 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1249 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1250 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1251 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1252 else if (msr
== MSR_IA32_CR_PAT
)
1253 vcpu
->arch
.pat
= data
;
1254 else { /* Variable MTRRs */
1255 int idx
, is_mtrr_mask
;
1258 idx
= (msr
- 0x200) / 2;
1259 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1262 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1265 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1269 kvm_mmu_reset_context(vcpu
);
1273 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1275 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1276 unsigned bank_num
= mcg_cap
& 0xff;
1279 case MSR_IA32_MCG_STATUS
:
1280 vcpu
->arch
.mcg_status
= data
;
1282 case MSR_IA32_MCG_CTL
:
1283 if (!(mcg_cap
& MCG_CTL_P
))
1285 if (data
!= 0 && data
!= ~(u64
)0)
1287 vcpu
->arch
.mcg_ctl
= data
;
1290 if (msr
>= MSR_IA32_MC0_CTL
&&
1291 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1292 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1293 /* only 0 or all 1s can be written to IA32_MCi_CTL
1294 * some Linux kernels though clear bit 10 in bank 4 to
1295 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1296 * this to avoid an uncatched #GP in the guest
1298 if ((offset
& 0x3) == 0 &&
1299 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1301 vcpu
->arch
.mce_banks
[offset
] = data
;
1309 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1311 struct kvm
*kvm
= vcpu
->kvm
;
1312 int lm
= is_long_mode(vcpu
);
1313 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1314 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1315 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1316 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1317 u32 page_num
= data
& ~PAGE_MASK
;
1318 u64 page_addr
= data
& PAGE_MASK
;
1323 if (page_num
>= blob_size
)
1326 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1330 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1332 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1341 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1343 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1346 static bool kvm_hv_msr_partition_wide(u32 msr
)
1350 case HV_X64_MSR_GUEST_OS_ID
:
1351 case HV_X64_MSR_HYPERCALL
:
1359 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1361 struct kvm
*kvm
= vcpu
->kvm
;
1364 case HV_X64_MSR_GUEST_OS_ID
:
1365 kvm
->arch
.hv_guest_os_id
= data
;
1366 /* setting guest os id to zero disables hypercall page */
1367 if (!kvm
->arch
.hv_guest_os_id
)
1368 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1370 case HV_X64_MSR_HYPERCALL
: {
1375 /* if guest os id is not set hypercall should remain disabled */
1376 if (!kvm
->arch
.hv_guest_os_id
)
1378 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1379 kvm
->arch
.hv_hypercall
= data
;
1382 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1383 addr
= gfn_to_hva(kvm
, gfn
);
1384 if (kvm_is_error_hva(addr
))
1386 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1387 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1388 if (copy_to_user((void __user
*)addr
, instructions
, 4))
1390 kvm
->arch
.hv_hypercall
= data
;
1394 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1395 "data 0x%llx\n", msr
, data
);
1401 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1404 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1407 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1408 vcpu
->arch
.hv_vapic
= data
;
1411 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1412 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1413 if (kvm_is_error_hva(addr
))
1415 if (clear_user((void __user
*)addr
, PAGE_SIZE
))
1417 vcpu
->arch
.hv_vapic
= data
;
1420 case HV_X64_MSR_EOI
:
1421 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1422 case HV_X64_MSR_ICR
:
1423 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1424 case HV_X64_MSR_TPR
:
1425 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1427 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1428 "data 0x%llx\n", msr
, data
);
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1437 gpa_t gpa
= data
& ~0x3f;
1439 /* Bits 2:5 are resrved, Should be zero */
1443 vcpu
->arch
.apf
.msr_val
= data
;
1445 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1446 kvm_clear_async_pf_completion_queue(vcpu
);
1447 kvm_async_pf_hash_reset(vcpu
);
1451 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1454 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1455 kvm_async_pf_wakeup_all(vcpu
);
1459 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1461 if (vcpu
->arch
.time_page
) {
1462 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1463 vcpu
->arch
.time_page
= NULL
;
1467 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1471 return set_efer(vcpu
, data
);
1473 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1474 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1476 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1481 case MSR_FAM10H_MMIO_CONF_BASE
:
1483 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1488 case MSR_AMD64_NB_CFG
:
1490 case MSR_IA32_DEBUGCTLMSR
:
1492 /* We support the non-activated case already */
1494 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1495 /* Values other than LBR and BTF are vendor-specific,
1496 thus reserved and should throw a #GP */
1499 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1502 case MSR_IA32_UCODE_REV
:
1503 case MSR_IA32_UCODE_WRITE
:
1504 case MSR_VM_HSAVE_PA
:
1505 case MSR_AMD64_PATCH_LOADER
:
1507 case 0x200 ... 0x2ff:
1508 return set_msr_mtrr(vcpu
, msr
, data
);
1509 case MSR_IA32_APICBASE
:
1510 kvm_set_apic_base(vcpu
, data
);
1512 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1513 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1514 case MSR_IA32_MISC_ENABLE
:
1515 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1517 case MSR_KVM_WALL_CLOCK_NEW
:
1518 case MSR_KVM_WALL_CLOCK
:
1519 vcpu
->kvm
->arch
.wall_clock
= data
;
1520 kvm_write_wall_clock(vcpu
->kvm
, data
);
1522 case MSR_KVM_SYSTEM_TIME_NEW
:
1523 case MSR_KVM_SYSTEM_TIME
: {
1524 kvmclock_reset(vcpu
);
1526 vcpu
->arch
.time
= data
;
1527 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1529 /* we verify if the enable bit is set... */
1533 /* ...but clean it before doing the actual write */
1534 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1536 vcpu
->arch
.time_page
=
1537 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1539 if (is_error_page(vcpu
->arch
.time_page
)) {
1540 kvm_release_page_clean(vcpu
->arch
.time_page
);
1541 vcpu
->arch
.time_page
= NULL
;
1545 case MSR_KVM_ASYNC_PF_EN
:
1546 if (kvm_pv_enable_async_pf(vcpu
, data
))
1549 case MSR_IA32_MCG_CTL
:
1550 case MSR_IA32_MCG_STATUS
:
1551 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1552 return set_msr_mce(vcpu
, msr
, data
);
1554 /* Performance counters are not protected by a CPUID bit,
1555 * so we should check all of them in the generic path for the sake of
1556 * cross vendor migration.
1557 * Writing a zero into the event select MSRs disables them,
1558 * which we perfectly emulate ;-). Any other value should be at least
1559 * reported, some guests depend on them.
1561 case MSR_P6_EVNTSEL0
:
1562 case MSR_P6_EVNTSEL1
:
1563 case MSR_K7_EVNTSEL0
:
1564 case MSR_K7_EVNTSEL1
:
1565 case MSR_K7_EVNTSEL2
:
1566 case MSR_K7_EVNTSEL3
:
1568 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1569 "0x%x data 0x%llx\n", msr
, data
);
1571 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1572 * so we ignore writes to make it happy.
1574 case MSR_P6_PERFCTR0
:
1575 case MSR_P6_PERFCTR1
:
1576 case MSR_K7_PERFCTR0
:
1577 case MSR_K7_PERFCTR1
:
1578 case MSR_K7_PERFCTR2
:
1579 case MSR_K7_PERFCTR3
:
1580 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1581 "0x%x data 0x%llx\n", msr
, data
);
1583 case MSR_K7_CLK_CTL
:
1585 * Ignore all writes to this no longer documented MSR.
1586 * Writes are only relevant for old K7 processors,
1587 * all pre-dating SVM, but a recommended workaround from
1588 * AMD for these chips. It is possible to speicify the
1589 * affected processor models on the command line, hence
1590 * the need to ignore the workaround.
1593 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1594 if (kvm_hv_msr_partition_wide(msr
)) {
1596 mutex_lock(&vcpu
->kvm
->lock
);
1597 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1598 mutex_unlock(&vcpu
->kvm
->lock
);
1601 return set_msr_hyperv(vcpu
, msr
, data
);
1603 case MSR_IA32_BBL_CR_CTL3
:
1604 /* Drop writes to this legacy MSR -- see rdmsr
1605 * counterpart for further detail.
1607 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1610 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1611 return xen_hvm_config(vcpu
, data
);
1613 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1617 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1628 * Reads an msr value (of 'msr_index') into 'pdata'.
1629 * Returns 0 on success, non-0 otherwise.
1630 * Assumes vcpu_load() was already called.
1632 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1634 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1637 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1639 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1641 if (!msr_mtrr_valid(msr
))
1644 if (msr
== MSR_MTRRdefType
)
1645 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1646 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1647 else if (msr
== MSR_MTRRfix64K_00000
)
1649 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1650 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1651 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1652 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1653 else if (msr
== MSR_IA32_CR_PAT
)
1654 *pdata
= vcpu
->arch
.pat
;
1655 else { /* Variable MTRRs */
1656 int idx
, is_mtrr_mask
;
1659 idx
= (msr
- 0x200) / 2;
1660 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1663 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1666 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1673 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1676 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1677 unsigned bank_num
= mcg_cap
& 0xff;
1680 case MSR_IA32_P5_MC_ADDR
:
1681 case MSR_IA32_P5_MC_TYPE
:
1684 case MSR_IA32_MCG_CAP
:
1685 data
= vcpu
->arch
.mcg_cap
;
1687 case MSR_IA32_MCG_CTL
:
1688 if (!(mcg_cap
& MCG_CTL_P
))
1690 data
= vcpu
->arch
.mcg_ctl
;
1692 case MSR_IA32_MCG_STATUS
:
1693 data
= vcpu
->arch
.mcg_status
;
1696 if (msr
>= MSR_IA32_MC0_CTL
&&
1697 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1698 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1699 data
= vcpu
->arch
.mce_banks
[offset
];
1708 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1711 struct kvm
*kvm
= vcpu
->kvm
;
1714 case HV_X64_MSR_GUEST_OS_ID
:
1715 data
= kvm
->arch
.hv_guest_os_id
;
1717 case HV_X64_MSR_HYPERCALL
:
1718 data
= kvm
->arch
.hv_hypercall
;
1721 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1729 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1734 case HV_X64_MSR_VP_INDEX
: {
1737 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1742 case HV_X64_MSR_EOI
:
1743 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1744 case HV_X64_MSR_ICR
:
1745 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1746 case HV_X64_MSR_TPR
:
1747 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1749 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1756 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1761 case MSR_IA32_PLATFORM_ID
:
1762 case MSR_IA32_UCODE_REV
:
1763 case MSR_IA32_EBL_CR_POWERON
:
1764 case MSR_IA32_DEBUGCTLMSR
:
1765 case MSR_IA32_LASTBRANCHFROMIP
:
1766 case MSR_IA32_LASTBRANCHTOIP
:
1767 case MSR_IA32_LASTINTFROMIP
:
1768 case MSR_IA32_LASTINTTOIP
:
1771 case MSR_VM_HSAVE_PA
:
1772 case MSR_P6_PERFCTR0
:
1773 case MSR_P6_PERFCTR1
:
1774 case MSR_P6_EVNTSEL0
:
1775 case MSR_P6_EVNTSEL1
:
1776 case MSR_K7_EVNTSEL0
:
1777 case MSR_K7_PERFCTR0
:
1778 case MSR_K8_INT_PENDING_MSG
:
1779 case MSR_AMD64_NB_CFG
:
1780 case MSR_FAM10H_MMIO_CONF_BASE
:
1784 data
= 0x500 | KVM_NR_VAR_MTRR
;
1786 case 0x200 ... 0x2ff:
1787 return get_msr_mtrr(vcpu
, msr
, pdata
);
1788 case 0xcd: /* fsb frequency */
1792 * MSR_EBC_FREQUENCY_ID
1793 * Conservative value valid for even the basic CPU models.
1794 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1795 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1796 * and 266MHz for model 3, or 4. Set Core Clock
1797 * Frequency to System Bus Frequency Ratio to 1 (bits
1798 * 31:24) even though these are only valid for CPU
1799 * models > 2, however guests may end up dividing or
1800 * multiplying by zero otherwise.
1802 case MSR_EBC_FREQUENCY_ID
:
1805 case MSR_IA32_APICBASE
:
1806 data
= kvm_get_apic_base(vcpu
);
1808 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1809 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1811 case MSR_IA32_MISC_ENABLE
:
1812 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1814 case MSR_IA32_PERF_STATUS
:
1815 /* TSC increment by tick */
1817 /* CPU multiplier */
1818 data
|= (((uint64_t)4ULL) << 40);
1821 data
= vcpu
->arch
.efer
;
1823 case MSR_KVM_WALL_CLOCK
:
1824 case MSR_KVM_WALL_CLOCK_NEW
:
1825 data
= vcpu
->kvm
->arch
.wall_clock
;
1827 case MSR_KVM_SYSTEM_TIME
:
1828 case MSR_KVM_SYSTEM_TIME_NEW
:
1829 data
= vcpu
->arch
.time
;
1831 case MSR_KVM_ASYNC_PF_EN
:
1832 data
= vcpu
->arch
.apf
.msr_val
;
1834 case MSR_IA32_P5_MC_ADDR
:
1835 case MSR_IA32_P5_MC_TYPE
:
1836 case MSR_IA32_MCG_CAP
:
1837 case MSR_IA32_MCG_CTL
:
1838 case MSR_IA32_MCG_STATUS
:
1839 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1840 return get_msr_mce(vcpu
, msr
, pdata
);
1841 case MSR_K7_CLK_CTL
:
1843 * Provide expected ramp-up count for K7. All other
1844 * are set to zero, indicating minimum divisors for
1847 * This prevents guest kernels on AMD host with CPU
1848 * type 6, model 8 and higher from exploding due to
1849 * the rdmsr failing.
1853 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1854 if (kvm_hv_msr_partition_wide(msr
)) {
1856 mutex_lock(&vcpu
->kvm
->lock
);
1857 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1858 mutex_unlock(&vcpu
->kvm
->lock
);
1861 return get_msr_hyperv(vcpu
, msr
, pdata
);
1863 case MSR_IA32_BBL_CR_CTL3
:
1864 /* This legacy MSR exists but isn't fully documented in current
1865 * silicon. It is however accessed by winxp in very narrow
1866 * scenarios where it sets bit #19, itself documented as
1867 * a "reserved" bit. Best effort attempt to source coherent
1868 * read data here should the balance of the register be
1869 * interpreted by the guest:
1871 * L2 cache control register 3: 64GB range, 256KB size,
1872 * enabled, latency 0x1, configured
1878 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1881 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1889 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1892 * Read or write a bunch of msrs. All parameters are kernel addresses.
1894 * @return number of msrs set successfully.
1896 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1897 struct kvm_msr_entry
*entries
,
1898 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1899 unsigned index
, u64
*data
))
1903 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1904 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1905 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1907 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1913 * Read or write a bunch of msrs. Parameters are user addresses.
1915 * @return number of msrs set successfully.
1917 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1918 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1919 unsigned index
, u64
*data
),
1922 struct kvm_msrs msrs
;
1923 struct kvm_msr_entry
*entries
;
1928 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1932 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1936 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1937 entries
= kmalloc(size
, GFP_KERNEL
);
1942 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1945 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1950 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1961 int kvm_dev_ioctl_check_extension(long ext
)
1966 case KVM_CAP_IRQCHIP
:
1968 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1969 case KVM_CAP_SET_TSS_ADDR
:
1970 case KVM_CAP_EXT_CPUID
:
1971 case KVM_CAP_CLOCKSOURCE
:
1973 case KVM_CAP_NOP_IO_DELAY
:
1974 case KVM_CAP_MP_STATE
:
1975 case KVM_CAP_SYNC_MMU
:
1976 case KVM_CAP_USER_NMI
:
1977 case KVM_CAP_REINJECT_CONTROL
:
1978 case KVM_CAP_IRQ_INJECT_STATUS
:
1979 case KVM_CAP_ASSIGN_DEV_IRQ
:
1981 case KVM_CAP_IOEVENTFD
:
1983 case KVM_CAP_PIT_STATE2
:
1984 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1985 case KVM_CAP_XEN_HVM
:
1986 case KVM_CAP_ADJUST_CLOCK
:
1987 case KVM_CAP_VCPU_EVENTS
:
1988 case KVM_CAP_HYPERV
:
1989 case KVM_CAP_HYPERV_VAPIC
:
1990 case KVM_CAP_HYPERV_SPIN
:
1991 case KVM_CAP_PCI_SEGMENT
:
1992 case KVM_CAP_DEBUGREGS
:
1993 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
1995 case KVM_CAP_ASYNC_PF
:
1998 case KVM_CAP_COALESCED_MMIO
:
1999 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2002 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2004 case KVM_CAP_NR_VCPUS
:
2007 case KVM_CAP_NR_MEMSLOTS
:
2008 r
= KVM_MEMORY_SLOTS
;
2010 case KVM_CAP_PV_MMU
: /* obsolete */
2017 r
= KVM_MAX_MCE_BANKS
;
2030 long kvm_arch_dev_ioctl(struct file
*filp
,
2031 unsigned int ioctl
, unsigned long arg
)
2033 void __user
*argp
= (void __user
*)arg
;
2037 case KVM_GET_MSR_INDEX_LIST
: {
2038 struct kvm_msr_list __user
*user_msr_list
= argp
;
2039 struct kvm_msr_list msr_list
;
2043 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2046 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2047 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2050 if (n
< msr_list
.nmsrs
)
2053 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2054 num_msrs_to_save
* sizeof(u32
)))
2056 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2058 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2063 case KVM_GET_SUPPORTED_CPUID
: {
2064 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2065 struct kvm_cpuid2 cpuid
;
2068 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2070 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2071 cpuid_arg
->entries
);
2076 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2081 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2084 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2086 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2098 static void wbinvd_ipi(void *garbage
)
2103 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2105 return vcpu
->kvm
->arch
.iommu_domain
&&
2106 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2109 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2111 /* Address WBINVD may be executed by guest */
2112 if (need_emulate_wbinvd(vcpu
)) {
2113 if (kvm_x86_ops
->has_wbinvd_exit())
2114 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2115 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2116 smp_call_function_single(vcpu
->cpu
,
2117 wbinvd_ipi
, NULL
, 1);
2120 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2121 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2122 /* Make sure TSC doesn't go backwards */
2123 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2124 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2126 mark_tsc_unstable("KVM discovered backwards TSC");
2127 if (check_tsc_unstable()) {
2128 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2129 vcpu
->arch
.tsc_catchup
= 1;
2131 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2132 if (vcpu
->cpu
!= cpu
)
2133 kvm_migrate_timers(vcpu
);
2138 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2140 kvm_x86_ops
->vcpu_put(vcpu
);
2141 kvm_put_guest_fpu(vcpu
);
2142 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2145 static int is_efer_nx(void)
2147 unsigned long long efer
= 0;
2149 rdmsrl_safe(MSR_EFER
, &efer
);
2150 return efer
& EFER_NX
;
2153 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2156 struct kvm_cpuid_entry2
*e
, *entry
;
2159 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2160 e
= &vcpu
->arch
.cpuid_entries
[i
];
2161 if (e
->function
== 0x80000001) {
2166 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
2167 entry
->edx
&= ~(1 << 20);
2168 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2172 /* when an old userspace process fills a new kernel module */
2173 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2174 struct kvm_cpuid
*cpuid
,
2175 struct kvm_cpuid_entry __user
*entries
)
2178 struct kvm_cpuid_entry
*cpuid_entries
;
2181 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2184 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
2188 if (copy_from_user(cpuid_entries
, entries
,
2189 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2191 for (i
= 0; i
< cpuid
->nent
; i
++) {
2192 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
2193 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
2194 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
2195 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
2196 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
2197 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
2198 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
2199 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
2200 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
2201 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
2203 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2204 cpuid_fix_nx_cap(vcpu
);
2206 kvm_apic_set_version(vcpu
);
2207 kvm_x86_ops
->cpuid_update(vcpu
);
2211 vfree(cpuid_entries
);
2216 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
2217 struct kvm_cpuid2
*cpuid
,
2218 struct kvm_cpuid_entry2 __user
*entries
)
2223 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2226 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
2227 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
2229 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2230 kvm_apic_set_version(vcpu
);
2231 kvm_x86_ops
->cpuid_update(vcpu
);
2239 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
2240 struct kvm_cpuid2
*cpuid
,
2241 struct kvm_cpuid_entry2 __user
*entries
)
2246 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
2249 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
2250 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
2255 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
2259 static void cpuid_mask(u32
*word
, int wordnum
)
2261 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
2264 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2267 entry
->function
= function
;
2268 entry
->index
= index
;
2269 cpuid_count(entry
->function
, entry
->index
,
2270 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
2274 #define F(x) bit(X86_FEATURE_##x)
2276 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2277 u32 index
, int *nent
, int maxnent
)
2279 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
2280 #ifdef CONFIG_X86_64
2281 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
2283 unsigned f_lm
= F(LM
);
2285 unsigned f_gbpages
= 0;
2288 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
2291 const u32 kvm_supported_word0_x86_features
=
2292 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2293 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2294 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
2295 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2296 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
2297 0 /* Reserved, DS, ACPI */ | F(MMX
) |
2298 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
2299 0 /* HTT, TM, Reserved, PBE */;
2300 /* cpuid 0x80000001.edx */
2301 const u32 kvm_supported_word1_x86_features
=
2302 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2303 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2304 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
2305 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2306 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
2307 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
2308 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
2309 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
2311 const u32 kvm_supported_word4_x86_features
=
2312 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
2313 0 /* DS-CPL, VMX, SMX, EST */ |
2314 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2315 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
2316 0 /* Reserved, DCA */ | F(XMM4_1
) |
2317 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
2318 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
2320 /* cpuid 0x80000001.ecx */
2321 const u32 kvm_supported_word6_x86_features
=
2322 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2323 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
2324 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
2325 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
2327 /* all calls to cpuid_count() should be made on the same cpu */
2329 do_cpuid_1_ent(entry
, function
, index
);
2334 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2337 entry
->edx
&= kvm_supported_word0_x86_features
;
2338 cpuid_mask(&entry
->edx
, 0);
2339 entry
->ecx
&= kvm_supported_word4_x86_features
;
2340 cpuid_mask(&entry
->ecx
, 4);
2341 /* we support x2apic emulation even if host does not support
2342 * it since we emulate x2apic in software */
2343 entry
->ecx
|= F(X2APIC
);
2345 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2346 * may return different values. This forces us to get_cpu() before
2347 * issuing the first command, and also to emulate this annoying behavior
2348 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2350 int t
, times
= entry
->eax
& 0xff;
2352 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2353 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2354 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2355 do_cpuid_1_ent(&entry
[t
], function
, 0);
2356 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2361 /* function 4 and 0xb have additional index. */
2365 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2366 /* read more entries until cache_type is zero */
2367 for (i
= 1; *nent
< maxnent
; ++i
) {
2368 cache_type
= entry
[i
- 1].eax
& 0x1f;
2371 do_cpuid_1_ent(&entry
[i
], function
, i
);
2373 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2381 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2382 /* read more entries until level_type is zero */
2383 for (i
= 1; *nent
< maxnent
; ++i
) {
2384 level_type
= entry
[i
- 1].ecx
& 0xff00;
2387 do_cpuid_1_ent(&entry
[i
], function
, i
);
2389 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2397 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2398 for (i
= 1; *nent
< maxnent
; ++i
) {
2399 if (entry
[i
- 1].eax
== 0 && i
!= 2)
2401 do_cpuid_1_ent(&entry
[i
], function
, i
);
2403 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2408 case KVM_CPUID_SIGNATURE
: {
2409 char signature
[12] = "KVMKVMKVM\0\0";
2410 u32
*sigptr
= (u32
*)signature
;
2412 entry
->ebx
= sigptr
[0];
2413 entry
->ecx
= sigptr
[1];
2414 entry
->edx
= sigptr
[2];
2417 case KVM_CPUID_FEATURES
:
2418 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2419 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2420 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2421 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2427 entry
->eax
= min(entry
->eax
, 0x8000001a);
2430 entry
->edx
&= kvm_supported_word1_x86_features
;
2431 cpuid_mask(&entry
->edx
, 1);
2432 entry
->ecx
&= kvm_supported_word6_x86_features
;
2433 cpuid_mask(&entry
->ecx
, 6);
2437 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2444 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2445 struct kvm_cpuid_entry2 __user
*entries
)
2447 struct kvm_cpuid_entry2
*cpuid_entries
;
2448 int limit
, nent
= 0, r
= -E2BIG
;
2451 if (cpuid
->nent
< 1)
2453 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2454 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2456 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2460 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2461 limit
= cpuid_entries
[0].eax
;
2462 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2463 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2464 &nent
, cpuid
->nent
);
2466 if (nent
>= cpuid
->nent
)
2469 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2470 limit
= cpuid_entries
[nent
- 1].eax
;
2471 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2472 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2473 &nent
, cpuid
->nent
);
2478 if (nent
>= cpuid
->nent
)
2481 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2485 if (nent
>= cpuid
->nent
)
2488 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2492 if (nent
>= cpuid
->nent
)
2496 if (copy_to_user(entries
, cpuid_entries
,
2497 nent
* sizeof(struct kvm_cpuid_entry2
)))
2503 vfree(cpuid_entries
);
2508 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2509 struct kvm_lapic_state
*s
)
2511 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2516 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2517 struct kvm_lapic_state
*s
)
2519 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2520 kvm_apic_post_state_restore(vcpu
);
2521 update_cr8_intercept(vcpu
);
2526 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2527 struct kvm_interrupt
*irq
)
2529 if (irq
->irq
< 0 || irq
->irq
>= 256)
2531 if (irqchip_in_kernel(vcpu
->kvm
))
2534 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2535 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2540 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2542 kvm_inject_nmi(vcpu
);
2547 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2548 struct kvm_tpr_access_ctl
*tac
)
2552 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2556 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2560 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2563 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2565 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2568 vcpu
->arch
.mcg_cap
= mcg_cap
;
2569 /* Init IA32_MCG_CTL to all 1s */
2570 if (mcg_cap
& MCG_CTL_P
)
2571 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2572 /* Init IA32_MCi_CTL to all 1s */
2573 for (bank
= 0; bank
< bank_num
; bank
++)
2574 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2579 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2580 struct kvm_x86_mce
*mce
)
2582 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2583 unsigned bank_num
= mcg_cap
& 0xff;
2584 u64
*banks
= vcpu
->arch
.mce_banks
;
2586 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2589 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2590 * reporting is disabled
2592 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2593 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2595 banks
+= 4 * mce
->bank
;
2597 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2598 * reporting is disabled for the bank
2600 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2602 if (mce
->status
& MCI_STATUS_UC
) {
2603 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2604 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2605 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2608 if (banks
[1] & MCI_STATUS_VAL
)
2609 mce
->status
|= MCI_STATUS_OVER
;
2610 banks
[2] = mce
->addr
;
2611 banks
[3] = mce
->misc
;
2612 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2613 banks
[1] = mce
->status
;
2614 kvm_queue_exception(vcpu
, MC_VECTOR
);
2615 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2616 || !(banks
[1] & MCI_STATUS_UC
)) {
2617 if (banks
[1] & MCI_STATUS_VAL
)
2618 mce
->status
|= MCI_STATUS_OVER
;
2619 banks
[2] = mce
->addr
;
2620 banks
[3] = mce
->misc
;
2621 banks
[1] = mce
->status
;
2623 banks
[1] |= MCI_STATUS_OVER
;
2627 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2628 struct kvm_vcpu_events
*events
)
2630 events
->exception
.injected
=
2631 vcpu
->arch
.exception
.pending
&&
2632 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2633 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2634 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2635 events
->exception
.pad
= 0;
2636 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2638 events
->interrupt
.injected
=
2639 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2640 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2641 events
->interrupt
.soft
= 0;
2642 events
->interrupt
.shadow
=
2643 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2644 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2646 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2647 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
;
2648 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2649 events
->nmi
.pad
= 0;
2651 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2653 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2654 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2655 | KVM_VCPUEVENT_VALID_SHADOW
);
2656 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2659 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2660 struct kvm_vcpu_events
*events
)
2662 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2663 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2664 | KVM_VCPUEVENT_VALID_SHADOW
))
2667 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2668 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2669 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2670 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2672 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2673 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2674 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2675 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2676 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2677 events
->interrupt
.shadow
);
2679 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2680 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2681 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2682 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2684 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2685 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2687 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2692 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2693 struct kvm_debugregs
*dbgregs
)
2695 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2696 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2697 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2699 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2702 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2703 struct kvm_debugregs
*dbgregs
)
2708 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2709 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2710 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2716 struct kvm_xsave
*guest_xsave
)
2719 memcpy(guest_xsave
->region
,
2720 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2723 memcpy(guest_xsave
->region
,
2724 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2725 sizeof(struct i387_fxsave_struct
));
2726 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2731 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2732 struct kvm_xsave
*guest_xsave
)
2735 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2738 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2739 guest_xsave
->region
, xstate_size
);
2741 if (xstate_bv
& ~XSTATE_FPSSE
)
2743 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2744 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2749 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2750 struct kvm_xcrs
*guest_xcrs
)
2752 if (!cpu_has_xsave
) {
2753 guest_xcrs
->nr_xcrs
= 0;
2757 guest_xcrs
->nr_xcrs
= 1;
2758 guest_xcrs
->flags
= 0;
2759 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2760 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2763 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2764 struct kvm_xcrs
*guest_xcrs
)
2771 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2774 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2775 /* Only support XCR0 currently */
2776 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2777 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2778 guest_xcrs
->xcrs
[0].value
);
2786 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2787 unsigned int ioctl
, unsigned long arg
)
2789 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2790 void __user
*argp
= (void __user
*)arg
;
2793 struct kvm_lapic_state
*lapic
;
2794 struct kvm_xsave
*xsave
;
2795 struct kvm_xcrs
*xcrs
;
2801 case KVM_GET_LAPIC
: {
2803 if (!vcpu
->arch
.apic
)
2805 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2810 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2814 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2819 case KVM_SET_LAPIC
: {
2821 if (!vcpu
->arch
.apic
)
2823 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2828 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
2830 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2836 case KVM_INTERRUPT
: {
2837 struct kvm_interrupt irq
;
2840 if (copy_from_user(&irq
, argp
, sizeof irq
))
2842 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2849 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2855 case KVM_SET_CPUID
: {
2856 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2857 struct kvm_cpuid cpuid
;
2860 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2862 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2867 case KVM_SET_CPUID2
: {
2868 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2869 struct kvm_cpuid2 cpuid
;
2872 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2874 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2875 cpuid_arg
->entries
);
2880 case KVM_GET_CPUID2
: {
2881 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2882 struct kvm_cpuid2 cpuid
;
2885 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2887 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2888 cpuid_arg
->entries
);
2892 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2898 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2901 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2903 case KVM_TPR_ACCESS_REPORTING
: {
2904 struct kvm_tpr_access_ctl tac
;
2907 if (copy_from_user(&tac
, argp
, sizeof tac
))
2909 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2913 if (copy_to_user(argp
, &tac
, sizeof tac
))
2918 case KVM_SET_VAPIC_ADDR
: {
2919 struct kvm_vapic_addr va
;
2922 if (!irqchip_in_kernel(vcpu
->kvm
))
2925 if (copy_from_user(&va
, argp
, sizeof va
))
2928 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2931 case KVM_X86_SETUP_MCE
: {
2935 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2937 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2940 case KVM_X86_SET_MCE
: {
2941 struct kvm_x86_mce mce
;
2944 if (copy_from_user(&mce
, argp
, sizeof mce
))
2946 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2949 case KVM_GET_VCPU_EVENTS
: {
2950 struct kvm_vcpu_events events
;
2952 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2955 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2960 case KVM_SET_VCPU_EVENTS
: {
2961 struct kvm_vcpu_events events
;
2964 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2967 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2970 case KVM_GET_DEBUGREGS
: {
2971 struct kvm_debugregs dbgregs
;
2973 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2976 if (copy_to_user(argp
, &dbgregs
,
2977 sizeof(struct kvm_debugregs
)))
2982 case KVM_SET_DEBUGREGS
: {
2983 struct kvm_debugregs dbgregs
;
2986 if (copy_from_user(&dbgregs
, argp
,
2987 sizeof(struct kvm_debugregs
)))
2990 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2993 case KVM_GET_XSAVE
: {
2994 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2999 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3002 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3007 case KVM_SET_XSAVE
: {
3008 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3014 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
3017 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3020 case KVM_GET_XCRS
: {
3021 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3026 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3029 if (copy_to_user(argp
, u
.xcrs
,
3030 sizeof(struct kvm_xcrs
)))
3035 case KVM_SET_XCRS
: {
3036 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3042 if (copy_from_user(u
.xcrs
, argp
,
3043 sizeof(struct kvm_xcrs
)))
3046 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3057 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3061 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3063 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3067 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3070 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3075 u32 kvm_nr_mmu_pages
)
3077 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3080 mutex_lock(&kvm
->slots_lock
);
3081 spin_lock(&kvm
->mmu_lock
);
3083 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3084 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3086 spin_unlock(&kvm
->mmu_lock
);
3087 mutex_unlock(&kvm
->slots_lock
);
3091 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3093 return kvm
->arch
.n_max_mmu_pages
;
3096 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3101 switch (chip
->chip_id
) {
3102 case KVM_IRQCHIP_PIC_MASTER
:
3103 memcpy(&chip
->chip
.pic
,
3104 &pic_irqchip(kvm
)->pics
[0],
3105 sizeof(struct kvm_pic_state
));
3107 case KVM_IRQCHIP_PIC_SLAVE
:
3108 memcpy(&chip
->chip
.pic
,
3109 &pic_irqchip(kvm
)->pics
[1],
3110 sizeof(struct kvm_pic_state
));
3112 case KVM_IRQCHIP_IOAPIC
:
3113 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3122 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3127 switch (chip
->chip_id
) {
3128 case KVM_IRQCHIP_PIC_MASTER
:
3129 spin_lock(&pic_irqchip(kvm
)->lock
);
3130 memcpy(&pic_irqchip(kvm
)->pics
[0],
3132 sizeof(struct kvm_pic_state
));
3133 spin_unlock(&pic_irqchip(kvm
)->lock
);
3135 case KVM_IRQCHIP_PIC_SLAVE
:
3136 spin_lock(&pic_irqchip(kvm
)->lock
);
3137 memcpy(&pic_irqchip(kvm
)->pics
[1],
3139 sizeof(struct kvm_pic_state
));
3140 spin_unlock(&pic_irqchip(kvm
)->lock
);
3142 case KVM_IRQCHIP_IOAPIC
:
3143 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3149 kvm_pic_update_irq(pic_irqchip(kvm
));
3153 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3157 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3158 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3159 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3163 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3167 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3168 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3169 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3170 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3174 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3178 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3179 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3180 sizeof(ps
->channels
));
3181 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3182 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3183 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3187 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3189 int r
= 0, start
= 0;
3190 u32 prev_legacy
, cur_legacy
;
3191 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3192 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3193 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3194 if (!prev_legacy
&& cur_legacy
)
3196 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3197 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3198 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3199 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3200 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3204 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3205 struct kvm_reinject_control
*control
)
3207 if (!kvm
->arch
.vpit
)
3209 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3210 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
3211 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3216 * Get (and clear) the dirty memory log for a memory slot.
3218 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3219 struct kvm_dirty_log
*log
)
3222 struct kvm_memory_slot
*memslot
;
3224 unsigned long is_dirty
= 0;
3226 mutex_lock(&kvm
->slots_lock
);
3229 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3232 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
3234 if (!memslot
->dirty_bitmap
)
3237 n
= kvm_dirty_bitmap_bytes(memslot
);
3239 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
3240 is_dirty
= memslot
->dirty_bitmap
[i
];
3242 /* If nothing is dirty, don't bother messing with page tables. */
3244 struct kvm_memslots
*slots
, *old_slots
;
3245 unsigned long *dirty_bitmap
;
3247 dirty_bitmap
= memslot
->dirty_bitmap_head
;
3248 if (memslot
->dirty_bitmap
== dirty_bitmap
)
3249 dirty_bitmap
+= n
/ sizeof(long);
3250 memset(dirty_bitmap
, 0, n
);
3253 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
3256 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
3257 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
3258 slots
->generation
++;
3260 old_slots
= kvm
->memslots
;
3261 rcu_assign_pointer(kvm
->memslots
, slots
);
3262 synchronize_srcu_expedited(&kvm
->srcu
);
3263 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
3266 spin_lock(&kvm
->mmu_lock
);
3267 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
3268 spin_unlock(&kvm
->mmu_lock
);
3271 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3275 if (clear_user(log
->dirty_bitmap
, n
))
3281 mutex_unlock(&kvm
->slots_lock
);
3285 long kvm_arch_vm_ioctl(struct file
*filp
,
3286 unsigned int ioctl
, unsigned long arg
)
3288 struct kvm
*kvm
= filp
->private_data
;
3289 void __user
*argp
= (void __user
*)arg
;
3292 * This union makes it completely explicit to gcc-3.x
3293 * that these two variables' stack usage should be
3294 * combined, not added together.
3297 struct kvm_pit_state ps
;
3298 struct kvm_pit_state2 ps2
;
3299 struct kvm_pit_config pit_config
;
3303 case KVM_SET_TSS_ADDR
:
3304 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3308 case KVM_SET_IDENTITY_MAP_ADDR
: {
3312 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3314 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3319 case KVM_SET_NR_MMU_PAGES
:
3320 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3324 case KVM_GET_NR_MMU_PAGES
:
3325 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3327 case KVM_CREATE_IRQCHIP
: {
3328 struct kvm_pic
*vpic
;
3330 mutex_lock(&kvm
->lock
);
3333 goto create_irqchip_unlock
;
3335 vpic
= kvm_create_pic(kvm
);
3337 r
= kvm_ioapic_init(kvm
);
3339 mutex_lock(&kvm
->slots_lock
);
3340 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3342 mutex_unlock(&kvm
->slots_lock
);
3344 goto create_irqchip_unlock
;
3347 goto create_irqchip_unlock
;
3349 kvm
->arch
.vpic
= vpic
;
3351 r
= kvm_setup_default_irq_routing(kvm
);
3353 mutex_lock(&kvm
->slots_lock
);
3354 mutex_lock(&kvm
->irq_lock
);
3355 kvm_ioapic_destroy(kvm
);
3356 kvm_destroy_pic(kvm
);
3357 mutex_unlock(&kvm
->irq_lock
);
3358 mutex_unlock(&kvm
->slots_lock
);
3360 create_irqchip_unlock
:
3361 mutex_unlock(&kvm
->lock
);
3364 case KVM_CREATE_PIT
:
3365 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3367 case KVM_CREATE_PIT2
:
3369 if (copy_from_user(&u
.pit_config
, argp
,
3370 sizeof(struct kvm_pit_config
)))
3373 mutex_lock(&kvm
->slots_lock
);
3376 goto create_pit_unlock
;
3378 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3382 mutex_unlock(&kvm
->slots_lock
);
3384 case KVM_IRQ_LINE_STATUS
:
3385 case KVM_IRQ_LINE
: {
3386 struct kvm_irq_level irq_event
;
3389 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3392 if (irqchip_in_kernel(kvm
)) {
3394 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3395 irq_event
.irq
, irq_event
.level
);
3396 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3398 irq_event
.status
= status
;
3399 if (copy_to_user(argp
, &irq_event
,
3407 case KVM_GET_IRQCHIP
: {
3408 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3409 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3415 if (copy_from_user(chip
, argp
, sizeof *chip
))
3416 goto get_irqchip_out
;
3418 if (!irqchip_in_kernel(kvm
))
3419 goto get_irqchip_out
;
3420 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3422 goto get_irqchip_out
;
3424 if (copy_to_user(argp
, chip
, sizeof *chip
))
3425 goto get_irqchip_out
;
3433 case KVM_SET_IRQCHIP
: {
3434 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3435 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3441 if (copy_from_user(chip
, argp
, sizeof *chip
))
3442 goto set_irqchip_out
;
3444 if (!irqchip_in_kernel(kvm
))
3445 goto set_irqchip_out
;
3446 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3448 goto set_irqchip_out
;
3458 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3461 if (!kvm
->arch
.vpit
)
3463 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3467 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3474 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3477 if (!kvm
->arch
.vpit
)
3479 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3485 case KVM_GET_PIT2
: {
3487 if (!kvm
->arch
.vpit
)
3489 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3493 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3498 case KVM_SET_PIT2
: {
3500 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3503 if (!kvm
->arch
.vpit
)
3505 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3511 case KVM_REINJECT_CONTROL
: {
3512 struct kvm_reinject_control control
;
3514 if (copy_from_user(&control
, argp
, sizeof(control
)))
3516 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3522 case KVM_XEN_HVM_CONFIG
: {
3524 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3525 sizeof(struct kvm_xen_hvm_config
)))
3528 if (kvm
->arch
.xen_hvm_config
.flags
)
3533 case KVM_SET_CLOCK
: {
3534 struct kvm_clock_data user_ns
;
3539 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3547 local_irq_disable();
3548 now_ns
= get_kernel_ns();
3549 delta
= user_ns
.clock
- now_ns
;
3551 kvm
->arch
.kvmclock_offset
= delta
;
3554 case KVM_GET_CLOCK
: {
3555 struct kvm_clock_data user_ns
;
3558 local_irq_disable();
3559 now_ns
= get_kernel_ns();
3560 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3563 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3566 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3579 static void kvm_init_msr_list(void)
3584 /* skip the first msrs in the list. KVM-specific */
3585 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3586 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3589 msrs_to_save
[j
] = msrs_to_save
[i
];
3592 num_msrs_to_save
= j
;
3595 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3598 if (vcpu
->arch
.apic
&&
3599 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3602 return kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3605 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3607 if (vcpu
->arch
.apic
&&
3608 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3611 return kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3614 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3615 struct kvm_segment
*var
, int seg
)
3617 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3620 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3621 struct kvm_segment
*var
, int seg
)
3623 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3626 static gpa_t
translate_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3631 static gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3634 struct x86_exception exception
;
3636 BUG_ON(!mmu_is_nested(vcpu
));
3638 /* NPT walks are always user-walks */
3639 access
|= PFERR_USER_MASK
;
3640 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3645 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3646 struct x86_exception
*exception
)
3648 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3649 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3652 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3653 struct x86_exception
*exception
)
3655 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3656 access
|= PFERR_FETCH_MASK
;
3657 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3660 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3661 struct x86_exception
*exception
)
3663 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3664 access
|= PFERR_WRITE_MASK
;
3665 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3668 /* uses this to access any guest's mapped memory without checking CPL */
3669 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3670 struct x86_exception
*exception
)
3672 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3675 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3676 struct kvm_vcpu
*vcpu
, u32 access
,
3677 struct x86_exception
*exception
)
3680 int r
= X86EMUL_CONTINUE
;
3683 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3685 unsigned offset
= addr
& (PAGE_SIZE
-1);
3686 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3689 if (gpa
== UNMAPPED_GVA
)
3690 return X86EMUL_PROPAGATE_FAULT
;
3691 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3693 r
= X86EMUL_IO_NEEDED
;
3705 /* used for instruction fetching */
3706 static int kvm_fetch_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3707 struct kvm_vcpu
*vcpu
,
3708 struct x86_exception
*exception
)
3710 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3711 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3712 access
| PFERR_FETCH_MASK
,
3716 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3717 struct kvm_vcpu
*vcpu
,
3718 struct x86_exception
*exception
)
3720 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3721 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3725 static int kvm_read_guest_virt_system(gva_t addr
, void *val
, unsigned int bytes
,
3726 struct kvm_vcpu
*vcpu
,
3727 struct x86_exception
*exception
)
3729 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3732 static int kvm_write_guest_virt_system(gva_t addr
, void *val
,
3734 struct kvm_vcpu
*vcpu
,
3735 struct x86_exception
*exception
)
3738 int r
= X86EMUL_CONTINUE
;
3741 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3744 unsigned offset
= addr
& (PAGE_SIZE
-1);
3745 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3748 if (gpa
== UNMAPPED_GVA
)
3749 return X86EMUL_PROPAGATE_FAULT
;
3750 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3752 r
= X86EMUL_IO_NEEDED
;
3764 static int emulator_read_emulated(unsigned long addr
,
3767 struct x86_exception
*exception
,
3768 struct kvm_vcpu
*vcpu
)
3772 if (vcpu
->mmio_read_completed
) {
3773 memcpy(val
, vcpu
->mmio_data
, bytes
);
3774 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3775 vcpu
->mmio_phys_addr
, *(u64
*)val
);
3776 vcpu
->mmio_read_completed
= 0;
3777 return X86EMUL_CONTINUE
;
3780 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, addr
, exception
);
3782 if (gpa
== UNMAPPED_GVA
)
3783 return X86EMUL_PROPAGATE_FAULT
;
3785 /* For APIC access vmexit */
3786 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3789 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
, exception
)
3790 == X86EMUL_CONTINUE
)
3791 return X86EMUL_CONTINUE
;
3795 * Is this MMIO handled locally?
3797 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
3798 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
3799 return X86EMUL_CONTINUE
;
3802 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3804 vcpu
->mmio_needed
= 1;
3805 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3806 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3807 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3808 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 0;
3810 return X86EMUL_IO_NEEDED
;
3813 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3814 const void *val
, int bytes
)
3818 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3821 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
3825 static int emulator_write_emulated_onepage(unsigned long addr
,
3828 struct x86_exception
*exception
,
3829 struct kvm_vcpu
*vcpu
)
3833 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, exception
);
3835 if (gpa
== UNMAPPED_GVA
)
3836 return X86EMUL_PROPAGATE_FAULT
;
3838 /* For APIC access vmexit */
3839 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3842 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
3843 return X86EMUL_CONTINUE
;
3846 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3848 * Is this MMIO handled locally?
3850 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
3851 return X86EMUL_CONTINUE
;
3853 vcpu
->mmio_needed
= 1;
3854 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3855 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3856 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3857 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 1;
3858 memcpy(vcpu
->run
->mmio
.data
, val
, bytes
);
3860 return X86EMUL_CONTINUE
;
3863 int emulator_write_emulated(unsigned long addr
,
3866 struct x86_exception
*exception
,
3867 struct kvm_vcpu
*vcpu
)
3869 /* Crossing a page boundary? */
3870 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3873 now
= -addr
& ~PAGE_MASK
;
3874 rc
= emulator_write_emulated_onepage(addr
, val
, now
, exception
,
3876 if (rc
!= X86EMUL_CONTINUE
)
3882 return emulator_write_emulated_onepage(addr
, val
, bytes
, exception
,
3886 #define CMPXCHG_TYPE(t, ptr, old, new) \
3887 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3889 #ifdef CONFIG_X86_64
3890 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3892 # define CMPXCHG64(ptr, old, new) \
3893 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3896 static int emulator_cmpxchg_emulated(unsigned long addr
,
3900 struct x86_exception
*exception
,
3901 struct kvm_vcpu
*vcpu
)
3908 /* guests cmpxchg8b have to be emulated atomically */
3909 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3912 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3914 if (gpa
== UNMAPPED_GVA
||
3915 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3918 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3921 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3922 if (is_error_page(page
)) {
3923 kvm_release_page_clean(page
);
3927 kaddr
= kmap_atomic(page
, KM_USER0
);
3928 kaddr
+= offset_in_page(gpa
);
3931 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3934 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3937 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3940 exchanged
= CMPXCHG64(kaddr
, old
, new);
3945 kunmap_atomic(kaddr
, KM_USER0
);
3946 kvm_release_page_dirty(page
);
3949 return X86EMUL_CMPXCHG_FAILED
;
3951 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
3953 return X86EMUL_CONTINUE
;
3956 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3958 return emulator_write_emulated(addr
, new, bytes
, exception
, vcpu
);
3961 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3963 /* TODO: String I/O for in kernel device */
3966 if (vcpu
->arch
.pio
.in
)
3967 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3968 vcpu
->arch
.pio
.size
, pd
);
3970 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3971 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3977 static int emulator_pio_in_emulated(int size
, unsigned short port
, void *val
,
3978 unsigned int count
, struct kvm_vcpu
*vcpu
)
3980 if (vcpu
->arch
.pio
.count
)
3983 trace_kvm_pio(0, port
, size
, count
);
3985 vcpu
->arch
.pio
.port
= port
;
3986 vcpu
->arch
.pio
.in
= 1;
3987 vcpu
->arch
.pio
.count
= count
;
3988 vcpu
->arch
.pio
.size
= size
;
3990 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3992 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
3993 vcpu
->arch
.pio
.count
= 0;
3997 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3998 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
3999 vcpu
->run
->io
.size
= size
;
4000 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4001 vcpu
->run
->io
.count
= count
;
4002 vcpu
->run
->io
.port
= port
;
4007 static int emulator_pio_out_emulated(int size
, unsigned short port
,
4008 const void *val
, unsigned int count
,
4009 struct kvm_vcpu
*vcpu
)
4011 trace_kvm_pio(1, port
, size
, count
);
4013 vcpu
->arch
.pio
.port
= port
;
4014 vcpu
->arch
.pio
.in
= 0;
4015 vcpu
->arch
.pio
.count
= count
;
4016 vcpu
->arch
.pio
.size
= size
;
4018 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4020 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4021 vcpu
->arch
.pio
.count
= 0;
4025 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4026 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
4027 vcpu
->run
->io
.size
= size
;
4028 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4029 vcpu
->run
->io
.count
= count
;
4030 vcpu
->run
->io
.port
= port
;
4035 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4037 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4040 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
4042 kvm_mmu_invlpg(vcpu
, address
);
4043 return X86EMUL_CONTINUE
;
4046 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4048 if (!need_emulate_wbinvd(vcpu
))
4049 return X86EMUL_CONTINUE
;
4051 if (kvm_x86_ops
->has_wbinvd_exit()) {
4052 int cpu
= get_cpu();
4054 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4055 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4056 wbinvd_ipi
, NULL
, 1);
4058 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4061 return X86EMUL_CONTINUE
;
4063 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4065 int emulate_clts(struct kvm_vcpu
*vcpu
)
4067 kvm_x86_ops
->set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
4068 kvm_x86_ops
->fpu_activate(vcpu
);
4069 return X86EMUL_CONTINUE
;
4072 int emulator_get_dr(int dr
, unsigned long *dest
, struct kvm_vcpu
*vcpu
)
4074 return _kvm_get_dr(vcpu
, dr
, dest
);
4077 int emulator_set_dr(int dr
, unsigned long value
, struct kvm_vcpu
*vcpu
)
4080 return __kvm_set_dr(vcpu
, dr
, value
);
4083 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4085 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4088 static unsigned long emulator_get_cr(int cr
, struct kvm_vcpu
*vcpu
)
4090 unsigned long value
;
4094 value
= kvm_read_cr0(vcpu
);
4097 value
= vcpu
->arch
.cr2
;
4100 value
= kvm_read_cr3(vcpu
);
4103 value
= kvm_read_cr4(vcpu
);
4106 value
= kvm_get_cr8(vcpu
);
4109 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4116 static int emulator_set_cr(int cr
, unsigned long val
, struct kvm_vcpu
*vcpu
)
4122 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4125 vcpu
->arch
.cr2
= val
;
4128 res
= kvm_set_cr3(vcpu
, val
);
4131 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4134 res
= kvm_set_cr8(vcpu
, val
);
4137 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4144 static int emulator_get_cpl(struct kvm_vcpu
*vcpu
)
4146 return kvm_x86_ops
->get_cpl(vcpu
);
4149 static void emulator_get_gdt(struct desc_ptr
*dt
, struct kvm_vcpu
*vcpu
)
4151 kvm_x86_ops
->get_gdt(vcpu
, dt
);
4154 static void emulator_get_idt(struct desc_ptr
*dt
, struct kvm_vcpu
*vcpu
)
4156 kvm_x86_ops
->get_idt(vcpu
, dt
);
4159 static unsigned long emulator_get_cached_segment_base(int seg
,
4160 struct kvm_vcpu
*vcpu
)
4162 return get_segment_base(vcpu
, seg
);
4165 static bool emulator_get_cached_descriptor(struct desc_struct
*desc
, u32
*base3
,
4166 int seg
, struct kvm_vcpu
*vcpu
)
4168 struct kvm_segment var
;
4170 kvm_get_segment(vcpu
, &var
, seg
);
4177 set_desc_limit(desc
, var
.limit
);
4178 set_desc_base(desc
, (unsigned long)var
.base
);
4179 #ifdef CONFIG_X86_64
4181 *base3
= var
.base
>> 32;
4183 desc
->type
= var
.type
;
4185 desc
->dpl
= var
.dpl
;
4186 desc
->p
= var
.present
;
4187 desc
->avl
= var
.avl
;
4195 static void emulator_set_cached_descriptor(struct desc_struct
*desc
, u32 base3
,
4196 int seg
, struct kvm_vcpu
*vcpu
)
4198 struct kvm_segment var
;
4200 /* needed to preserve selector */
4201 kvm_get_segment(vcpu
, &var
, seg
);
4203 var
.base
= get_desc_base(desc
);
4204 #ifdef CONFIG_X86_64
4205 var
.base
|= ((u64
)base3
) << 32;
4207 var
.limit
= get_desc_limit(desc
);
4209 var
.limit
= (var
.limit
<< 12) | 0xfff;
4210 var
.type
= desc
->type
;
4211 var
.present
= desc
->p
;
4212 var
.dpl
= desc
->dpl
;
4217 var
.avl
= desc
->avl
;
4218 var
.present
= desc
->p
;
4219 var
.unusable
= !var
.present
;
4222 kvm_set_segment(vcpu
, &var
, seg
);
4226 static u16
emulator_get_segment_selector(int seg
, struct kvm_vcpu
*vcpu
)
4228 struct kvm_segment kvm_seg
;
4230 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4231 return kvm_seg
.selector
;
4234 static void emulator_set_segment_selector(u16 sel
, int seg
,
4235 struct kvm_vcpu
*vcpu
)
4237 struct kvm_segment kvm_seg
;
4239 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4240 kvm_seg
.selector
= sel
;
4241 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4244 static struct x86_emulate_ops emulate_ops
= {
4245 .read_std
= kvm_read_guest_virt_system
,
4246 .write_std
= kvm_write_guest_virt_system
,
4247 .fetch
= kvm_fetch_guest_virt
,
4248 .read_emulated
= emulator_read_emulated
,
4249 .write_emulated
= emulator_write_emulated
,
4250 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4251 .pio_in_emulated
= emulator_pio_in_emulated
,
4252 .pio_out_emulated
= emulator_pio_out_emulated
,
4253 .get_cached_descriptor
= emulator_get_cached_descriptor
,
4254 .set_cached_descriptor
= emulator_set_cached_descriptor
,
4255 .get_segment_selector
= emulator_get_segment_selector
,
4256 .set_segment_selector
= emulator_set_segment_selector
,
4257 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4258 .get_gdt
= emulator_get_gdt
,
4259 .get_idt
= emulator_get_idt
,
4260 .get_cr
= emulator_get_cr
,
4261 .set_cr
= emulator_set_cr
,
4262 .cpl
= emulator_get_cpl
,
4263 .get_dr
= emulator_get_dr
,
4264 .set_dr
= emulator_set_dr
,
4265 .set_msr
= kvm_set_msr
,
4266 .get_msr
= kvm_get_msr
,
4269 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4271 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4272 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4273 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4274 vcpu
->arch
.regs_dirty
= ~0;
4277 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4279 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4281 * an sti; sti; sequence only disable interrupts for the first
4282 * instruction. So, if the last instruction, be it emulated or
4283 * not, left the system with the INT_STI flag enabled, it
4284 * means that the last instruction is an sti. We should not
4285 * leave the flag on in this case. The same goes for mov ss
4287 if (!(int_shadow
& mask
))
4288 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4291 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4293 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4294 if (ctxt
->exception
.vector
== PF_VECTOR
)
4295 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4296 else if (ctxt
->exception
.error_code_valid
)
4297 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4298 ctxt
->exception
.error_code
);
4300 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4303 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4305 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4308 cache_all_regs(vcpu
);
4310 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4312 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
4313 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4314 vcpu
->arch
.emulate_ctxt
.eip
= kvm_rip_read(vcpu
);
4315 vcpu
->arch
.emulate_ctxt
.mode
=
4316 (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4317 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
4318 ? X86EMUL_MODE_VM86
: cs_l
4319 ? X86EMUL_MODE_PROT64
: cs_db
4320 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
4321 memset(c
, 0, sizeof(struct decode_cache
));
4322 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
4325 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
)
4327 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4330 init_emulate_ctxt(vcpu
);
4332 vcpu
->arch
.emulate_ctxt
.decode
.op_bytes
= 2;
4333 vcpu
->arch
.emulate_ctxt
.decode
.ad_bytes
= 2;
4334 vcpu
->arch
.emulate_ctxt
.decode
.eip
= vcpu
->arch
.emulate_ctxt
.eip
;
4335 ret
= emulate_int_real(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
, irq
);
4337 if (ret
!= X86EMUL_CONTINUE
)
4338 return EMULATE_FAIL
;
4340 vcpu
->arch
.emulate_ctxt
.eip
= c
->eip
;
4341 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
4342 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
4343 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
4345 if (irq
== NMI_VECTOR
)
4346 vcpu
->arch
.nmi_pending
= false;
4348 vcpu
->arch
.interrupt
.pending
= false;
4350 return EMULATE_DONE
;
4352 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4354 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4356 int r
= EMULATE_DONE
;
4358 ++vcpu
->stat
.insn_emulation_fail
;
4359 trace_kvm_emulate_insn_failed(vcpu
);
4360 if (!is_guest_mode(vcpu
)) {
4361 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4362 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4363 vcpu
->run
->internal
.ndata
= 0;
4366 kvm_queue_exception(vcpu
, UD_VECTOR
);
4371 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4379 * if emulation was due to access to shadowed page table
4380 * and it failed try to unshadow page and re-entetr the
4381 * guest to let CPU execute the instruction.
4383 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4386 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4388 if (gpa
== UNMAPPED_GVA
)
4389 return true; /* let cpu generate fault */
4391 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4397 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4404 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4406 kvm_clear_exception_queue(vcpu
);
4407 vcpu
->arch
.mmio_fault_cr2
= cr2
;
4409 * TODO: fix emulate.c to use guest_read/write_register
4410 * instead of direct ->regs accesses, can save hundred cycles
4411 * on Intel for instructions that don't read/change RSP, for
4414 cache_all_regs(vcpu
);
4416 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4417 init_emulate_ctxt(vcpu
);
4418 vcpu
->arch
.emulate_ctxt
.interruptibility
= 0;
4419 vcpu
->arch
.emulate_ctxt
.have_exception
= false;
4420 vcpu
->arch
.emulate_ctxt
.perm_ok
= false;
4422 vcpu
->arch
.emulate_ctxt
.only_vendor_specific_insn
4423 = emulation_type
& EMULTYPE_TRAP_UD
;
4425 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, insn
, insn_len
);
4427 trace_kvm_emulate_insn_start(vcpu
);
4428 ++vcpu
->stat
.insn_emulation
;
4430 if (emulation_type
& EMULTYPE_TRAP_UD
)
4431 return EMULATE_FAIL
;
4432 if (reexecute_instruction(vcpu
, cr2
))
4433 return EMULATE_DONE
;
4434 if (emulation_type
& EMULTYPE_SKIP
)
4435 return EMULATE_FAIL
;
4436 return handle_emulation_failure(vcpu
);
4440 if (emulation_type
& EMULTYPE_SKIP
) {
4441 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
4442 return EMULATE_DONE
;
4445 /* this is needed for vmware backdor interface to work since it
4446 changes registers values during IO operation */
4447 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
4450 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
);
4452 if (r
== EMULATION_FAILED
) {
4453 if (reexecute_instruction(vcpu
, cr2
))
4454 return EMULATE_DONE
;
4456 return handle_emulation_failure(vcpu
);
4459 if (vcpu
->arch
.emulate_ctxt
.have_exception
) {
4460 inject_emulated_exception(vcpu
);
4462 } else if (vcpu
->arch
.pio
.count
) {
4463 if (!vcpu
->arch
.pio
.in
)
4464 vcpu
->arch
.pio
.count
= 0;
4465 r
= EMULATE_DO_MMIO
;
4466 } else if (vcpu
->mmio_needed
) {
4467 if (vcpu
->mmio_is_write
)
4468 vcpu
->mmio_needed
= 0;
4469 r
= EMULATE_DO_MMIO
;
4470 } else if (r
== EMULATION_RESTART
)
4475 toggle_interruptibility(vcpu
, vcpu
->arch
.emulate_ctxt
.interruptibility
);
4476 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
4477 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4478 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
4479 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
4483 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4485 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4487 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4488 int ret
= emulator_pio_out_emulated(size
, port
, &val
, 1, vcpu
);
4489 /* do not return to emulator after return from userspace */
4490 vcpu
->arch
.pio
.count
= 0;
4493 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4495 static void tsc_bad(void *info
)
4497 __this_cpu_write(cpu_tsc_khz
, 0);
4500 static void tsc_khz_changed(void *data
)
4502 struct cpufreq_freqs
*freq
= data
;
4503 unsigned long khz
= 0;
4507 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4508 khz
= cpufreq_quick_get(raw_smp_processor_id());
4511 __this_cpu_write(cpu_tsc_khz
, khz
);
4514 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4517 struct cpufreq_freqs
*freq
= data
;
4519 struct kvm_vcpu
*vcpu
;
4520 int i
, send_ipi
= 0;
4523 * We allow guests to temporarily run on slowing clocks,
4524 * provided we notify them after, or to run on accelerating
4525 * clocks, provided we notify them before. Thus time never
4528 * However, we have a problem. We can't atomically update
4529 * the frequency of a given CPU from this function; it is
4530 * merely a notifier, which can be called from any CPU.
4531 * Changing the TSC frequency at arbitrary points in time
4532 * requires a recomputation of local variables related to
4533 * the TSC for each VCPU. We must flag these local variables
4534 * to be updated and be sure the update takes place with the
4535 * new frequency before any guests proceed.
4537 * Unfortunately, the combination of hotplug CPU and frequency
4538 * change creates an intractable locking scenario; the order
4539 * of when these callouts happen is undefined with respect to
4540 * CPU hotplug, and they can race with each other. As such,
4541 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4542 * undefined; you can actually have a CPU frequency change take
4543 * place in between the computation of X and the setting of the
4544 * variable. To protect against this problem, all updates of
4545 * the per_cpu tsc_khz variable are done in an interrupt
4546 * protected IPI, and all callers wishing to update the value
4547 * must wait for a synchronous IPI to complete (which is trivial
4548 * if the caller is on the CPU already). This establishes the
4549 * necessary total order on variable updates.
4551 * Note that because a guest time update may take place
4552 * anytime after the setting of the VCPU's request bit, the
4553 * correct TSC value must be set before the request. However,
4554 * to ensure the update actually makes it to any guest which
4555 * starts running in hardware virtualization between the set
4556 * and the acquisition of the spinlock, we must also ping the
4557 * CPU after setting the request bit.
4561 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4563 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4566 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4568 raw_spin_lock(&kvm_lock
);
4569 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4570 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4571 if (vcpu
->cpu
!= freq
->cpu
)
4573 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4574 if (vcpu
->cpu
!= smp_processor_id())
4578 raw_spin_unlock(&kvm_lock
);
4580 if (freq
->old
< freq
->new && send_ipi
) {
4582 * We upscale the frequency. Must make the guest
4583 * doesn't see old kvmclock values while running with
4584 * the new frequency, otherwise we risk the guest sees
4585 * time go backwards.
4587 * In case we update the frequency for another cpu
4588 * (which might be in guest context) send an interrupt
4589 * to kick the cpu out of guest context. Next time
4590 * guest context is entered kvmclock will be updated,
4591 * so the guest will not see stale values.
4593 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4598 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4599 .notifier_call
= kvmclock_cpufreq_notifier
4602 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4603 unsigned long action
, void *hcpu
)
4605 unsigned int cpu
= (unsigned long)hcpu
;
4609 case CPU_DOWN_FAILED
:
4610 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4612 case CPU_DOWN_PREPARE
:
4613 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4619 static struct notifier_block kvmclock_cpu_notifier_block
= {
4620 .notifier_call
= kvmclock_cpu_notifier
,
4621 .priority
= -INT_MAX
4624 static void kvm_timer_init(void)
4628 max_tsc_khz
= tsc_khz
;
4629 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4630 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4631 #ifdef CONFIG_CPU_FREQ
4632 struct cpufreq_policy policy
;
4633 memset(&policy
, 0, sizeof(policy
));
4635 cpufreq_get_policy(&policy
, cpu
);
4636 if (policy
.cpuinfo
.max_freq
)
4637 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
4640 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4641 CPUFREQ_TRANSITION_NOTIFIER
);
4643 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
4644 for_each_online_cpu(cpu
)
4645 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4648 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4650 static int kvm_is_in_guest(void)
4652 return percpu_read(current_vcpu
) != NULL
;
4655 static int kvm_is_user_mode(void)
4659 if (percpu_read(current_vcpu
))
4660 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
4662 return user_mode
!= 0;
4665 static unsigned long kvm_get_guest_ip(void)
4667 unsigned long ip
= 0;
4669 if (percpu_read(current_vcpu
))
4670 ip
= kvm_rip_read(percpu_read(current_vcpu
));
4675 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4676 .is_in_guest
= kvm_is_in_guest
,
4677 .is_user_mode
= kvm_is_user_mode
,
4678 .get_guest_ip
= kvm_get_guest_ip
,
4681 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4683 percpu_write(current_vcpu
, vcpu
);
4685 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4687 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4689 percpu_write(current_vcpu
, NULL
);
4691 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4693 int kvm_arch_init(void *opaque
)
4696 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4699 printk(KERN_ERR
"kvm: already loaded the other module\n");
4704 if (!ops
->cpu_has_kvm_support()) {
4705 printk(KERN_ERR
"kvm: no hardware support\n");
4709 if (ops
->disabled_by_bios()) {
4710 printk(KERN_ERR
"kvm: disabled by bios\n");
4715 r
= kvm_mmu_module_init();
4719 kvm_init_msr_list();
4722 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4723 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4724 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4728 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4731 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4739 void kvm_arch_exit(void)
4741 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4743 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4744 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4745 CPUFREQ_TRANSITION_NOTIFIER
);
4746 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4748 kvm_mmu_module_exit();
4751 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4753 ++vcpu
->stat
.halt_exits
;
4754 if (irqchip_in_kernel(vcpu
->kvm
)) {
4755 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4758 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4762 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4764 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
4767 if (is_long_mode(vcpu
))
4770 return a0
| ((gpa_t
)a1
<< 32);
4773 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4775 u64 param
, ingpa
, outgpa
, ret
;
4776 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4777 bool fast
, longmode
;
4781 * hypercall generates UD from non zero cpl and real mode
4784 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4785 kvm_queue_exception(vcpu
, UD_VECTOR
);
4789 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4790 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4793 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4794 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4795 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4796 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4797 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4798 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4800 #ifdef CONFIG_X86_64
4802 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4803 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4804 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4808 code
= param
& 0xffff;
4809 fast
= (param
>> 16) & 0x1;
4810 rep_cnt
= (param
>> 32) & 0xfff;
4811 rep_idx
= (param
>> 48) & 0xfff;
4813 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4816 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4817 kvm_vcpu_on_spin(vcpu
);
4820 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
4824 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
4826 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4828 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
4829 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
4835 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
4837 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
4840 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
4841 return kvm_hv_hypercall(vcpu
);
4843 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4844 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4845 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4846 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4847 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4849 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
4851 if (!is_long_mode(vcpu
)) {
4859 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
4865 case KVM_HC_VAPIC_POLL_IRQ
:
4869 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
4876 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4877 ++vcpu
->stat
.hypercalls
;
4880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
4882 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
4884 char instruction
[3];
4885 unsigned long rip
= kvm_rip_read(vcpu
);
4888 * Blow out the MMU to ensure that no other VCPU has an active mapping
4889 * to ensure that the updated hypercall appears atomically across all
4892 kvm_mmu_zap_all(vcpu
->kvm
);
4894 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
4896 return emulator_write_emulated(rip
, instruction
, 3, NULL
, vcpu
);
4899 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4901 struct desc_ptr dt
= { limit
, base
};
4903 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4906 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4908 struct desc_ptr dt
= { limit
, base
};
4910 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4913 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
4915 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
4916 int j
, nent
= vcpu
->arch
.cpuid_nent
;
4918 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
4919 /* when no next entry is found, the current entry[i] is reselected */
4920 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
4921 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
4922 if (ej
->function
== e
->function
) {
4923 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
4927 return 0; /* silence gcc, even though control never reaches here */
4930 /* find an entry with matching function, matching index (if needed), and that
4931 * should be read next (if it's stateful) */
4932 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
4933 u32 function
, u32 index
)
4935 if (e
->function
!= function
)
4937 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
4939 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
4940 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
4945 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
4946 u32 function
, u32 index
)
4949 struct kvm_cpuid_entry2
*best
= NULL
;
4951 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
4952 struct kvm_cpuid_entry2
*e
;
4954 e
= &vcpu
->arch
.cpuid_entries
[i
];
4955 if (is_matching_cpuid_entry(e
, function
, index
)) {
4956 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
4957 move_to_next_stateful_cpuid_entry(vcpu
, i
);
4962 * Both basic or both extended?
4964 if (((e
->function
^ function
) & 0x80000000) == 0)
4965 if (!best
|| e
->function
> best
->function
)
4970 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
4972 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
4974 struct kvm_cpuid_entry2
*best
;
4976 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
4977 if (!best
|| best
->eax
< 0x80000008)
4979 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
4981 return best
->eax
& 0xff;
4986 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
4988 u32 function
, index
;
4989 struct kvm_cpuid_entry2
*best
;
4991 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4992 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4993 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
4994 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
4995 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
4996 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
4997 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
4999 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
5000 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
5001 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
5002 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
5004 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5005 trace_kvm_cpuid(function
,
5006 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
5007 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
5008 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
5009 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
5011 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
5014 * Check if userspace requested an interrupt window, and that the
5015 * interrupt window is open.
5017 * No need to exit to userspace if we already have an interrupt queued.
5019 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5021 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5022 vcpu
->run
->request_interrupt_window
&&
5023 kvm_arch_interrupt_allowed(vcpu
));
5026 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5028 struct kvm_run
*kvm_run
= vcpu
->run
;
5030 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5031 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5032 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5033 if (irqchip_in_kernel(vcpu
->kvm
))
5034 kvm_run
->ready_for_interrupt_injection
= 1;
5036 kvm_run
->ready_for_interrupt_injection
=
5037 kvm_arch_interrupt_allowed(vcpu
) &&
5038 !kvm_cpu_has_interrupt(vcpu
) &&
5039 !kvm_event_needs_reinjection(vcpu
);
5042 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5044 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5047 if (!apic
|| !apic
->vapic_addr
)
5050 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5052 vcpu
->arch
.apic
->vapic_page
= page
;
5055 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5057 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5060 if (!apic
|| !apic
->vapic_addr
)
5063 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5064 kvm_release_page_dirty(apic
->vapic_page
);
5065 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5066 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5069 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5073 if (!kvm_x86_ops
->update_cr8_intercept
)
5076 if (!vcpu
->arch
.apic
)
5079 if (!vcpu
->arch
.apic
->vapic_addr
)
5080 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5087 tpr
= kvm_lapic_get_cr8(vcpu
);
5089 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5092 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5094 /* try to reinject previous events if any */
5095 if (vcpu
->arch
.exception
.pending
) {
5096 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5097 vcpu
->arch
.exception
.has_error_code
,
5098 vcpu
->arch
.exception
.error_code
);
5099 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5100 vcpu
->arch
.exception
.has_error_code
,
5101 vcpu
->arch
.exception
.error_code
,
5102 vcpu
->arch
.exception
.reinject
);
5106 if (vcpu
->arch
.nmi_injected
) {
5107 kvm_x86_ops
->set_nmi(vcpu
);
5111 if (vcpu
->arch
.interrupt
.pending
) {
5112 kvm_x86_ops
->set_irq(vcpu
);
5116 /* try to inject new event if pending */
5117 if (vcpu
->arch
.nmi_pending
) {
5118 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5119 vcpu
->arch
.nmi_pending
= false;
5120 vcpu
->arch
.nmi_injected
= true;
5121 kvm_x86_ops
->set_nmi(vcpu
);
5123 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5124 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5125 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5127 kvm_x86_ops
->set_irq(vcpu
);
5132 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5134 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5135 !vcpu
->guest_xcr0_loaded
) {
5136 /* kvm_set_xcr() also depends on this */
5137 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5138 vcpu
->guest_xcr0_loaded
= 1;
5142 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5144 if (vcpu
->guest_xcr0_loaded
) {
5145 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5146 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5147 vcpu
->guest_xcr0_loaded
= 0;
5151 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5154 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5155 vcpu
->run
->request_interrupt_window
;
5157 if (vcpu
->requests
) {
5158 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5159 kvm_mmu_unload(vcpu
);
5160 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5161 __kvm_migrate_timers(vcpu
);
5162 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5163 r
= kvm_guest_time_update(vcpu
);
5167 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5168 kvm_mmu_sync_roots(vcpu
);
5169 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5170 kvm_x86_ops
->tlb_flush(vcpu
);
5171 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5172 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5176 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5177 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5181 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5182 vcpu
->fpu_active
= 0;
5183 kvm_x86_ops
->fpu_deactivate(vcpu
);
5185 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5186 /* Page is swapped out. Do synthetic halt */
5187 vcpu
->arch
.apf
.halted
= true;
5191 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5192 vcpu
->arch
.nmi_pending
= true;
5195 r
= kvm_mmu_reload(vcpu
);
5199 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5200 inject_pending_event(vcpu
);
5202 /* enable NMI/IRQ window open exits if needed */
5203 if (vcpu
->arch
.nmi_pending
)
5204 kvm_x86_ops
->enable_nmi_window(vcpu
);
5205 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5206 kvm_x86_ops
->enable_irq_window(vcpu
);
5208 if (kvm_lapic_enabled(vcpu
)) {
5209 update_cr8_intercept(vcpu
);
5210 kvm_lapic_sync_to_vapic(vcpu
);
5216 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5217 if (vcpu
->fpu_active
)
5218 kvm_load_guest_fpu(vcpu
);
5219 kvm_load_guest_xcr0(vcpu
);
5221 vcpu
->mode
= IN_GUEST_MODE
;
5223 /* We should set ->mode before check ->requests,
5224 * see the comment in make_all_cpus_request.
5228 local_irq_disable();
5230 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5231 || need_resched() || signal_pending(current
)) {
5232 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5236 kvm_x86_ops
->cancel_injection(vcpu
);
5241 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5245 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5247 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5248 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5249 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5250 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5253 trace_kvm_entry(vcpu
->vcpu_id
);
5254 kvm_x86_ops
->run(vcpu
);
5257 * If the guest has used debug registers, at least dr7
5258 * will be disabled while returning to the host.
5259 * If we don't have active breakpoints in the host, we don't
5260 * care about the messed up debug address registers. But if
5261 * we have some of them active, restore the old state.
5263 if (hw_breakpoint_active())
5264 hw_breakpoint_restore();
5266 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &vcpu
->arch
.last_guest_tsc
);
5268 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5275 * We must have an instruction between local_irq_enable() and
5276 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5277 * the interrupt shadow. The stat.exits increment will do nicely.
5278 * But we need to prevent reordering, hence this barrier():
5286 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5289 * Profile KVM exit RIPs:
5291 if (unlikely(prof_on
== KVM_PROFILING
)) {
5292 unsigned long rip
= kvm_rip_read(vcpu
);
5293 profile_hit(KVM_PROFILING
, (void *)rip
);
5297 kvm_lapic_sync_from_vapic(vcpu
);
5299 r
= kvm_x86_ops
->handle_exit(vcpu
);
5305 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5308 struct kvm
*kvm
= vcpu
->kvm
;
5310 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5311 pr_debug("vcpu %d received sipi with vector # %x\n",
5312 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5313 kvm_lapic_reset(vcpu
);
5314 r
= kvm_arch_vcpu_reset(vcpu
);
5317 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5320 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5325 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5326 !vcpu
->arch
.apf
.halted
)
5327 r
= vcpu_enter_guest(vcpu
);
5329 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5330 kvm_vcpu_block(vcpu
);
5331 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5332 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5334 switch(vcpu
->arch
.mp_state
) {
5335 case KVM_MP_STATE_HALTED
:
5336 vcpu
->arch
.mp_state
=
5337 KVM_MP_STATE_RUNNABLE
;
5338 case KVM_MP_STATE_RUNNABLE
:
5339 vcpu
->arch
.apf
.halted
= false;
5341 case KVM_MP_STATE_SIPI_RECEIVED
:
5352 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5353 if (kvm_cpu_has_pending_timer(vcpu
))
5354 kvm_inject_pending_timer_irqs(vcpu
);
5356 if (dm_request_for_irq_injection(vcpu
)) {
5358 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5359 ++vcpu
->stat
.request_irq_exits
;
5362 kvm_check_async_pf_completion(vcpu
);
5364 if (signal_pending(current
)) {
5366 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5367 ++vcpu
->stat
.signal_exits
;
5369 if (need_resched()) {
5370 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5372 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5376 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5383 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5388 if (!tsk_used_math(current
) && init_fpu(current
))
5391 if (vcpu
->sigset_active
)
5392 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5394 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5395 kvm_vcpu_block(vcpu
);
5396 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5401 /* re-sync apic's tpr */
5402 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5403 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5409 if (vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
) {
5410 if (vcpu
->mmio_needed
) {
5411 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
5412 vcpu
->mmio_read_completed
= 1;
5413 vcpu
->mmio_needed
= 0;
5415 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5416 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5417 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5418 if (r
!= EMULATE_DONE
) {
5423 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
5424 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
5425 kvm_run
->hypercall
.ret
);
5427 r
= __vcpu_run(vcpu
);
5430 post_kvm_run_save(vcpu
);
5431 if (vcpu
->sigset_active
)
5432 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5437 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5439 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5440 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5441 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5442 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5443 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5444 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5445 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5446 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5447 #ifdef CONFIG_X86_64
5448 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5449 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5450 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5451 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5452 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5453 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5454 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5455 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5458 regs
->rip
= kvm_rip_read(vcpu
);
5459 regs
->rflags
= kvm_get_rflags(vcpu
);
5464 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5466 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5467 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5468 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5469 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5470 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5471 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5472 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5473 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5474 #ifdef CONFIG_X86_64
5475 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5476 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5477 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5478 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5479 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5480 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5481 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5482 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5485 kvm_rip_write(vcpu
, regs
->rip
);
5486 kvm_set_rflags(vcpu
, regs
->rflags
);
5488 vcpu
->arch
.exception
.pending
= false;
5490 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5495 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5497 struct kvm_segment cs
;
5499 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5503 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5505 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5506 struct kvm_sregs
*sregs
)
5510 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5511 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5512 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5513 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5514 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5515 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5517 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5518 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5520 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5521 sregs
->idt
.limit
= dt
.size
;
5522 sregs
->idt
.base
= dt
.address
;
5523 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5524 sregs
->gdt
.limit
= dt
.size
;
5525 sregs
->gdt
.base
= dt
.address
;
5527 sregs
->cr0
= kvm_read_cr0(vcpu
);
5528 sregs
->cr2
= vcpu
->arch
.cr2
;
5529 sregs
->cr3
= kvm_read_cr3(vcpu
);
5530 sregs
->cr4
= kvm_read_cr4(vcpu
);
5531 sregs
->cr8
= kvm_get_cr8(vcpu
);
5532 sregs
->efer
= vcpu
->arch
.efer
;
5533 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5535 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5537 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5538 set_bit(vcpu
->arch
.interrupt
.nr
,
5539 (unsigned long *)sregs
->interrupt_bitmap
);
5544 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5545 struct kvm_mp_state
*mp_state
)
5547 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5551 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5552 struct kvm_mp_state
*mp_state
)
5554 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5555 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5559 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
5560 bool has_error_code
, u32 error_code
)
5562 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
5565 init_emulate_ctxt(vcpu
);
5567 ret
= emulator_task_switch(&vcpu
->arch
.emulate_ctxt
,
5568 tss_selector
, reason
, has_error_code
,
5572 return EMULATE_FAIL
;
5574 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
5575 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
5576 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
5577 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5578 return EMULATE_DONE
;
5580 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5582 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5583 struct kvm_sregs
*sregs
)
5585 int mmu_reset_needed
= 0;
5586 int pending_vec
, max_bits
, idx
;
5589 dt
.size
= sregs
->idt
.limit
;
5590 dt
.address
= sregs
->idt
.base
;
5591 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5592 dt
.size
= sregs
->gdt
.limit
;
5593 dt
.address
= sregs
->gdt
.base
;
5594 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5596 vcpu
->arch
.cr2
= sregs
->cr2
;
5597 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
5598 vcpu
->arch
.cr3
= sregs
->cr3
;
5599 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
5601 kvm_set_cr8(vcpu
, sregs
->cr8
);
5603 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5604 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5605 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5607 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5608 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5609 vcpu
->arch
.cr0
= sregs
->cr0
;
5611 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5612 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5613 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
5616 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5617 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5618 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
5619 mmu_reset_needed
= 1;
5621 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5623 if (mmu_reset_needed
)
5624 kvm_mmu_reset_context(vcpu
);
5626 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
5627 pending_vec
= find_first_bit(
5628 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5629 if (pending_vec
< max_bits
) {
5630 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5631 pr_debug("Set back pending irq %d\n", pending_vec
);
5634 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5635 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5636 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5637 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5638 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5639 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5641 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5642 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5644 update_cr8_intercept(vcpu
);
5646 /* Older userspace won't unhalt the vcpu on reset. */
5647 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5648 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5650 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5652 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5657 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5658 struct kvm_guest_debug
*dbg
)
5660 unsigned long rflags
;
5663 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5665 if (vcpu
->arch
.exception
.pending
)
5667 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5668 kvm_queue_exception(vcpu
, DB_VECTOR
);
5670 kvm_queue_exception(vcpu
, BP_VECTOR
);
5674 * Read rflags as long as potentially injected trace flags are still
5677 rflags
= kvm_get_rflags(vcpu
);
5679 vcpu
->guest_debug
= dbg
->control
;
5680 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5681 vcpu
->guest_debug
= 0;
5683 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5684 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5685 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5686 vcpu
->arch
.switch_db_regs
=
5687 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5689 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5690 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5691 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5694 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5695 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5696 get_segment_base(vcpu
, VCPU_SREG_CS
);
5699 * Trigger an rflags update that will inject or remove the trace
5702 kvm_set_rflags(vcpu
, rflags
);
5704 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5714 * Translate a guest virtual address to a guest physical address.
5716 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5717 struct kvm_translation
*tr
)
5719 unsigned long vaddr
= tr
->linear_address
;
5723 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5724 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5725 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5726 tr
->physical_address
= gpa
;
5727 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5734 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5736 struct i387_fxsave_struct
*fxsave
=
5737 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5739 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5740 fpu
->fcw
= fxsave
->cwd
;
5741 fpu
->fsw
= fxsave
->swd
;
5742 fpu
->ftwx
= fxsave
->twd
;
5743 fpu
->last_opcode
= fxsave
->fop
;
5744 fpu
->last_ip
= fxsave
->rip
;
5745 fpu
->last_dp
= fxsave
->rdp
;
5746 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5751 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5753 struct i387_fxsave_struct
*fxsave
=
5754 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5756 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5757 fxsave
->cwd
= fpu
->fcw
;
5758 fxsave
->swd
= fpu
->fsw
;
5759 fxsave
->twd
= fpu
->ftwx
;
5760 fxsave
->fop
= fpu
->last_opcode
;
5761 fxsave
->rip
= fpu
->last_ip
;
5762 fxsave
->rdp
= fpu
->last_dp
;
5763 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5768 int fx_init(struct kvm_vcpu
*vcpu
)
5772 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5776 fpu_finit(&vcpu
->arch
.guest_fpu
);
5779 * Ensure guest xcr0 is valid for loading
5781 vcpu
->arch
.xcr0
= XSTATE_FP
;
5783 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5787 EXPORT_SYMBOL_GPL(fx_init
);
5789 static void fx_free(struct kvm_vcpu
*vcpu
)
5791 fpu_free(&vcpu
->arch
.guest_fpu
);
5794 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5796 if (vcpu
->guest_fpu_loaded
)
5800 * Restore all possible states in the guest,
5801 * and assume host would use all available bits.
5802 * Guest xcr0 would be loaded later.
5804 kvm_put_guest_xcr0(vcpu
);
5805 vcpu
->guest_fpu_loaded
= 1;
5806 unlazy_fpu(current
);
5807 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5811 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5813 kvm_put_guest_xcr0(vcpu
);
5815 if (!vcpu
->guest_fpu_loaded
)
5818 vcpu
->guest_fpu_loaded
= 0;
5819 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5820 ++vcpu
->stat
.fpu_reload
;
5821 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5825 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5827 kvmclock_reset(vcpu
);
5829 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5831 kvm_x86_ops
->vcpu_free(vcpu
);
5834 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
5837 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
5838 printk_once(KERN_WARNING
5839 "kvm: SMP vm created on host with unstable TSC; "
5840 "guest TSC will not be reliable\n");
5841 return kvm_x86_ops
->vcpu_create(kvm
, id
);
5844 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
5848 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
5850 r
= kvm_arch_vcpu_reset(vcpu
);
5852 r
= kvm_mmu_setup(vcpu
);
5859 kvm_x86_ops
->vcpu_free(vcpu
);
5863 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
5865 vcpu
->arch
.apf
.msr_val
= 0;
5868 kvm_mmu_unload(vcpu
);
5872 kvm_x86_ops
->vcpu_free(vcpu
);
5875 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
5877 vcpu
->arch
.nmi_pending
= false;
5878 vcpu
->arch
.nmi_injected
= false;
5880 vcpu
->arch
.switch_db_regs
= 0;
5881 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5882 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5883 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5885 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5886 vcpu
->arch
.apf
.msr_val
= 0;
5888 kvmclock_reset(vcpu
);
5890 kvm_clear_async_pf_completion_queue(vcpu
);
5891 kvm_async_pf_hash_reset(vcpu
);
5892 vcpu
->arch
.apf
.halted
= false;
5894 return kvm_x86_ops
->vcpu_reset(vcpu
);
5897 int kvm_arch_hardware_enable(void *garbage
)
5900 struct kvm_vcpu
*vcpu
;
5903 kvm_shared_msr_cpu_online();
5904 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5905 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5906 if (vcpu
->cpu
== smp_processor_id())
5907 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5908 return kvm_x86_ops
->hardware_enable(garbage
);
5911 void kvm_arch_hardware_disable(void *garbage
)
5913 kvm_x86_ops
->hardware_disable(garbage
);
5914 drop_user_return_notifiers(garbage
);
5917 int kvm_arch_hardware_setup(void)
5919 return kvm_x86_ops
->hardware_setup();
5922 void kvm_arch_hardware_unsetup(void)
5924 kvm_x86_ops
->hardware_unsetup();
5927 void kvm_arch_check_processor_compat(void *rtn
)
5929 kvm_x86_ops
->check_processor_compatibility(rtn
);
5932 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5938 BUG_ON(vcpu
->kvm
== NULL
);
5941 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
5942 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
5943 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
5944 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
5945 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
5946 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5947 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5949 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5951 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5956 vcpu
->arch
.pio_data
= page_address(page
);
5958 if (!kvm
->arch
.virtual_tsc_khz
)
5959 kvm_arch_set_tsc_khz(kvm
, max_tsc_khz
);
5961 r
= kvm_mmu_create(vcpu
);
5963 goto fail_free_pio_data
;
5965 if (irqchip_in_kernel(kvm
)) {
5966 r
= kvm_create_lapic(vcpu
);
5968 goto fail_mmu_destroy
;
5971 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
5973 if (!vcpu
->arch
.mce_banks
) {
5975 goto fail_free_lapic
;
5977 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
5979 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
5980 goto fail_free_mce_banks
;
5982 kvm_async_pf_hash_reset(vcpu
);
5985 fail_free_mce_banks
:
5986 kfree(vcpu
->arch
.mce_banks
);
5988 kvm_free_lapic(vcpu
);
5990 kvm_mmu_destroy(vcpu
);
5992 free_page((unsigned long)vcpu
->arch
.pio_data
);
5997 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6001 kfree(vcpu
->arch
.mce_banks
);
6002 kvm_free_lapic(vcpu
);
6003 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6004 kvm_mmu_destroy(vcpu
);
6005 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6006 free_page((unsigned long)vcpu
->arch
.pio_data
);
6009 int kvm_arch_init_vm(struct kvm
*kvm
)
6011 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6012 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6014 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6015 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6017 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6022 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6025 kvm_mmu_unload(vcpu
);
6029 static void kvm_free_vcpus(struct kvm
*kvm
)
6032 struct kvm_vcpu
*vcpu
;
6035 * Unpin any mmu pages first.
6037 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6038 kvm_clear_async_pf_completion_queue(vcpu
);
6039 kvm_unload_vcpu_mmu(vcpu
);
6041 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6042 kvm_arch_vcpu_free(vcpu
);
6044 mutex_lock(&kvm
->lock
);
6045 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6046 kvm
->vcpus
[i
] = NULL
;
6048 atomic_set(&kvm
->online_vcpus
, 0);
6049 mutex_unlock(&kvm
->lock
);
6052 void kvm_arch_sync_events(struct kvm
*kvm
)
6054 kvm_free_all_assigned_devices(kvm
);
6058 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6060 kvm_iommu_unmap_guest(kvm
);
6061 kfree(kvm
->arch
.vpic
);
6062 kfree(kvm
->arch
.vioapic
);
6063 kvm_free_vcpus(kvm
);
6064 if (kvm
->arch
.apic_access_page
)
6065 put_page(kvm
->arch
.apic_access_page
);
6066 if (kvm
->arch
.ept_identity_pagetable
)
6067 put_page(kvm
->arch
.ept_identity_pagetable
);
6070 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6071 struct kvm_memory_slot
*memslot
,
6072 struct kvm_memory_slot old
,
6073 struct kvm_userspace_memory_region
*mem
,
6076 int npages
= memslot
->npages
;
6077 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6079 /* Prevent internal slot pages from being moved by fork()/COW. */
6080 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6081 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6083 /*To keep backward compatibility with older userspace,
6084 *x86 needs to hanlde !user_alloc case.
6087 if (npages
&& !old
.rmap
) {
6088 unsigned long userspace_addr
;
6090 down_write(¤t
->mm
->mmap_sem
);
6091 userspace_addr
= do_mmap(NULL
, 0,
6093 PROT_READ
| PROT_WRITE
,
6096 up_write(¤t
->mm
->mmap_sem
);
6098 if (IS_ERR((void *)userspace_addr
))
6099 return PTR_ERR((void *)userspace_addr
);
6101 memslot
->userspace_addr
= userspace_addr
;
6109 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6110 struct kvm_userspace_memory_region
*mem
,
6111 struct kvm_memory_slot old
,
6115 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6117 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6120 down_write(¤t
->mm
->mmap_sem
);
6121 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6122 old
.npages
* PAGE_SIZE
);
6123 up_write(¤t
->mm
->mmap_sem
);
6126 "kvm_vm_ioctl_set_memory_region: "
6127 "failed to munmap memory\n");
6130 if (!kvm
->arch
.n_requested_mmu_pages
)
6131 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6133 spin_lock(&kvm
->mmu_lock
);
6135 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6136 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6137 spin_unlock(&kvm
->mmu_lock
);
6140 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6142 kvm_mmu_zap_all(kvm
);
6143 kvm_reload_remote_mmus(kvm
);
6146 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6148 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6149 !vcpu
->arch
.apf
.halted
)
6150 || !list_empty_careful(&vcpu
->async_pf
.done
)
6151 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6152 || vcpu
->arch
.nmi_pending
||
6153 (kvm_arch_interrupt_allowed(vcpu
) &&
6154 kvm_cpu_has_interrupt(vcpu
));
6157 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6160 int cpu
= vcpu
->cpu
;
6162 if (waitqueue_active(&vcpu
->wq
)) {
6163 wake_up_interruptible(&vcpu
->wq
);
6164 ++vcpu
->stat
.halt_wakeup
;
6168 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6169 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6170 smp_send_reschedule(cpu
);
6174 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6176 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6179 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6181 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6182 get_segment_base(vcpu
, VCPU_SREG_CS
);
6184 return current_rip
== linear_rip
;
6186 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6188 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6190 unsigned long rflags
;
6192 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6193 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6194 rflags
&= ~X86_EFLAGS_TF
;
6197 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6199 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6201 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6202 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6203 rflags
|= X86_EFLAGS_TF
;
6204 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6205 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6207 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6209 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6213 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6214 is_error_page(work
->page
))
6217 r
= kvm_mmu_reload(vcpu
);
6221 if (!vcpu
->arch
.mmu
.direct_map
&&
6222 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6225 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6228 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6230 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6233 static inline u32
kvm_async_pf_next_probe(u32 key
)
6235 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6238 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6240 u32 key
= kvm_async_pf_hash_fn(gfn
);
6242 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6243 key
= kvm_async_pf_next_probe(key
);
6245 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6248 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6251 u32 key
= kvm_async_pf_hash_fn(gfn
);
6253 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6254 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6255 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6256 key
= kvm_async_pf_next_probe(key
);
6261 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6263 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6266 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6270 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6272 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6274 j
= kvm_async_pf_next_probe(j
);
6275 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6277 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6279 * k lies cyclically in ]i,j]
6281 * |....j i.k.| or |.k..j i...|
6283 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6284 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6289 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6292 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6296 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6297 struct kvm_async_pf
*work
)
6299 struct x86_exception fault
;
6301 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6302 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6304 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6305 (vcpu
->arch
.apf
.send_user_only
&&
6306 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6307 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6308 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6309 fault
.vector
= PF_VECTOR
;
6310 fault
.error_code_valid
= true;
6311 fault
.error_code
= 0;
6312 fault
.nested_page_fault
= false;
6313 fault
.address
= work
->arch
.token
;
6314 kvm_inject_page_fault(vcpu
, &fault
);
6318 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6319 struct kvm_async_pf
*work
)
6321 struct x86_exception fault
;
6323 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6324 if (is_error_page(work
->page
))
6325 work
->arch
.token
= ~0; /* broadcast wakeup */
6327 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6329 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6330 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6331 fault
.vector
= PF_VECTOR
;
6332 fault
.error_code_valid
= true;
6333 fault
.error_code
= 0;
6334 fault
.nested_page_fault
= false;
6335 fault
.address
= work
->arch
.token
;
6336 kvm_inject_page_fault(vcpu
, &fault
);
6338 vcpu
->arch
.apf
.halted
= false;
6341 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6343 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6346 return !kvm_event_needs_reinjection(vcpu
) &&
6347 kvm_x86_ops
->interrupt_allowed(vcpu
);
6350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);